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Introduction

Combinatorial number theory commonly employs combinatorial

methods, such as counting or graphs, in combination with well-

known number theoretical tools.

Let us have a look at an example of a simple exercise for illus-

tration purposes. It must be shown that the n + 1 |
(2n
n

)
always

holds.

This appears to be a challenging task when using elementary

number theory approaches, but when we realize that 1
n+1

(2n
n

)
is a

well-known Catalan number from combinatorics, which is actually

an integer related to the number of arrangements (for example, how

many ways can we arrange n brackets), the proof becomes consid-

erably simpler.

My favorite combinatorial number theory proofs are usually re-

lated to graph theory applications (Ramsey theory or extreme com-

binatorics). I tried to choose proofs in the notes that are as simple

as possible, and the knowledge from the introductory combinatorics

and number theory BSc courses is sufficient for their understanding.

I used a wide range of literature and provided the entire bibliogra-

phy as carefully as I could at the end of each chapter. Among these,

I would like to mention that a few chapters were written based on

András Sárközy’s classroom university lectures (where it is relevant

I included this in the bibliography).

I began writing the note in the spring course of the 2020/21 online

semester to adapt to the difficult circumstances and replace the well-

known blackboard in traditional education.
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1 Fermat congruence

Perhaps, you have heard about Hilbert’s problems. Hilbert pro-

posed 23 problems, and ten of them were presented at the Second

International Congress of Mathematicians in Paris on August 8th,

1900.

Hilbert’s problems lead to a substantial advance in mathematics.

The 10th problem of his was the following:

Does there exist a universal (finite) algorithm for solving Diophan-

tine equations? (An equation is called Diophantine if we are looking

for its integer solutions.)

We will look at Diophantine equations from a combinatorial view-

point in this chapter.

Before we move on, let us look at some of the most well-known

Diophantine equations.

ax + by = c Linear Diophantine equation.

xn + yn = zn for n ≥ 3 Fermat’s “last theorem”

x2 + y2 = z2 Pythagorean triple
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x4 + y4 + z4 = w4 Euler [6] conjectured this equation

has only trivial solutions. Elkies [1]

proved this is not true in 1988.

Typical questions about Diophantine equations:

1. Are there any solutions?

2. Are there any further solutions beyond than the ones found eas-

ily?

3. Are there finitely or infinitely many solutions?

4. Can one describe all the solutions?

5. Can one in practice determine a full list of solutions?

About the first question, there is sometimes (if we are lucky) an

easy way to show that there is no solution to the Diophantine equa-

tion at all.

Examples:

1. x2 + y2 = 3z2 has no solution in N. Consider the equation

modulo 3.

2. There exist infinitely many m ∈ Z such that x3 + y3 + z3 = m

has no solution in Z (related to Waring problem [7]). Let m ≡ ±4
(mod 9) and consider the equation modulo 9.

Returning to Hilbert’s 10th Problem:

Does there exist a universal algorithm for solving all Diophantine

equations?
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This was unsolved for a long period. Finally, Martin Davis, Yuri

Matiyasevich, Hilary Putnam, and Julia Robinson proved that there

is no universal algorithm of this type (for further details see [8]).

As seen in Example 1 and 2, reducing the equation modulo m

sometimes reveals that there is no solution at all.

Furthermore, there may have been historical assumptions that

modulo m studies may lead to a goal in the case of nearly all Dio-

phantine equations.

Let us consider the famous Fermat’s last theorem:

xn + yn = zn

has only trivial solutions for n ≥ 3.

The trivial solutions are x = 0 or y = 0 or z = 0.

Fermat proposed this conjecture in 1637. He noted in the margin

of a book that he found a beautiful and brief proof, but it was too

large to fit in the margin.

Several mathematicians attempted but failed to find Fermat’s

original beautiful proof.

Finally, Wiles [4], [5] proved the conjecture in 1994, but his proof

was more than 120 pages long.

But the conjecture had been open for more than 350 years.

In the past, I believe many mathematicians attempted to solve

this Diophantine equation by reducing it modulo m.
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Show that there exist infinitely many prime p such that the con-

gruence

xn + yn ≡ zn (mod p)

has no solution. What do you think: Is it true or not?

It is not true, e.g.

x ≡ 0 (p) y ≡ z (p)

is always a solution. The followings are called trivial solution:

x ≡ 0 (p) or y ≡ 0 (p) or z ≡ 0 (p)

m
xyz ≡ 0 (p).

Thus one might correct the idea:

Does there exist infinitely many prime p such that the congruence

xn + yn ≡ zn (mod p).

has only trivial solutions?

I believe several mathematicians tried to find such primes. . .

How would this statement imply Fermat’s last theorem?

Suppose that p1 < p2 < p3 < . . . is an increasing sequence of

primes such that

xn + yn ≡ zn (mod pi),

and this equation has only trivial solutions. Then x ≡ 0 (pi) or

y ≡ 0 (pi) or z ≡ 0 (pi). But then pi | xyz.
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That means xyz has an infinite number of prime divisors while

being finite, which is a contradiction.

It turned out that this method does not work, namely in 1916

Schur [3] proved the following (here the parentheses ⌈·⌉ will denote

the ceiling function).

Theorem 1.1 (Schur) If p ≥ ⌈en!⌉+ 1, then the congruence

xn + yn ≡ zn (mod p).

always has a non-trivial solution.

The proof uses combinatorial number theory.

Several erroneous proofs of famous conjectures, such as

Goldbach’s or Fermat’s, have already been sent to mathematical in-

stitutes for examination...

This theorem destroyed several attempts to solve Fermat’s prob-

lem using basic congruence processes, making reviewers’ jobs eas-

ier.

The proof uses graph theory, specifically Ramsey theory. The

necessary tools are described in the following chapter.

1.1 Ramsey theory

Suppose that in a group of 6 people every two people either know

each other or do not know each other but the relationship is always

symmetric. Then there exist 3 people among them such that every-

body knows everybody or nobody knows the others.
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This can be illustrated by a graph of 6 vertices. The people are

represented by the vertices. If two people know each other, we draw

a blue edge. If they do not know each other, we draw a red edge.

Statement: In this graph always exists a monochromatic triangle. Fix

a vertex A. Then there exist 3 other vertices B,C,D such that AB,

AC, AD have the same color, say blue.

A

B

C

D

If the edge BC is blue, ABC is a blue triangle. As a result, we

can assume that BC is red. Similarly, we can assume the edges

BD and CD are also red. But if the edges BC, BD, CD are all

red, then BCD is a red triangle.

Let Rt(3) be the smallest integer n such that every complete

graph on n (or more) vertices colored by t colors has a monochro-

matic triangle. If we color the edges of a complete graph on 3 ver-

tices with only one color, then obviously it contains a monochromatic

triangle. Thus

R1(3) = 3.

In the example seen earlier, we have seen that R2(3) ≤ 6. On

the other hand R2(3) > 5 because in the next figure you will see a

graph on 5 vertices colored by two colors, which does not contain a

monochromatic triangle.
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Thus

R2(3) = 6.

Generalizing the previous ideas, we get that

Rt(3) ≤ t (Rt−1(3)− 1) + 2. (1.1)

Let us see the proof in details: Let G be a complete graph on n

vertices.

Suppose that n ≥ t (Rt−1(3)− 1) + 2. We will prove that if we

color the edges of G by t colors, then it always contains a monochro-

matic triangle. From this (1.1) follows.

Let denote the vertices of G by A1, A2, . . . , An. For a while

we fix the vertex An, and consider the vertices A1, A2, . . . , An−1.

Since

n− 1 ≥ t (Rt−1(3)− 1) + 1,

by the pigeon-hole principle, there exist s = Rt−1(3) vertices

Ai1, Ai2, . . . , Ais such that the edges

AnAi1, AnAi2, . . . , AnAis

are colored by the same color. Say, this color is blue. If among

the vertices Ai1, Ai2, . . . , Ais there is a blue edge, say AikAiℓ, then

there is a blue triangle: AnAikAiℓ:
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A

A

A
A

A

n

i

i

i

1

2

s

A i

i

k

l

If among the vertices Ai1, Ai2, . . . , Ais there is no blue edge,

then consider the subgraph G0 formed by these vertices. The edges

of G0 are not colored by blue, so they are colored only by t−1 colors.

Denote the number of vertices of G0 by V (G0). Since

V (G0) = s = Rt−1(3),

by the definition of Rt−1(3), we have G0 contains a monochromatic

triangle.

By induction on t, it is easy to show that

Rt(3) ≤ t!

(

1 +
1

1!
+

1

2!
+ · · ·+ 1

t!

)

+ 1. (1.2)

Indeed, for t = 1

R1(3) = 3 ≤ 1!

(

1 +
1

1!

)

+ 1.

If the statement is true for t = k − 1, then it is also true for t = k.

By (1.1) we have

Rk(3) ≤ k (Rk−1(3)− 1) + 2

≤ k · (k − 1)!

(

1 +
1

1!
+

1

2!
+ · · ·+ 1

(k − 1)!

)

+ 2
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= k!

(

1 +
1

1!
+

1

2!
+ · · ·+ 1

k!

)

+ 1.

This proves (1.2). Since

t!

(

1 +
1

1!
+

1

2!
+ · · ·+ 1

t!

)

≤ t!

(

1 +
1

1!
+

1

2!
+ . . .

)

= t!e,

we obtain the following.

Theorem 1.2 (Schur)

Rt(3) ≤ ⌈t!e⌉.

You can read more about Rt(3) Ramsey numbers, e.g., on the

following page: link.

Using Theorem 1.2 we will prove

Theorem 1.3 (Schur) If N ≥ ⌈t!e⌉ and the numbers

{1, 2, . . . , N} are colored with t colors, then there always ex-

ists a monochromatic solution of

x + y = z.

Proof of Theorem 1.3. Let G be a complete graph whose vertices

are integer numbers between 1 and N .

1

2

3
N−1

N
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We color the edges of G by t color by the following way: We

assign a value to each edge. The value of the edge between i and

j will be the integer number |i− j|. Since for this value we have

|i− j| ∈ {1, 2, . . . , N} the number |i− j| has a color. This color

will be the color of the edge {i, j}. Since Rt(3) ≤ ⌈t!e⌉ ≤ N ,

the graph G contains a monochromatic triangle: {i, j, k}. We may

assume i < j < k. Then:

By the definition of the coloring x, y and z have the same color.

Moreover x+y = z since (j− i)+ (k− j) = k− i. Thus we have

proved Schur’s theorem.

Exercise. How does Schur theorem imply that the Fermat congru-

ence xn + yn ≡ zn (mod p) always has a non-trivial solution for

primes p large enough?

Hint: Use primitive roots!

Solution. Let p be a prime, p ≥ ⌈n!e⌉+1. Let g be a primitive root

mod p. Then

{g0, g1, g2, . . . , gp−2}
is a reduced residue system mod p. Thus the reminders of

g0, g1, . . . , gp−2 modulo p are the integers 1, 2, . . . , p − 2 (but not

in this order). We write

{g0, g1, g2, . . . , gp−2} ≡ {1, 2, . . . , p− 1} (mod p).
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Color {1, 2, 3, . . . , p− 1} by n different colors.

An s ∈ {1, 2, . . . , p − 1} is colored by the r-th color if there

exists an integer k such that

s ≡ gkn+r (mod p).

We illustrate this by the following:

1-st color ≡
{
g, gn+1, g2n+1, . . .

}
(mod p)

2-nd color ≡
{
g2, gn+2, g2n+2, . . .

}
(mod p)

3-rd color ≡
{
g3, gn+3, g2n+3, . . .

}
(mod p)

...

n-th color ≡
{
g0, gn, g2n, . . .

}
(mod p)

We will use Schur’s theorem for this coloring. Then there exist

x, y and z such that

x + y = z

and x, y, z have the same color. Denote this monochromatic solu-

tion by x0, y0, z0. Then

x0 + y0 = z0.

Since x0, y0, z0 have the same color, then by the definition of color-

ing we have there exist integers r, k, ℓ and m such that

x0 ≡ gkn+r (mod p)

y0 ≡ gℓn+r (mod p)

z0 ≡ gmn+r (mod p).

Then

x0 + y0 = z0
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x0 + y0 ≡ z0 (mod p)

gkn+r + gℓn+r ≡ gmn+r (mod p)

gkn + gℓn ≡ gmn (mod p)

Thus for a ≡ gk, b ≡ gℓ, c ≡ gm (mod p) we have

an + bn ≡ cn (mod p),

which was to be proved.
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2 Further Ramsey theory applications

We saw a tricky application of the Ramsey theory in the first

chapter. We will now present two other applications in number the-

ory. But, before we go any further, a word about the creator of the

theory. Ramsey was fascinated not only by mathematics, but also

by many other fields, particularly economics. He was, nonetheless,

interested in psychoanalysis.

Ramsey theory is well-known in mathematics for its aplicability;

it is used not just in number theory but also in harmonic analysis,

ergodic theory, geometry, information theory, logic, and so on.

The following example due to Sárközy [4].

Theorem 2.1 (Sárközy) Let p be a prime of form 4k + 1. There

exists a set A ⊆ Zp such that

|A| ≥
[
1

4
log p

]

and all differences a − a′ with a, a′ ∈ A are quadratic residues

modulo p or zeros.
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Proof of Theorem 2.1. Graph theory is needed for proving this

theorem. We will use Ramsey’s theory again.

For a graph G, let V (G) denote the set of vertices of G and E(G)
denote the set of edges of G.

Let Kn denote the complete graph on n vertices.

Moreover, let R(k, ℓ) denote the smallest integer such that every

complete graph G with |V (G)| ≥ R(k, ℓ) has the following property:

If we color the edges of G with two colors: red and blue, then there

always exists a monochromatic Kk colored with blue or a monochro-

matic Kℓ colored with red. Then

R(k, ℓ) ≤ R(k − 1, ℓ) + R(k, ℓ− 1). (2.1)

The proof of this can be illustrated by the following figure:

R(k − 1, ℓ)− 1

R(k, ℓ− 1)− 1

Indeed, suppose that G is a graph for which

|V (G)| ≥ R(k − 1, ℓ) + R(k, ℓ− 1). (2.2)

We will prove either G contains a blue Kk, either G contains a red

Kℓ. By this we get (2.1).

So suppose that G is graph for which (2.2) holds, and contrary to

the statement, G does not contain blue Kk and red Kℓ. Fix a vertex

18



A of G. We divide all other vertices of G into two groups: V0 is the

set of the vertices B for which the edge AB is blue, V1 is the set of

vertices C, for which the edge AC is red.

Let G0 be the complete graph formed by the vertices in V1 and

G1 be the complete graph formed by the vertices in V2.

If G0 contains a blue Kk−1, then G contains a blue Kk, since

adding the vertex A to the blue subgraph Kk−1 of G0, we obtain a

blue subgraph Kk of G. Thus if G does not contain blue Kk and red

Kℓ, then G0 does not contain blue Kk−1 and red Kℓ. Thus

|V (G0)| ≤ R(k − 1, ℓ)− 1.

Similarly,

|V (G1)| ≤ R(k, ℓ− 1)− 1.

Thus

|V (G)| = |V (G0)|+ |V (G1)|+ 1

≤ (R(k − 1, ℓ)− 1) + (R(k, ℓ− 1)− 1) + 1

= R(k − 1, ℓ) + R(k, ℓ− 1)− 1,

which contradicts to (2.2). Thus we proved (2.1).

Then by induction it is easy to show that

Theorem 2.2

R(k, ℓ) ≤
(
k + ℓ− 2

ℓ− 1

)

.

Proof of Theorem 2.2. We will prove by induction First we prove

R(2, ℓ) = ℓ and R(k, 2) = k.

Indeed if a graph has ℓ vertices, then either it contains a blue

edge (so it contains a blue K2), either its every edges are red (so it

contains a red Kℓ). Similarly, we may get R(k, 2) = k.
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Secondly, we show that if the theorem holds for all k’s and ℓ’s

where n = k+ ℓ, then it also holds for all k’s and ℓ’s where n+1 =

k + ℓ.

Indeed, let n + 1 = k + ℓ. By (2.1) and the induction

R(k, ℓ) ≤ R(k − 1, ℓ) + R(k, ℓ− 1)

≤
(
k + ℓ− 3

ℓ− 1

)

+

(
k + ℓ− 3

ℓ− 2

)

=

(
k + ℓ− 2

ℓ− 1

)

,

which was to be proved.

The binomial theorem provides the following corollary:

Corollary 2.3

R(k, k) ≤
(
2k − 2

k − 1

)

< (1 + 1)2k−2 < 4k.

Proof of Theorem 2.1. Define a complete graph G whose vertices

are the elements of Zp. We will use the following coloring:

For a 6= a′ the edge (a, a′) is blue if a−a′ is a quadratic residue.

The edge (a, a′) is red if a − a′ is a quadratic non-residue. That is

an appropriate definition because
(
a− a′

p

)

=

(
a′ − a

p

)

. (2.3)

Indeed, p is a prime of form 4k + 1, thus
(
−1
p

)

= 1, from which by

the multiplicativity of Legendre symbol we get (2.3).

We note that the subgraph created by the blue edges is known

as the Payley graph, after Raymond Payley. The figure illustrates the

case p = 13:
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We now return to the proof of the theorem. Let k =

[
1

4
log p

]

.

Then

R(k, k) ≤
(
2k

k

)

< 4k < p.

So the graph (colored by blue and red) consists of a monochromatic

Kk where k =

[
1

4
log p

]

.

If this color is blue, then let the vertices of the blue Kk are

a1, a2, . . . , ak. By the definition of the coloring, all differences

ai − aj are quadratic residues.

If this color is red, we fix a quadratic non-residue n ∈ Zp. Let

again the vertices of the red Kk are a1, a2 . . . , ak. Then all differ-

ences ai − aj are quadratic non-residue. Define Sk by

Sk
def
== {na1, na2, . . . , nak}.

Then nai − naj is always a quadratic residue since:
(
nai − naj

p

)

=

(
n

p

)(
ai − aj

p

)

= (−1)(−1) = 1,

which proves the theorem.
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Exercises

1. Does this proof work for sums a + a′ in place of a− a′?

2. Does there exist a similar proof for shifted products aa′ + 1?

3. Could you give a non-trivial upper bound for |A| if A ⊆ Zp and

a− a′ is always a quadratic residue modulo p?

Solutions of the exercises.

1.) The answer is yes, and the proof is very similar to the original.

We will prove the following:

Theorem 2.4 Let p be a prime. There exists a set A ⊆ Zp such

that

|A| ≥
[
1

4
log p

]

and all sums a + a′ with a 6= a′, a, a′ ∈ A are quadratic residues

modulo p or zeros.

Proof of Theorem 2.4. We define a complete graph G whose ver-

tices are the elements of Zp. We will use the following coloring: For

a 6= a′ the edge (a, a′) is blue if a + a′ is a quadratic residue or 0.

The edge (a, a′) is red if a + a′ is a quadratic non-residue. It is a

good definition since
(
a + a′

p

)

=

(
a′ + a

p

)

.

Let k =

[
1

4
log p

]

. Then again

R(k, k) ≤
(
2k

k

)

< 4k < p.
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So the graph consists of a monochromatic Kk where k =

[
1

4
log p

]

.

If this color is blue, then let the vertices of the blue Kk are

a1, a2, . . . , ak. By the definition of the coloring, all sums ai + aj

are quadratic residues or zeros.

If this color is red, we fix a quadratic non-residue n ∈ Zp. Let

again the vertices of the red Kk are a1, a2 . . . , ak. Then all sums

ai + aj are quadratic non-residue. Define Sk by

Sk
def
== {na1, na2, . . . , nak}.

Then nai + naj is always a quadratic residue since:
(
nai + naj

p

)

=

(
n

p

)(
ai + aj

p

)

= (−1)(−1) = 1,

which proves the theorem.

2.) We will prove the following:

Theorem 2.5 (Gyarmati [2]) There is a constant p0 such that if p is

a prime of the form 4k + 1 and p > p0 then there exists A ⊆ Zp

so that |A| ≥ 1
6 log 3

log p and aa′ + 1 is a quadratic residue or 0

mod p for all a, a′ ∈ A, a 6= a′.

The proof of Theorem 2.5. The theorem will follow from the follow-

ing Ramsey type result:

Lemma 2.6 If s1, s2, s3 are non-negative integers then there exists

an integer r with the following property: If G is a complete graph,

|G| ≥ r and C is any 3-coloring of the edges of G with colors

c1, c2, c3, then for some 1 ≤ i ≤ 3 the graph G has a subgraph G′

which is monochromatic with color ci and |G′| ≥ si.
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Furthermore, denoting the least integer r with this property by

R (s1, s2, s3) we have:

R (s1, s2, s3) ≤
(s1 + s2 + s3)!

s1!s2!s3!
.

Proof of Lemma 2.6. If any of the numbers s1, s2, s3 is 0 then the

lemma is trivial because R (s1, s2, s3) = 0. We may assume that

s1, s2, s3 > 0. The following inequality is well-known [1, p. 75] (and

can be verified with a typical Ramsey theoretical proof):

R (s1, s2, s3) ≤
R (s1 − 1, s2, s3) + R (s1, s2 − 1, s3) + R (s1, s2, s3 − 1)

for s1, s2, s3 > 0. Using induction we get:

R (s1, s2, s3) ≤
(s1 + s2 + s3)!

s1!s2!s3!
.

Consider the graph whose vertices are the residue classes

modulo p. Since p is a prime of the form 4k + 1 there exists an

integer i such that i2 ≡ −1 (mod p).

Let the edge e join the classes a and b. We color e with c1 if
(
ab+1

p

)

= 1 or 0. Furthermore we color e with c2 if
(
−ab+1

p

)

= 1 or

0 and
(
ab+1

p

)

= −1. Finally we color e with c3 if
(
−a2b2+1

p

)

= 1 or

0 and
(
ab+1

p

)

=
(
−ab+1

p

)

= −1 (we set
(
0
p

)

= 0).

We color all edges because otherwise:
(
ab + 1

p

)

=

(−ab+ 1

p

)

=

(−a2b2 + 1

p

)

= −1.

So:

−1 =

(

(ab+ 1) (−ab+ 1)
(
−a2b2 + 1

)

p

)

=

((
a2b2 − 1

)2

p

)

.
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But this contradicts the obvious fact that
(

(a2b2−1)
2

p

)

= 1 or 0.

Take c =
[

1
3 log 3

log p
]

+ 1. Applying the lemma we obtain:

R(c, c, c) ≤ (3c)!

c!c!c!
.

By Stirling formula, for c→∞ we have:

(3c)!

c!c!c!
≤ (1 + o(1))

(
3c
e

)3c√
2π3c

((
c
e

)c√
2πc

)3 ≤ 33c−3 ≤ p.

Thus if p is large enough then R(c, c, c) ≤ p. Therefore the

graph has a subgraph X which is monochromatic cj for some 1 ≤
j ≤ 3 and |X| ≥ c.

Let A be the set of the vertices of X if we colored the edges of

X with c1. Let A be {ix : x ∈ V (X)} if we colored the edges of

X with c2. Let A be {ix2 : x ∈ V (X)} if we colored the edges of

X with c3.

Now |A| ≥ 1
2
|X|. Using the definition of coloring, we obtain that

the product of any two elements of A increased by 1 is a quadratic

residue or 0 mod p.

3.) We will prove the following:

Theorem 2.7 (folklore) Let p be a prime. If A ⊂ Zp is a set such

that for all a 6= a′, a, a′ ∈ A we have that a−a′ is quadratic residue

modulo p then

|A| ≤ √p.

Proof of Theorem 2.7.
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Suppose that A−A contains only quadratic residues and 0. Let

n ∈ Zp be a quadratic non-residue. Then all sums of the form

a− na′, a, a′ ∈ A

are distinct. Indeed, if

a0 − na0
′ ≡ a1 − na1

′ (mod p),

then

a0 − a1 ≡ n(a0
′ − a1

′) (mod p).

There is a quadratic residue on the left-hand side, and a quadratic

non-residue on the right-hand side. The only exception is a0 = a1,

a0
′ = a1

′. So indeed, all sums

a− na′, a, a′ ∈ A

are distinct.

The number of pairs a, a′ ∈ A is |A|2, thus

|A|2 ≤ p,

|A| ≤ √p.

The best result differs from this theorem only by a constant factor,

namely Hanson and Pertidis [3] proved that |A| ≤
√

p/2 + 1.
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3 Gallagher’s larger sieve

The sieve described here, by Patrik Ximenes Gallagher, is per-

haps the simplest to prove.

Its proof relies solely on the Cauchy-Schwarz inequality and ele-

mentary considerations.

The idea behind sieve formulae is that if we know the modular

structure of a subset of the natural numbers (for many m, the set

intersects only a few residue classes mod m), we may estimate

the number of elements in the set.

Before we describe the larger sieve, we will present a theorem

derived from its application:

Theorem 3.1 (Rivat, Stewart, Sárközy [7]) There exists an integer

x0 such that if x0 < x ∈ N, A ⊂ {1, 2, 3, . . . , x} and for all

a, a′ ∈ A we have that a + a′ is always a square, then

|A| < 37 log x. (3.1)

We have no idea how sharp this theorem is. J. Lagrange [5]

and J.-L. Nicolas [6] found a 6-element set A satisfying the above

property, namely
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A = { − 15863902, 17798783, 21126338, 49064546, 82221218,

447422978}.

Since then, it has been a conjecture that there is no setA greater

than this.

Instead of Rivat, Stewart, and Sárközy’s result, we prove a

slightly simpler statement.

Theorem 3.2 (Gyarmati [4]) There exists an integer x0 such that if

x0 < x ∈ N, A ⊂ {1, 2, 3, . . . , x} and for all a > a′ ∈ A we have

that a− a′ is always a square, then

|A| < 2.01 log x. (3.2)

The proof is exactly the same as in the a + a′ case, the only

difference is that the used lemma (see Theorem 2.7 of this note) is

not based on exponential sums.

The main idea of the proof is Gallagher’s larger sieve [7]. The

form of the sieve shown here was verified by Erdős, Stewart and

Sárközy [2] in 1994.

Theorem 3.3 (Gallagher’s larger sieve) Suppose that m,n ∈ N,

A ⊂ {m + 1,m + 2, . . . ,m + n} and B ⊂ N is a finite set, such

that its elements are pairwise relatively primes. For all b ∈ B denote
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by ν(b) the number of such residue classes mod b which intersect

A. Then

|A| ≤

∑

b∈B
log b− log n

∑

b∈B

log b
ν(b)
− log n

, (3.3)

provided that the denominator is positive.

Gallagher stated the theorem for the subset of primes B = P .

Why this theorem called as a sieve? Here, we estimate A in

terms of functions ν(b). IfA contains no element from many residue

classes mod b, the value of ν(b) is small, and so the denominator

in (3.3) is large, resulting in a small |A|.

Proof of Theorem 3.3. Let

nk
def
= |{a : a ∈ A, a ≡ k (mod b)}| .

Then by the Cauchy-Schwarz inequality for fixed b we have:

b∑

k=1

n2
k ≥

(
∑b

k=1 nk

)2

ν(b)
=
|A|2

ν(b)
.

On the other hand:

b∑

k=1

n2
k =

b∑

k=1

∑

a,a′∈A
a≡a′≡k (mod b)

1

=
∑

a,a′∈A
a≡a′ (mod b)

1

= |A|+
∑

a,a′∈A, a 6=a′

b|a−a′

1.
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Thus

|A|2

ν(b)
≤ |A|+

∑

a,a′∈A, a 6=a′

b|a−a′

1.

Then by multiplying log b:

|A|2 log b

ν(b)
≤ |A| log b+

∑

a,a′∈A, a 6=a′

b|a−a′

log b.

Summing up for b:

|A|2
∑

b∈B

log b

ν(b)
≤ |A|

∑

b∈B
log b +

∑

a,a′∈A
a 6=a′

∑

b|a−a′

b∈B

log b.

Here in the final sum:

∑

b|a−a′

b∈B

log b = log
∏

b|a−a′

b∈B

b ≤ logn.

Thus:

|A|2
∑

b∈B

log b

ν(b)
≤ |A|

∑

b∈B
log b +

∑

a,a′∈A
a 6=a′

log n

|A|
∑

b∈B

log b

ν(b)
≤
∑

b∈B
log b + (|A| − 1) log n

|A|
(
∑

b∈B

log b

ν(b)
− logn

)

≤
∑

b∈B
log b− log n.

If the multiplier following |A| is positive, we could prove the theo-

rem by dividing by it.
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Proof of Theorem 3.2. We know that for a, a′ ∈ A, a > a′, the

difference a− a′ is always a square. That is, for a, a′ ∈ A, a > a′

we have that a − a′ is a quadratic residue mod p or 0 for every

prime p.

If−1 is quadratic residue mod p, then a′−a is also a quadratic

residue mod p or 0, not only a− a′.

We know that −1 is a quadratic residue modulo p if and only if

p ≡ 1 (mod 4).

That is, if p ≡ 1 (mod 4), then for all a, a′ ∈ A we have a− a′

is a quadratic residue mod p or 0 (then the condition a > a′ is no

longer needed).

Next we use Theorem 2.7 as a lemma.

Lemma 3.4 Let p be a prime. If C ⊂ Zp is a set such that for all

a 6= a′, a, a′ ∈ C we have that a − a′ is quadratic residue modulo

p then

|C| ≤ √p.

Let C denote the set of mod p residual classes that contain an

element in A. Then C ≤ √p.

That is, using the notation of Theorem 3.3 from the previous

lemma ν(p) ≤ √p follows.

Then we simply use Gallagher’s larger sieve. For this let:

B = {p : p is a prime, p ≡ 1 (mod 4), 2 ≤ p ≤ c(log x)2},
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where the value of the constant c will be chosen later, for now the

only important thing is that c is a constant greater than 1.

By using Gallagher’s larger sieve:

|A| ≤

∑

p≡1 (mod 4), p≤c(logx)2
log p− log x

∑

p≡1 (mod 4), p≤c(logx)2

log p√
p
− log x

. (3.4)

Next, we estimate the value of the expression on the right. Intro-

duce the following notations:

π(y, 4, 1)
def
=

∑

p≡1 (mod 4), p≤y
1

θ(y, 4, 1)
def
=

∑

p≡1 (mod 4), p≤y
log p

pn(4, 1) is the n-th smallest positive prime that is ≡ 1 (mod 4).

Luckily, these terms are increasingly being estimated more accu-

rately. For example, by Bennet, Martin, O’Bryan, and Rechnitzer’s

result [1] we get the following:

π(y, 4, 1) = (1 + o(1))
y

2 log y
see Theorem 1.4 in [1],

θ(y, 4, 1) = (1 + o(1))
y

2
see Corollary 1.7 in [1],

pn(4, 1) = (1 + o(1))2n logn see Theorem 1.5 in [1].

It follows directly from the estimate for θ(y, 4, 1) that for the ex-

pression in the numerator of the fraction holds the following:
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∑

p≡1 (mod 4), p≤c(logx)2

log p− log x

= θ(c(log x)2, 4, 1)− log x

= (1 + o(1))
c

2
(log x)2 − log x

= (1 + o(1))
c

2
(log x)2. (3.5)

Estimating the denominator of the fraction (3.4) is more compli-

cated:

∑

p≡1 (mod 4), p≤c(logx)2

log p
√
p
− log x

=

π(c(logx)2,4,1)
∑

n=1

log pn(4, 1)
√

pn(4, 1)
− log x

= (1 + o(1))

π(c(logx)2,4,1)
∑

n=1

log(2n logn)√
2n log n

− log x

= (1 + o(1))
1√
2

π(c(logx)2,4,1)
∑

n=1

log n√
n logn

− log x
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= (1 + o(1))
1√
2

π(c(logx)2,4,1)
∑

n=1

√
logn
√
n
− log x

= (1 + o(1))
1√
2

∫ π(c(logx)2,4,1)

n=1

√
log n
√
n

dn− log x

= (1 + o(1))
√
2
√

n logn
]π(c(logx)2,4,1)

1
− log x

= (1 + o(1))
√
2
√

π(c(log x)2, 4, 1) log (π(c(log x)2, 4, 1))− log x

= (1 + o(1))
√
2

√

c(log x)2

2 log (c(log x)2)
log

(
c(log x)2

2 log (c(log x)2)

)

− log x

= (1 + o(1))
√
2

√

c(log x)2

4 log log x
2 log log x− log x

= (1 + o(1))
√
c log x− log x

= (1 + o(1))(
√
c− 1) log x.

Writing this estimate and (3.5) into (3.4) yields the following:

|A| ≤ (1 + o(1))
c

2
(√

c− 1
) log x,

if c > 1. By choosing c = 4 we get

|A| ≤ 2.01 log x,

for x > x0, and this completes the proof.
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4 On a problem of Diophantus

Diophantus of Alexandria, a Greek mathematician, observed that

the rational numbers 1
16

, 33
16

, 17
4

, and 105
16

have the following property:

the product of any two of them increased by one is a square of ratio-

nal number.

Later Fermat found a set of four positive integers with the above

property: {1,3,8,120}.

Phil Gibbs has found a set of six rational numbers having this

property:
{

11
192

, 32
192

, 155
27

, 512
27

, 1235
48

, 180873
16

}
(see [4]).

In 2004 Andrej Dujella proved [3] the following.

Theorem 4.1 (Dujella) There are no 6 numbers with the property

that whenever any two are multiplied and increased by one, the re-

sult is always a square number.

This result, however, is too complex to prove within the scope of

this note. Those who are interested may visit the following web page

of Dujella: link.

Dujella’s result was improved in a more than forty-page long pa-

per by He, Togbé and Ziegler [6], who proved the following.
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Theorem 4.2 (He-Togbé-Ziegler) There are no 5 numbers with the

property that whenever any two are multiplied and increased by one,

the result is always a square number.

Using this result, however, the following pleasant theorem can be

proved:

Theorem 4.3 (Bugeaud, Gyarmati [2]) Let A be a set of positive

integers with |A| ≥ 5. Then the set

{(a, a′) : a, a′ ∈ A, a > a′, aa′ + 1 is a square}

has at most 3
8
|A|2 elements.

In fact, since Theorem 4.2 had not yet been proved then, we

proved a slightly weaker result in [2].

Proof of Theorem 4.3. The proof is based on Turán’s well-known

theorem [8]:

Lemma 4.4 (Turán) Let G be a graph on n vertices having at least

r − 2

2(r − 1)
n2

edges for some positive integer r ≥ 3. Then G contains a complete

subgraph on r edges.

Proof of Lemma 4.4. Pál Turán’s original proof is obtainable in [8]

in Hungarian. Since then, many proofs of the theorem have been

established; for example, [1] contains five distinct proofs.

We now turn to the proof of Theorem 4.3.

Let a1, a2, . . . , an denote the elements of A.
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Denote the vertices of the graph G by a1, a2, . . . , an and there

is an edge between two vertices ai and aj if and only if aiaj + 1 is

a square.

By Theorem 4.2, the graph G does not contain K5 as a sub-

graph.

Lemma 4.4 then implies that G has at most 3
8
n2 = 3

8
|A|2 edges.

This proves Theorem 4.3.

We can justify a little better than the above if we know that the

elements of the setA fall within a not too long interval. Namely:

Theorem 4.5 (Gyarmati) LetA ⊂ {N,N +1, N +2, . . . ,M} be

a set of positive integers, such that N < M <
√
3N . Then the set

{(a, a′) : a, a′ ∈ A, a > a′, aa′ + 1 is a square}

has at most 1
2
|A|3/2 + 1

4
|A| elements.

Proof of Theorem 4.5. The graph G is defined in the same way

as in Theorem 4.3. The set of vertices is simply denoted by V =

{a1, a2, · · · , an}, where ai’s are the elements of the set A. There

is an edge between ai and aj if and only if aiaj + 1 is a square.

(Usually, the set of vertices in a graph is denoted by V , while the

set of edges is denoted by E.)
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We will prove the following.

Lemma 4.6 The graph G does not contain 4-cycles.

Proof of Lemma 4.6 Assume that the graph contains a 4-cycle. The

smallest element of this 4-cycle is denoted by a = ai1. In this 4-

cycle, the vertex a has two neighbors, the smaller one will be de-

noted by b = ai2 and the larger one by c = ai3. The final element

of the 4-cycle is d = ai4.

a=ai1
b=ai2
c=ai3
d=ai4b c

da

We know a < d (since a was the smallest element) and b < c

(since b was smaller among a’s neighbors). Then:

(ac + 1)(bd + 1) < (ab+ 1)(cd + 1), (4.1)

since, breaking apart the parentheses, we get that

abcd + ac + bd + 1 < abcd + ab + cd + 1.

Therefore, by equivalent transformations:

ac + bd < ab+ cd

0 < ab+ cd− ac− bd

0 < (d− a)(c− b),

where the last statement is true because of a < d and b < c. By

(4.1):
√

(ac + 1)(bd + 1) <
√

(ab + 1)(cd + 1),
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but
√
ac + 1,

√
bd + 1,

√
ab+ 1 and

√
cd + 1 are integers, since

there is an edge between the vertices ai and aj if aiaj + 1 is a

square.

That is
√

(ac + 1)(bd + 1) and
√

(ab + 1)(cd + 1) are inte-

gers, and the former is smaller than the latter, so
√

(ac + 1)(bd + 1) + 1 ≤
√

(ab+ 1)(cd + 1).

By squaring:

(ac + 1)(bd + 1) + 2
√

(ac + 1)(bd + 1) + 1 ≤ (ab + 1)(cd + 1)

abcd + ac + bd + 1 + 2
√

(ac + 1)(bd + 1) + 1 ≤ abcd + ab+ cd + 1

ac + bd + 1 + 2
√
abcd < ab+ cd.

According to the inequality between the arithmetic and geometric

means ac + bd ≥ 2
√
abcd ≥ 2ab. Thus

2ab + 2
√
abcd < ab + cd

4ab < ab + cd

3ab < cd.

Yes, but it holds for the elements of the setA ⊂ {N,N+1, . . . ,M}
that N ≤ a, b and c, d ≤M <

√
3N . Thus

3N 2 ≤ 3ab < cd < 3N 2,

which is contradiction. Thus we proved the lemma.

This proof is also available in [5], with a few minor changes that

clarify that it also works for k-th powers.

Next we use the following lemma.
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Lemma 4.7 (Reiman [7]) If G = (V,E) is a graph on n vertices,

which has no 4-cycles, then

|E| ≤ n

4

(

1 +
√
4n− 3

)

.

Since the graph G does not contain C4 by Lemma 4.6, it has no

more edges than

|A|
4

(

1 +
√

4 |A| − 3
)

<
|A|3/2

2
+
|A|
4

.

This completes the proof of Theorem 4.5.

For the sake of completeness, we also present the proof of

Lemma 4.7.

Proof of Lemma 4.7 Let G = (V,E) be a C4-free graph with

vertex-set V = v1, . . . , vn and the degrees of its vertices are

d1, d2, . . . , dn.

The set S is made up of all (ordered) pairings (u, {v, w}) where

u, v, w are vertices of G, v 6= w and u is adjacent to both v and w

in G.

We now count the number of elements in S in two methods.

That is, we count all occurrences of "cherries" in G in two ways.

v w

u
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For each vertex u, we have
(d
2

)
options for selecting a 2-element

subset of its d neighbors. Hence, when we sum over u, we get

S =
n∑

i=1

(
di

2

)

.

Since G does not contain C4, it follows that no pair of vertices v, w

can have more than one common neighbor. As a result, when we

sum up all the pairs, we get

|S| ≤
(
n

2

)

.

That is
n∑

i=1

(
di

2

)

≤
(
n

2

)

,

or equivalently
n∑

i=1

d2
i −

n∑

i=1

di ≤ n(n− 1).

Here
∑n

i=1 di = 2 |E|, thus

n∑

i=1

d2
i − 2 |E| ≤ n(n− 1). (4.2)

According to the arithmetic and quadratic means inequality:

n∑

i=1

d2
i ≥ n

(∑n
i=1 di

n

)2

=
4 |E|2

n
.

Writing this into (4.2) we get

4 |E|2

n
− 2 |E| ≤ n(n− 1)

|E|2 − n

2
|E| − n2(n− 1)

2
≤ 0.

The required upper bound on E is obtained by solving the related

quadratic equation.
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5 Difference sets without sqaures

So far, we have mostly concentrated on sets in which A − A or

A+A, or even A ·A+ 1 exclusively contains square values. Here

A−A, A + A and A ·A + 1 denote the following sets:

A−A = {a− a′ : a > a′, a, a′ ∈ A},
A + A = {a + a′ : a > a′, a, a′ ∈ A},

A ·A + 1 = {aa′ + 1 : a > a′, a, a′ ∈ A}.

We have an interesting question when we invert our reasoning

and ask what estimates can be made for |A| if e.g., A − A never

contains a square number.

In such a circumstance, we would expect to be given a very large

set A with the aforementioned property, but this is not the case.

On the other hand, Imre Ruzsa [3] gave a tricky construction with

this feature and a reasonably large number of elements, disproving

the preceding conjectures. His result is described below; he studied

the issue more generally for k-th powers, but we only study the case

of square numbers.

But first let’s see what happened in chronological order:

Lovász proposed and Sárközy [4] showed that if S is any se-

quence of natural numbers with positive asymptotic density, then

S − S must contain a square.
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Let D(x) indicate the maximum number of integers that may be

chosen from [1, x] with no difference being a square. Sárközy even

proved that

D(x) = O(x(log x)−1/3).

We do not offer the proof since it uses the Hardy-Littlewood circle

method, which goes beyond the scope of this note.

The following is the first natural construction for a set S in which

S−S does not contain a square. Fix a prime p for which
√
x
2
≤ p ≤

√
x. Let

S = {p, 2p, 3p, . . . , p2}.

Then

S − S = {p, 2p, 3p, . . . , p2 − p}.

That is, p | m, but p2 ∤ m for every m ∈ S − S, i.e., m cannot be a

square.

This construction shows that D(x) ≥
√
x
2

.

Erdős proposed the conjecture that

D(x) = O(x1/2(log x)k)

holds with some constant k.

Sárközy [5] disproved this but still conjectured

D(x) = O(x1/2+ε).

Ruzsa disproved this conjecture, confirming the following.

Theorem 5.1 D(x) > 1
65
xγ, where

γ =
1

2

(

1 +
log 7

log 65

)

= 0.733077 . . . .
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Actually, he proved a little more than that, namely let r(m) denote

the maximal number of residues (mod m) that can be selected so

that no difference between them is a square modulo m. Then:

Theorem 5.2 For every squarefree m we have

D(x) ≥ 1

m
xγ(m),

where

γ(m) =
1

2
+

log r(m)

2 logm
.

First we prove Theorem 5.2.

Proof of Theorem 5.2. Let R ⊆ [1,m] be a set of integers with no

difference that is a square modulo m and |R| = r(m).

Let S be a set of natural numbers of the form

s =

n−1∑

j=0

rjm
j + 1,

where rj ∈ R if j is even, and 0 ≤ rj < m is arbitrary otherwise.

Clearly

S(mn)
def
= |S ∩ {1, 2, 3, . . . ,mn}|
= r(m)1+[(n−1)/2]m(n−1)−[(n−1)/2].

Let mn ≤ x < mn+1. A simple calculation shows:

S(x) ≥ S(mn)

= r(m)1+[(n−1)/2]m(n−1)−[(n−1)/2]

= m(1+[(n−1)/2]) log r(m)
logm

+n−1−[(n−1)/2]

= m
log r(m)
logm

+n−1+[(n−1)/2]( log r(m)
logm

−1)

≥ m
log r(m)
logm

+n−1+n−1
2 ( log r(m)

logm
−1)
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= m
log r(m)
logm

+n−1
2

+n−1
2

log r(m)
logm

=
1

m
m

n+1
2

+n+1
2

log r(m)
logm

≥ 1

m
x

1
2
+ log r(m)

2 logm

=
1

m
xγ(m).

Next we prove S − S does not contain a square. Suppose that

s− s′ = t2 where s, s′ ∈ S. Write

s =

n−1∑

j=0

rjm
j + 1, s′ =

n−1∑

j=0

r′jm
j + 1.

Let k denote the first suffix for which rk 6= r′k. Now we have

t2 = s− s′ = (rk − r′k)m
k + zmk+1.

If k is odd then mk | t2, but mk+1 ∤ t2 which is impossible for

squarefree m. If k is even then k = 2ℓ and

(
t/mℓ

)2 ≡ rk − r′k (mod m) with rk, r′k ∈ R,

in contrary with the definition of R. This completes the proof.

Theorem 5.1 can be easily derived from Theorem 5.2.

To prove Theorem 5.1 we show that

r(65) ≥ 7.

Consider the numbers

(0, 0), (0, 2), (1, 8), (2, 1), (2, 3), (3, 9), (4, 7),

where the first component is the residue modulo 5 and the second

modulo 13. All of the differences derived from this set are quadratic

non-residue mod 3 or mod 5, proving the statement.
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Following that, we describe how much these results have im-

proved in a few sentences.

Pintz, Steiger, and Szemerédi [6] refined Sárközy’s argument, by

proving the upper bound on D(x) ≤ x
(log x)c log log log log x .

Bloom and Maynard [1] improved on this, namely

D(x) ≤ x

(log x)c log log logx
.

Lewko [2] improved Ruzsa’s lower bound to

D(x)≫ xδ,

where δ = 1
2
+ log 12

log 205
= 0.733412 · · · .
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6 Sidon Sequences

Simon Sidon posed a question to fellow student Erdős in 1932.

Their advisor was Fejér, a creative mathematician, who was working

on the summability of infinite series.

Sidon formulated his question when analyzing the Lp norm of

certain Fourier series. This problem is described in modern termi-

nology below.

In number theory, a Sidon sequence (or Sidon set) is a sequence

A = {a0, a1, a2, ...} of natural numbers in which all pairwise sums

ai + aj fori ≤ j are different.

Excercise Provide examples of constructions of Sidon sequences.

For example, powers of 2.

Definition 6.1 Denote by S(N) the maximum number of elements

of a Sidon sequence which is a subset of {1, 2, 3, . . . , N}:

S(N) = max
A⊆{1,2,...,N}
A is Sidon

|A| (6.1)

Erdős immediately observed that the greedy algorithm gives

S(N) > (2N)1/3. This result will be discussed shortly, but first

some upper estimates will be given.

The simplest upper estimate is the following.

Theorem 6.2

S(N) ≤ 2
√
N.
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Proof of Theorem 6.2. Consider a Sidon sequence

A =
{
a1, a2, . . . , aS

}
⊆ {1, 2, . . . , N}.

We will prove

S = |A| ≤ 2
√
N.

Consider the number line and the integers 1, 2, . . . , 2N on it.

Put an X on the integers which can be written on the form a+a′,

where a, a′ ∈ A. Here the number of X ’s is
(
S

2

)

+ S ←− ai = aj,

↑
(ai, aj) ai 6= aj.

All sums are different and for each sum

2 ≤ a + a′ ≤ 2N.

Thus
(
S

2

)

+ S ≤ 2N,

S(S + 1)

2
≤ 2N,

S2 < S(S + 1) ≤ 4N,

S < 2
√
N,

which proves the theorem.

This estimate can be slightly improved if in place of sums we

consider differences.

a0 + a0
′ = a1 + a1

′
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m
a0 − a1 = a1

′ − a0
′

Thus A is a Sidon sequence if all (non-zero) differences a − a′,

a, a′ ∈ A, a 6= a′ are different.

Consider again the number line and the integers 1, 2, . . . , N−1

on it.

Put an X on the integers which can be written on the form a−a′

where a, a′ ∈ A, and a− a′ is positive.

Here the number of X ’s is
(S
2

)
.

Every difference a− a′ is different and

1 ≤ a− a′ ≤ N − 1,

thus
(
S

2

)

≤ N − 1,

S(S − 1) ≤ 2N − 2,

S2 − S +
1

4
≤ 2N − 7

4
,

(

S − 1

2

)2

≤ 2N − 7

4
,

S − 1

2
≤
√

2N − 7

4
<
√
2
√
N,

S <
√
2 ·
√
N +

1

2
.

Using even cleverer ideas we can get rid of the factor
√
2. Erdős

and Turán [5] provided the following tricky proof.
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Theorem 6.3

S(N) <
√
N +

4
√
N + 1.

The terminology used in the following proof was taken from

Erdős, Surányi’s book, Topics in the Theory of Numbers [4].

Proof of Theorem 6.3.

We will fix the value t later.

We divide [0, N ] into intervals. More exactly consider the follow-

ing N + t intervals:

[−t + 1, 0], [−t + 2, 1], . . . , [N,N + t− 1].

Let A ⊆ {1, 2, . . . , N} a Sidon sequence, and from A

A1, A2, . . . AN+t

pieces of elements fall in these intervals.

Each element of A falls into t consecutive intervals, thus

N+t∑

i=1

Ai = ts.

Now, count how many times the pair (ai, aj) (for i > j) falls

within the above-mentioned intervals.

Let the total number of these be D.

Then, on the one hand, it is clear that

D =

n+t∑

i=1

(
Ai

2

)

=
1

2

n+t∑

i=1

A2
i −

1

2

n+t∑

i=1

Ai.

On the other hand, if the difference of a pair of elements is d,

then this pair falls within t− d intervals.
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Since all the differences are distinct, then each d can occur at

most once. Therefore,

D ≤
t−1∑

d=1

(t− d) =
t(t− 1)

2
.

Comparing the above two relations for D, we have

n+t∑

i=1

A2
i −

n+t∑

i=1

Ai ≤ t(t− 1).

We saw that the second sum on the left-hand side equals ts.

Now we apply the inequality for arithmetic and quadratic means

to the first sum on the left-hand side:

n+t∑

i=1

A2
i ≥

(
∑n+t

i=1 Ai

)2

n + t
=

t2s2

n + t
.

Writing these into the above inequality, reducing it to zero, and

multiplying both sides by (n + t)/t2 we get that

s2 − s

(
n

t
+ 1

)

−
(
n

t
+ 1

)

(t− 1) ≤ 0.

For the values of s satisfying this second-degree inequality we

have

s ≤ n

2t
+

1

2
+

√

n + t +
n2

4t2
− n

2t
− 3

4

=
n

2t
+

1

2
+

√

n + t +

(
n

2t
− 1

2

)2

− 1.

Now, if we choose t =
[

4
√
n3
]

+ 1, then the first term on the

right-hand side is less than 1
2

4
√
n, while the last term is less than the

square of
√
n + 1

2
4
√
n + 1

2
.
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This yields the desired inequality.

Balogh, Füredi, and Roy [2] improved the obtained result slightly,

however only the error term is improved by 0.2%:

S(N) ≤
√
N + 0.998N 1/4.

Next we give lower bounds on S(N).

At first, we will discuss Erdős’ observation regarding the greedy

algorithm.

Theorem 6.4 For every N , there is a Sidon setA ⊆ {1, 2, . . . , N}
such that |A| ≥ [(2N)1/3].

Proof of Theorem 6.4. Clearly it suffices to show that if

{a1, a2, . . . , at} ⊆ {1, 2, . . . , N}

is a Sidon set of cardinality t and t ≤ (2N)1/3 − 1, then there is an

integer b such that

1 ≤ b ≤ N and b 6∈ {a1, a2, . . . , at} (6.2)

and

{a1, a2, . . . , at} ∪ {b}

is a Sidon set. A number b is called “bad” if {a1, a2, . . . , at} ∪ {b}
is not a Sidon set, and it is called “good” if {a1, a2, . . . , at} ∪ {b} is

Sidon set.

Thus in order to complete the proof it is sufficient to prove that if

t ≤ (2N)1/3 − 1 then there exists a good b for which (6.2) holds.
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First we count the number of bad b’s. Since {a1, a2, . . . , at} is a

Sidon set, if b is bad (so {a1, a2, . . . , at} ∪ {b} is not a Sidon set)

then there are ai, aj, ak with

ai + aj = ak + b (6.3)

or there are au, av with

au + av = b + b. (6.4)

The number of bad b’s for which (6.3) holds is

≤
((

t

2

)

+ t

)

(t− 1) =
t(t2 − 1)

2
.

The number of bad b’s for which (6.4) holds is

≤
(
t

2

)

=
t(t− 1)

2
.

Thus the number of “bad” b’s is ≤ t(t2−1)
2

+ t(t−1)
2

= t(t−1)(t+3)
2

.

Finally the number of b’s for which b ∈ {a1, a2, . . . , at} is t If

t(t− 1)(t + 3)

2
+ t < N,

then there is a good b with (6.2). For t ≤ (2N)1/3 − 1, this clearly

holds since

t(t− 1)(t + 1)

2
+ t <

(t + 1)3

2
< N,

and this completes the proof.

Next we show two tricky constructions for Sidon sets.

To begin, we will discuss a slightly modified version of Erdős and

Turán’s [5] construction.
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Theorem 6.5 There is a Sidon set A ⊆ {1, 2, . . . , N} with

|A| ≥
√
N

4
.

Proof of Theorem 6.5. We may suppose that N ≥ 16.

According to Chebyshev’s theorem, for every n ≥ 2 there exists

a prime number between n and 2n. (You can read more about this

theorem on the related Wikipedia page: link. Pál Erdős also gave an

elementary proof of the theorem, see e.g. here link.)

By Chebyshev’s theorem for every integer n ≥ 2, there is a prime

between n and 2n. Using Chebyshev’s theorem we get there is a

prime p for which √
N

2
< p <

√
N.

Since N ≥ 16, this prime is odd. Denote by rp(x) the least non-

negative residue of x modulo p, so

x ≡ rp(x) (mod p) and 0 ≤ rp(x) ≤ p− 1.

Define the set A by

A def
= {a : a = x + prp(x

2), 0 ≤ x ≤ p− 1

2
}.

We will prove this set is a Sidon set.

Clearly, A contains p+1
2

elements, since for diferrent x’s the ele-

ments x + prp(x
2)’s have different residues modulo p.

Next we prove A is Sidon set. Suppose that

a1 + a2 = b1 + b2, (6.5)
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where a1, a2, b1, b2 ∈ A. Then there are 0 ≤ x1, x2, y1, y2 ≤ p−1
2

such that

a1 = x1 + prp(x
2
1)

a2 = x2 + prp(x
2
2)

b1 = y1 + prp(y
2
1)

b2 = y2 + prp(y
2
2).

By (6.5) we have

x1 + x2 + p
(
rp(x

2
1) + rp(x

2
2)
)
= y1 + y2 + p

(
rp(y

2
1) + rp(y

2
2)
)
.

(6.6)

Then

x1 + x2 ≡ y1 + y2 (mod p).

Since 0 ≤ x1 + x2, y1 + y2 ≤ p− 1 we have

x1 + x2 = y1 + y2. (6.7)

By this and (6.6) we get

rp(x
2
1) + rp(x

2
2) = rp(y

2
1) + rp(y

2
2)

x2
1 + x2

2 ≡ y2
1 + y2

2 (mod p). (6.8)

By considering the difference of the square of (6.7) and (6.8) we get

2x1x2 ≡ 2y1y2 (mod p)

x1x2 ≡ y1y2 (mod p) (6.9)

By the relationship between roots and coefficients, from (6.7) and

(6.9) we get x1, x2 and y1, y2 are the roots of the same quadratic

congruence.
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By Lagrange’s degree theorem, the quadratic congruence has at

most 2 roots, thus

{x1, x2} = {y1, y2}

and so

{a1, a2} = {b1, b2}.

ThusA is a Sidon set with |A| ≥
√
N
4

, and this completes the proof.

The following tricky construction comes from Ruzsa [3], who

managed to eliminate the factor 1/4 in this manner.

Theorem 6.6 Let p be an odd prime. There exist p − 1 numbers

ai for which the differences ai − aj (i 6= j) are incongruent modulo

p2 − p.

Proof of Theorem 6.6. Let g be a primitve root, modulo p, and let

the ai’s be the unique solution modulo p2 − p, to the simultaneous

congruences

x ≡ i (mod p− 1),

x ≡ gi (mod p).

(By the Chinese remainder theorem, such a solution exists and is

unique.) We need to show that the congruence

ai − aj ≡ ar − as (mod p2 − p),

or written in the equivalent form

ai + as ≡ ar + aj (mod p2 − p),

is satisfied only by the trivial solutions. In other words, this means

that for any number c there is at most one pair of numbers i, j that
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satisfies the congruence

c ≡ ai + aj (mod p2 − p).

Based on the definition of the ai’s, this is equivalent to the congru-

ences

c ≡ i + j (mod p− 1),

c ≡ gi + gj (mod p).

being simultaneously satisfied. The first congruence we may rewrite

as

gc ≡ gigj (mod p).

The relationship between the roots of a quadratic equation and its

coefficients implies that the residue classes (gi)p and (gj)p are

uniquely defined as the two roots of the second-degree congruence

x2 − cx + gc ≡ 0 (mod p).

Since the modulus is prime, the pair of roots is uniquely determined,

and thus the pair i, j is uniquely defined.

The sequence of ai’s constructed above forms a Sidon set in

Zp2−p. This completes the proof of the theorem.

By assigning a congruent natural number to each residue class

mod p2 − p, we may get a Sidon set in {1, 2, ..., p2 − p}.

Thus if N of the form p2 − p, we see that

S(N) ≥ p− 1 =
1

2

(√

4N + 1 + 1
)
− 1 >

√
N − 1.

For arbitrary N , we choose a prime such that p2 − p is close to

N .
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There is a famous conjecture that for every positive δ there is a

prime between n and n+ nδ (if n is large enough depending on δ),

but the proof of this looks to be without hope.

However, the conjecture was verified for some positive δ.

Note that the value of proved δ is constantly being improved.

Currently, the sharpest estimate comes from Baker, Harman and

Pintz [1], namely δ = 0.525.

Thus we can choose a prime p between
√
N−N 0.2625 and

√
N ,

and hence

S(N) ≥ S(p2 − p) ≥ p− 1 ≥
√
N − O(N 0.2625).

Erdős proposed numerous conjectures concerning the Sidon se-

quences, of which you can read more about here: link. Unfortu-

nately, today (to the best of my knowledge) there is no monetary

reward for solving these problems...
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7 Cauchy-Davenport theorem

A basic problem in group theory is to obtain a lower bound for

|A + B| in terms of |A| and |B|. In the case of finite groups, the

following simple theorem provides an obvious solution when |A| +
|B| is sufficiently large.

Theorem 7.1 If G is a finite abelian group, and A,B are nonempty

subsets of G such that

|A|+ |B| > |G|,

then

A+ B = G.

Proof of Theorem 7.1. Let g ∈ G be arbitrary. We will prove g can

be written of the form g = a + b where a ∈ A, b ∈ B. In order to

prove this consider the set

g − B = {g − b : b ∈ B}.

Then |g − B| = |B|, so

|A|+ |g − B| > |G|,

which implies A ∩ (g − B) 6= ∅. Therefore there exists a ∈ A and

b ∈ B such that a = g − b =⇒ g = a + b.

The first theorem in additive group theory is the famous Cauchy-

Davenport theorem, which will be the subject of this chapter.

Cauchy [1] established the theorem in 1813, and Davenport [3]

rediscovered it in 1935. (also see [4]).
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This theorem provides a lower bound for |A+B| in terms of |A|
and |B| when A and B are nonempty subsets of Zp for a prime p.

Theorem 7.2 (Cauchy–Davenport) Let p be a prime number

A,B ⊆ Zp be nonempty sets. Then

|A+ B| ≥ min{p, |A|+ |B| − 1}.

Proof of Theorem 7.2. First, we prove the following lemma:

Lemma 7.3 Let A ⊆ Zp, d ∈ Zp, d 6= 0. If

A+ d ⊆ A,

then

A = Zp.

Proof of Lemma 7.3. IfA+d ⊆ A, then for a ∈ A =⇒ a+d ∈ A.

By repeating this argument we get

a, a + d, a + 2d, . . . , a + (p− 1)d ∈ A. (7.1)

Here a, a + d, a + 2d, . . . , a + (p − 1)d is a complete residue

system modulo p, since this set contains p elements and every two

are incongruent modulo p. Indeed, if

a + id ≡ a + jd (mod p)
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for 0 ≤ i, j ≤ p− 1, then

id ≡ jd (mod p) / : d

i ≡ j (mod p)

i = j.

Thus by (7.1) we have

Zp ⊆ A.

SinceA ⊆ Zp also holds, we get

A = Zp.

Lemma 7.4 Let A ⊆ Zp, x, y ∈ Zp, x 6= y. Then if

A+ x ⊆ A+ y,

then

A = Zp.

Proof of Lemma 7.4. If A+ x ⊆ A+ y, then

A+ (x− y) ⊆ A.

Write x− y = d, then

A+ d ⊆ A.

Using Lemma 7.3 we get A = Zp.

Exercise

Prove the Cauchy–Davenport theorem for |B| = 1 and |B| = 2.

Solution
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Let

A = {α1, α2, . . . , αm},
B = {β1, β2, . . . , βn}

If n = 1, then

|A+ B| = |A+ β1| = |A| = m

= m + 1− 1 = m + n− 1.

Thus for n = 1 we have proved the Cauchy-Davenport theorem.

Next we study the case n = 2. Let B = {β1, β2} and denote

their difference by d, so d = β2 − β1.

β1 6≡ β2 (mod p) =⇒ (d, p) = 1.

Next we distinguish two cases.

Case I: A+ d ⊆ A.

By Lemma 7.3 then A = Zp, soA+ B = Zp, thus

|A+ B| = |Zp| = p ≥ min{p, |A|+ |B| − 1},

which means that in Case I the theorem holds.

Case II: A+ d 6⊆ A.

Then ∃ α ∈ A such that α + d 6∈ A.

We may suppose that α = α1. So

α1 + d 6∈ A,

α1 + β2 − β1 6∈ A,

α1 + β2 − β1 6= αi for 1 ≤ i ≤ m,
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α1 + β2 6= αi + β1 for 1 ≤ i ≤ m,

Then:

{α1 + β2} ∩ {αi + β1, 1 ≤ i ≤ m} = ∅,
|A+ B| ≥ 1 + m = m + 2− 1 = m + n− 1.

Thus we have proved the Cauchy-Davenport theorem for n = 1 and

n = 2.

When |A| = p or |B| = p (so A = Zp or B = Zp) the theorem

is trivial.

Next we prove the Cauchy-Davenport theorem by induction on n.

For n = 1 and n = 2 we have seen the proof.

By the induction, we may suppose that we proved the theorem

for every A′ and B′ with

1 ≤ |B′| < n,

and we would like to prove it for a pair A,B ⊆ Zp with |B| = n < p

and |A| < p. (This is the induction step.)

First, consider the following special case.

Case I: When A∩ B is a nonempty, proper subset of B.

Let

A′ def
== A∪ B,

B′ def
== A∩ B.
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In this case B′ is a nonempty proper subset of B, so

1 ≤ |B′| < |B| = n.

By the induction hypothesis:

|A′ + B′| ≥ min{p, |A′|+ |B′| − 1}, (7.2)

Clearly, for every pair of sets A and B we have

|A|+ |B| = |A ∪ B|+ |A ∩ B|
= |A′|+ |B′|.

On the other hand we will see that

A′ + B′ ⊆ A+ B. (7.3)

Indeed, suppose that x ∈ A′ = A ∪ B and y ∈ B′ = A ∩ B. We

will prove that x + y ∈ A+ B.

If x ∈ A then by y ∈ B we get x + y ∈ A + B. If x ∈ B then

by y ∈ A we get x + y ∈ A+ B. Thus we proved (7.3).

By (7.2) and (7.3) we get

|A+ B| ≥ |A′ + B′| ≥ min{p, |A′|+ |B′| − 1}
= min{p, |A|+ |B| − 1}.

This completes the proof of Cauchy-Davenport theorem in Case I.

The general case (when A ∩ B is not necessarily a nonempty,

proper subset of B) will be studied in the following section. Then we

will use the following.
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Lemma 7.5 If |A| < p, then exists a c ∈ Zp such that B ∩ (A+ c)

is a nonempty proper subset of B.

Proof of Lemma 7.5. Let

A = {α1, α2, . . . , αm},
B = {β1, β2, . . . , βn}.

If c is of the form βi − αj , then B ∩ (A+ c) = B ∩ (A+ βi − αj)

is nonempty since

βi ∈ B and βi = αj + βi − αj ∈ A+ (βi − αj).

First we fix two elements from B: βk and βi where βk 6= βi. We

may suppose that

A+ (βk − βi) 6⊆ A,

since otherwise by the Lemma 7.3 we get A = Zp, and then the

theorem is trivial.

Let αj such that αj + (βk − βi) 6∈ A. Then

βk 6∈ A+ βi − αj,

βk 6∈ B ∩ (A+ βi − αj).

So B∩ (A+βi−αj) 6= B and it is nonempty (βi ∈ B∩ (A+βi−
αj)), thus it is a proper subset of B. This proves the lemma.

Now we will return to the proof of Cauchy-Davenport theorem.

Fix an element c ∈ Zp for which Lemma 7.5 holds. Using Case I for

the sets A+ c and B we get

|A+ B| = |(A+ c) + B|
≥ min{p, |A+ c|+ |B| − 1}
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= min{p, |A|+ |B| − 1}.

Following that, we will look at certain generalizations of the

Cauchy–Davenport theorem but without proofs.

The first result is due to Chowla [2] (see also [6], [7]) and gener-

alizes the Cauchy-Davenport theorem to composite numbers.

Theorem 7.6 (Chowla) Let A,B ⊆ Zn be nonempty sets. If 0 ∈ B
and (b, n) = 1 for all b ∈ B \ {0}, then

|A+ B| ≥ min{n, |A|+ |B| − 1}.

Pillai [8] found an additional generalization of the Cauchy-

Davenport theorem for Zn with composite n.

Theorem 7.7 (Pillai) Let A,B ⊆ Zn be non-empty sets. Writing

B = {β1, . . . , βm} and

d = max
i 6=j

(n, βi − βj)

we have

|A+ B| ≥ min

{
n

d
, |A|+ |B| − 1

}

.

Kneser’s [5] theorem, which generalizes the Cauchy-Davenport

theorem for infinite abelian groups, is now classical. Here we will

need the concept of the stabilizer, which in the case of C ⊆ G

(where G is an abelian group and C is an arbitrary subset of G) is

given by the formula

stab(C) = {g ∈ G, g + C = C}.
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Theorem 7.8 (Kneser) Let G be an additive abelian group (possibly

infinite), A,B ⊆ G be finite and nonempty. Then writing

H = stab(A+ B) = {g ∈ G, g + (A+ B) = A+ B}

we have

|A+ B| ≥ |A+ H|+ |B + H| − |H|.
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8 The Combinatorial Nullstellensatz

This chapter will discuss Alon’s Combinatorial Nullstellensatz [1]

as well as an useful application that slightly extends the Cauchy-

Davenport theorem.

Theorem 8.1 (Combinatorial Nullstellensatz) Let F be any arbi-

trary field and P (x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. As-

sume that P has a degree degP =
∑n

i=1 ki, where ki is a non-

negative integer, and the coefficient of xk1

1 xk2

2 . . . xkn

n in P is non-

zero. Then for any subsets A1, . . . , An of F satisfying |Ai| ≥ ki+1

for all i = 1, 2, . . . , n, there are a1 ∈ A1, . . . , an ∈ An such that

P (a1, . . . , an) 6= 0.

The following brief proof of the theorem is based on Michalek’s

paper [6].

Proof of Theorem 8.1. The proof is via induction on the degree of

P . If degP = 1, the theorem is trivial.

Then we assume, that degP = n > 1, and we have already

proved the theorem for all polynomial of degree less than n. We

would like to prove the statement for P . We continue the proof indi-

rectly.

Assume degP > 1 and P satisfies the theorem’s assumptions,

but the statement is false, that is, P (x) = 0 for all x ∈ A1×· · ·×An.

We may suppose k1 > 0 without losing generality. Fix a ∈ A1

and write

P = (x1 − a)Q + R, (8.1)
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using the polynomial long division algorithm.

Equation (8.1) is a formal identity in the ring of polynomials in one

variable x1 with coefficients in the ring F [x2, . . . , xn].

Since the degree of R in the variable x1 is strictly less than

deg(x1 − a), the polynomial R contains no x1.

According to our assumption on P , which states that P

has a nonvanishing monomial of maximum degree of the form

xk1

1 xk2

2 · · ·xkn

n , it follows that Q must have a nonvanishing monomial

of maximum degree of the form xk1−1
1 xk2

2 · · ·xkn

n , where degQ =
∑n

i=1 ki − 1 = degP − 1.

Pick any x ∈ {a} × A2 × · · · × An and substitute it into the

equation (8.1).

Since P (x) = 0 we have R(x) = 0.

But, because R does not contain x1, R vanishes on (A1\{a})×
A2 × · · · ×An.

Now substitute any x ∈ (A1 \ {a}) × A2 × · · · × An to (8.1).

Since x1 − a is non-zero, Q(x) = 0.

As a result, Q vanishes on (A1 \ {a})×A2 × · · · ×An, which

contradicts the inductive assumption.

Erdős and Heilbronn [4] conjectured the following in 1964.

Conjecture 8.2 (Erdős-Heilbronn) If p is a prime, and A is a

nonempty subset of Zp, then

|{a + a′ : a, a′ ∈ A, a 6= a′}| ≥ min{p, 2|A| − 3}.
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Dias Da Silva and Hamidoune [3] proved this conjecture using tools

from linear algebra and the representation theory of the symmetric

group.

Alon, Nathanson, and Ruzsa [2] simplified the proof by using the

Combinatorial Nullstellensatz.

Their theorem for the case of two sets is as follows:

Theorem 8.3 Let p be a prime, A and B be two non-empty subset

of Zp. Then if |A| 6= |B| we have

|{a + b : a ∈ A, b ∈ B, a 6= b}| ≥ min{p, |A|+ |B| − 2}.

If the condition |A| 6= |B| is not assumed, the following follows

as an immediate conclusion.

Theorem 8.4 Let p be a prime, A and B be two non-empty subset

of Zp. Then

|{a + b : a ∈ A, b ∈ B, a 6= b}| ≥ min{p, |A|+ |B| − 3}.

This estimate is marginally (but only marginally) worse than the

previous one. Gyula Károlyi [5] was able to precisely specify the sets

that only have this weaker estimate.

Theorem 8.5 Let p be a prime, A and B be two non-empty subset

of Zp. Then

|{a + b : a ∈ A, b ∈ B, a 6= b}| ≥ min{p, |A|+ |B| − 2},

unless A = B and one of the following holds:
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(i) |A| = 2 or |A| = 3;

(ii) |A| = 4 and A = {a, a + d, c, c + d};

(iii) |A| ≥ 5 and A is an arithmetic progression.

Based on Michalek’s paper [6], we only show Theorem 8.4 here.

Proof of Theorem 8.4. Write

C = {a + b : a ∈ A, b ∈ B, a 6= b}.

Our goal is to prove

|C| ≥ min{p, |A|+ |B| − 3}.

For p = 2 the theorem is trivial. Assume that p > 2.

If min{p, |A|+ |B| − 3} = p, then the sets A and g −B have

at least two different elements in common for any g ∈ Zp.

If a differs from g
2
, then g = a + b for some b ∈ B that differs

from a.

This proves that g ∈ C, and so C = Zp.

Assume that |A|+ |B| − 3 < p and the theorem do not hold.

In that case, a set D exists in which C ⊆ D and |D| = |A| +
|B| − 4.

We define two polynomials:

P (x, y) =
∏

d∈D
(x + y − d) and Q(x, y) = P (x, y)(x− y).

Clearly P (a, b) = 0 for all a ∈ A, b ∈ B, a 6= b, hence

Q(a, b) = 0 for any a ∈ A, b ∈ B.
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If i + j = |D| then the coefficient of xiyj in P (x, y) is equal to
(|D|

i

)
.

As a result, if i+ j = |D|+ 1, the coefficient of xiyj in Q(x, y)

is equal to
( |D|
i−1
)
−
(|D|

i

)
= |D|!

i!(|D|−i+1)!
(i− (|D| − i + 1)).

This coefficient is equal to 0 in Zp, if and only if i = |D|+1
2

.

Since |D| + 1 = |A| + |B| − 3, one of the coefficients of

x|A|−1y|B|−2 or x|A|−2y|B|−1 is nonzero.

We get a contradiction using Theorem 8.1 and the fact that

degQ = |A|+ |B| − 3.
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9 Erdős-Ginzburg-Ziv Theorem

The Erdős-Ginzburg-Ziv theorem is a good illustration of the

applicability of the Cauchy-Davenport theorem, which its authors

(Erdős, Ginzburg and Ziv) developed in 1961 [1].In the following,

we describe the proof of the theorem based on [1] and the related

Wikipedia page [2].

Theorem 9.1 (Erdős–Ginzburg–Ziv) If m is a positive integer and

2m − 1 arbitrary integers are given, there will always be m pieces

among them whose sum is divisible by m.

Proof of Theorem 9.1 First, we prove the statement for primes.

Let p be a prime and denote the elements by a1, a2, . . . , a2p−1.

We may assume

0 ≤ a1 ≤ a2 ≤ . . . ≤ a2p−1 < p.

If ai = ai+p−1 for some 1 ≤ i ≤ p− 1, then

ai + ai+1 + . . . + ai+p−1 = pai = 0 (in Zp)

and the desired result follows. Otherwise define

Ai = {ai, ai+p−1}.

By repeated application of the Cauchy–Davenport theorem we get

{
A1+A2+. . .+Ap−1

}
≥ min

{
p, |A1|+. . .+|Ap−1|−(p−2)

}
= p.

As a result, we discovered that every residue class mod p can be

written as a sum of p − 1 elements from the set a1, a2, . . . , a2p−2,
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particularly−a2p−1. We get the theorem statement by arranging the

congruence.

In the future, we will abbreviate the Erdős-Ginzburg-Ziv theorem

to EGZT.

Lemma 9.2 EGZT is true for primes.

We have just proved this.

Lemma 9.3 If EGZT is true for the integers m and n, it is true for

mn.

Proof of Lemma 9.3. First we will prove by induction on k such

that from k ·m+m− 1 pieces of integers we can choose integers

a1, a2, . . . , akm such that for all 0 ≤ i ≤ k − 1

aim+1 + aim+2 + . . . + a(i+1)m (9.1)

is divisible by m.

This is true for k = 1 since it is EGZT for the integer m by the

condition of Lemma 9.3.

Suppose that we proved the statement for k · m + (m − 1)

pieces of integers and we will prove it for k · m + (2m − 1) =

(k + 1)m + m− 1 pieces of integers.

By the inductive hypothesis there exist integers a1, a2, . . . , akm

such that

aim+1 + aim+2 + . . . + a(i+1)m

is divisible by m for 0 ≤ i ≤ k − 1.

For a while, we remove the integers a1, a2, . . . , akm from the list.
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Then there are 2m−1 integers left, and we can choose m whose

sum is divisible by m. These are

akm+1, akm+2, . . . , akm+m.

(This is EGZT for m.) Thus we proved (9.1).

Using (9.1) for k = 2n− 1 we get that among

(2n− 1)m + m− 1 = 2nm− 1

pieces of integers, there exist integers a1, a2, . . . , a(2n−1)m such

that

bi
def
==

aim+1 + aim+2 + . . . + a(i+1)m

m
(9.2)

is always an integer for 0 ≤ i ≤ 2n− 2.

If we use EGZT for n and b0, b1, . . . , b2n−2 we get among bi’s

there exist n pieces such that their sum is divisible by n.

If we consider those aj ’s whose sums (see (9.2)) give us these

n pieces of bi’s, we get the statement of EGZT for the modulus nm.
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10 Coloring and density theorems with ap-

plications

Van der Waerden proved his famous theorem (by solving a con-

jecture of Baudet) while he was only 24 years old, establishing a joint

field of number theory and combinatorics [12] .

Theorem 10.1 (van der Waerden) For any given positive integer r

and k there is a number N such that if the integers 1, 2, ..., N are

colored, each with one of r different colors, then there are at least k

integers in arithmetic progression whose elements are of the same

color. The least such N is now called the van der Waerden number

W (r, k).

When r = 2, for example, we have two colors, say red and blue.

Then W (2, 3) is greater than 8, because the integers from 1 to 8

can be colored as follows:

When all cases are examined separately (a total of 29 = 512

pieces), it is clear that no matter how we color the numbers
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1, 2, 3, . . . , 9 with two colors, they will always contain a three-term

arithmetic progression.

In other words W (2, 3) = 9.

Unfortunately, we only know the exact value of a few van der

Waerden numbers. These can be found in the Wikipedia article

linked to above: link.

Gowers [11] found the best upper bound currently known:

W (r, k) ≤ 22r2
2k+9

.

Berlekamp [3] gave the following lower estimate for two colors in

case of primes p:

W (2, p + 1) ≥ p · 2p.

In general, the proofs of known upper estimates for

van der Waerden numbers are very complicated (similar to the proof

of Szemerédi’s theorem later), thus we do not prove any upper esti-

mates in this chapter.

On the other hand, a good lower estimate can be provided by a

basic, elementary probability computation. The proof that follows is

based on [7].

Theorem 10.2 W (2, k) ≥
√

k
3
· 2(k−1)/2.

Proof of Theorem 10.2. First, we state that the number of k-term

arithmetic progression (k-AP) of {1, 2, 3, . . . , N} is less than N2

k
.
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If a k-AP begins with a, then a + (k − 1)d ≤ N , yielding in

d ≤ N−a
k−1 .

As a result, the total number of k-AP’s in {1, 2, 3, . . . , N} is

bounded by
N−1∑

a=1

N − a

k − 1
=

N(N − 1)

2(k − 1)
<

N 2

k
.

Let N =
√

k
3
· 2(k−1)/2.

By flipping a coin, color each number x from 1 to N . If the coin

is head, color x with blue, if it is tail, color x with red.

Let p denote the probability of existence of a monochromatic

k-AP.

We will show that p < 1 and hence there are some coin flips that

result in a proper 2-coloring of {1, 2, 3, . . . , N}.

We know that N2

k
is an upper bound for the number of k-AP’s.

Due of the random color selection, each k-AP becomes

monochromatic with a chance of exactly 1
2k−1 , and a simple union

bound over all k-AP’s yields:
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p ≤ N 2

k
· 1

2k−1 =
1

3
This shows that the probability of obtaining proper coloring (with

no monochromatic k-AP) is ≥ 2/3. This completes the proof.

You might not believe it, but the van der Waerden theorem has

an intriguing consequence: there are infinitely many primes.

Although there have been various proofs of this theorem since

Euclid, it surprised me that it also follows from van der Waerden’s

theorem.

The following is a description of Levent Alpoge’s paper [1].

Theorem 10.3 There are infinitely many primes.

Proof of Theorem 10.3. Let νp(n) denote the largest exponent of

the prime p, for which pνp(n) divides the positive integer n. Clearly

n =
∏

p

pνp(n).

Obviously, µp(ab) = νp(a) + νp(b), and

νp(a + b) ≥ min(νp(a), νp(b)), (10.1)

where for νp(a) 6= νp(b) there is definitely an equality.

Assume there are a finite number of primes. Color the positive

integers according to the list of primes that divide them and the ex-

ponents’ parities.

So, if P is the finite set of primes, define f : Z+ → ({0, 1} ×
{0, 1})P by

f(n) =

({

1 p | n
0 p ∤ n

}

, νp(n) (mod 2)

)

P

, if n =
∏

p

pνp(n).
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This coloring employs a finite set of colors, thus by van der Waer-

den theorem we know there exist arbitrarly long monochromatic

arithmetic progressions.

Pick a monochromatic arithmetic progression a, a+d, . . . , a+dr

with r higher than any prime’s square.

Suppose that p divides a. Since each integer in the progression

has the same prime factors, p divides a + d and so p divides d =

(a + d)− a.

We state that νp(a) < νp(d).

Indeed, suppose that νp(a) > νp(d). Then by (10.1)

νp(a + d) = νp(d). (10.2)

Clearly νp(pd) = νp(d) + 1. Thus if νp(a) > νp(pd) = νp(d) + 1,

then

νp(a + pd) = νp(pd) = νp(d) + 1 = νp(a + d) + 1,

which contradicts νp(a + pd) ≡ νp(a + d) (mod 2) (see the defi-

nition of the coloring).

If νp(a) = νp(d) + 1 then νp(a) = νp(a + d) + 1 (see (10.2)),

which now contradicts νp(a) ≡ µp(a + d) (mod 2).

If νp(a) = νp(d) then

νp(a + kd) = νp(a) + 1 6≡ νp(a) (mod 2),

for a suitable chosen k < p2 (here we must solve the congruence

A + kD ≡ p (mod p2), where A and D are those parts of a and

d, which are relatively prime to p).
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Thus we proved for every prime p dividing a, νp(a) < νp(d).

Then (10.1) yields

νp(a + d) = νp(a).

By the definition of the coloring, a and a + d have the same prime

factors, and even their exponents are the same, which contradicts

the unique factorization if d ≥ 1.

The van der Waerden theorem had important consequences in

mathematics. In 1936, Turán and Erdős [6] formulated the following

conjecture.

Every set of integers A with positive natural density contains a

k-term arithmetic progression for each k.

Endre Szemerédi [10] proved the conjecture in 1975, and he was

awarded the Abel Prize for it in 2012.

Theorem 10.4 (Szemerédi) For every ε ∈ R+ and k ∈ N there ex-

ists an N0 = N0(ε, k) such that if N > N0, A ⊆ {1, 2, 3, . . . , N}
and |A| > εN , then A contains a k-term arithmetic progression.

There are several types of proofs of Szemerédi theorem, includ-

ing combinatorial ones (which use the famous Szemerédi regularity

lemma), ergodic theoretical, Fourier analytic, and one based on the

hypergraph removal lemma.

Moreover there are quantitave versions of Szemerédi’s theorem.

They mostly use the function rk(N), which returns the size of the

largest subset of {1, 2, . . . , N} without an arithmetic progression of

length k.

The best known general bounds are
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CN exp
(
−n2(n−1)/2(logN)1/n + 1

2n
log logN

)
≤ rk(N) ≤ N

(log logN)2−2k+9 ,

where n = ⌈log k⌉.

O’Bryant [8] gave the best known lower bound (based on various

earlier results, such as Behrend’s theorem [2]). The upper bound is

due to Gowers [11].

Similarly to van der Warden numbers, we do not prove an upper

estimate here because it is beyond the scope of this note. We will,

however, justify a lower estimate.

But first, consider an application of Szemerédi’s theorem, which

was also developed by Szemerédi [9].

Since Fermat, we have known that four square numbers never

form an arithmetic progression.

That is, if an N -term arithmetic progression a, a + d, a +

2d, . . . , a+(N−1)d is given, and we color the t’s in red, where a+

td is a square number, then the red numbers in 0, 1, 2, 3, ..., N − 1

do not contain a 4-term arithmetic progression.

Thus for every ε > 0 if N > N0(ε), there are less than εN

elements colored in red in {0, 1, 2, . . . , N − 1}, according to Sze-

merédi’s theorem. Summarizing this we get the following [9].

Theorem 10.5 (Szemerédi) For every ε ∈ R+ there exists an

N0 = N0(ε) such that if N > N0, then every N -term arithmetic

progression contains less than εN squares.

Since then, this result has been improved, e.g., in 1992 Bombieri,

Granwille and Pintz [4] proved the following.
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Theorem 10.6 There are at most c1N 2/3(logN)c2 squares in any

arithmetic progression of length N , where c1 and c2 are absolue and

effectively computable constants.

In [5] Bombieri and Zannier improved the exponent from 2/3 to

3/5.

In the following chapter, we see a nice lower estimate for the

number r3(n), namely Behrend’s theorem [2], which is based on

geometrical reasoning.
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11 Behrend’s construction

In this chapter, we are looking for a relatively large subset of

{1, 2, 3, . . . , N} that does not contain a three-term arithmetic pro-

gression.

The next theorem due to Behrend [1] is based on an amazing

geometric construction. We use the terminology of [4] during the

presentation.

Theorem 11.1 (Behrend, 1946.) There exists a positive constant c

such that for all N we can give a set

A ⊂ {1, 2, 3, . . . , N}

for which

|A| ≥ N exp(−c
√

logN)

and A does not contain a three-term arithmetic progression.

Proof of Theorem 11.1. Behrend’s construction is based on the ob-

servation that a straight line can intersect a sphere at most 2 points.

If x, y, z is a three-term arithmetic progression then y = x+z
2

.

First, we give a n dimensional construction (a spherical shell)

where in the set it is not included the average of two points, more-

over, there are no three points in the set that lies in the same line.
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After this we assign the set of these points to a set A ⊆
{1, 2, 3, . . . , N}.

We will fix the exact values of n and M later.

Consider the integer-coordinated points x = (x1, x2, ..., xn) ∈
[1,M ]n. There are Mn such points, and we assign the square of

the distance from the origin to each one, i.e., the number r2 = x2
1 +

... + x2
n.

These assigned values are integers from [n, nM 2]. That is,

there exists a radius r such that the Sn(r) sphere contains at least

|Sn(r)| ≥
Mn

nM 2 − n+ 1
≥ Mn

nM 2
≥ Mn−2

n

points.

We want to assign integers to the points of Sn(r). We define the

function P : Zn → Z as follows:

P (x)
def
=

1

2M

n∑

i=1

xi(2M)i.

The basic properties of the above function are the following:

1. P is integer valued.

2. 1 ≤ P (x) ≤ (2M)n for all x ∈ [1,M ]n.

3. P is linear.

4. P is injective in [1,M ]n.

5. P (z) − P (y) = P (y) − P (x) ⇒ z − y = y − x for all

x, y, z ∈ [1,M ]n.
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Property 1 is obvious, since all terms in the sum are divisible with

2M .

Property 2 is also true since P (x) is positive and the maximum

is attained in the sum when each xi is chosen to be maximal, i.e.,

M . Then

P (x) ≤ P (M,M, . . . ,M) =
1

2M

n∑

i=1

M(2M)i

= M
(2M)n − 1

2M − 1
≤M

(2M)n

2M
< (2M)n.

Property 3 is also obvious, since let x, y ∈ Zn and a, b ∈ Z.

Then, using the definition of P , it is easy to prove that

P (ax + by) = aP (x) + bP (y).

In order to prove properties 4 and 5, we will need the following

lemma.

Lemma 11.2 Let x ∈ (−2M, 2M)n. Then P (x) = 0 if and only if

x = 0.

Proof of Lemma 11.2. If x = 0, then P (x) = 0.

Conversely, suppose there exists x 6= 0 for which P (x) = 0.

Among the coordinates of the number x = (x1, x2, . . . , xn), take

the smallest one, which is not 0, let it be xj. Then

P (x) =
1

2M

n∑

i=j

xi(2M)i = 0.

94



By arranging this, we get

−xj =

n∑

i=j+1

xi(2M)j−i

where the right-hand side is divisible by 2M , but on the left-hand

side 1 ≤ xj < 2M , which is a contradiction. This completes the

proof of the lemma.

Using the lemma, we will prove properties 4 and 5.

To prove property 4, assume that P (x) = P (y) holds for a pair

of integers x, y in [1,M ]n.

According to linearity, 0 = P (x)−P (y) = P (x−y), but x−y ∈
(−M,M)n ⊂ (−2M, 2M)n, so based on the lemma x − y = 0,

i.e., x = y. As a result, P is injective.

We only have to prove the last, property 5.

Assume that P (z)− P (y) = P (y)− P (x) is satisfied for some

number triple x, y, z ∈ [1,M ]n. Then P (z) − 2P (y) + P (x) =

P (z − 2y + x) = 0, and here z − 2y + x ∈ (−2M, 2M)n. So

again using the lemma we get z− 2y + x = 0, i.e., z− y = y− x,

which was to be proved.

Now we fix the values of n and M . Let n = ⌈√logN⌉, M =

[N 1/n/2].

Then A ⊂ [1, (2M)n] ⊂ [1, N ].

Due to property 5 of the function P , we know that A does not

contain a three-term arithmetic progression.

Now we only need to estimate the number of elements of A .
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|A| ≥ Mn−2

n
=

[N 1/n/2]n−2

n
≥
(
N 1/n/e

)n−2

n
= e2−nN 1−2/n · 1

n

= Ne2−⌈
√
logN⌉ ·N−2/⌈

√
logN⌉ · 1

⌈√logN⌉

≥ Ne2−(
√
logN+1) ·N−2/

√
logN · 1√

logN + 1

≥ Ne1−(
√
logN) · e−2 logN/

√
logN · e−

√
logN

> Ne−4
√
logN .

Thus, for the number r3(N) defined in the previous chapter, we

obtained that

r3(N) > Ne−4
√
logN .

On the contrary, Roth [6] proved in 1953 that if a set A ⊆
{1, 2, 3, . . . , N} does not contain a 3-term arithmetic progression,

then |A| ≪ N
log logN

. Since then, this result has been continu-

ously improved. The best current result comes from Bloom and

Sisask [2], who proved that there exists a constant c > 0 for which

|A| ≪ N

(logN)
1+c .

The best lower estimate also comes from Bloom and Sisask [3]

(in fact they simplified the result of Kelley and Meka [5]), they proved

r3([N ]) ≤ exp(−c(logN)1/11)N .
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12 On prime factors in a product of sums

The following theorem was discovered by Erdős and Turán when

they were university students.

Here ω(n) denotes the number of distinct prime factors of n.

Theorem 12.1 (Erdős–Turán, [3]) Let A ⊆ N+ a set of positive

integers. Suppose that |A| ≥ 2k + 1. Then

ω

(
∏

a,a′∈A
(a + a′)

)

≥ k + 1.

Remark 12.2 From this theorem follows

ω

(
∏

a,a′∈A
(a + a′)

)

≥ log2 |A|.

We will use the context from Erdős-Surányi’s book [2].

Proof of Theorem 12.1. The main idea is to find many distinct prime

divisors of the pairwise sums a + a′ such that from

pk | a + a′ =⇒ pk | a and pk | a′.

In order to find such primes p, first we prove the following lemma.
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Lemma 12.3 If p is an odd prime, then among 2ℓ + 1 distinct odd

integers there are ℓ+ 1 such that for pairwise sums a+ a′ we have

pk | a + a′ =⇒ pk | a and pk | a′.

Proof of Lemma 12.3. Let these 2ℓ + 1 integers be

n1, n2, . . . , n2ℓ+1.

Write all of them of the form

ni = pαiqi where p ∤ qi.

Then for the sum of two of them, say ni and nj, assuming αi ≤ αj

we have

ni + nj = pαi
(
qi + pαj−αiqj

)
.

If αi 6= αj , then

pαi | ni + nj and pαi | ni, pαi | nj, pαi+1 ∤ ni + nj.

If, on the other hand, αi = αj , we must ensure that qi + qj is not

divisible by p.

This is guaranteed if both the remainder of qi (mod p) and the

remainder of qj (mod p) are less than p/2 or greater than p/2

(since p is odd, they cannot equal p/2).

In these cases, the sum of two has a remainder that is strictly

between 0 and p, respectively between p and 2p.

By the pigeon hole principle, the numbers

q1, q2, . . . , q2ℓ+1
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contains either ℓ + 1 pieces with remainders less than p/2 or ℓ + 1

pieces with remainders larger than p/2 modulo p. This completes

the proof of the lemma.

The proof of the Erdős-Turán theorem is continued below.

Let

|A| ≥ 2k + 1 where k ≥ 1.

Since |A| ≥ 3 among the elements of A there exist two odd or two

even, so
∏

a,a′∈A
(a + a′) is divisible by 2.

Let us denote the odd prime divisors of the pairwise sums by

p1, p2, . . . , pi.

By using indirect reasoning, we will prove that i ≥ k.

Assume that i < k.

According to Lemma 12.3, from the 2k + 1 numbers we can

choose 2k−1 + 1 such that if

pα1

1 | a + a′, then pα1

1 | a and pα1

1 | a′.

From these 2k−1 + 1 integers we can choose 2k−2 + 1 such that

pα2

2 | a + a′, then pα2

2 | a and pα2

2 | a′.

Using this technique again and again, we obtain 2k−i + 1 ≥
3 integers such that the statement holds for all prime numbers

p1, p2, . . . , pi.

Let a1, a2, a3 integers be chosen from among the 2k−i + 1 ≥ 3

integers that remained at the end of the method.
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Then (since we have already enumerated all of the odd prime

divisors of all pairwise sums) we get:

a1 + a2 = 2u0pu1

1 pu2

2 . . . pui

i ,

a1 + a3 = 2v0pv1

1 pv2

2 . . . pvi

i ,

a2 + a3 = 2w0pw1

1 pw2

2 . . . pwi

i .

Here pu1

1 pu2

2 . . . pui

i | a1 and a2.

Thus it is not possible 2u0 | a1, since then the sum a1 +a2 is too

large. Similarly: 2u0 ∤ a2.

We write 2γ ‖ x if 2γ | x but 2γ+1 ∤ x. If the exponent of 2 in a1

and a2 are different, then

2γ ‖ a1 2δ ‖ a2 γ < δ

2γ ‖ a1 + a2 =⇒ γ = u0 =⇒ 2u0 ‖ a1,

which contradicts to 2u0 ∤ a1.

The case of γ > δ can be handled similarly. Thus γ = δ.

So if 2γ ‖ a1,then 2γ ‖ a2, 2γ ‖ a3.

Write ai = 2γbi where bi is odd. Then

b1 + b2 = 2r1pu1

1 . . . pui

i ,

b1 + b3 = 2r2pv1

1 . . . pvi

i ,

b2 + b3 = 2r3pw1

1 . . . pwi

i .
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Since it follows from pα | ai + aj that pα | ai and pα | aj it is

also true for bi and bj. Thus

pu1

1 . . . pui

i | b1, b2, b3, b1 6= b2, b1 6= b3, b2 6= b3.

So that b1 + b2 ≥ 3pu1

1 . . . pui

i =⇒ r1 ≥ 2. Similarly, r2, r3 ≥ 2,

that b1 + b2 + b3 is divisible by 2, which contradicts to that each bi

is odd.

In the case of two different sets Győry, Stewart and Tijdeman [4]

proved the following:

Theorem 12.4 Let A,B ⊆ N+ a set of positive integers. Suppose

that |A| > |B|. Then

ω

(
∏

a∈A,b∈B
(a + b)

)

≥ c1 log |A|.

Erdős, Stewart and Tijdeman [1] showed that the lawer bound

c1 log |A| cannot be improved to
(
1
8
+ ε

)
(log |A|)2 log log |A|.

Győry, Sárközy and Tijdeman [5] proved a similar lawer bound

regarding the prime factors of the product of ab + 1’s.
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13 Squares form an additive basis

A central question in additive number theory is whether a given

infinite set is an asymptotic basic of finite order?

In other words, for which sets B exists a positive integer k such

that every natural number is the sum of k elements of the set B?

Lagrange’s theorem, perhaps the earliest of these types of re-

sults, which states:

Theorem 13.1 (Lagrange’s four square theorem) Every integer

can be written as the sum of at most 4 squares.

First, we study which numbers can be written as the sum of two

squares.

The origin of the problem goes back to Albert Girard, who noticed

that every prime of the form 4k+1 can be written as the sum of two

squares. The result was published in 1625 [1].

A variant of the problem was also written by Fermat in a letter to

Mersenne. Moreover, Fermat also gave the number of ways a prime

power p can be written as the sum of two square numbers.
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For composite numbers, the sum of two squares theorem relates

the prime decomposition. More exactly:

Theorem 13.2 An integer n ≥ 2 can be written as the sum of two

squares if and only if its prime decomposition contains no term pk,

where prime p ≡ 3 (mod 4) and k is odd.

If n = x2 is a perfect square, the statement is trivial setting a (or

b) to zero: n = x2 = 02 + x2. (Some perfect squares also have

non-trivial decomposition such as 25 = 42 + 32 or 100 = 82 + 62,

also known as Pythagorean triples.)

Examples

The prime decomposition of the number 2450 is given by 2450 =

2 · 52 · 72. Among the primes occurring in this decomposition (which

are 2. 5 and 7), only 7 is congruent to 3 modulo 4. Its exponent in the

prime decomposition, 2, is even. Therefore, the theorem states that

it is expressible as the sum of two squares. Indeed, 2450 = 72+492.

The prime decomposition of the number 3430 is 2 · 5 · 73. This

time, the exponent of 7 in the prime decomposition is 3, an odd

number. So 3430 cannot be written as the sum of two squares.

In order to prove the theorem first we will prove the following:

Lemma 13.3 If the integers a and b can be written as the sum of

two squares then their product ab can be also written as the sum of

two squares.

Proof of the Lemma 13.3. Let a = x2 + y2 and b = u2 + v2. Then

ab = (x2 + y2)(u2 + v2) = (xu− yv)2 + (xv + yu)2.
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Using this lemma, we can see that we first need to decide which

primes p can be expressed as the sum of two squares.

This is Girard’s theorem, also known as Fermat’s theorem on

sums of two squares.

Theorem 13.4 Let p be a prime number. Then the equation

x2 + y2 = p

can be solved in integers if and only p = 2 or p is a prime of form

4k + 1.

First we prove Theorem 13.4 and after we will derive Theorem

13.1 from Theorem 13.4.

Proof of Theorem 13.4. First we will prove that if p is a prime of

form 4k + 3 then it can not be written of the sum of two squares.

Contrary, suppose that p is a prime of the form 4k+3 and there exit

integer x and y such that

x2 + y2 = p.

Then

x2 + y2 ≡ p (mod 4).

Here p is a prime of the form 4k + 3, so

x2 + y2 ≡ 3 (mod 4).

A square is always congruent to 0 or 1 modulo 4. Thus x2 + y2 is

congruent to 0, 1 or 2 modulo 4, but x2 + y2 is never congruent to 3

modulo 4.
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Next we prove that 2 and the primes of form 4k+1 can be written

as a sum of two squares. For p = 2 the statement is trivial:

2 = 12 + 12.

Now let p be a prime of form 4k+1. Then−1 is a quadratic residue

modulo p. Thus the congruence

x2 ≡ −1 (mod p) (13.1)

has a solution. Let s denote a solution of (13.1). Then

s2 ≡ −1 (mod p)

p | s2 + 1

Consider all numbers a + bs where a, b ∈ N and

0 ≤ a <
√
p, 0 ≤ b <

√
p.

The number of such sums is
(
[
√
p + 1]

)2
> p, so using the pigeon-

hole principle we get there exist pairs (a1, b1) and (a2, b2) for which

a1 + b1s ≡ a2 + b2s (mod p)

Writing a = a1 − a2 and b = b1 − b2 we get

a + bs ≡ 0 (mod p)

a ≡ −bs (mod p)

a2 ≡ b2s2 (mod p)

a2 ≡ −b2 (mod p)

p | a2 + b2.

Since 0 ≤ a1, a2 <
√
p and 0 ≤ b1, b2 <

√
p we get −√p < a <

√
p and −√p < b <

√
p. Thus

0 < a2 + b2 < 2p.
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Since p | a2 + b2 we get a2 + b2 = p.

Next we prove Theorem 13.1. First we remark that Theorem 13.1

is equivalent with the following statement:

If the prime factorization of n

n = 2αpα1

1 · · · pαr

r qβ1

1 · · · qβs

s , (13.2)

where the primes pi are of the form 4k + 1 and the primes qi are of

the form 4k + 3, then n can be written as the sum of two squares if

and only if every βi is even.

First we will prove that the n’s which are of the form (13.2) is a

sum of two squares. Indeed, by Theorem 13.1 we have 2 and the

primes pi are the sum of two squares. Clearly, qβi

i is the sum of two

squares if βi is even since

qβi

i = 02 +
(

q
βi/2
i

)2

.

Using Lemma 13.3 multiple times we get n is of the form (13.2).

Next we prove if

n = qβm, (13.3)

where q ∤ m, q is a prime of form 4k+3 and β is odd, then n cannot

be written as the sum of two squares. This will complete the proof of

Theorem 13.4.

We prove this indirect. Suppose that the statement does not hold,

so n is of the form (13.3) and n is the sum of two squares. Consider

one of these n’s for which β is minimal. (Here β is odd, so β ≥ 1.).

Then

x2 + y2 = qβm
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x2 + y2 ≡ 0 (mod q)

x2 ≡ −y2 (mod q). (13.4)

If q ∤ x and q ∤ y then by taking (q− 1)/2-th power of (13.4) we get

xq−1 ≡ (−1)(q−1)/2yq−1 (mod q).

Since q is a prime of form 4k + 3 we get (q − 1)/2 is odd, so

xq−1 ≡ −yq−1 (mod q).

By Fermat’s little theorem xq−1 ≡ 1 (mod q) and yq−1 ≡ 1

(mod q), thus

1 ≡ −1 (mod q),

which is contradiction. So q ∤ x and q ∤ y is not possible. Thus q | x
or | y. Both cases by (13.4) we get

q | x and q | y

hold simultaneously. Then

x = qx0 and y = qy0,

where x0 and y0 are integers. Using these notation we get

x2 + y2 = qβm = n

(qx0)
2 + (qy0)

2 = qβm

x2
0 + y2

0 = qβ−2m.

This contradicts the fact that we fixed an integer n which is the sum

of two squares of the form (13.3) such that β is already minimal. As

a result, we proved Theorem 13.4.

Next we study Lagrange’s four-square theorem. This theorem

states that the squares form an additive basis of order four.
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For illustration, 3, 31 and 310 can be represented as the sum of

four squares as follows:

3 = 12 + 12 + 12 + 02

31 = 52 + 22 + 12 + 12

310 = 172 + 42 + 22 + 12.

The examples in the Arithmetica clearly show that Diophantus

was aware of the theorem. Finally, Lagrange proved the theorem

much later, in 1770.

Carl Gustav Jakob Jacobi later found a simple formula for the

number of representations of an integer as the sum of four squares

in 1834.

Proof of Theorem 13.1. First we remark that it is sufficient to prove

the theorem for every odd prime number p. This immediately follows

from Euler’s four-square identity (and from the that the theorem is

trivially holds for the numbers 1 and 2).

Lemma 13.5 (Euler’s four identity) If a and b can be written as the

sum of four squares, then their product ab can be also written as the

sum of four squares.

This identity easily follows from the following:
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(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) =

(x1y1 + x2y2 + x3y3 + x4y4)
2

+ (x1y2 − x2y1 + x3y4 − x4y3)
2

+ (x1y3 − x2y4 − x3y1 + x4y2)
2

+ (x1y4 + x2y3 − x3y2 − x4y1)
2. (13.5)

But how one can figure it out? Consider the quaternions

α = x1 + x2i + x3j + x4k

β = y1 − y2i− y3j − y4k

Then for the conjugates we have

α = x1 − x2i− x3j − x4k

β = y1 + y2i + y3j + y4k

The norm of a quaternion α is defined by N(α) = α · α then

N (α) = x2
1 + x2

2 + x2
3 + x2

4

N (β) = y2
1 + y2

2 + y2
3 + y2

4. (13.6)

Define γ by γ = αβ. Then

γ = (x1y1 + x2y2 + x3y3 + x4y4)

+ (x1y2 − x2y1 + x3y4 − x4y3)i

+ (x1y3 − x2y4 − x3y1 + x4y2)j

+ (x1y4 + x2y3 − x3y2 − x4y1)k.

Thus

N(γ) = (x1y1 + x2y2 + x3y3 + x4y4)
2
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+ (x1y2 − x2y1 + x3y4 − x4y3)
2

+ (x1y3 − x2y4 − x3y1 + x4y2)
2

+ (x1y4 + x2y3 − x3y2 − x4y1)
2.

On the other hand

N(γ) = N(αβ) = αβαβ

= αββα = αN(β)α = ααN(β)

= N(α)N(β).

Using this and (13.6) we get (13.5) which was to be proved.

Next we prove Lagrange theorem. As we have remarked it is

sufficient to prove the theorem for every odd prime number p.

First we prove there is a multiple of p, we will denote it by np,

which is the sum of four squares and 1 ≤ n < p.

The residues of a2 modulo p are distinct for every a between 0

and (p− 1)/2. Indeed, if for 1 ≤ x, y ≤ p− 1 we have

x2 ≡ y2 (mod p),

then

p | x2 − y2

p | (x− y)(x + y)

p | x− y or p | x + y.

Since 1 ≤ x, y ≤ p− 1 this is equivalent with

x = y or x = p− y.

112



Similarly, for b taking integral values between 0 and (p − 1)/2, the

numbers −b2 − 1 are distinct modulo p. By the pigeonhole princi-

ple, there are a and b in this range, for which a2 and −b2 − 1 are

congruent modulo p, that is for which

a2 ≡ −b2 − 1 (mod p)

a2 + b2 + 1 ≡ 0 (mod p)

a2 + b2 + 12 + 02 = np for a positive integer n.

By 0 ≤ a, b ≤ (p− 1)/2 we get

np ≤ 2

(
p− 1

2

)2

+ 1 < p2,

so n < p. This proves our statement.

Now let m be the smallest positive integer such that mp is the

sum of four squares, mp = x2
1 + x2

2 + x2
3 + x2

4 (we have just shown

that there is some m < p with this property, so among them there

is a smallest).

We show by contradiction that m equals 1: supposing it is not

the case, we prove the existence of a positive integer r less than m,

for which rp is also the sum of four squares (this is in the spirit of the

infinite descent method of Fermat).

First we prove m is odd. Suppose that m is even. Then

mp = x2
1 + x2

2 + x2
3 + x2

4

m

2
p =

1

2

(
x2
1 + x2

2 + x2
3 + x2

4

)

m

2
p =

(
x1 − x2

2

)2

+

(
x1 + x2

2

)2

+

(
x3 − x4

2

)2

+

(
x3 + x4

2

)2

,

so the statement holds with r = m/2. Next we suppose m is odd.
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Now we consider for each xi the yi which is in the same residue

class modulo m and between −(m− 1)/2 and (m− 1)/2. Then

0 ≡ mp = x2
1 + x2

2 + x2
3 + x2

4 ≡ y2
1 + y2

2 + y2
3 + y2

4 (mod m).

It follows that y2
1 + y2

2 + y2
3 + y2

4 = mr, for some non-negative

integer r.

Next we will prove r is positive and less than m. Indeed, if r = 0,

then y2
1 + y2

2 + y2
3 + y2

4 = 0, so y1 = y2 = y2 = y4 = 0. Thus

m | x1, x2, x2, x4. But then m2 | x2
1 + x2

2 + x2
3 + x2

4 = mp. So

m | p from which m = 1 since 1 < m < p. On the other hand

mr = y2
1 + y2

2 + y2
3 + y2

4 ≤ 4

(
m− 1

2

)2

< m2,

thus r < m.

Finally, we use Euler’s four-square identity again which shows

that mpmr = z2
1 + z2

2 + z2
3 + z2

4 . But the fact that each xi is

congruent to yi modulo m implies that all of the zi are divisible by

m. Indeed:

z1 = x1y1 + x2y2 + x3y3 + x4y4

≡ x2
1 + x2

2 + x2
3 + x2

4 = mp ≡ 0 (mod m),

z2 = x1y2 − x2y1 + x3y4 − x4y3

≡ x1x2 − x2x1 + x3x4 − x4x3 = 0 (mod m),

z3 = x1y3 − x2y4 − x3y1 + x4y2

≡ x1x3 − x2x4 − x3x1 + x4x2 = 0 (mod m),

z4 = x1y4 + x2y3 − x3y2 − x4y1

≡ x1x4 + x2x3 − x3x2 − x4x1 = 0 (mod m).
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It follows that, for wi = zi/m, w2
1 +w2

2 +w2
3 +w2

4 = rp where

r < m, and this contradicts to the minimality of m.

Finally, we say a few words about Legendre’s three-square theo-

rem.

Theorem 13.6 (Legendre’s three-square theorem) Every natural

number can be represented as the sum of three squares of integers

n = x2 + y2 + z2

if and only if n is not of the form n = 4k(8m + 7) for nonnegative

integers k and m.

Legendre’s original proof was incomplete.

Gauss later generalized the theorem and calculated the number

of solutions to an integer written as the sum of three squares.

One part of the theorem, which states that if n is the sum of three

squares, then it is not of the form n = 4k(8m + 7) is almost trivial.
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First we prove that if n is of the form 8m + 7, then n cannot be

written as the sum of three squares.

Indeed, each square is congruent to 0, 1 or 4 modulo 8, and thus

a sum of three squares can be congruent to 0 + 0 + 0, 0 + 0 + 1,

0 + 1 + 1, 1 + 1 + 1, 4 + 0 + 0, 4 + 0 + 1, 4 + 1 + 1, 4 + 4 + 0,

4+4+1 or 4+4+4 modulo 8. Among these residues the 7 never

occurs, and from this follow that the sum of three squares can not

be of the form 8m + 7.

Next suppose that n is of the form

n = 4k(8m + 7) (13.7)

where k is positive integer and m ∈ N, and n is the sum of three

squares.

We may suppose that in (13.7) n was chosen such that the value

of the positive integer k is minimal. Then n is divisible by 4.

Every square is congruent to 0 or 1 modulo 4. It is easy to see

that the residue 0 modulo 4 can not be written as the sum of three

elements form the set {0, 1} if and only if each residues are 0. In

other words, if

n = x2 + y2 + z2,

then every squares are divisible by 4. Let x = 2x0, y = 2y0 and

z = 2z0 where x0, y0 and z0 are integers. Then

n

4
= x2

0 + y2
0 + z2

0,

so n
4

= 4k−1(8m + 7) can be also written as the sum of three

squares, which contradicts that in (13.7) was chosen so that k is

minimal. This proves one direction in Legendre’s three square theo-

rem. The other direction is very difficult, we do not prove it here.
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14 Schnirelmann density

There are several density concepts in number theory, perhaps

not the most natural at first, but the so-called Schnirelmann density

has many practical applications.

The following definition was discovered by Lev Schnirelmann, a

Russian mathematician [1], [2] in 1930.

Definition 14.1 Let A ⊆ N ∪ {0}. Then the Schnirelmann density

of A is

σ(A) = inf
n∈N

A(n)

n
,

where A(n)
def
= |A ∩ {1, 2, . . . , n}|.

Clearly, σ(A) is always a nonnegative number. First we state

two propositions.

Proposition 14.2

σ(A) > 0⇐⇒ 1 ∈ A and ∃ c > 0 ∀n A(n) > cn.
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Proposition 14.3

σ(A) = 1⇐⇒ A = N+ or A = N ∪ {0}.

Proof of Proposition 14.2 First we prove that if σ(A) > 0 then

1 ∈ A and ∃ c > 0 such that A(n) ≥ cn for all positive integer n.

Indeed, then

σ(A) = inf
n∈N+

A(n)

n
≤ A(1)

1
= A(1). (14.1)

If 1 6∈ A, thenA(1) = 0, so by (14.1) we have σ(A) ≤ 0. But since

σ(A) is nonnegative we get σ(A) = 0, which is a contradiction.

Thus 1 ∈ A. On the other hand, if σ(A) > 0, then writing c =

σ(A) we get

c = inf
n∈N+

A(n)

n
≤ A(n)

n

for every n ∈ N+. Thus

cn ≤ A(n)

for every n ∈ N+.

Next we suppose that 1 ∈ A and A(n) > cn for every n. Then

σ(A) = inf
n∈N+

A(n)

n
> inf

n∈N+
c = c > 0.

Proof of Proposition 14.3. Suppose that σ(A) = 1. We will prove

A = N+ or A = N+ ∪ {0}. Indeed, let n ∈ N+. Then

1 = σ(A) = inf
n∈N+

A(n)

n
≤ A(n)

n
.

So

n ≤ A(n).
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By the definitionA(n), we get 1, 2, 3, . . . , n ∈ A. So we proved for

every n ∈ N+ that n ∈ A, from which the statement follow. Clearly

ifA = N+ or A = N+ ∪ {0} then

σ(A) = inf
n∈N+

A(n)

n
= inf

n∈N+

n

n
= 1.

Following that, we will prove Schnirelmann’s main theorems.

Theorem 14.4 (Schnirelmann) IfA,B ⊆ N∪{0} and 0 ∈ A∩B,

then

σ(A+ B) ≥ σ(A) + σ(B)− σ(A)σ(B).

Proof of Theorem 14.4. If σ(A) = 0, then we need to prove the

following:

σ(A + B) ≥ σ(B).

But since 0 ∈ A we have

A+ B ⊇ B,

thus the statement is trivial. So we may assume σ(A) > 0. By

Proposition 14.2 we have 1 ∈ A. Consider an arbitrary n ∈ N and

denote the elements of A ∩ [1, n] by

1 = a1 < a2 < . . . < ak ≤ n.

Now k = A(n).

Next we will list some elements of the set A + B (not every ele-

ment!).

Since 0 ∈ B

ai + 0 = ai ∈ A+ B for i = 1, . . . , k.
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| | | | | | |
0 1 a2 ai ai+1 ak n

‖
a1 ր

∈ A+ B
There are further elements from A + B. For i = 1, 2, . . . , k − 1

consider the elements of form ai + b where b ∈ B and 0 < b <

ai+1 − ai.

| | | |
0 ai

︸ ︷︷ ︸

b
ai+1 n

All elements of this form are in (ai, ai+1) and ∈ A+ B.

Finally consider the elements of form

ak + b, b ∈ B, b ≤ n− ak.

All elements of this form are in (ak, n] and ∈ A+ B.

| | |
0 ak

︸ ︷︷ ︸

b
n

How many elements have we listed so far?

ai ∈ A+ B, i = 1, . . . , k, k = A(n) pieces of elements.

ai + b ∈ A+ B, i = 1, . . . , k − 1, b ∈ B, 0 < b < ai+1 − ai for fixed i,

B(ai+1 − ai − 1) pieces of elements.

ak + b ∈ A+ B, b ∈ B, 0 < b ≤ n− ak, B(n− ak) pieces of elements.
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Thus the number of elements inA+ B ∩ [1, n] is at least

(A+ B)(n) ≥ A(n) +

k−1∑

i=1

B(ai+1 − ai − 1) + B(n− ak).

Then

(A+ B)(n) ≥ A(n) + σ(B) ·
(k−1∑

i=1

(ai+1 − ai − 1)

)

+ σ(B) · (n− ak)

= A(n) + σ(B) · (n−A(n))

= A(n)(1− σ(B)) + σ(B) · n.

Here 1− σ(B) is positive or 0 and A(n) ≥ σ(A)n, so

(A+ B)(n) ≥ σ(A) · n · (1− σ(B)) + σ(B) · n
=
(
σ(A) + σ(B)− σ(A)σ(B)

)
· n.

Using A(n) ≥ σ(A)n we get

(A+ B)(n)
n

≥ σ(A) + σ(B)− σ(A)σ(B) for every n ≥ 1,

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B).

Next we prove the following:

Theorem 14.5 (Schnirelmann) IfA,B ⊆ N∪{0}, 0 ∈ A∩B and

σ(A) + σ(B) ≥ 1,

then

σ(A + B) = 1.

Proof of Theorem 14.5. By Proposition 14.3:

σ(A+ B) = 1 ⇐⇒ ∀n ∈ N+, n ∈ A+ B.

We will prove this.
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Case I: n ∈ A ∪ B.

If n ∈ A, then n =n + 0 ∈ A+ B.

A B

If n ∈ B using similarly ideas we get n ∈ A+ B.

Case II: n 6∈ A ∪ B. Then n > 1, otherwise

1 6∈ A ∪ B
1 6∈ A 1 6∈ B

A(1) = B(1) = 0

σ(A) = σ(B) =
A(1)

1
=
B(1)
1

= 0

Then σ(A) + σ(B) = 0, but by the condition of the theorem we

have σ(A) + σ(B) ≥ 1. Thus we proved n > 1. Then

A(n) + B(n) ≥ σ(A) · n+ σ(B) · n = (σ(A) + σ(B)) · n ≥ n.

By this and n 6∈ A ∪ B we get

A(n) = A(n−1), B(n) = B(n−1), A(n−1)+B(n−1) ≥ n.

For every a ∈ A, 0 < a ≤ n− 1 consider a, and for every b ∈ B,

0 < b ≤ n− 1 consider n− b. These are all in {1, 2, . . . , n− 1}
and the number of them is

A(n− 1) + B(n− 1) ≥ n.

By the pigeon-hole principle we get there exist a ∈ A and b ∈ B for

which

a = n− b =⇒ a + b = n, n ∈ A+ B,
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this completes the proof of the theorem.

For many years it was a conjecture whether in

σ(A+ B) ≥ σ(A) + σ(B)− σ(A)σ(B)

the term “−σ(A)σ(B)” could be removed?

In 1932 Khintchin [3] was able to handle the case σ(A) = σ(B).
Finally in 1942 Mann [4] proved this conjecture.

Theorem 14.6 (Mann, 1942) If A,B ⊆ N ∪ {0} and 0 ∈ A ∩ B,

then

σ(A+ B) ≥ min{1, σ(A) + σ(B)}.

One of the most important theorems in combinatorial number

theory. Since it is extremely difficult, we have omitted the proof from

this note.

References

[1] L. G. Schnirelmann, On the additive properties of numbers,

first published in “Proceedings of the Don Polytechnic Insti-

tute in Novocherkassk” (in Russian), vol XIV (1930), 3-27, and

reprinted in “Uspekhi Matematicheskikh Nauk" (in Russian),

1939, no. 6, 9–25.

[2] L. G. Schnirelmann, First published as "Über additive Eigen-

schaften von Zahlen" in "Mathematische Annalen" (in German),

vol 107 (1933), 649-690, and reprinted as "On the additive prop-

erties of numbers" in "Uspekhin. Matematicheskikh Nauk" (in

Russian), 1940, no. 7, 7–46.

124



[3] A. Y. Khinchin, Zur additiven Zahlentheorie, Mat. Sb., 39:3

(1932), 27–34.

[4] H. B. Mann, A Proof of the Fundamental Theorem on the Den-

sity of Sets of Positive Integers, Ann. Math. 43 (1942), 523-527.

[5] A. Sárközy, Combinatorial Number theory, university lecture.

[6] Photo, Lev Schnirelmann, link.

[7] Photo, illustration of density, link.

125

https://mathshistory.st-andrews.ac.uk/Biographies/Shnirelman/
https://sites.google.com/a/linguisticocassara.it/flipped-physics/density


15 Brun sieve

Viggo Brun developed an extension of Eratosthenes’ sieve in the

first quarter of the twentieth century that yielded good estimates on

the number of elements of a setA that are not divisible by any of the

primes p1, ..., pk provided A is "regularly distributed" modulo these

primes (see [1] and [2]).

Using Brun sieve, we can get more notable results related to the

Goldbach conjecture. Namely, every integer can be written as the

sum of two numbers, each of which has at most nine prime factors

in the prime factorization (see [3]).

Furthermore, Schnirelmann proved that all integers can be writ-

ten as the sum of at most 800000 primes. This last result will be

studied in further detail in the following chapter.

The content of the present chapter is mainly given by [5] and [6].

The well-known exclusion-inclusion principle is used as the first

step in explaining the Brun sieve.

Lemma 15.1 Assume we have a finite set A with N elements, and

some elements have the bad properties T1, T2, ..., Tr. Let Ni1,i2,...,ik
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be the number of those elements which have the bad properties

Ti1, Ti2, . . . , Tik. Then for the number of good elements (with no

bad properties) we have:

G = N +

r∑

k=1

(−1)k
∑

≤i1<i2<···<ik≤r
Ni1,i2,...,ik. (15.1)

Proof of Lemma 15.1. Two facts need to be verified:

1. All good elements are counted just once.

2. All bad elements are counted 0 times.

Here 1. is trivial, since we just count all good elements in the first

term.

In order to show 2., suppose a bad element has ℓ bad properties

(then r ≥ ℓ > 0).

These are the properties: Tj1, . . . , Tjℓ. The multiplicity is then

calculated in (15.1) by taking the number of ways from i1, ..., ik se-

lected from j1, ..., jℓ with (−1)k weight.

There are
(ℓ
k

)
possibilities, which means we counted this bad

element
ℓ∑

k=0

(−1)k
(
ℓ

k

)

times in total. However, according to the binomial theorem, this is

(1− 1)ℓ = 0, proving our statement 2.

When we look at (15.1), we can see that it has a large number

of members (a total of 2r), which were too numerous during the

development of the Brun sieve. However, with a clever idea, we

may significantly decrease the number of members.
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Lemma 15.2 Using the notation of inclusion-exclusion principle for

the good elements G, we get that

N +

2t−1∑

k=1

(−1)k
∑

≤i1<i2<···<ik≤r
Ni1,i2,...,ik ≤ G

≤ N +
2t∑

k=1

(−1)k
∑

≤i1<i2<···<ik≤r
Ni1,i2,...,ik.

for all t ∈ N+.

Roughly: after the "-"s, we estimate from the bottom, after the

"+"s, we estimate from the top.

Proof of Lemma 15.2. Again two facts need to be verified:

1. All good elements are counted just once in both sums.

2. All bad elements are counted≤ 0 times in the sum in left-hand

side and ≥ 0 weight in the sum in right-hand side.

Here 1. is trivial.

In order to show 2., we need to prove:

j
∑

k=0

(−1)k
(
ℓ

k

)

= (−1)j
(
ℓ− 1

j

)

.

The proof of this is immediate by induction on j and using the

relation
( n
k−1
)
+
(n
k

)
=
(n+1

k

)
. This completes the proof of the lemma.

Next, we may describe the Brun sieve.

In the following, we use the principle of inclusion-exclusion (see

Lemma 15.2) but with slightly new notations.
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LetA be a set of integers, and let Ad be the number of the those

elements of A which are divisible by d. Moreover ω(d) denotes the

distinct prime divisors of d.

Suppose that we would like to determine the number of elements

of A that are not divisible by any of the primes p1, p2, . . . , pk. If Ti

denotes the bad property that an element is divisible by the prime

pi, then according to Lemma 15.2:

∑

d|p1p2···pk

ω(d)≤2t−1

µ(d)Ad ≤
∑

a∈A

∑

p1∤a,p2∤a,...,pk∤a

1 ≤
∑

d|p1p2···pk

ω(d)≤2t

µ(d)Ad.

(15.2)

In the ideal scenario, the size of Ad can be approximated as follows:

X
m(d)

d
+ Rd, (15.3)

where m(d) is a multiplicative function, X is a constant depending

only on the set A and Rd is small in comparison to Xm(d)
d

.

Before we go any further, consider one or two examples of esti-

mating Ad.

First, let A = {a : 1 ≤ a ≤ x} . It is clear that then

Ad =
x

d
+ Rd, (15.4)

where |Rd| ≤ 1. So in (15.3) one may take X = x, m(d) = 1.

In the second example A = {n(n + 2) : n ∈ {y, y +

1, . . . , x}}. Let d a squarefree integer. Then the congruence

n(n + 2) ≡ 0 (mod d)
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has m(d) solutions by the Chinese remainder theorem, where m is

a multiplicative function with m(2) = 1 and m(p) = 2 for primes

p ≥ 3. Clearly,

Ad = (x− y)
m(d)

d
+ Rd, (15.5)

where |Rd| ≤ 2ω(d).

Let us return to the general situation. If (15.3) indeed holds, then:

∑

d|p1p2···pk

ω(d)≤h

µ(d)Ad =
∑

d|p1p2···pk

ω(d)≤h

µ(d)

(

X
m(d)

d
+ Rd

)

= X
∑

d|p1p2···pk

ω(d)≤h

µ(d)
m(d)

d
+ O







∑

d|p1p2···pk

ω(d)≤h

Rd







.

(15.6)

In the following, we estimate
∑

d|p1p2···pk

ω(d)≤h
µ(d)m(d)

d
. Let u > 1 be

an arbitrary real number, whose exact value will be fixed later. Then

uω(d)−h > 1 holds if ω(d) > h. Thus:

∑

d|p1p2···pk

ω(d)≤h

µ(d)
m(d)

d
=

∑

d|p1p2···pk

µ(d)
m(d)

d
+ O







∑

d|p1p2···pk

ω(d)>h

m(d)

d







=
∑

d|p1p2···pk

µ(d)
m(d)

d
+ O




∑

d|p1p2···pk

m(d)

d
uω(d)−h





=
∑

d|p1p2···pk

µ(d)
m(d)

d
+ O



u−h
∑

d|p1p2···pk

m(d)

d
uω(d)



 .
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Here the sums can be written as an Euler product, thus:

∑

d|p1p2···pk

ω(d)≤h

µ(d)
m(d)

d
=

=
∏

p∈P

(

1− m(p)

p

)

+ O



u−h
∏

p∈P

(

1 + u
m(p)

p

)




=
∏

p∈P

(

1− m(p)

p

)

+ O



u−h
∏

p∈P

(

1 +
m(p)

p

)u


 ,

where P denotes the set of the primes p1, p2, . . . , pk.

Now we fix u = h/
(
∑

p∈P log
(

1 + m(p)
p

))

in order to reduce

the error term and get

∑

d|p1p2···pk

ω(d)≤h

µ(d)
m(d)

d
=
∏

p∈P

(

1− m(p)

p

)

+ O




1

h

∑

p∈P

m(p)

p





h

.

Using this, (15.2) and (15.6) we get

∑

a∈A

∑

p1∤a,p2∤a,...,pk∤a

1 = X
∏

p∈P

(

1− m(p)

p

)

+ X · O




1

h

∑

p∈P

m(p)

p





h

+ O







∑

d|p1p2···pk

ω(d)≤h

Rd







(15.7)

if u = h/
(
∑

p∈P log
(

1 + m(p)
p

))

≥ 1.

In the following we show two applications. First we estimate the

number of primes less than or equal to x.

If P is a set of all primes less than y and A = {1, 2, ..., x},
the right hand side of (15.7) gives an upper bound on the number of

primes between y and x.
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In (15.4) we see that we may take m(d) = 1 and |Rd| ≤ 1. First

we estimate the two error terms. Here we need Mertens theorems

[4]. In the following estimates the sums are taken over the set of

primes.

Lemma 15.3 (Mertens’ first theorem)

∣
∣
∣
∣
∣
∣

∑

p≤n

log p

p
− log n

∣
∣
∣
∣
∣
∣

≤ 2

for any n ≥ 2.

Lemma 15.4 (Mertens’ second theorem)

lim
n→∞




∑

p≤n

1

p
− log logn−M



 = 0.

Here M is the Meissel-Mertens constant (see A077761). Even more

precisely, it is true that the expression under the limet does not ex-

ceed in absolute value

4

log(n + 1)
+

2

n log n

for any n ≥ 2.

Lemma 15.5 (Mertens’ third theorem)

lim
n→∞

logn
∏

p≤n

(

1− 1

p

)

= e−γ ≈ 0.561459483566885,

where γ is the Euler–Mascheroni constant (see A001620).
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Mertens’ theorems are not proved here, but we note that the

proofs of the first two theorems can be found, e.g., on the related

Wikipedia page: link.

Let’s return to estimating the number of primes between y and

x. For this, we use (15.7), with a suitable choice of h.

In (15.7), the second error component can be estimated by yt,

and Mertens’ theorems are used to estimate the other terms. (Re-

member that m(d) = 1). Then we get:

π(x)− π(y) ≤ x
e−γ + o(1)

log y
+ x · O(

1

h
log log y)h + O(yh).

If we are only interested in primes that do not exceed x, we may

fix y by y = x1/(2c) log log x and h = c log log x (thus we obtain a

nearly optimal upper estimate in the inequality above), with a suffi-

ciently large constant c. Then we get

π(x) = O(
x log log x

log x
),

which is worse by a factor of log log x than the sharpest estimate

but much better than the trivial estimates.

Next we give an upper bound for the number of twin primes.

Let P again be the set of primes smaller than y, and defineA by

A = {n(n + 2) : n ∈ [y, x]}.

Note that if p | n(n + 2) for a prime p ∈ P , then n and n + 2

cannot be prime at the same time. Then we use the estimate in

(15.7), where m(2) = 1 and m(p) = 2 if p > 2. We also have

|Rd| ≤ 2ω(d). As before, we get that
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π2(x)− π2(y) ≤ x
c

(log y)2
+ xO(

1

h
log log y)h + O((2y)h),

where π2(x) denotes the twin prime numbers not exceeding x. Fix

h = c log log x and y = x1/(2c) log lg x. Then we get

π2(x) ≤ O

(
x(log log x)2

(log x)2

)

.

(Here we also use 1− 2
p
≤ e−2/p and Mertens’ theorems.)

Using this result and summation by parts, Brun proved that the

sum
∑

p,p+2 primes
1
p
+ 1

p+2
is convergent:

∑

p,p+2 primes

1

p
+

1

p + 2
≪

∑

p,p+2 primes

1

p

≤
∑

x

π2(x)− π2(x− 1)

x

≤
∑

x

π2(x)

(
1

x
− 1

x + 1

)

≪
∑

x

π2(x)

x2

≪
∑

x

(log log x)2

x(log x)2

≪∞.

The upper estimate given for the twin primes is (log log x)2

worse than the expected value. By further developing the above

"simple" Brun sieve, as Brun did, the factor (log log x)2 can also be

eliminated. This "complete" Brun sieve is much more complicated.
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The basic idea in short: Our starting formula was

∑

d|p1p2···pk

ω(d)≤2t−1

µ(d)Ad ≤ S(A,P) ≤
∑

d|p1p2···pk

ω(d)≤2t

µ(d)Ad,

where S(A,P) =
∑

a∈A
∑

p1∤a,p2∤a,...,pk∤a
1. This can be written of

the form

∑

d|p1p2···pk

χ1(d)µ(d)Ad ≤ S(A,P) ≤
∑

d|p1p2···pk

χ2(d)µ(d)Ad,

(15.8)

where

χ1(d) =

{

+1 if ω(d) ≤ 2t− 1,

0 if ω(d) > 2t− 1,
χ2(d) =

{

+1 if ω(d) ≤ 2t,

0 if ω(d) > 2t.

(15.9)

The goal is to replace χ1, χ2 with other χ1, χ2 for which:

a) The functions χ1, χ2 still satisfy (15.8).

b) χ1(1) = χ2(2) = 1.

c) χi(d) ∈ {0, 1} for all d | p1p2 · · · pk and i = 1 or i = 2.

d) This χ1, χ2 gives a better estimate for S(A,P).

Brun found such χ1, χ2, but his proof was extremely complicated.

Here we present only one particularly important and general theo-

rem that can be proven in this way.

Theorem 15.6 Let k ∈ N, a1, b1, . . . , ak, bk ∈ Z and (ai, bi) = 1

for i = 1, 2, . . . , k. Moreover

E
def
=

k∏

i=1

ai

∏

1≤r<s≤k
(arbs − asbr) 6= 0,
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0 < ε < 1, y ∈ R, 2 ≤ y ≤ x, z
def
= yε,

A def
= {

k∏

i=1

(ain + b1) : n ∈ N, x− y < n ≤ x}

and

P def
= {p : 0 < p ≤ z, p is a prime}.

Suppose that the congruence

k∏

i=1

(ain + b1) ≡ 0 (mod h)

has m(p) pieces of soultions. Then

S(A,P) =

∣
∣
∣
∣
∣
∣

{a : a ∈ A, (a,
∏

p∈P
p) = 1}

∣
∣
∣
∣
∣
∣

≤ c




∏

p|E, p≤y

(

1− 1

p

)m(p)−k



y

(log y)k
,

where the constant c depends only on k and ε.

We do not prove the theorem. We present only two applications. In

the first one, choose k = 2, a1 = 1, b1 = 0, a2 = 1, b2 = 2, y =

x, ε = 1/2. Then we get:

Corollary 15.7

π2(x)
def
= {p : 0 < p ≤ x, p, p + 2 are primes} ≪ x

(log x)2
.

When we use k = 2, a1 = 1, b1 = 0, a2 = −1, b2 = x, y = x, ε =

1/2 in the next application, we obtain the following:

Corollary 15.8

|{(p, q) : p + q = x, 0 < p, q primes}| ≪
∏

p|x

(

1 +
1

p

)
x

(log x)2
.

This last corollary will play an important role in the next chapter.
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16 Partial results to Goldbach conjecture

Christian Goldbach, a German mathematician, began studying

sums of primes in a letter to Leonhard Euler on June 7, 1742, and

proposed the famous Goldbach-conjecture. The following are mod-

ern versions of Goldbach’s conjecture:

Conjecture 16.1 (strong Goldbach-conjecture) Every even inte-

ger n ≥ 4 can be written as the sum of two primes.

Conjecture 16.2 (weak Goldbach-conjecture) Every integer n ≥
4 can be written as the sum of at most 3 primes.

It is worth noting that the weak conjecture is a consequence of

the strong conjecture: If n is even, then the strong version of the

conjecture states that n is the sum of two primes. If n is an odd

number, then n − 3 is an even number, hence n − 3 is the sum of

two primes, and n is the sum of three primes.
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Below is a letter from Goldbach that he sent to Euler (although he

did not formulate his famous conjecture in this letter, but it is certainly

of historical interest).

You can read more about the Goldbach conjecture and related

partial results on the related Wikipedia page [8]. We only mention

here that the weak conjecture was proved by Vinogradov [7] for suf-

ficiently large primes, and then by Helfgott [1], [2] for all numbers not

smaller than 4, but his work is still under review.

Although Helfgott’s result solved the weak Goldbach conjec-

ture, historically there have been previous steps towards solving

the conjecture. Perhaps the most famous of these is the result of

Schnirelmann [5], [6] who proved that every number greater than 1

can be formed as the sum of at most 800 000 primes.

In this chapter, we describe this result based on [4].
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Definition 16.3 If A ⊆ N ∪ {0} is a set such that every element

of N can be written as the sum of at most k elements of A, then

A is called as a basis of order k. If it is true only for large n ∈ N

(n ≥ n0), then A is called asymptotic basis of order k.

Theorem 16.4 (Schnirelmann) Primes are asymptotic basis. In

other words there exists a k such that every large integer n can

be written as the sum of at most k primes.

The proof is based on the following two theorems, which are in-

teresting in themselves.

Theorem 16.5

|{(p, q) : p + q = x, 0 < p, q primes}| ≪
∏

p|x

(

1 +
1

p

)
x

(log x)2
.

This theorem is Corollary 15.8 of Chapter 15, which, although we

did not prove it in full detail, the necessary tools were described.

Other important tools will be Schnirelmann’s sumsets theorems.

First we will prove the following:

Theorem 16.6 (Schnirelmann) There exist c > 0∃ x0 such that

if x > x0, then at least cx pieces of integers n exist such that

n ∈ [1, x] and n can be written of the form n = p + q where p and

q are positive primes.

Proof of Theorem 16.6. For n ∈ [1, x] let g(n) denote the number

of solutions

p + q = n,

where p and q are positive primes. Moreover let

A =
{
n : n ≤ x, g(n) > 0

}
.

140



We need to prove

|A| > cx.

Let

S =
∑

n∈A
g2(n)

(

=
∑

n≤x
g2(n)

)

.

We will give a lower and an upper bound for S and comparing these

two bounds we will get the statement of the theorem.

First we give a lawer bound for S.

Using the Cauchy–Schwarz inequality we get

S =
∑

n∈A
g2(n) ≥ 1

|A|

(
∑

n∈A
g(n)

)2

.

Here

∑

n∈A
g(n) =

x∑

n=1

g(n) =

x∑

n=1

∑

p+q=n

1 =
∑

p+q≤x
1

≥
∑

p,q≤x

2

1 = π2

(
x

2

)

By the prime number theorem we have π(x) ≥ x
3 log x

thus

∑

n∈A
g(n) >

(
x

3 log x

)2

=
1

9

x2

(log x)2
.

From this we get

S >
1

81

x4

(log x)4
1

|A|.

Using Theorem 16.5 we get

g(n)≪
∏

p|n

(

1 +
1

p

)

· n

(log n)2
.
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Thus

S =
∑

n≤x
g2(n)≪

∑

n≤x

∏

p|n

(

1 +
1

p

)2

· n2

(log n)4
,

Since the function n2

(logn)4
is monotone increasing for n ∈ [1, x] we

have n2

(logn)4
≤ x2

(logx)4
. Thus

S ≪ x2

(log x)4

∑

n≤x

∏

p|n

(

1 +
1

p

)2

.

Here
(

1 + 1
p

)2

≪
(

1 + 2
p

)

e1/p
2

since

(

1 + 1
p

)2

1 + 2
p

=
1 + 2

p
+ 1

p2

1 + 2
p

= 1 +
1

p2
· 1

1 + 2
p

< 1 +
1

p2
< e1/p

2

.

Thus

S ≪ x2

(log x)4

∑

n≤x

∏

p|n

(

1 +
2

p

)

e1/p
2

Next we estimate
∏

p|n

(

1 + 2
p

)

e1/p
2

:

∏

p|n

(

1 +
2

p

)

e1/p
2

= e

∑

p|n

1

p2
∏

p|n

(

1 +
2

p

)

≪
∏

p|n

(

1 +
2

p

)

= 1 +
∑

pi1 ,...,pik
|n

2k

pi1 . . . pik

=
∑

d|n
|µ(d)|=1

2ω(d)

d
.
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Thus

S ≪ x2

(log x)4

∑

n≤x

∑

d|n
|µ(d)|=1

2ω(d)

d

≪ x2

(log x)4

∑

d≤x
|µ(d)|=1

2ω(d)

d

∑

d|n
n≤x

1

≪ x2

(log x)4

∑

d≤x
|µ(d)|=1

2ω(d)

d
· x
d

=
x3

(log x)4

∑

d≤x
|µ(d)|=1

2ω(d)

d2

≪ x3

(log x)4

∑

d≤x

2ω(d)

d2
≪ x3

(log x)4

∞∑

d=1

2ω(d)

d2

=
x3

(log x)4

∏

p

(

1 +
2

p2

)

=
x3

(log x)4

∏

p

e2/p
2

≪ x3

(log x)4
.

Comparing the lawer and upper bound for S we get:

x4

(log x)4
· 1

|A| ≪ S ≪ x3

(log x)4

⇓
x≪ |A|.

This completes the proof.

Next, a theorem would be needed, according to which, if a set

has a positive density, then it is an asymptotic basis under certain

conditions. However, before we introduce the asymptotic density, we

return for a moment to the Schniralmann density. As a reminder:
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The Schnirelmann density of a set A is defined by

σ(A) = inf
n∈N+

A(n)

n
.

Next we will prove the following

Theorem 16.7 (Schnirelmann) If A ⊆ N ∪ {0} and σ(A) > 0,

then A ∪ {0} is a basis (of finite order).

Proof of Theorem 16.7. Let A0 = A∪ {0}. Then σ(A0) > 0. We

will use the following lemma:

Lemma 16.8

σ(kA0) ≥ 1−
(
1− σ(A0)

)k

Proof of Lemma 16.8 We prove by induction. For k = 1 the lemma

is trivial. Suppose that we proved the lemma for k = n and we

would like to prove it for k = n + 1. Then by Theorem 14.4:

σ
(
(n + 1)A0

)
= σ(nA0 +A0)

≥ σ(nA0) + σ(A0)− σ(nA0)σ(A0)

= σ(A0) + σ(nA0)(1− σ(A0))

≥ σ(A0) +
(
1− (1− σ(A0))

n
)
(1− σ(A0))

= 1− (1− σ(A))n+1.

Next we return to the proof of Theorem 16.7. Since σ(A0) > 0

we have

∃ k0 (1− σ(A0))
k0 <

1

2
,

Then:

σ(k0A0) ≥ 1− (1− σ(A0))
k > 1− 1

2
=

1

2
.
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By using Theorem 14.5 for A = B = k0A0 we get

σ(2k0A0) = 1,

which means (see Proposition 14.3) A0 is a basis, and this com-

pletes the proof.

So far we proved that if we denote the set of primes by P , then

P + P = 2P contains the positive proportion of natural numbers

(see Theorem 16.6). Now we need a theorem such that if A ⊆
N ∪ {0} has positive density, then A is an asymptotic basis.

Asymptotic basis of order k: ∃ n0 such that

kA = A+A+ . . .+A ⊇ {n0, n0 + 1, n0 + 2, . . .}.

If 2P is an asymptotic basis of order k, then P is an asymptotic

basis of order 2k:

(p1 + q1) + (p2 + q2) + . . . + (pk + qk) = n, n > n0.

︸ ︷︷ ︸

This is the sum of 2k primes.

Unfortunately there is no theorem of type that

A ⊆ N ∪ {0}

has positive density, then A is an asymptotic basis.

Let’s see some counterexamples.

A = {a : a is even}.

Then A has positive density, but kA contains only even numbers.

Similarly, for

A = {a : 3 | a}.
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we have that kA contains only those integers which is divisible by 3.

In order to avoid such constructions we need certain relative prime

condition inA.

The simplest is to require that A include two consecutive ele-

ments. First a definition follows.

Definition 16.9 For A ⊆ N ∪ {0} let

A(n)
def
==

∣
∣{a : 0 < a ≤ n, a ∈ A}

∣
∣.

This function A(n) is called counting function. If A is an infinite

sequence, then

d(A)
def
== lim inf

n→∞

A(n)

n

and

d(A)
def
== lim sup

n→∞

A(n)

n
.

These are the asymptotic lower and upper density. If d(A) = d(A),

this common value is the asymptotic density.

Theorem 16.10 (Schnirelmann) If A ⊆ N ∪ {0} is such that

a) d(A) > 0,

b) ∃ a0 such that a0, a0 + 1 ∈ A,

then A is an asymptotic basis.

Corollary 16.11 The prime numbers are asymptotic basis.

In other words we get Theorem 16.4 as a consequence of a more

general theorem.
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Proof of Corollary 16.11 By Theorem 16.6 we have d(2P ) > 0.

Clearly 4, 5 ∈ 2P since 4 = 2 + 2 and 5 = 2 + 3. Using Theorem

16.10 we get 2P is an asymptotic basis. But then P is also an

asymptotic basis.

Proof of the Theorem 16.10. By the condition of the theorem we

have there exists a0 such that

a0, a0 + 1 ∈ A.

Let

B def
==

{
b : b ∈ N ∪ {0}, a0 + b ∈ A

}
,

Then
d(B) = d(A),

{0, 1} ∈ B
Using Proposition 14.2 we get σ(B) > 0. Now by Theorem 16.7 we

have that B is a basis of finite order.

Let k denote the order of the basis B. Then A is an asymptotic

basis of order k. Indeed, suppose that n > ka0. Write n = ka0+x,

since B is a basis of order k, there exist b1, b2, . . . , bk ∈ B such that

b1 + b2 + · · ·+ bk = x.

Then

(a0 + b1) + (a0 + b2) + · · ·+ (a0 + bk) = ka0 + x = n.

By the definition of B, here we have a0 + bi ∈ A, so n can be

written as the sum of k pieces of integers from A. This is true for

every positive integer n > ka0, thus A is an asymptotic basis.

Following Schnirelmann’s proof, we may give an upper estimate

for the exact applied constants, and in this way we also get that every
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natural number greater than 1 can be written as the sum of at most

800 000 primes.

Mann’s theorem (see Theorem 14.6) is a fundamental theorem

in combinatorial number theory.

It’s a beautiful theorem, but it employs Schnirelmann density,

which is a bit artificial definition.

It would be useful to know a theorem that makes use of asymp-

totic density.

This is Kneser’s theorem [3], a very nice theorem with many ap-

plications:

Theorem 16.12 (Kneser) If A0, . . . ,Ak ⊆ N ∪ {0}, then

d(A0 + . . . +Ak) ≥ lim inf
A0(n) + . . . +Ak(n)

n
(
≥ d(A0) + . . .+ d(Ak)

)

or ∃ g, a0, . . . , ak ∈ N such that:

1) Every Ai is contained in Ai
′ which is a union of ai pieces of

mod g residue classes.

2) There are finitely many elements ofA0
′+ . . .+Ak

′ which is not

inA0 + . . . +Ak.

3) d(A0 + . . . +Ak) ≥
a0 + . . .+ ak − k

g
.

The proof is extremely complicated, so we omit it in this note.
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17 Multiplicative problems

As we have seen, there are many theorems in combinatorial

number theory with quite different nature. Based on [10] we study

problems which have multiplicative nature in some sense.

First we study sets A where the sumset 2A = A + A does not

increase the size much.

It is easy to give such a set A: e.g., arithmetic progressions are

good examples of such a set. But are they the only ones? In 1962,

Freiman solved this question.

First, let us see a new definition.

Definition 17.1 Let k1, . . . , kd ∈ N, k1, . . . , kd ≥ 2,

u, v1, . . . , vd ∈ Z and

M def
==

{

u +
d∑

i=1

xivi : xi ∈ {1, . . . , ki}, i = 1, . . . , d

}

.

ThenM is called as a generalized arithmetic progression of dimen-

sion d.

Freiman proved the following:

Theorem 17.2 (Freiman) For every α > 1 there exists a c1 =

c1(α) and c2 = c2(α) such that if |2A| < α|A|, then there ex-

ists a generalized arithmetic progression of dimension d such that

d < c1, A ⊆M and |M| < c2|A|.

Freiman’s original proof used exponential sums and was rather

complicated [4], [5].

Later Ruzsa [8] gave another proof based on graph theory and

sumset sum’s results using the famous Ruzsa-Plünnecke ineqality.
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I strongly recommend studying Imre Ruzsa’s lecture notes Sum-

sets and Structure [9] for those who are interested.

In January 1935, Behrend [1] began to study sets in which no

element divides another:

Definition 17.3 A set A ⊆ N is primitive if there is no a, a′ ∈ A,

a 6= a′ such that a | a′.

Question. How dense can be a primitive set?

The answer strongly depends on that what kind of density we

use.

A pleasant exercise for the reader is to find a proof of the following

theorem:

Theorem 17.4
max

A⊆{1,...,2N},
A is primitive

|A| = N.
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The previous theorem was stated as a finite question. The ques-

tion is more interesting for infinite sets. First we introduce a new type

of density:

Definition 17.5 If A ⊆ N and A is an infinite sequence, we define

the logarithmic lower density by

δ(A) = lim inf

∑

a∈A
1
a

logN
,

and the logarithmic upper density is defined by

δ(A) = lim sup

∑

a∈A
1
a

logN
.

If they are equal
(
δ(A) = δ(A)

)
, then δ(A) = δ(A) = δ(A) is

the logarithmic density.

Here we have

d(A) ≤ δ(A) ≤ δ(A) ≤ d(A).

Behrend [1] was able to prove the following:

Theorem 17.6 (Behrend) IfA ⊆ {1, 2, . . . , N} andA is primitive,

then
∑

a∈A

1

a
< c

logN√
log logN

(17.1)

So the logarithmic density of a set A is 0. (This is not true for the

normal density, this can be around 1/2.)

An interesting feature of the proof is that it is not enough to use

extremal graph theory, but extremal set theory is needed. One of the

main tools is Sperner’s theorem [11], which we will not prove here.
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Lemma 17.7 (Sperner’s theorem) If S is a finite set, |S| = r,

R1, . . . , Rt are subsets of S, and

t >

(
r

[r/2]

)

, (17.2)

then there are Ri and Rj subsets of S such that i 6= j and Ri ⊆ Rj .

In other words, if a sufficient number (in the (17.2) meaning) of

subsets of a given set are considered, there are two of them that

have an inclusion relation.

Note that the bound in (17.2) is the best possible: There is no

inclusion relation between subsets of S with [r/2] elements.

We will not prove Sperner’s theorem, we will use it only.

To prove Behrend’s theorem, assume that c is large enough, and

N > N0, A ⊂ {1, 2, 3, . . . , N}, moreover

∑

a∈A

1

a
≥ c

logN

log logN
.

We will prove that there exist a, a′ ∈ A for which a < a′ and a | a′.
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We begin with a reduction step, in which we compress the prob-

lem into sequences of squarefree numbers. Every a ∈ A can be

written as a square number multiplied by a squarefree number.

a = m2
aqa, ma ∈ N, |µ(qa)| = 1.

Then by (17.1) we have

c
logN√
log logN

≤
∑

a∈A

1

a
=
∑

a∈A

1

m2
aqa

=

∞∑

m=1

1

m2

∑

a: a∈A
ma=m

1

qa
. (17.3)

Here we denote the inner sum by S(m):

S(m) =
∑

a: a∈A
ma=m

1

qa
.

We state that there exists an m ∈ N such that

S(m) >
c

2
· logN√

log logN
. (17.4)

We confirm this indirectly. If there is no such m, then ∀m ∈ N we

have

S(m) ≤ c

2
· logN√

log logN
,

and then by (17.3) we get

c
logN√
log logN

≤
2∑

m=1

1

m2

c

2

logN√
log logN

=
π2

6
· c
2

logN√
log logN

< c
logN√
log logN

,

which is contradiction. So there really exists m satisfying (17.4).
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Let us now fix one such m and let

A(m) = {a : a ∈ A, ma = m}
Q(m) = {q : m2q ∈ A(m)}.

So Q(m) is the set of q such that m2q ∈ A, where q is a square-

free number. Then in case of

q, q′ ∈ Q(m), q < q′, q | q′, (17.5)

we clearly have

m2q,m2q′ ∈ A(m) ⊂ A, m2q < m2q′, m2q | m2q′,

so there is a divisibility relation in A (i.e., a = m2q, a′ = m2q′). As

a result, proving the existence of q, q′ satisfying (17.5) suffices.

Furthermore for q ∈ Q(m) we have m2q ∈ A(m) ⊂ A, and

thus

m2q ≤ N,

whence

q ≤ N.

Finally for q ∈ Q(m) we have |µ(q)| = 1.

Thus, by writing Q = Q(m), the following conditions hold:

Q ⊂ {1, 2, 3, . . . , N},

S(m) =
∑

q∈Q

1

q
>

c

2
· logN√

log logN
, (17.6)

∀q ∈ Q is squarefree.
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Thus in order to prove (17.5), it suffices to prove that if a sequence

Q a has the above three properties, then

∃q, q′ ∈ Q, q < q′, q | q′. (17.7)

This really reduced the problem to squarefree numbers.

Now let us introduce the following notation: for n ∈ N let

dQ(n)
def
= |{q : q ∈ Q, q | n}|

(i.e., dQ(n) counts how many divisors n has in Q.)

We will use the following:

Lemma 17.8 For all N > N0 there exists n ∈ N such that

1. n ≤ N

2. d(n) > logN
log logN

3. dQ(n) > d(n)√
log d(n)

Proof of the Lemma 17.8. We prove it indirectly: suppose that there

is no such n. Then for ∀n ≤ N we have

d(n) ≤ logN

log logN

or we have

d(n) >
logN

log logN
.

However, in the latter case, property 3 is not fulfilled so

dQ(n) ≤
d(n)

√

log d(n)
<

d(n)
√

log logN
log logN
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< 2
d(n)√

log logN
.

Thus:

N∑

n=1

dQ(n) <
∑

n≤N
d(n)≤ logN

log logN

dQ(n) +
∑

n≤N
d(n)<2 d(n)√

log logN

dQ(n)

<
∑

n≤N

logN

log logN
+

2√
log logN

∑

n≤N
d(n).

Now

∑

n≤N
d(n) =

∑

n≤N

∑

d|n
1 =

∑

d≤N

∑

n≤N
d|N

<
∑

d≤N

N

d
< 2N logN.

Here:

N∑

n=1

dQ(n) < N
logN

log logN
+

2√
log logN

2N logN

< 5N
logN√
log logN

. (17.8)

On the other hand by (17.6):

N∑

n=1

dQ(n) =
N∑

n=1

∑

q|n
q∈Q

1 =
∑

q∈Q

∑

n≤N
q|n

1

=
∑

q∈Q

[
N

q

]

>
∑

q∈Q

1

2

N

q
=

1

2
N
∑

q∈Q

1

q

>
1

2
N · c

2

logN√
log logN

=
c

4
N

logN√
log logN

.
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If c
4
≥ 5, i.e., for example c = 20, then this contradicts to (17.8),

and thus we proved the lemma (i.e., the existence of n with proper-

ties 1, 2 and 3).

Let us therefore consider a n with properties 1, 2, 3, denote the

product of various prime divisors of n by v and n
v

by u, i.e.

n = pα1

1 · · · pαr

r =
(
pα1−1
1 · · · pαr−1

r

)
(p1 · · · pr) = uv,

where u ∈ N, |µ(v)| = 1. Clearly if q is a squarefree number, then

q | n if and only if q | v. Thus

dQ(n) = dQ(v). (17.9)

Since obviously d(n) > d(v), therefore from properties 2 and 3 and

from (17.9) follows that

dQ(n) = dQ(v) >
d(n)

√

log d(n)
.

But since x√
log x

is monoton, thus

dQ(n) = dQ(v) >
d(v)

√

log d(v)
(17.10)

is also true.

Since v = p1p2 . . . pr we have d(v) = 2r. Writing this to (17.10)

we get

dQ(v) >
2r

√
log 2r

=
1√
log 2

2r

√
r
>

2r

√
r
>

(
r

[r/2]

)

.

Here, the last inequality is a consequence of Stirling’s formula.

Now let v have the following divisors in Q: q1, q2, . . . , qt. Then

t = dQ(v) >

(
r

[r/2]

)

(17.11)
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Denote the set of prime divisors of a squarefree number h by

P (h). Then:

Proposition 17.9 For squarefree numbers, h | h′ holds if and only

if if P (h) ⊂ P (h′).

With this principle, the examination of divisibility relations can be

changed to inclusion relations, that is, it can be reduced to combi-

natorics, specifically to Sperner’s theorem. This is the proof basic

idea.

Then by q1, . . . , qt | v we have

P (q1), P (q2), . . . , P (qt) ⊂ P (v), (17.12)

but here for the number of subsets P (qi) which is t by (17.11) we

get

t >

(
r

[r/2]

)

, (17.13)

where r = ω(v) = |P (v)|. Then by (17.12) and (17.13),

Sperner’s theorem is applicable with S,R1, . . . , Rt in place of

P (v), P (q1), . . . , P (qt). Applying this theorem, we get that

∃i, j, i 6= j, such that P (qi) ⊂ P (qj).

By the proposition, it follows that qi | qj, so indeed there is a divisi-

bility relation in Q, i.e., the desired conclusion is fulfilled.

According to Behrend’s theorem, if A is primitive and A ⊂
{1, 2, . . . , N}, then

∑

a∈A

1

a
< c

logN

log logN
.
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Question. How far is this from the best possible?

Pillai [7] in 1939 proved for N > N0(ε) the existence of a primi-

tive sequence A ⊂ {1, 2, . . . , N}, such that

∑

a∈A

1

a
>

(
1

2π
− ε

)
logN

log logN
.

The set A given during the proof was the following:

A = {a : a ≤ N, Ω(a) = [log logN ]}.

It is easy to see that this sequence is primitive, since a 6= a′,

a | a′ for Ω(a) < Ω(a′).

Erdős, Sárközy and Szemerédi [3] also proved that in Behrend’s

theorem, the constant c can be taken as 1√
2π

+ ε.

Finally, we note that Erdős [2] gave an ingenious proof of the

following theorem:

Theorem 17.10 There exists a constant c that for every primitive set

A ⊂ N+ we have
∑

a∈A

1

a log a
< c

.

In fact, Erdős conjectured that

∑

a∈A

1

a log a
<

∑

p prime

1

p log p
.

In 2022, Jared Duker Lichtman [6] solved this conjecture absolutely

unexpectedly. His paper is currently being reviewed.

Those who are interested in further Erdős’s conjectures can find

more open problems in the following Wikipedia page: link.
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ture, arXiv:2202.02384, link.

[7] S. Pillai, On numbers which are not multiples of any other in the

set, Proc. Indian Acad. Sci. A10 (1939) 392–394.

[8] I. Z. Ruzsa, Generalized arithmetical progressions and sumsets,

Acta Mathematica Hungarica. 65 (4) (1994) 379–388.

[9] I. Z. Ruzsa, Sumsets and Structure, link.

[10] A. Sárközy, Combinatorial Number theory, university lecture.

[11] E. Sperner, Ein Satz über Untermengen einer endlichen

Menge, Mathematische Zeitschrift (in German), 27 (1) (1928)

544–548.

161

https://arxiv.org/abs/2202.02384
https://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/Additive-Combinatorics.pdf


[12] Figure, Primitive set, home-made.

[13] Figure, Sperner’s theorem, home-made.

162


	Introduction
	Fermat congruence
	Further Ramsey theory applications
	Gallagher's larger sieve
	On a problem of Diophantus
	Difference sets without sqaures
	Sidon Sequences
	Cauchy-Davenport theorem
	The Combinatorial Nullstellensatz
	Erdos-Ginzburg-Ziv Theorem
	Coloring and density theorems with applications
	Behrend's construction
	On prime factors in a product of sums
	Squares form an additive basis
	Schnirelmann density
	Brun sieve
	Partial results to Goldbach conjecture
	Multiplicative problems

