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1 Introduction

This lecture notes summarizes some of the most important results in a

current number theory topic that is also connected to cryptography and com-

puters. It analyzes the time required for fundamental operations, but it also

studies speedy multiplication (FFT algorithm). It delves into some signif-

icant historical chapters in cryptography. It contains a thorough analysis

of number theory techniques related to known and popular encrypting algo-

rithms. Thus, it outlined some of the potential risks in the case of careless

RSA implementations, for example (far beyond the fact that the two primes

used in RSA may not be close to each other or beyond the relationship to

factorization problems). It studies modern methods for solving the discrete

logarithm problem (I remark here that these algorithms are quite slow). Ba-

sic primality tests and certain factorization techniques are also discussed in

this lecture notes. It also provides insight into a modern approach to pseudo-

random generation. It should be also emphasized that computational number

theory is a considerably bigger topic than that covered in this lecture notes,

which is categorized by MathSciNet with code 11Y; nonetheless, for reasons

of breadth, I confined myself to the above.

The following two books serve as the foundation for the majority of

the course: Neal Koeblitz, A Course in Number Theory and Cryptography,

Springer, 1994, Abhijit Das, Computational Number Theory, CRC Press,

2013. The chapter “Some standard cryptographic methods from the past”

is mostly relied on Wikipedia articles. The part on incorrect applications of

RSA was based on the writing of Tamás Dénes. The last chapter on elliptic

curves relied mostly on Andrea Corbellini’s internet notes and Lenstra’s ar-

ticle on factorization. Besides from the abovementioned, this lecture notes

is based on a variety of other literature. The complete bibliography can be

found at the end of each chapter.

I wish the readers a pleasant time!
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2 Some standard cryptographic methods from

the past

2.1 Messages into space

Ivan Bell [1] planned to send a message into space in the 1960s so that

foreign civilizations may hear about us. Deciphering Bell’s original message is

a fascinating challenge. Letters from A to Z represent different radio signals,

while the dot and semicolon represent varying duration pauses between radio

signals. Let’s try to decode the message.

1. A. B. C. D. E. F. G. H. I. J. K. L. M. N. P. Q. R. S. T. U. V. W. Y. Z.

2. AA, B; AAA, C; AAAA, D; AAAAA, E; AAAAAA, F; AAAAAAA, G; AAAAAAAA, H;

AAAAAAAAA, I; AAAAAAAAAA, J.

3. AKALB; AKAKALC; AKAKAKALD. AKALB; BKALC; CKALD; DKALE. BKELG; GLEKB.

FKDLJ; JLFKD.

4. CMALB; DMALC; IMGLB.

5. CKNLC; HKNLH. DMDLN; EMELN.

6. JLAN; JKALAA; JKBLAB; AAKALAB. JKJLBN; JKJKJLCN. FNKGLFG.

7. BPCLF; EPBLJ; FPJLFN.

8. FQBLC; JQBLE; FNQFLJ.

9. CRBLI; BRELCB.

10. JPJLJRBLSLANN; JPJPJLJRCLTLANNN. JPSLT; JPTLJRD.

11. AQJLU; UQJLAQSLV.

12. ULWA; UPBLWB; AWDMALWDLDPU. VLWNA; VPCLWNC. VQJLWNNA; VQSLWNNNA.

JPEWFGHLEFWGH; SPEWFGHLEFGWH.

13. GIWIHYHN; TKCYT. ZYCWADAF.

14. DPZPWNNIBRCQC.
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The message was published by Bell on January 22, 1960 in “ The Japan

Times ” [1].

I first heard Bell’s message at a math camp [2]. We asked the teacher if

the message had been sent into space after decoding it. There was no one

who knew the answer to that question. We were discussing whether it would

be wise to send a message to alien civilizations, assuming that they might

not be friendly. Now, more than 30 years later, I tried looking up the answer

on the internet, but I could not find anything about it. In turn, I discovered

a story claiming that American astronomers on the island of Puerto Rico

used the radio transmitter of the Arecibo Observatory to send a message

into space. Dr. Frank Drake and Carl Sagan wrote the message. It was

divided into seven sections, each of which had the following terms:

The numbers one to ten

The atomic numbers of the elements hydrogen, carbon, nitrogen, oxygen,

and phosphorus, which make up deoxyribonucleic acid (DNA).

The formulas for the chemical compounds that make up the nucleotides of

DNA.

The estimated number of DNA nucleotides in the human genome, and a

graphic of the double helix structure of DNA.

The dimension (physical height) of an average man, a graphic figure of a

human being, and the human population of Earth.

A graphic of the Solar System, indicating which of the planets the message

is coming from.

A graphic of the Arecibo radio telescope and the dimension (the physical

diameter) of the transmitting antenna dish.

4



Arranging the message in an appropriate-sized rectangle, it looked like

this:

Wikipedia has a more in-depth study of the message [3]. In reality, as I

proceeded to surf the web, I discovered that on some pages, someone may

have discovered the message since it came back in August 2001... It is believed

that in the astronomical observatory in Chilbolton in the south of England,

they discovered a crop circle with nearly the same figure contained as the

above message. The "aliens" have taken up silicon among the earth’s elements

in the return message, indicating that they have this as the foundation of

organic life. These findings, in my opinion, should be questioned.

The sad news is that the Arecibo observatory is being broken down be-

cause the building has become unsafe.
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2.2 Caesar cipher

In this and the next few subsections, a few old ciphers will be briefly

discussed, starting from antiquity. The basis of these chapters are the cor-

responding Wikipedia pages on the given ciphers, which I have shortened a

bit. Examples to illustrate ciphers are also from Wikipedia.

The Caesar cipher was probably one of the simplest and most widely

used encryption methods of its time, but it is also one of the best known

encryption methods to this day. This is a substitution cipher in which each

letter in the alphabet is replaced by a letter at a specified distance from it. So,

for example, suppose we shift the alphabet by 3, and in the English alphabet,

we replace A with D, B with E, C with F, and so on. The cipher was named

after Julius Caesar, who used it to communicate with his generals.
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Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

However we do not know how effective this code was at the time, we

think it must have been pretty reliable. This is confirmed by the fact that

Caesar used it to encrypt crucial messages. It should be mentioned that the

majority of Caesar’s opponents were illiterate.

Deciphering the cipher is first mentioned in the 9th century, linked to

frequency analysis by Al-Kindi [2]. We have no prior literature on cipher

breaking, thus it is possible that Caesar’s cipher was decrypted for the first

time around this time.

References

[1] Wikipedia, Caesar cipher, https://en.wikipedia.org/wiki/Caesar_

cipher.

[2] S. Singh, The Code Book, Anchor, 2000, 14–20.

[3] Photos, Wikipedia, https://hu.wikipedia.org/wiki/Caesar-

rejtjel.
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2.3 Mono-alphabetic cipher

In monoalphabetic encryption, different symbols are assigned to the let-

ters of the text, and the same symbol is always assigned to the same letter.

However, this encryption can be easily deciphered by frequency analysis:

e.g., the most common letter in the English alphabet is the letter E, the

most frequently occurring symbol in the encrypted text corresponds to the

letter E. Similarly, the code for the second and third most frequent letters

of the alphabet can be found, this is the letter A and then R in the En-

glish alphabet. After this, even short words can be examined, e.g. the word

“THE” is very common in the English language, that is, the code for the let-

ter E is often preceded by the code for the letter H. It is interesting reading

perhaps the earliest and certainly the most famous literary appearance of

cryptography, namely Edgar Allan Poe’s short story, “The Gold Bug” [2], in

which a monoalphabetic cipher is essentially deciphered. However, decipher-

ing appears in a variety of other books including Jules Verne’s novel,”Mathias

Sandorf” [3] and Arthur Conan Doyle’s short story, “The Adventure of the

Dancing Man” [1].
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2.4 Vigenère cipher

In this chapter, one of the most famous encryption methods in history

will be discussed, the so-called Vigenère cipher based on [11].

The Vigenère cipher is an encryption method that uses different Caesar

ciphers, and which of these Caesar ciphers is used in the encryption depends

on the letters of a particular keyword. So it is a polyalphabetic cipher.

The first polyalphabetic coding was thoroughly described and studied

by Leon Battista Alberti around 1467. Alberti used different Caesar codes,

where he replaced the given Caesar code with another Caesar code after a

few words.
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Later, John Trithemius created a cipher that already used the main com-

ponent of the Viegnére code, the Viegnére table. However, Blaise de Vigenére

later published his polyalphabetic cipher in 1586, where the key words were

based on the original text (auto-keyed cipher). This encryption was later

called Vigenére encryption.

In fact, however, what we call the Vigenére cipher today was invented

more than 30 years before Vigenére’s code. This code was first described by

Giovan Battista Bellaso in 1553, in his book titled La cifra del. Sig. Giovan

Batista.

The code is well-known because it is easy to understand and use, and it

was believed to be unbreakable for a long time, several centuries; therefore,

the French name “le chiffre indéchiffrable” (“uncrackable code”) stuck to it.

Encoding and decoding

In addition to the text to be encoded, for encryption we will also need a

secret key whose length is k. Then, the text to be encoded (in other words,

plaintext) is divided into k long parts, and the secret key itself is signed

under each part. We will create a table, this will be the Vigenére table, in
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which all the Caesar codes are listed, each line with the previous Caesar code

is shifted by exactly one. The plaintext is then encrypted with the Caesar

code, whose first letter in the table matches to the corresponding letter of

the keyword beneath the plaintext.

This coding is easy to understand with an example, which can also be

found on the Wikipedia page [11].

Coding example

Let the plaintext be “attack at dawn”, and the key be “lemon”. Then

it is not necessary to list all the Caesar code alphabets, only those starting

with the letters of the code word (and of course the original alphabet at the

beginning of the table):

ABCDEFGHIJKLMNOPQRSTUVWXYZ

EFGHIJKLMNOPQRSTUVWXYZABCD

LMNOPQRSTUVWXYZABCDEFGHIJK

MNOPQRSTUVWXYZABCDEFGHIJKL

NOPQRSTUVWXYZABCDEFGHIJKLM

OPQRSTUVWXYZABCDEFGHIJKLMN

The coding then:

Plaintext: ATTACKATDAWN

Key: LEMONLEMONLE

Ciphertext: LXFOPVEFRNHR
Decoding is done similarly, we find the used character in the row of the

key and write the letter in the same column from the alphabet in the first

row.

Cracking the code
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The Vigenére code was thought to be unbreakable and absolutely safe

for a long time due to the fact that the same letter can be coded in many

different ways, and this can lead to many variations. However, in 1854,

Charles Babbage succeeded in breaking the code, but never described his

method. Friedreich Kaisiki first published a successful method of breaking

the Vigenére code. He noticed that in the case of a text significantly longer

than the key, there will be repetitions in the coded text. The length between

two repetitions is usually a multiple of the length of the keyword, so by taking

the greatest common divisor of these lengths, we get the length of the key:

k, or its multiple. By dividing the text into pieces of this size, the decryption

becomes simple, we can apply frequency analysis:

The coded text is divided into k groups according to the position of the

letters. In the first group 1., (k + 1)th, (2k + 1)th, etc., in the second 2.,

(k + 2)th, 2k+2th etc. characters are added. After that, we perform a

frequency analysis on the groups, thus obtaining the letters of the text and

the key at the same time.

Roughly speaking, for a not too long key, it takes about 6-9 hours for an

experienced code breaker to decipher the coded text.
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2.5 Vernam cipher

The most common cryptographic use of pseudorandom and random se-

quences is the so-called Vernam cipher.

Assume you want to encrypt some text. Each letter is then assigned a

0,1 sequence. For example:

A: 000001 B: 000010 C: 000011 D: 000101 E: 000110 F: 000111

G: 001000 H: 001001 I: 001010 J: 001011 K: 001100 L: 001101

M: 001110 N: 001111 O: 010000 P: 010001 Q: 010011 R: 010100

S: 010101 T: 010110 U: 010111 V: 011000 W: 011001 X: 011010

Y: 011011 Z: 011100

With letter frequency analysis, text encoded in this manner is simple to

decipher. (For example, the letter E is the most common in English, hence

in the coded string 000110 will be the most common.)

As a result, the encoded text is further encoded by bit-by-bit addition

to a pseudorandom sequence, where the addition is modulo 2. The resulting

encryption method is called Vernam cipher:

Message : (a1, . . . , aN) ∈ {0, 1}N

⊕ Secret key : (e1, . . . , eN) ∈ {0, 1}N

Encrypted message : (f1, . . . , fN) ∈ {0, 1}N .

Addition rule:

0⊕ 0 = 0, 1⊕ 1 = 0,

0⊕ 1 = 1, 1⊕ 0 = 1.

Vernam performed this technique at the early 1900s in the XX. century.

It is critical to remember that a key can only be used to encrypt a message

once; otherwise, the technique can be cracked.
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If the key is a true random sequence, the process is called one-time pad.

In this situation, all bits of the message (independently) change or remain

the same with the same probability during encryption.

As a result, this encryption approach guarantees complete security. This

technology was utilized extensively during World War I and is still one of

the most secure encryption methods in use today. The sole disadvantage

of the Vernam cipher is that the secret key must be at least as long as the

message. Delivering the secret key to the communicating parties may be

difficult in this case. This will be discussed in more detail in the chapter on

Diffie-Hellman key exchange.

This is now solved by using a smaller secret key, from which computers

produce a random simulator (sufficiently) long sequence, referred to as a

pseudorandom sequence.

In Chapter 4, I’ll go into pseudorandom sequences in greater detail.

References

[1] Wikipedia, Gilbert Vernam, https://en.wikipedia.org/wiki/

Gilbert_Vernam

[2] Photo, Wikipedia, Gilbert Vernam, https://en.wikipedia.org/wiki/
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[3] Photo, Computer, http://azcoloriage.com/coloriage/31045

2.6 Public-key cryptography

In the case of Vernam’s encryption method, we have seen that the per-

sons performing the encoding and decoding uses the same secret key. Such

encryptions are called symmetric cryptography. However, there is another

type of encryption, the asymmetric cryptography. when the encoding and

decoding parties use different keys. For example, we may want anyone to

be able to write an encrypted letter to a person or institution. To do this,

they publish a public key that anyone can know and and that anyone can

use to send an encrypted message to the receiving party. However, the de-

coding is already done with another secret key, which of course is known

only to the person or the institution to whom the message is intended, since

it is important that only they be able to read the encrypted message. The

RSA encryption method, which we can read more about in chapter 9, or

the Diffie-Hellman key exchange, which will be the topic of our chapter 11,

are excellent examples of this. But we can also think about the problem of

digital signatures (see e.g. chapter 12.4), where it is very important that

everyone can sign, at the same time, falsification must not occur. In these

cases, the usual symmetric key encryption fails, but the above problems can

be effectively solved with asymmetric cryptography.
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3 Basics of Number Theory

In this chapter, I describe the basics of number theory required for the

course. We do not prove the theorems in this chapter, but their proofs can

be found in most books dealing with elementary number theory.

3.1 Congruences

Definition 3.1. We say that a is congruent to b modulo m if the remainders

of the division of the integers a and b by the positive integer m are the same.

In other words: m | a− b. Notation:

a ≡ b (mod m).

For example: 15 ≡ 27 (mod 12), but 3 6≡ 14 (mod 12).

Theorem 3.2. If a ≡ x (mod m) and b ≡ y (mod m), then

a + b ≡ x + y (mod m) and ab ≡ xy (mod m).

The following rule applies to the division:

Theorem 3.3. Let a, b, c be integers and m be a positive integer. Then in

case of

ac ≡ bc (mod m),

dividing the congruence by c gives that

a ≡ b (mod
m

(c, m)
),

that is, we must also divide the modulus by the greatest common divisor of c

and m.
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One of the most famous theorems of elementary number theory is the

Euler-Fermat theorem. Euler published the theorem in 1736, in which he

presented his own proof of Fermat’s theorem. Before I explain the theorem,

the definition of Euler’s ϕ-function follows.

Definition 3.4. For each positive integer n, denote by ϕ(n) the number of

positive integers that are prime relative to n and not greater than n. Given

by formula:

ϕ(n) = |{r : 1 ≤ r ≤ n and (r, n) = 1}| .

This function ϕ is multiplicative, i.e., if positive integers a and b are

relative primes, then

ϕ(ab) = ϕ(a)ϕ(b).

Similarly to other multiplicative functions, ϕ also has the relation ϕ(1) =

1. If n > 1 and its prime factor decomposition is n = pα1
1 pα2

2 . . . pαr
r , then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Knowing the definition of the function ϕ, we can state the famous Euler-

Fermat theorem:

Theorem 3.5. (Euler-Fermat) If a is an integer and m is a prime positive

integer relative prime to a, then

aϕ(m) ≡ 1 (mod m).

Fermat’s little theorem, which Fermat discovered 100 years before Euler, in

1636, and which he published without proof in 1640, follows very simply from

the theorem. Fermat’s little theorem 1 is a special case of the Euler-Fermat

1Fermat conjectured that if 3 ≤ n ∈ N, the equation x
n + y

n = z
n does not have a

solution consisting only positive integers. This conjecture was open for centuries. It was

finally proved by Andrew Wiles in 1994 using deep number theoretical tools. Since then,

this theorem has been called the Fermat’s Last Theorem.
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theorem, when the modulus m is a prime number. The following two forms

of the theorem are known:

Theorem 3.6. (Fermat’s little theorem) If p is prime and (a, p) = 1 for

the integer a, then

ap−1 ≡ 1 (mod p).

Theorem 3.7. (Fermat’s little theorem) If p is prime then for all inte-

ger a we have:

ap ≡ a (mod p).

The order is an important concept in number theory:

Definition 3.8. Let m be a natural number and a be an integer for which

(a, m) = 1. The order of a modulo m is the smallest positive integer r for

which

ar ≡ 1 (mod m).

Notation: om(a).

The basic properties of the order are the following:

Theorem 3.9. Let m be a natural number, a be an integer for which

(a, m) = 1, and x, y be also natural numbers, then if

ax ≡ ay (mod m),

we have

x ≡ y (mod om(a)).

The consequence of this is the following (taking y = 0):

Theorem 3.10. Let m and x be natural numbers, a an integer for which

(a, m) = 1. Then

ax ≡ 1 (mod m),
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holds if and only if

om(a) | x.

Due to this and the Euler-Fermat theorem:

Corollary 3.11. Let m be a natural number, (a, m) = 1 integer, then

om(a) | ϕ(m),

The primitive root is also an important notion, its definition is the fol-

lowing:

Definition 3.12. Let m be a natural number, g an integer, then g is a prim-

itive root modulo m, if

om(g) = ϕ(m).

The following two theorems are frequently used in connection with prim-

itive roots:

Theorem 3.13. The integer g is a primitive root modulo m if and only if

the set 1, g, g2, . . . , gϕ(m)−1 gives only those mod m residue classes that are

relative primes to m exactly once each.

Theorem 3.14. For the modulus m, there exists a primitive root if and only

if m = 2, 4 or m is of the form m = pα, 2pα, where p is an odd prime, and α

is a natural number.

Finally, we describe one of the oldest number theory theorems, the more

than 2000-year-old Chinese remainder theorem, whose simplest form is as

follows:

Theorem 3.15. (Chinese remainder theorem) If k ∈ N and m1, . . . , mk ∈

20



N are pairwise relative primes, then the simultaneous congruence system

x ≡ a1 (mod m1)
...

x ≡ ak (mod mk)

is solvable, and the solutions form a unique residue class modulo mod m1 . . . mk.

References
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3.2 Legendre symbol

Exercise: Prove that there is no square number whose remainder is 2

modulo 3.

Solution: Let x2 be the square number in question. We study 3 different

cases according to the remainder of the integer x modulo 3:

x ≡ 0 (mod 3)⇒ x2 ≡ 02 = 0 (mod 3)

x ≡ 1 (mod 3)⇒ x2 ≡ 12 = 1 (mod 3)

x ≡ 2 (mod 3)⇒ x2 ≡ 22 = 4 ≡ 1 (mod 3)

That is, square numbers are congruent to 0 or 1 modulo 3. What about

larger primes?

Let p = 11. Then x ≡ 0 (mod 11)⇒ x2 ≡ 02 = 0 (mod 11)

x ≡ 1 (mod 11)⇒ x2 ≡ 12 = 1 (mod 11)
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x ≡ 2 (mod 11)⇒ x2 ≡ 22 = 4 (mod 11)

x ≡ 3 (mod 11)⇒ x2 ≡ 32 = 9 (mod 11)

x ≡ 4 (mod 11)⇒ x2 ≡ 16 ≡ 5 (mod 11)

x ≡ 5 (mod 11)⇒ x2 ≡ 25 ≡ 3 (mod 11)

x ≡ 6 (mod 11)⇒ x2 ≡ 36 ≡ 3 (mod 11)

x ≡ 7 (mod 11)⇒ x2 ≡ 49 ≡ 5 (mod 11)

x ≡ 8 (mod 11)⇒ x2 ≡ 64 ≡ 9 (mod 11)

x ≡ 9 (mod 11)⇒ x2 ≡ 81 ≡ 4 (mod 11)

x ≡ 10 (mod 11)⇒ x2 ≡ 100 ≡ 1 (mod 11)

That is x2 may take the values 0, 1, 3, 4, 5 and 9 modulo 11.

Then 1, 3, 4, 5 and 9 are quadratic residues modulo 11.

While 2, 6, 7, 8 and 10 are quadratic non-residues modulo 11.

More generally, let p be a prime and (a, p) = 1. Then a is a quadratic

residue modulo p if the congruence

x2 ≡ a (mod p)

is solvable and a is a quadratic non-residue modulo p if the congruence

x2 ≡ a (mod p)

is not solvable.

Let’s continue to assume that (a, p) = 1. The Legendre symbol
(

a
p

)
is

defined as follows:

(
a

p

)
def=





1 if a is quadratic residue ⇔ x2 ≡ a (mod p)

modulo p is solvable

−1 if a is quadratic non-residue ⇔ x2 ≡ a (mod p)

modulo p is not solvable
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We illustrate our results for the case p = 11 with a table:

1 2 3 4 5 6 7 8 9 10

Quadratic residues

modulo 11? yes no yes yes yes no no no yes no

This distribution seems random...

Based on the concept of quadratic residues, we can define pseudoran-

dom binary sequences:

1 2 3 4 5 6 7 8 9 10

Quadratic residues

modulo 11? 1 0 1 1 1 0 0 0 1 0

The number of quadratic residues p−1
2

: Consider the following numbers

12, 22, 32, . . . , (p− 1)2 modulo p. In this sequence

x2 ≡ y2 (mod p)

holds if and only if

p | x2 − y2

p | (x− y)(x + y)

p | x− y or p | x + y

x ≡ ±y (mod p)

x = y or p− y

That is, the sequence 12, 22, 32, . . . , (p − 1)2 contains p−1
2

different elements

modulo p. That is, the number of quadratic residues is p−1
2

. Hence

the number of quadratic non-residues is p−1
2

. According to the older

concept, 0 does not belong to any of these sets, now we also follow this

terminology. However, we note that 0 is also defined as a quadratic residue

more recently.
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This simple fact was the motivation of the pseudorandom con-

structions based on the Legendre symbol.

The value of the Legendre symbol can be quickly calculated (using its

extension: the Jacobi symbol.)

Theorem 3.16. The basic properties of Legendre symbol:

(a) (a, p) = (b, p) = 1, a ≡ b (mod p)⇒
(

a

p

)
=

(
b

p

)
.

(b) (a, p) = 1⇒
(

a2

p

)
= 1, spec.:

(
1
p

)
= 1.

(c) (a, p) = (b, p) = 1⇒
(

ab

p

)
=

(
a

p

)(
b

p

)
.

(d) Euler-lemma:

In case of (a, p) = 1 we have
(

a

p

)
≡ a

p−1
2 (mod p).

(e)

(
−1
p

)
= (−1)

p−1
2 =





+1, if p is a prime of the form p = 4k + 1

−1, textifp is a prime of the form p = 4k + 3.

(f)

(
2
p

)
= (−1)

p2
−1
8 =





1, if p is a prime of the form p = 8k ± 1

−1, if p is a prime of the form p = 8k ± 3.

(g) Gauss’s law of quadratic reciprocity: If p, q are odd primes, then
(

p

q

)
= (−1)

p−1
2

· q−1
2

(
q

p

)
.

Based on the basic properties, the Legendre symbol can be easily calcu-

lated. Let’s see an example of this:

(12345
331

)
=
( 3

331

)( 5
331

)(823
331

)
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=
( 3

331

)( 5
331

)(161
331

)

=
( 3

331

)( 5
331

)( 7
331

)( 23
331

)

= (−1)
(331

3

)(331
5

)
(−1)

(331
7

)
(−1)

(331
23

)

= −
(1

3

)(1
5

)(2
7

)( 9
23

)

= −
(1

3

)(1
5

)(2
7

)(32

23

)

= −1 · 1 · 1 · 1

= −1.

The number of steps in this algorithm is O(log p), yes, but you have

to factorize during some steps, which is very time-consuming. Problem:

Factorization is very time-consuming!

A quick note before we go any further. The big ordo notation from

Edmund Landau is used in the following sense: f(x) = O(g(x)) means that

|f(x)| leqCg(x) for a real constant C in the places of the domain in question.

An equivalent notation is: f(x) ≪ g(x). If f(x)/g(x)→ 0 also holds, then

we use the notation f(x) = o(g(x)) (this is the little ordo notation).

Important question: How to determine
(

a
p

)
quickly, preferably without

factorization steps?

For this we introduce the so-called Jacobi symbol.

Definition 3.17. If n ∈ N, n > 1, n is odd, a ∈ Z (a, n) = 1, then the

definition of the Jacobí symbol
(

a

n

)
can be given by the factorization of n

which is n = p1
α1 . . . pr

αr . Then
(

a

n

)
def=

(
a

p1

)α1

. . .

(
a

pr

)αr

.

In the above definition, the Jacobi symbol
(

a
n

)
to be defined is on the left,

while on the right there is the product of Legendre symbols.
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Caution!!! If n is a composite number, then
(

a

n

)
has no connection with

the solvability of x2 ≡ a (mod n) (unlike the Legendre symbol ). But if

n is an odd prime, then the definitions of the Legendre and Jacobi symbols

coincide.

The Jacobi symbol is fully multiplicative, similarly to the Legendre sym-

bol, and the theorem concerning
(

−1
n

)
,
(

2
n

)
and Gauss’s quadratic reciprocity

theorem can be transferred to the Jacobi symbol.

Theorem 3.18. If n ∈ N is odd, then

a)

(−1
n

)
= (−1)(n−1)/2 =





1, if n is of the formn = 4k + 1,

−1, if n is of the formn = 4k + 3.

b)
( 2

n

)
= (−1)(n2−1)/8 =





1, if n is of the formn = 8k ± 1,

−1, if n is of the formn = 8k ± 3.

Theorem 3.19. If m, n ∈ N are odd numbers and (m, n) = 1, then

(
m

n

)
= (−1)

m−1
2

· n−1
2

(
n

m

)
.

Proof of Theorem 3.18. Let n = p1
α1 . . . pr

αr . Then

(−1
n

)
=

(
−1
p1

)α1

. . .

(
−1
pr

)αr

=
(

(−1)
p1−1

2

)α1

. . .
(
(−1)

pr−1
2

)αr

= (−1)α1· p1−1

2
+...+αr

pr−1
2 .
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This is exactly +1 if
∑

pi≡3 (mod 4) αi is even, which is equivalent to n being

a natural number of the form 4k + 1. Moreover,
( 2

n

)
=

(
2
p1

)α1

. . .

(
2
pr

)αr

=
(

(−1)
p1

2
−1

8

)α1

. . .
(

(−1)
pr

2
−1

8

)αr

= (−1)α1· p1
2

−1

8
+...+αr

pr
2

−1
8 .

Whether this expression is −1 or +1 depends on whether
∑

αi
pi

2−1
8

is even

or odd. If we prove that

∑
αi

pi
2 − 1
8

≡ n2 − 1
8

(mod 2), (3.1)

then we complete the proof of the theorem. Then

p2 − 1
8
≡





1 (mod 2), if p ≡ ±3 (8),

0 (mod 2), if p ≡ ±1 (8).

That is

∑
αi

pi
2 − 1
8

≡
∑

αi odd

pi
2 − 1
8

(mod 2),

≡
∑

pi≡±3 (8), αi odd

1 (mod 2). (3.2)

On the other hand

n2 − 1
8

=
p1

2αi . . . pr
2αr − 1

8
.

Then we have to examine the remainder of p2α1
1 · · · p2αr

r modulo 16. We know:

p2 ≡






1 (mod 16), if p ≡ ±1 (8),

9 (mod 16), if p ≡ ±3 (8),

thus

pi
2αi ≡





1 (mod 16), if αi is even or p ≡ ±1 (8),

9 (mod 16) otherwise.
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p1
2αi . . . pr

2αr ≡ 9

∑
pi≡±3 (8), αi odd

1

≡






1, if
∑

pi≡±3 (8), αi is odd
1 is even,

9, if
∑

pi≡±3 (8), αi is odd
1 is odd.

(mod 16)

Based on these:

p1
2α1 . . . pr

2αr − 1
8

=






is even, if
∑

pi≡±3 (8), αi is odd
1 is even,

is odd, if
∑

pi≡±3 (8), αi is odd
1 is odd.

Comparing this with (3.2), we get (3.1), and the theorem follows from this.

Proof of Theorem 3.19. Let n = p1p2 . . . pr, where now among the primes

pi certains can be identical. Furthermore, let m = q1q2 . . . qs, where now

among the primes qi certains can be identical. It is important that pi 6= qj .

By the multiplicity of the Jacobi symbol:

(
m

n

)
=

∏

1≤i≤r, 1≤j≤s

(
qj

pi

)
,
(

n

m

)
=

∏

1≤i≤r, 1≤j≤s

(
pi

qj

)
.

Let among the primes pi be u pieces of form 4k + 3 and among the primes qj

be v pieces of form 4k + 3. Based on Gauss’s quadratic reciprocity theorem,

there are uv pieces of pairs pi, qjis then satisfied for pi, qj pairs that for which
(

qj

pi

)
= −

(
pi

qj

)
,

and the other pairs have the same Legendre symbol on the left and right

hand-sides of the congruence. That is:

(
m

n

)
= (−1)uv

(
n

m

)
.

However, here uv is odd exactly if u and v are also odd, which is equivalent

to m and n having the form 4k +3. This completes the proof of the theorem.
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Example. Is solvable the following congruence

x2 ≡ 7411 (mod 9283)?

Check if 9283 is prime. Since it is, the definitions of Legendre and

Jacobi symbol are the same. Henceforth, we can calculate with the Jacobi

symbol. This is the following:

(7411
9283

)
= (−1)

7411−1
2

· 9283−1
2

(9283
7411

)

= −
(1872

7411

)
= −

(
24 · 117
7411

)

= −
( 2

7411

)4 ( 117
7411

)

(
2

117

)4
= 1 therefore remains the negative sign

= −(−1)
117−1

2
· 7411−1

2

(7411
117

)

= −
( 40

117

)
= −

( 2
117

)3 ( 5
117

)

since
(

2
117

)
= −1 we also have

= (−1)
5−1

2
· 117−1

2

(117
5

)
= +

(2
5

)
= −1.

Based on the above, the congruence is not solvable.
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3.3 A few words about continued fractions

Let x be a real number. Then we would like to write x in the following

form

x = a0 +
1

a1 +
1

a2 +
1
. . .

, (3.3)

where a0 ∈ Z, a1, a2, · · · ∈ Z+ and ai ≥ 1 if i ≥ 1. This will be the continued

fraction form of x. It is not obvious from the definition that all real numbers

can be written as a continued fraction, but we will prove this after Theorem

3.22.. Instead of the above double fraction, the more space-saving notation

x = [a0; a1, a2, . . . ] is often used, but we will stick to the notation for double

fractions for the sake of easier transparency.

By a1 ≥ 1 we get

a1 +
1

a2 +
1
. . .

> 1,

thus
1

a1 +
1

a2 +
1
. . .

< 1. (3.4)

By (3.3), (3.4) and since a0 is an integer we get:

a0 = [x]
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and
1

a1 +
1

a2 +
1

a3 +
1
. . .

= {x}.

Thus:

x = a0 + x0,

where

a0 = [x], x0 = {x} =
1

a1 +
1

a2 +
1

a3 +
1
.. .

.

Then

1
x0

= a1 +
1

a2 +
1

a3 +
1
.. .

.

The above algorithm can be continued in the same way. We show you one

more step:
1
x0

= a1 + x1,

where

a1 =
[ 1
x0

]
, x1 =

{ 1
x0

}
=

1
x0
− a1.

Our calculations show that the continued fraction digits ai can also be given

by an algorithm. This is as follows:

a0 = [x], x0 = {x},
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and if i ≥ 1, then

ai =

[
1

xi−1

]
, xi =

{
1

xi−1

}
=

1
xi−1

− ai.

Now

x = a0 +
1

a1 +
1

a2 + . . .
1

ai + xi

.

Furthermore, for the ai’s defined by this way, the relation (3.3) indeed holds.

A small clarification is still necessary here. If 1
xi−1

is an integer, then the

algorithm either stops, i.e., ai = 1
xi−1

, or stops at the next step, and ai =
1

xi−1
−1, ai+1 = 1. This shows that rational numbers have two different forms

of continued fractions. (We will return to this later.)

The following are two simple statements without proof. The first is that

the above algorithm exactly ends in a finitely many steps if x is rational.

Our second statement is Lagrange’s theorem, which states:

Theorem 3.20. (Lagrange theorem) If x is the root of an integer

quadratic equation, it has a continued fraction form with periodic digits, and

vice versa, if x has a continued fraction form with periodic digits, it is a root

of a quadratic equation.

An important definition in the study of continued fractions is:

Definition 3.21. Let the continued fraction form or x be the following:

x = a0 +
1

a1 +
1

a2 +
1

. . .

.
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Then we define the i-th convergent by

pi

qi
= a0 +

1

a1 +
1

. . .
1

ai−1 +
1

ai

.

Our first theorem on convergents is the following:

Theorem 3.22. Write x in a continued fraction form:

x = a0 +
1

a1 +
1

a2 +
1

. . .

Now we define the numbers pi and qi by

p0 = a0, q0 = 1,

p1 = a0a1 + 1, q1 = a1,

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2, if i ≥ 2.

The following is true in this case:

(a)
p0

q0
=

a0

1
,

p1

q1
= a0 +

1
a1

,

pi

qi
= a0 +

1

a1 +
1

. . .
1

ai−1 +
1

ai

.
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(b) piqi−1 − pi−1qi = (−1)i−1, if i ≥ 1.

(c) (pi, qi) = 1.

In part (a) of the theorem we define the integers pi, qi a little differently, as

in Definition 3.21.. However, part (c) shows that the two definitions coincide.

It is further noted that parts (a) and (b) of the theorem also holds for any

numbers ai, it is not required that ai’s are integer. This fact will be used

later in this chapter.

Proof of Theorem 3.22. Part (a) of the theorem is verified by induction

for i. For i = 0 and i = 1 we have

p0

q0

=
a0

1
and

p1

q1

=
a0a1 + 1

a1

= a0 +
1
a1

,

so the statement is obvious. Then we move on to the induction step: Suppose

we have proved the statement for i = k. Then we will also prove that for

i = k + 1, that is,

pk+1

qk+1

= a0 +
1

a1 +
1

. . .
1

ak +
1

ak+1

.

In the continued fraction above, there are k + 1 pieces of digits, but with a

clever notation it can also be written using k pieces of digits. Let

a′
k = ak +

1
ak+1

.

Clearly a′
k is not an integer, but as mentioned this is not necessary to assume
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in part (a). Then

a0 +
1

a1 +
1

. . .
1

ak +
1

ak+1

= a0 +
1

a1 +
1

. . .
1

ak−1 +
1

a′
k

.

However, on the right side of the equation, there are only k digits. Since we

assumed that the statement is true for k pieces of digits, we have

p0

q0
=

a1

1
,

p1

q1
= a0 +

1
a1

, . . . ,
pk−1

qk−1
= a0 +

1

a1 +
1

. . .
1

ak−2 +
1

ak−1

.

Then the k-th digit is a′
k (and not ak), thus the k-th convergent is p′

k

q′
k

. By

the induction hypothesis we have

p′
k = a′

kpk−1 + pk−2, q′
k = a′

kqk−1 + qk−2.

Then

p′
k

q′
k

=
ak

′ pk−1 + pk−2

ak
′ qk−1 + qk−2

=

(
ak−1 + 1

ak

)
pk−1 + pk−2

(
ak−1 + 1

ak

)
qk−1 + qk−2

=
(ak−1ak + 1)pk−1 + akpk−2

(ak−1ak + 1)qk−1 + akqk−2

=
ak(ak−1pk−1 + pk−2) + pk−1

ak(ak−1qk−1 + qk−2) + qk−1

=
akpk + pk−1

akqk + qk−1
=

pk+1

qk+1
,

which was to be proved.
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Part (b) of the theorem can also be proved by induction. Let i = 1, then

piqi−1 − pi−1qi = p1q0 − p0q1 = (a0a1 + 1) · 1− a0a1 = 1.

We can then proceed to the induction step. Suppose that we have proved

the statement for i = k. Let’s see the proof for i = k + 1. To do this:

pk+1qk − pkqk+1 = (akpk + pk−1)qk − pk(aqk + qk−1)

= pk−1qk − pkqk−1 = −(−1)k−1 = (−1)k.

Finally, we also prove part (c) of the theorem: Let d
def= (pi, qi),

d | piqi−1︸ ︷︷ ︸
d|

− pi−1qi︸ ︷︷ ︸
d|

= (−1)i−1

d | 1 ⇒ d = 1.

This completes the proof.

Dividing the equation in part (b) of the theorem by qi−1qi we get:

pi

qi
− pi−1

qi−1
=

(−1)i−1

qiqi−1
, (3.5)

By definition

pi+1

qi+1

= a0 +
1

a1 +
1

.. .
1

ai +
1

ai+1

.

If ai+1 is replaced by 1
xi

, the value of this fraction is x, thus:

x = a0 +
1

a1 +
1

.. . +
1

ai +
1

1

xi

(3.6)
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When applying Theorem 3.22. part (a), it is not necessary to suppose that

the digits are integers, so applying part (a) to (3.6) we get:

x =
1
xi

pi + pi−1

1
xi

qi + qi−1
=

pi + xipi−1

qi + xiqi−1

A simple calculation shows that the above fraction is between pi

qi
and pi−1

qi−1
.

The convergents tend to x since
∣∣∣pi

qi
− pi−1

qi−1

∣∣∣ −→ 0 and x is between pi

qi
and

pi−1

qi−1
. In the following, we will prove two theorems which will be much needed

in the later chapters of this lecture notes. Theorem 3.23. will be used in a

factorization algorithm, namely for the continued fraction algorithm, while

a major attack against RSA was based on Theorem 3.24..

Theorem 3.23. Let the i-th convergent of x ≥ 1
2

be pi

qi
. Then:

∣∣∣pi
2 − x2qi

2
∣∣∣ < 2x.

Proof of Theorem 3.23. Then we have

∣∣∣p2
i − x2q2

i

∣∣∣ = q2
i

∣∣∣∣∣x−
pi

qi

∣∣∣∣∣

∣∣∣∣∣x +
pi

qi

∣∣∣∣∣ .

Since x is between the convergents pi

qi
and pi+1

qi+1
and by (3.5) we have:

∣∣∣∣∣x−
pi

qi

∣∣∣∣∣ ≤
∣∣∣∣∣
pi+1

qi+1
− pi

qi

∣∣∣∣∣ =
1

qiqi+1
.

Furthermore
∣∣∣∣∣x +

pi

qi

∣∣∣∣∣ =

∣∣∣∣∣
pi

qi

− x + 2x

∣∣∣∣∣ ≤
∣∣∣∣∣
pi

qi

− x

∣∣∣∣∣+ 2x ≤ 2x +
1

qiqi+1

.

Thus:

∣∣∣p2
i − x2q2

i

∣∣∣ = q2
i

∣∣∣∣∣x−
pi

qi

∣∣∣∣∣ ·
∣∣∣∣∣x +

pi

qi

∣∣∣∣∣

≤ q2
i

1
qiqi+1

(
2x +

1
qiqi+1

)

= 2x
qi

qi+1
+

1
q2

i+1

.
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Rearranged:

∣∣∣pi
2 − xqi

2
∣∣∣− 2x < 2x

(
−1 +

qi

qi+1
+

1
2xqi+1

2

)

< 2x

(
−1 +

qi

qi+1
+

1
qi+1

)

< 2x

(
−1 +

qi+1

qi+1

)
= 0.

Thus
∣∣∣pi

2 − xqi
2
∣∣∣ < 2x,

which was to be proved.

Theorem 3.24. (Lagrange) If
∣∣∣∣∣
p

q
− α

∣∣∣∣∣ <
1

2q2
, (3.7)

where p and q and relatively prime, then
p

q
is a convergent of α.

Proof of Theorem 3.24.

The proof is based on the following lemma:

Lemma 3.25. If

x =
P ζ + R

Qζ + S
,

where ζ > 1 and for integers P, Q, R, S we have

Q > S > 0, P S −QR = ±1,

then R
S

and P
Q

are two consecutive convergents of x. If R
S

is the n − 1-th

convergent and P
Q

is the n-th, then ζ is the n+1-th complete quotient, namely

ζ = an+1 +
1

an+2 +
1

. . .

,

where ai’s are the digits of x.
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Proof of the Lemma 3.25. Write P
Q

-t continued fraction form:

P

Q
= a0 +

1

a1 +
1

. . .
1

an−1 +
1

an

=
pn

qn
. (3.8)

Here we can assume that n is even or odd as we please, since every rational

number has exactly two continued fraction forms, in one the number of digits

is even, and in the other is odd. This statement is based on the following

remark: if ak ≥ 2, then:

a0 +
1

a1 +
1

.. . +
1

ak−1 +
1

ak

= a0 +
1

a1 +
1

. . . +
1

ak−1 +
1

ak − 1 +
1

1

.

So in (3.8) we can choose the parity of n such that

P S −QR = (−1)n−1

holds. Then (P, Q) = 1, Q > 0 and (pn, qn) = 1. Thus by (3.8) we have

P = pn, Q = qn. That is

pnS − qnR = P S −QR = (−1)n−1 = pnqn−1 − pn−1qn.

Rearranged

pn(S − qn−1) = qn(R− pn−1).

By (pn, qn) = 1 we have

qn | S − qn−1. (3.9)
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But

qn = Q > S > 0, qn ≥ qn−1 > 0,

and thus

|S − qn−1| < qn.

But by (3.9), this is possible only if S − qn−1 = 0. So

S = qn−1, R = pn−1.

In summary, so far

x =
pnζ + pn−1

qnζ + qn−1
.

Now consider that continued fraction whose first n digits are identical with

the first n digits of x, but the n + 1-th digit is “ ζ ”, which is not an integer,

but as we said in parts of (a) and (b) of Theorem 3.22. it is not needed. By

Theorem 3.22., for the n + 1-th convergent p′
n

q′
n

we have

p′
n = pnζ + pn−1,

q′
n = qnζ + qn−1.

Write ζ in continued fraction form, where the digits are an+1, an+2, . . . , that

is

ζ = an+1 +
1

an+2 +
1
.. .

.

By the conditions of the theorem we have an+1 = [ζ ] ≥ 1, so the continued

fraction form of x is indeed

x = a1 +
1

a2 +
1
.. .

.

As a result, all statements of the lemma are proved.

40



Let’s go back to the proof of Theorem 3.24.. Let

p

q
− α =

εθ

q2
,

where by (3.7) we may assume

ε = ±1, 0 < θ <
1
2

.

Write p
q

in continued fraction form

p

q
= a0 +

1

a1 +
1

. . .
1

an−1 +
1

an

=
pn

qn
, (3.10)

where we can choose the parity of n as we please. Let n be such that

ε = (−1)n−1.

Define ζ by

α =
ζpn + pn−1

ζqn + qn−1
,

where pn/qn and pn−1/qn−1 are the last and the last but one convergents to

the continued fraction form of p
q

in (3.10). Then

εθ

q2
n

=
pn

qn

− α =
pnqn−1 − pn−1qn

qn (ζqn + qn−1)
=

(−1)n−1

qn (ζqn + qn−1)
,

thus

θ =
qn

ζqn + qn.1
.

Since 0 < θ < 1
2

ζ =
1
θ
− qn−1

qn
> 1.

By Lemma 3.25. the rationals pn−1

qn−1
are pn

qn
two consecutive convergents in the

continued fraction form of α. Since p
q

= pn

qn
, the theorem is proved.
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4 Pseudorandomness

Pseudorandom sequences have many applications. It can be used to simu-

late natural phenomena, economic processes, or as a key in various encryption

algorithms. Pseudorandom sequences are used in mathematics and physics,

particularly in cryptography and numerical analysis.

In Chapter 2.5, for example, we saw a very important application of

pseudorandom sequences, namely the Vernam cipher. The Vernam cipher is

a well-known and widely used encryption algorithm that is still in use today.

It is worthwhile to read a tutorial on the Vernam cipher to understand the

significance of pseudorandom generation (e.g., Chapter 2.5 of this lecture

notes).

Without claiming to be complete, we will study random and pseudoran-

dom generation in this chapter.

But, exactly, what is random number generation? From ancient times to

the present, random generation has always played an important role. It is

questionable whether the methods we use produce truly random numbers.

Many people believe that only physical methods can generate real random

numbers, but are these approaches truly appropriate?

In this chapter, I study when a 0-1 sequence of a given length (e.g.,

1100100110)
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can be characterized as pseudorandom. Obviously, the sequences

1111111111

or

1010101010

are not considered pseudorandom. They are both "too regular," with the

former containing just ones and the latter alternating between ones and zeros.

Pseudorandom number generators use mathematical formulas to generate a

seemingly random sequence of numbers.
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4.1 Pseudorandomness - History

Many articles on the subject of pseudorandomness have been published in

the previous 80 years, covering a wide range of goals, techniques, and math-

ematical methods. Perhaps a classic book should be highlighted here among

many, D. Knuth, in volume 2 (Seminumerical Algorithms) of his book The

Art of Computer Programming [3] devotes an entire chapter to generating

pseudorandom sequences.

First, the concept of pseudorandomness was defined in terms of com-

plexity theory. Goldwasser [2] has written an excellent review paper on this

topic.
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Definition 4.1. A random bit generator is a device or algorithm that gen-

erates bits that are statistically independent and unbiased.

Historically, hardware-based generators (e.g., diodes) were used, but

software-based generators (machine time, memory size, and so on) were also

available; when a method is used to construct a sequence of bits, and this

sequence must then be evaluated with certain statistical tests, this testing is

known as an a posteriori test.

This is a difficult, time-consuming, and now unsatisfactory technique. As

a result, nowadays random bit generators have been substituted by pseudo-

random bit generators.

We should remark that among the latter, even today, the most used

method in programming is the linear congruence generator, see e.g., [5], but

you can read more about this in Knuth’s book [3]. In this lecture notes,

however, we would rather describe some more modern methods, but first

let’s see an important definition.

Definition 4.2. A pseudorandom bit generator is a deterministic algorithm

that generates a seemingly random binary sequence of length ℓ from a consid-

erably smaller secret sequence of length k (where ℓ is significantly greater than

k), producing a pseudorandom binary sequence that appears to be random.

The input sequence, an arbitrary secret binary sequence of length k, is

called as the "seed", and the output sequence, which is much longer, is known

as the pseudorandom binary sequence.

What defines a binary sequence as "random-looking" or "good" pseudo-

random? Of course, the applications specify which random properties must

be regulated.

Unpredictability is a requirement that is frequently used in cryptography:

Definition 4.3. A pseudo-random generator is said to satisfy the next bit

test if no polynomial-time algorithm can predict the k + 1st element from the
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previous k elements with a considerably higher probability than the 1/2.

Although this test is often very important, we note that e.g., in the Monte-

Carlo methods this is not required.

Criticism of the next bit test: So that only recursive structures can be clas-

sified in this way, but e.g., it is possible that a generator may pass through,

but by knowing the initial and end bits, the entire sequence may be uniquely

identified. Furthermore, only conditionally justified polynomial-time algo-

rithms exist. Moreover, it is difficult to clarify the meaning of "significantly

larger than 1/2" in the definition. What does "significantly larger" than 1/2

mean exactly?

The most important construction that satisfies the next bit test (but only

under certain unproven hypothesis):

Definition 4.4. The Blum-Blum-Shub [1] pseudorandom generator is as fol-

lows:

1. Consider two large primes p and q of the form 4k + 3, and let n = pq.

2. Consider a “random” integer a (this is the „seed”) with 0 < a < n,

(a, n) = 1. Let x0 be a2 modulo n, where 1 ≤ x0 < n.

3. When x0, x1, . . . , xk are known, then let xk+1 be xk
2 modulo n, where

1 ≤ xk+1 < n.

4. Let zi be the last binary digit of xi.

The sequence xi in the construction will become periodic at some point, de-

noted by the lowest period length t. Obviously, only the first t elements of the

sequence zi are worth studying for pseudorandomness.

Then:
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Theorem 4.5. (Blum, Blum, Shub, [1]) The Blum-Blum-Shub binary se-

quence generator z0, z1, z2, . . . , zt−1 satisfies the next bit test, assuming the

unproven hypothesis that there is no polynomial-time test to factorise the

modulus n in the construction.

We will not prove it. The proof can be found in [1].

The complexity theory approach has recently heavily criticised. Namely:

1. This approach simply qualifies generators, however it is not possible to

avoid a posteriori testing of each sequence using it.

2. One of the fundamental standard definitions, known as the "next bit

test", allows testing purely based on unproven hypotheses.

3. It is typically used only for infinitely long sequences of numbers, how-

ever in practise, only finite long sequences are used.
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4.2 Pseudorandomness - Quantitative approach

In practise, the above definition of pseudorandomness ("next bit test") is

not very satisfactory. As a result, beginning in 1997, Mauduit and Sárközy

developed a new theory of pseudorandomness that is much more useful in

practise. They changed from bit sequences to ±1 sequences for technical

reasons of ease of calculation (since then the expected value of the most

commonly used related random variables is 0).

The following new quantitative measures were introduced by Mauduit

and Sárközy [7]:

Definition 4.6. Let EN = (e1, e2, . . . , eN) ∈ {−1, +1}N be a ±1 sequence of

length N . Then the well-distribution measure is defined by

W (EN) = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

ea+jb

∣∣∣∣∣∣
,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a + (t− 1)b ≤ N . The correlation measure of order k is defined by

Ck(EN ) = max
M,D

∣∣∣∣∣

M∑

n=1

en+d1en+d2 . . . en+dk

∣∣∣∣∣ ,

where the maximum is taken over all M, D = (d1, d2, . . . , dk) such that 1 ≤
d1 < d2 < · · · < dk ≤M + dk ≤ N .

Cassaigne, Mauduit and Sárközy [1] proved that the values of these

measures are less than cN1/2(log N)1/2 for almost all sequences of length

N (i.e., for (1 − ε)2N pieces of the all 2N sequences). Thus, a sequence

EN = (e1, e2, . . . , eN) is said to have strong pseudorandom properties if pos-

itive constants c1 and ck exist such that

W (EN) ≤ N1−c1 ,

Ck(EN) ≤ N1−ck at least for small k’s.
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During their research, several authors generated various sequences with

very strong pseudorandom properties, i.e.,:

W (EN)≪
√

N log N,

Ck(EN )≪
√

N(log N)k.

Mauduit and Sárközy [7] gave the following construction in their first

paper in the field, published in 1997:

Ep−1 =

((
1
p

)
,

(
2
p

)
, . . . ,

(
p− 1

p

))
.

For example, if p = 11, this sequence can be illustrated as follows:

=+1

=−1

Mauduit and Sárközy [7] proved:

W (Ep−1)≪ p1/2 log p and Cℓ(Ep−1)≪ p1/2 log p.

This construction, however, produces just one sequence for each prime p.

Hoffstein and Lieman [5] brilliantly extended this construct to generate

many sequences for each prime p at a time, providing a large family of pseu-

dorandom sequences:

Ep(f) =

((
f(1)

p

)
,

(
f(2)

p

)
, . . . ,

(
f(p)

p

))
where

(
0
p

)
def= 1 (4.1)

and f is a polynomial of degree at most p− 2 over Zp.

For example, if p = 11, f(x) = x2 + 1 this sequence can be illustrated as

follows:
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=+1

=−1

Hoffstein and Lieman gave their construction based on numerical calculations

and conjectured that it has strong pseudorandom properties and satisfies the

“next bit test”. However, they did not prove the pseudorandom properties of

the sequence.

Goubin, Mauduit, and Sárközy [2] proved that the sequence in (4.1) has

strong pseudorandom properties (assuming some not too restrictive condi-

tions for the polynomial f):

W (Ep(f)), Cℓ(Ep(f))≪ p1/2 log p

More exactly,

Theorem 4.7. (Goubin, Mauduit, Sárközy, [2]) Let p be a prime, f(x) ∈
Fp[x] be a polynomial of degree k, which is not of the form cg(x)2, where

c ∈ Fp, g(x) ∈ Fp[x]. Define Ep(f) = (e1, . . . , ep) by:

en =





(
f(n)

p

)
for (f(n), p) = 1,

+1 for p | f(n).
(4.2)

Then

W (Ep(f))≪ kp1/2 log p.

Assume that one of the following three conditions for ℓ, which is the order of

the correlation, holds true: (i) ℓ = 2;

(ii) ℓ < p and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then:

Cℓ(Ep(f))≪ kℓp1/2 log p.
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If f(x) is of the form f(x) = cg(x)2, our sequence, except for the zeros of f ,

contains only the same element,
(

c
p

)
, so the sequence as a sevret key is com-

pletely unsuitable in cryptography. Thus, the first condition in the theorem

is very important. Fortunately, there are not many such polynomials: out of

all k-degree polynomials (numbered pk+1 pieces), only p[k/2]+1 pieces are of

the form cg(x)2...

Numerous additional constructions have developed since then, but in

some senses, this is still the best: it has strong pseudorandom properties

and the generation of sequences is fast. For the sake of completeness, we

present some alternative powerful constructions.

These constructions are quick to generate, have "good" pseudorandom

properties in the sense defined, which eliminates the need for a posteriori

testing, and have been proved to have good cryptographic properties (not

only conditionally, under certain unproven hypothesis).

Theorem 4.8. (Mauduit, Rivat, Sárközy [6]) Let p be a prime, f(x) ∈
Z[x] be a polynomial of degree k and rp(n) denote the least nonnegative

residue of n modulo p. Define Ep(f) = (e1, . . . , ep) by:

en =





+1, if 0 ≤ rp(f(n)) < p/2,

−1, if p/2 ≤ rp(f(n)) < p.

Then for 2 ≤ ℓ ≤ k − 1 we have

W (Ep(f)) ≤ kp1/2(log p)2

Cℓ(Ep(f)) ≤ kp1/2(log p)ℓ+1.

The disadvantage of the construction is that correlation of high-order can

be large.

Another construction:

Theorem 4.9. (Mauduit, Sárközy [8]) Let p be a prime, f(x) ∈ Z[x] be

a polynomial of degree k and rp(n) denote the least nonnegative residue of n
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modulo p. Define Ep(f) = (e1, . . . , ep) by:

en =






+1 if (f(n), p) = 1 and 0 < rp(f(n)−1) < p/2,

−1 otherwise.

Assume that one of the following three conditions for ℓ, which is the order of

the correlation, holds true: (i) ℓ = 2;

(ii) (4k)ℓ < p;

(iii) kℓ < p/2 and f(x) can be written of the form: f(x) = (x + a1)(x +

a2)...(x + ak) where ai ∈ Fp. Ekkor:

W (Ep(f)) ≤ kp1/2(log p)2

Cℓ(Ep(f)) ≤ kℓp1/2(log p)ℓ+1.

It is important to note that Rivat and Sárközy [9] tested numerous se-

quences in construction in Theorem 4.7. by a posteriori testing. These

were the a posteriori tests included in the ′′1.4-sts. package′′ specified by the

American "National Institute of Standards and Technology". Furthermore,

Rivat and Sárközy [9] proved that if the pseudo-random measures are small,

the sequences "almost" satisfy quite a few of the above tests, and some a

posteriori testing can be avoided.

However, if you want to encrypt an image instead of text, you do not

need a pseudorandom sequence, but instead a pseudorandom lattice.

My co-authors András Sárközy and Cameron L. Stewart and I [3], [4]

constructed binary lattices with strong pseudorandom properties using the

Legendre symbol.
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Construction 4.10. (Gyarmati, Sárközy, Stewart, [3], [4]) Let p be a

prime and f(x, y) ∈ Z[x, y] be a polynomial in two variables. Define η :

{0, 1, . . . , p− 1} × {0, 1, . . . , p− 1} → {−1, +1} by

η(x, y) =





(
f(x,y)

p

)
if p ∤ f(x, y),

+1 if p | f(x, y).

f(x,y)
p

x

y

The defined construction has strong multidimensional pseudorandom

measures, according to our results [3], [4]. Another advantage of the con-

struction is that the lattice elements can be generated quickly.

So far, the constructs discussed were based on the Legendre symbol and a

polynomial f (one or more variables). For someone to be able to programme

the sequence or lattice, they only need to know the value of the prime p and

the coefficients of the polynomial f .
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5 Principles of Neumann

In 1946, the first fully electronic computer, ENIAC, was built.

Based on the experience that János Neumann gained during the construc-

tion, he developed the basic principles that were essential for the operations

of the computer at that time. Although these principles have been slightly

(but only slightly) modified in practice today, they still best illustrate how

computers work. The Neumann principles are as follows:

1. Fully electronic operation.

2. Using binary number systems.

3. Use of internal memory.

4. Stored program principle. The machine stores the data and program

instructions required for calculations in the same way, both in the in-

ternal memory (operational memory).

5. Sequential instruction execution (the instructions should be executed

sequentially in time).

6. Universal usability, Turing machine (programmability).

7. Structure: five functional units (arithmetic unit, central control unit,

memories, input and output units).
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It is important to note here that ENIAC was not the first computer in the

world, for example, in 1840, Thomas Fowler produced a wooden computer

based on the tenary number system, which has the size 1.8m× 0.9m× 0.3m.

The first electronic computer was built by Konrad Zuse around 1943 and

called the Z3. Tenary computers were brought back into vogue by D. Knuth.
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6 Elementary arithmetic operations

The chapter is based on the books by Das [1] and Koeblitz [3].

Today, the most common computers are 32-bit or 64-bit. But what does

it mean for a computer to be 64-bit? Oddly enough, the number 64 here

is related to the base of the number system used by computers. A 64-bit

computer basically uses B-based numbers where B = 264. This is indeed

quite a large number, the base of the number system itself is more than a

21-digit number in the decimal system.

For the sake of illustration, let’s take a large number in the decimal num-

ber system, which we want to write in the 256-based number system. This:

n = 12345678987654321.

Then

n = 43×B6 + 220×B5 + · · ·+ 84×B4 + 98×B3 + 145×B2 + 244×B + 177,

that is

n = (43, 220, 84, 98, 145, 244, 177)B.

When we count in our notebooks at home, most of us still use the dec-

imal number system. Converting from decimal system to the B-based sys-

tem is easy, and vice versa. When calculating in our notebook, we mostly

use the following standard arithmetic operations: ADDITION, SUBTRAC-

TION, MULTIPLICATION and DIVISION WITH REMAINDER.

We usually provide algorithms for more complex operations based on

these standard arithmetic operations. To mention just two simple examples,

we can thus specify the algorithm of root extraction up to a certain decimal

precision or an inverse calculation modulo m. One of the primary consider-

ations in the usability of an algorithm is the running time of the algorithm,

i.e., how fast the given algorithm is. But how do we measure the time re-

quired for an algorithm? In this lecture notes, the running time is defined
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as the number of bit operations required to perform the algorithm. Thus, it

requires 1 unit of time, e.g., add, subtract, or modulo 2 add bits. Let’s take

as an example a simple addition in the binary number system:

1 1 0 1 0 1 1 0 0

+ 1 0 0 1 1 0 1 1 0

= 1 0 1 1 1 0 0 0 1 0

.

Let’s look at this addition in a little more detail! We start the operation at

the last bit, i.e., 0 + 0 = 0. The next bit is also not a problem, i.e., 0 + 1 = 1.

However, after this 1 + 1 = 2, and 2 written in binary number system is

10, i.e., a “carry” of “1” is created, which we have to carry over in the next

column. Of course, with bit operations, we also have to take care of carries!

The following 8 types of bit operations for addition may occur:

Bit Was there a carry in

the previous column?

No

1st number: 0

2nd number: 0

Result: 0

Is there a

new carry? No

Bit Was there a carry in

the previous column?

Yes

1st number: 0

2nd number: 0

Result: 1

Is there a

new carry? No

Bit Was there a carry in

the previous column?

No

1st number: 0

2nd number: 1

Result: 1

Is there a

new carry? No

Bit Was there a carry in

the previous column?

Yes

1st number: 0

2nd number: 1

Result: 0

Is there a

new carry? Yes
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Bit Was there a carry in

the previous column?

No

1st number: 1

2nd number: 0

Result: 1

Is there a

new carry? No

Bit Was there a carry in

the previous column?

Yes

1st number: 1

2nd number: 0

Result: 0

Is there a

new carry? Yes

Bit Was there a carry in

the previous column?

No

1st number: 1

2nd number: 1

Result: 0

Is there a

new carry? Yes

Bit Was there a carry in

the previous column?

Yes

1st number: 1

2nd number: 1

Result: 1

Is there a

new carry? Yes

We do the same for subtraction, only instead of “carry”, “loan” is gen-

erated. Bit operations also include AND and OR operations, as well as

MODULO 2 ADDITION, i.e.,

AND

1st number: 0 0 1 1

2nd number: 0 1 0 1

Result: 0 0 0 1

OR

1st number: 0 0 1 1

2nd number: 0 1 0 1

Result: 0 1 1 1

MOD 2

ADDITION

1st number: 0 0 1 1

2nd number: 0 1 0 1

Result: 0 1 1 0

Of course, other operations that cannot be derived from the previous ones

may also occur during an algorithm, however, their total time requirement

is mostly negligible compared to the total time requirements of the bit op-

erations specified so far. Thus, the time required for an algorithm is usually

given by the number of bit operations performed during the algorithm. If
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we extend the definition of bit operations from a binary number system to

larger-based number systems, say B-based number systems, then the time

requirement changes by at most a constant factor depending on B. Fur-

thermore, the time required for an operation can be different for different

algorithms. Therefore, it is advisable to provide an estimate using O() for

the time required. (Giving the exact time requirement of an operation is

usually a very difficult task. Thus we usually only limit ourselves to give

upper estimates in this field.)

Obviously, the time required to add two numbers consisting of n digits

is O(n). Similarly, the time required to subtract two n digit numbers is also

O(n).

Definition 6.1. The time required for an operation is measured by the num-

ber of bit operations required to perform it. Notation:

T (. . . ) = . . . .

Thus, e.g., memory access and so on are not counted.

Theorem 6.2.

T (k digits + ℓ digits ) ≤ max{k, ℓ}

or

T (k digits + ℓ digits ) = O(max{k, ℓ}).

We do not write “= max{k, ℓ}” because we only give an upper estimate;

in many cases (e.g., as we will see with multiplication), there is a significantly

better estimate than the first one.

Corollary 6.3.

T (m + n) ≤ log max{m, n}
log 2

+ 1
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In the case of subtraction, the situation is similar to that of addition,

except that instead of “1 carry”, “1 loan” is generated. Therefore, subtraction

must be treated in the same way as addition, we will not deal with this further

here.

Next, we turn to multiplication. We illustrate the multiplication learned

in primary school with an example:

11101× 1101

11101 → copy

11101 → copy

11101 → slide it with 2

101111001

Let’s analyze the figure. The first number to be multiplied has k digits, the

second number has ℓ digits. Let ℓ′ be ones in the second number. Then

obviously ℓ′ ≤ ℓ.

The time required for sliding and copying is negligible. In other words, we

have ℓ′ rows, each containing a number with k digits, we have to add them.

We do this by adding the second to the first row, the third to this sum, then

the fourth to the sum, and so on. After calculating the time required, we get

kℓ′. Since ℓ′ ≤ ℓ, the time required for this algorithm is:

Theorem 6.4.

T (k digits × ℓ digits ) ≤ kℓ

Corollary 6.5.

T (k digits × k digits ) ≤ k2.

Corollary 6.6.

T (m× n) ≤
(

log m

log 2
+ 1

)(
log n

log 2
+ 1

)
.
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The algorithm presented below has the simplest syntax, but it is far from

the fastest. In the case of larger numbers, in Chapter 8, we will see con-

siderably more complicated methods, but in terms of the time required for

multiplication, much faster.

The complexity of the basic operations is also discussed in detail by D.

Knuth in [2].
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6.1 Time required for simple elementary operations

In the previous chapters, we saw how important number systems are for

computers. One of the first basic theorems about number systems is the

following:

Theorem 6.7. For b ∈ N, b > 1, every n ∈ N can be uniquely written in

the form

n = akbk + ak−1b
k−1 + · · ·+ a1b + a0,

where ai ∈ {0, 1, . . . , b− 1} for all i and ak > 0. This form is called the form

in the b-based number system, ak, ak−1, . . . , a1, a0 are the digits of the number

n (in the b-based number system).

We will mostly use the binary number system.
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Corollary 6.8. Every n ∈ N can be uniquely written in the form

n = εk2k + εk−12k−1 + · · ·+ ε12 + ε0,

where εi ∈ {0, 1} for all i and εk = 1. This form is called the dyadic or

binary form of n. Here the digits εk, εk−1, . . . , ε1, ε0 are called bits.

In the following, we prove Theorem 6.7..

Proof of Theorem 6.7. Let’s first look at the case where 1 ≤ n < b. Then

obviously the number of digits of n is 1, i.e., k = 0 and a0 = n. Let us further

assume that b ≤ n. We prove the theorem by induction. The first step of the

induction is the case n = b, when k = 1 and a1 = 1, a0 = 0. Let’s look at

the induction step. Assume that we have already proved the statement for

n = 1, 2, . . . , m− 1 and we would like to prove it for n = m. We are looking

for digits ak, ak−1, . . . , a1, a0 for which

m = akbk + ak−1b
k−1 + · · ·+ a1b + a0.

Then

m =
(
akbk−1 + ak−1b

k−2 + · · ·+ a1

)
b + a0,

where 0 ≤ ak < b. In this way we write m in the form m = qb+r uniquely by

the division algorithm. That is, a0 is clearly defined: a0 = r. Since m ≥ b,

q ≥ 1, q < qb ≤ m, we may use the induction assumption to q:

q = akbk−1 + ak−1b
k−2 + · · ·+ a2b + a1,

where the digits ak, ak−1, . . . , a2, a1 uniquely exist. It follows that the state-

ment is also true for m = qb + r.

The number of digits in the number n = akbk + ak−1b
k−1 + · · ·+ a1b + a0

is k + 1 =
[

log n
logb

]
+ 1. Thus, to find the form n = (akak−1 . . . a1a0)b, we need

O(log n) pieces of divisions. From this it is possible to estimate the time

required to switch from the binary system to the b-based number system and

vice-versa.
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We have seen that the switch to the b-based number system can be done

using divisions with remainder. However, we have not yet determined the

time required for one division. So let’s look at the division with remainder.

Let m ≥ n. Then

m = qn + r,

where q, r ∈ Z and 0 ≤ r < n. What will be the result of the division? We

would like to determine q and r. We illustrate this with an example: 98 : 5

1100010 : 101 = 10011︸ ︷︷ ︸

101 19

01001

101

1000

101

011︸︷︷︸
3

At each step, the number of digits decreases by at least 1 until it runs out:

1st step: k digits,

2nd step: k − 1 digits,
...

k − ℓ + 1th step: ℓ digits.

In each step, subtraction with ℓ or ℓ + 1 bit operations, but in the latter

case the leftmost digit is not informative, since 0 will definitely be there.

This is a (k − ℓ + 1)× ℓ ≤ kℓ bit operation.

We finished studying the basic operations. Some additional theorems

that can be derived to these, we present them without proofs:

Theorem 6.9. T
(
(k digits )n

)
≤ k2 (n− 1)n

2
.
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Corollary 6.10.

T (an) <

(
log a

log 2
+ 1

)2 (n− 1)n
2

= O(n2(log a)2).

Theorem 6.11. T (n!) = O(n2(log n)2).

Theorem 6.12. T
(
computing

(
n
m

))
= O

(
m2(log n)2

)
.

Before we go any further, a basic definition:

Definition 6.13. A (computational) algorithm is said to have polynomial

time (P ) if, starting from numbers with k1, . . . , kr digits, it gives the result

by O
(
k1

d1 . . . kr
dr

)
steps (where d1, . . . , dr are given non-negative integers).

Some examples:

T (k digits + ℓ digits) ≤ max(k, ℓ) P,

T (k digits × ℓ digits) ≤ kℓ P,

T
(
(k digits)n

)
= O(k2n2) noP,

T (n!) = O
(
n2(log n)2

)
noP.

Theorem 6.14. Let

f(x) =
u∑

i=0

aix
i,

g(x) =
v∑

j=0

bjx
j

be polynomials with integer coefficients, where

max
i,j
{|ai| , |bj |} ≤ m, v ≤ u.

Then

T (f(x)g(x)) = O
(
uv((log m)2 + log v)

)
.
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Proof of Theorem 6.14.

f(x)g(x) =
u+v∑

k=0

(
∑

i+j=k

aibj

)

︸ ︷︷ ︸
time required

xk

O
(
v((log m)2 + log v)

)

︸ ︷︷ ︸

O
(
(u + v + 1)v

(
(log m)2 + log v

))

= O(uv(log m)2 + log v).

Many algorithms are known for root extraction. For the fastest of these:

Theorem 6.15. T ([
√

a]) = O((log a)3).

We do not prove this theorem here.

In the following, we show the time required to switch from one number

system to another, so e.g., the time required if n is given in binary form and

we want to switch to b based:

Theorem 6.16.

T (Conversion of n from binary form to b based number system) = O((log n)2).

Proof of Theorem 6.16.. The theorem is a consequence of the proof of

Theorem 6.7., where we need to add the time required of the used divisions

with remainder.

Finally: Problem. How much time does it take to decide whether n is a

prime or not? Classic; more recently also because of cryptography. One of

the most important problems of computer number theory!

If we wish to determine not only a given number, but all the primes up to

a certain limit, then the Eratosthenes’ sieve is the most economical. One of
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the first methods learned in elementary or high school to determine whether

a given number n is prime is as follows: Write the primes up to
√

n:

p1 = 2, p2 = 3, . . . , pk ≤
√

n < pk+1,

and now n is divided in sequence by p1, p2, . . . , pk, if it is divisible by one of

them, it is composite; we stop. If with neither: prime. (We assume that the

primes smaller than or equal to
√

n are given.)

Theorem 6.17. T (n is a prime? By Eratosthenesian sieve) = O(
√

n log n)

noP .

The proof is homework.

There are much faster methods, e.g., Miller–Rabin probability test or

Agrawal–Kayal–Saxena algorithm. These will be discussed in more detail

later in Chapter 9.

Primality testing is actually polynomial time.
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6.2 Divisibility, Euclidean algorithm

The basics of number theory include the following: divisibility, greatest

common divisor, prime and irreducible elements, the basic theorem of number

theory, i.e., parts of the material in number theory from the first year of a

BSc in mathematics at university.

Let’s start with the time required for the Euclidean algorithm.

Theorem 6.18. For a ≥ b we have T ((a, b) =? by Eucledian algorithm) =

O((log a)3).
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Proof of Theorem 6.18.

First, let’s write the steps of the Euclidean algorithm for the numbers a

and b:

a = bq1 + r1, where 0 ≤ r1 < |b|

b = r1q2 + r2, where 0 ≤ r2 < r1

r1 = r2q3 + r3, where 0 ≤ r3 < r2

...

rk−2 = rk−1qk + rk, where 0 ≤ rk < rk−1

rk−1 = rkqk+1.

During the algorithm, we always divide the previous remainder by the

current remainder. The last non-zero remainder, in this case rk, will be the

greatest common divisor of a and b. Then the following holds for the ri

residues:

Lemma 6.19. Assume that a > b are natural numbers. Let r−1 = a, r0 = b.

Then for i = −1, 0, 1, 2, . . .

ri+2 <
ri

2
.

Proof of Lemma 6.19. Two cases: If ri+1 ≤
ri

2
⇒

ri+2 < ri+1 ≤
ri

2
.

If, on the other hand, ri+1 >
ri

2
, then we consider the i + 2th division

with remainder:

ri = ri+1qi+2 + ri+2,

ri+2 = ri − ri+1 qi+2︸︷︷︸
≥1

< ri −
ri

2
=

ri

2
.

Applying Lemma 6.19. repeatedly, we get:
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Lemma 6.20. ri ≤
a

2i/2
.

Now we can estimate T
(
(a, b) =? by Euclidean algorithm).

Define t by

2(t−1)/2 ≤ a < 2t/2

2t−1 ≤ a2 < 2t,

t− 1 ≤ log a2

log 2
< t, t− 1 =

[
log a2

log 2

]
.

The number of divisions in the Euclidean algorithm is k + 1, where the last

non-zero remainder is rk, that is

rk ≥ 1.

By Lemma 6.20. we get

1 ≤ rk ≤
a

2k/2
,

2k ≤ a2 < 2t,

k < t,

k ≤ t− 1.

Number of steps: k + 1 ≤ t. Time required for one step

T (ith division) = T (ri−2 = ri−1qi + ri)

≤ ri−2︸︷︷︸
≤a

number of digits× ri−1︸︷︷︸
≤a

number of digits

≤ (number of digits of a)2 ≤
(

t

2
+ 1

)2

.

Finally:

T
(
(a, b) ?= by Eucledian algorithm

)
≤ number of steps×max

i
T (ith division)

≤ t
(

t

2
+ 1

)2

= O(t3) = O((log a)3).
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Remark: T
(
(a, b) ?= by Eucledian algorithm

)
= O((log a)2) is also true, but

the proof is much more complicated.

By induction, it is easy to see that for each i the remainder ri can be

written in the form axi + byi, where xi and yi are integers (one is positive,

the other is negative). Applying this to the last non-zero remainder gives:

Theorem 6.21. For a ≥ b we have

T
(
writing (a, b) as a linear combination

)

=T
(
Finding in the equaion (a, b) = ax + by the solution x, y ∈ Z

)

=O((log a)3).

We leave it to the reader to work out the details of the calculation.

Notation: The ring with unit-element formed by mod m residue classes

is denoted by Zm.

Theorem 6.22. The element a ∈ Zm has a multiplicative inverse if and

only if (a, m) = 1. If this is satisfied, then the multiplicative inverse can be

found with O((log m)3) bit operations.

Proof of Theorem 6.22. If (a, m) > 1, then the multiples of a are all

divisible by (a, m), so the equation ax = km + 1 has no solution (because

then (a, m) | ax − km = 1, which is a contradiction). That is, ax ≡ 1

(mod m) congruence also has no solution, in other words, there is no inverse.

Next, we consider the case where (a, m) = 1.

Next the estimation of T (a−1 ≡? (mod m)) follows. We assume 0 < a < m

and (a, m) = 1. Then, applying Theorem 6.21., we get that ∃ x, y

ax + my = (a, m) = 1

and x, y can be found by O((log m)3) bit operations. Then

ax ≡ 1 (mod m),
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x ≡ a−1 (mod m).

Theorem 6.23. If p is prime, then all remainder class 6= 0 has a multi-

plicative inverse, and it can be determined by O((log p)3) bit operations.

Corollary 6.24. The ring Zp with the usual addition and multiplication is

a field, and we denote it by Fp.

Next a theorem for solving linear congruences from elementary number

theory follows:

Theorem 6.25. The linear congruence

ax ≡ b (mod m)

can be solved⇔ (a, m) | b. If this holds, then this linear congruence equivalent

with the following linear congruence

a′x ≡ b′ (mod m′),

with

a′ =
a

(a, m)
, m′ =

m

(a, m)
, b′ =

b

(a, m)
(⇒ (a′, m′) = 1).

The solutions form a fixed residue class mod m′. This solution can be found

with O((log m′)3) bit operations.
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6.3 Modular exponentiation

It is known that T (an) = O
(
n2(log a)2

)
.

Mod m the same can be calculated much faster:

Theorem 6.26. T (an mod m) = O
(
(log n)(log m)2

)
.

Proof of Theorem 6.26. Let’s write n in binary form

n = ε0 + ε1 · 2 + ε2 · 22 + . . . + εk2k.

where ε0, ε1, . . . , εk−1 ∈ {0, 1} and εk = 1. Then k = O(log n). For deter-

mining the digits εi’s:

T (binary form) = O((log n)2).

For i = 0, 1, . . . , k let ai be the least non-negative residue of a2i

modulo

m:

ai ≡ a2i

(mod m) 0 ≤ ai < m.

Determine these numbers in order:

a0 = a20

= a1 = a.

If ai is given, then for ai+1 we have

ai+1 ≡ a2i+1 ≡ a2i2 ≡
(
a2i
)2 ≡ ai

2 (mod mi)

By 0 ≤ ai < m we get

T (ai
2) = O((log m)2).

Then for the division with the remainder m we have:

T (ai
2 (mod m)) = O(log(m2) log m) = O((log m)2),

T (a0, a1, . . . , ak) = O(k(log m)2) = O((log n)(log m)2).
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Furthermore:

an = a

k∑
i=1

εi2i

=
k∏

i=1

aεi2i

=
k∏

i=1

ai
εi

︸ ︷︷ ︸

The product of those ai’s for which εi = 1.

Multiplied by these in a row, in a maximum of k = O(log n) steps, where the

product of two numbers ≤ m has to be calculated in each step. For the time

required for a multiplication, we know that

T (multiplication) = O((log m)2).

Thus T (an mod m) = O
(
(log n)(log m)2

)
.
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7 Modular square root

In Chapter 3, in the section on the Legendre symbol, we discussed the

solvability of x2 ≡ a (mod p), but if it is solvable, how to find a solution of

x? In this chapter, we study two polynomial time algorithms for the above

problem.

7.1 Tonelli-Shanks’s algorithm

The first algorithm in question is the so-called Tonelli–Shanks algorithm.

The version discussed here was developed by Daniel Shanks [3] in 1973, who

explained:

“My tardiness in learning of these historical references was because I had

lent Volume 1 of Dickson’s History to a friend and it was never returned.”

So, according to Dickson’s book, a more redundant version of the algo-

rithm already existed in 1891 and is associated with the name of Tonelli [1].

In this lecture notes the description of the algorithm is based on Koeblitz’s

book [2].

So the problem: For a given prime p > 2, a ∈ Zp, for which (a, p) = 1

and

(
a

p

)
= +1, we would like to find the solution of x2 ≡ a (mod p).

Let p− 1 = 2αs, α ∈ N, s be odd. We give an algorithm for determining

x of length α (so if α = 1, i.e., p− 1 = 2(2k + 1) = 4k + 2⇔ p = 4k + 3, we

get the result in one step).

Consider a quadratic non-residue n (if the Riemann conjecture holds,

such n can be found in polynomial time, we will return to this later). Let’s

compute b
def≡ ns = n(p−1)/2α

(mod p) and r
def≡ a(s+1)/2 (mod p).

Lemma 7.1. The number r2a−1 is the 2α−1th root of unity modulo p.

Proof of Lemma 7.1. We want to extract a root from the number a, so a

is a quadratic residue modulo p, and then due to Euler’s lemma a(p−1)/2 ≡ 1
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(mod p). Using this and the definition of the number r:

(r2a−1)2α−1

=
(
a

s+1
2

·2a−1
)2α−1

= (as)2α−1

= a
p−1

2 ≡ 1 (mod p).

Remark. If α = 1, then 2α−1 = 20 = 1, so r2a−1 ≡ 1 (mod p), that is, the

root of the number a is r.

But what if α > 1?

We know that r2a−1 is the 2α−1th root of unity. Thus

r2a−1 ≡ ω (mod p),

ω−1r2 ≡ a (mod p).

Which shows that the solution of

x2 ≡ a (mod p)

must be sought in the form rε, where ε is a 2α-th root of unity. Now we will

need the number b, whose definition was b
def= ns. Then:

Lemma 7.2. The number b is the 2αth primitive root of unity modulo p.

Proof of Lemma 7.2. a) The number b is the 2α-th root of unity:

b2α

= (ns)2α

= n2αs = np−1 ≡ 1 (mod p).

b) The number b is a primitive 2α-th root of unity: Indirectly, assume

that it is not primitive, i.e., its order is < 2α. Since this order is a divisor of

2α and < 2α, it is also a divisor of 2α−1. That is, due to the basic properties

of the order, b2α−1 ≡ 1 (mod p) is also satisfied. However, due to Euler’s

lemma:

b2α−1 ≡ (ns)2α−1 ≡ n
p−1

2 ≡
(

n

p

)
≡ −1 (mod p),

which is contradiction.
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Returning, we look for a solution x in the form rε, where ε is a suitable

2α-th root of unity. That is, it is of the form ε = bj , where 0 ≤ j < 2α. Then

x = rbj , so we are looking for j such that

x2a−1 ≡ (rbj)2a−1 ≡ 1 (mod p).

Write this j in binary form:

j = j0 + 2j1 + 22j2 + . . . ,

here, due to j < 2α, 2α−1jα−1 should be the last term.

But b is the 2α primitive root of unity, so

(
b2α−1

)2 ≡ 1 (mod p)

b2α−1 ≡





−1

+1

Because of Lemma 7.2.

b2α−1 ≡ −1 (mod p). (7.1)

Thus, if the binary form of j ends with 2α−1, i.e., jα−1 = 1⇒ discarding

this from j: j′ = j − 2α−1 is such that

bj ≡ bj′

b2α−1

︸ ︷︷ ︸
−1

≡ −bj′

(mod p),

so if x = rbj is a solution, so is x = rbj′

. Therefore, it can be assumed that

we only go up to 2α−2. Now, j will be defined recursively starting from j0.

1st step: determining j0. By Lemma 7.1.:

(r2a−1)2α−1 ≡ 1 (mod p),
(
(r2a−1)2α−2

)2 ≡ 1 (mod p),

(r2a−1)2α−2 ≡ ±1 (mod p).
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Let

j0
def=





0, ha (r2a−1)2α−2 ≡ 1 (mod p),

1, ha (r2a−1)2α−2 ≡ −1 (mod p).
(7.2)

Then using (7.1) and (7.2):

(
(bj0r)2a−1

)2α−2

= bj0·2α−1

(r2a−1)2α−2 ≡ (−1)j0(r2a−1)2α−2 ≡ 1 (mod p).

Now suppose 1 ≤ k ≤ α− 2 and j0, j1, . . .. jk−1 are already given such that

((
bj0+2j1+...+2k−1jk−1r

)2
a−1

)2α−k−1

≡ 1 (mod p). (7.3)

Exercise: Define jk so that (7.3) is also satisfied in place of k − 1 with k.

To prove this consider

(((
bj0+2j1+...+2k−1jk−1r

)2
a−1

)2α−k−2
)2

≡ 1 (mod p).

Here, the part in the outer parenthesis (denoted by w) is modulo p congru-

ent to +1 or −1. If for this w ≡ +1 (mod p), æk
def= 0, while if w ≡ −1

(mod p), æk
def= 1.

Then indeed
((

bj0+2j1+...+2k−1jk−1+2kjkr
)2

a−1
)2α−k−2

≡

≡
(
b2k+1jk

)2α−k−2
((

bj0+2j1+...+2k−1jk−1r
)2

a−1
)2α−k−2

≡
(
b2α−1

)jk

((
bj0+2j1+...+2k−1jk−1r

)2
a−1

)2α−k−2

≡ (−1)jk

((
bj0+2j1+...+2k−1jk−1r

)2
a−1

)2α−k−2

≡ 1 (mod p).

Finally, taking k = α− 2, we get jα−2, and then

(
bj0+2j1+...+2α−2jα−2r

)2
a−1 ≡ 1 (mod p).

So x ≡ bjr (mod p) (where j = j0 + 2j1 + . . . + 2α−2jα−2) is solution of the

congruence x2 ≡ a (mod p).
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7.2 Perelta’s algorithm

In this chapter, we give an alternative tricky method for computing the

square root modulo p, Perelta’s algorithm [2]. The description of the al-

gorithm is based on Robin Chapman’s note [1], who provided a very clear

description of Perelta’s algorithm with matrices.

Two integer matrices A and B are said to be congruent modulo p if their

corresponding elements are congruent modulo p. Notation:

A ≡ B (mod p).

Congruences of matrices can be handled in the same way as for integers.

Let p be an odd prime and a be a quadratic residue, i.e.,
(

a
p

)
= 1. Suppose

that we would like to solve the following congruence:

x2 ≡ a (mod p).

In the first step, we look for an integer b for which
(

b2 − a

p

)
= −1. (7.4)
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This is achieved by random methods, the chance that b2 − a quadratic non-

residue for a randomly chosen b is about 1/2. Thus, by repeating this step a

couple of times, sooner or later we get a b residue for which (7.4) holds. We

define the matrices A and B by the following:

A =




0 1

a 0


 , B = bI + A =




b 1

a b


 ,

where I is the 2 × 2 identity matrix. After that, we calculate the B(p−1)/2

matrix modulo p by repeated squaring. Amazingly, we find that

B(p−1)/2 ≡



0 r

s 0


 (mod p),

where s2 ≡ a (mod p).

Let’s see why this algorithm works. First, calculate the matrix Bp =

(bI + A)p based on the binomial theorem:

Bp =
p∑

j=0

(
p

j

)
bp−jAj ≡ bpI + Ap (mod p), (7.5)

since for 1 ≤ j ≤ p − 1 the binomial coefficient
(

p
j

)
is divisible by p. By

Fermat’s little theorem, bp ≡ b (mod p). By Euler’s lemma, a(p−1)/2 ≡
(

a
p

)
=

1 (mod p). Simple matrix multiplication shows that A2 = aI, so

Ap = A ·
(
A2
)(p−1)/2

= A · (aI)(p−1)/2 = a(p−1)/2A ≡ A (mod p).

Comparing the above with (7.5):

Bp ≡ bI + A = B (mod p). (7.6)

Since the determinant of the matrix B is not zero modulo p, it has an inverse

modulo p, which we will denote by B∗. Multiplying the congruence (7.6) by

B∗ we get

Bp−1 ≡ I (mod p). (7.7)
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Using the equation A2 = aI, it can be proved by induction that for every

natural number n

Bn = xnI + ynA,

where xn and yn are integers. Indeed, the starting step of induction for n = 1

we have B = bI +A, that is x1 = b, y1 = 1. Next suppose that we have proved

the statement for n, and now we would like to prove it for n + 1:

Bn+1 = Bn · B = (xnA + ynI) · (bA + I) = xnbA2 + (xn + ynb)A + ynI

= xnabI + (xn + ynb)A + ynI = (xn + ynb)A + (xnab + yn),

thus we may take xn+1 = xn +ynb and yn = xnab+yn. Writing our statement

for the case B(p−1)/2, we get that there exists t and r, for which

B(p−1)/2 = tI + rA =




t r

ar t


 . (7.8)

Recall that Bp−1 = I (see (7.7)), but the upper right element of the square

of the matrix (7.8) is the number 2rt, so we get

2rt ≡ 0 (mod p),

from which r ≡ 0 (mod p) or t ≡ 0 (mod p). We first exclude the case

r ≡ 0 (mod p). Indeed, if r ≡ 0 (mod p), then by (7.8) we get B(p−1)/2 ≡ tI

(mod p). Thus:

I ≡ Bp−1 = (B(p−1)/2)2 ≡ (tI)2 = t2I (mod p).

That is, t2 ≡ 1 (mod p). Then det
(
B(p−1)/2

)
≡ t2 ≡ 1 (mod p), but due to

the multiplicative property of determinants we get

det
(
B(p−1)/2

)
= (det B)(p−1)/2 = (b2−a)(p−1)/2 ≡

(
b2 − a

p

)
≡ −1 (mod p),

which is contradiction. That is r 6≡ 0 (mod p), so t ≡ 0 (mod p). Then:

B(p−1)/2 ≡ rA =




0 r

ra 0


 (mod p).
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Thus:

I ≡ Bp−1 ≡ (rA)2 = r2aI (mod p).

That is, r2a ≡ 1 (mod p). By the definition of s we have s ≡ ra (mod p),

so s2 ≡ r2a2 ≡ a (mod p), which completes the proof.

It remains to prove that at least half of the residue classes b2 − a are

quadratic non-residues and the other half are quadratic residues, except the

two solutions of the congruence x2 ≡ a (mod p) are s and−s, when b2−a ≡ 0

(mod p). For this, consider the following sum
p−1∑

b=0

(
b2 − a

p

)
.

If it is −1, we are done. To do this, replace a with s2 and use the following

identity:
p−1∑

b=0

(
b2 − a

p

)
=

p−1∑

b=0

(
b2 − s2

p

)
=

p−1∑

b=0

(
(b− s)(b + s)

p

)

=
p−1∑

b=0, b6=−s

(
(b− s)/(b + s)

p

)

It is easy to check that as b runs on the last sum (b − s)/(b + s) takes the

elements of a complete remainder system except 1. Thus
p−1∑

b=0

(
b2 − a

p

)
= −1,

and this proves our last statement.
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7.3 Least quadratic non-residue

Finally, at the end of the chapter, a few words about which methods are

worth using to find a quadratic non-residue modulo p. The random method

is certainly the most effective. We choose a random n and see if the value of

the Legendre symbol
(

n
p

)
will be −1. If so, then n is quadratic non-residue

modulo p. Since modulo p has a total of (p − 1)/2 quadratic residues and

(p−1)/2 quadratic non-residues, if p ∤ n, then the chance that n is quadratic

non-residue is 50%. That is, if we try, say, 200 times the algorithm for

different n’s, the chance of not finding a quadratic non-residue modulo p is

less than 1
2200 . This is an even smaller probability that we hit the jackpot

three times in a row in the Hungarian lottery.

Although this method works perfectly in practical applications, mathe-

maticians also wanted to develop a deterministic algorithm for constructing

quadratic non-residues. Perhaps the simplest idea for this is to try the natural

numbers in a row, 2,3,4,5,6,7, and so on (in fact, it is enough to consider the

prime numbers), and the algorithm stops at the first quadratic non-residue.

In order to prove that this algorithm is polynomial time, it is necessary to

have a sharp upper estimate for the smallest quadratic non-residue, i.e., we

need an upper bound of the form (log p)k. This problem is interesting in

itself. Let n(p) denote the smallest positive quadratic non-residue modulo p.

Burgess [2] proved the following in 1957:

∀ε > 0 ∃p0(ε), if p > p0(ε) then n(p) < p1/(4
√

e)+ε.

Unfortunately, this does not yet convince us that there is a deterministic

polynomial-time algorithm for finding a quadratic non-residue. However,

assuming the generalized Riemann hypothesis, Bach [1] proved that

n(p) ≤ 2(log p)2.

Thus, we have a conditional result, but as it is well known, neither the
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Riemann conjecture nor the general Riemann conjecture has been proven

yet.
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8 Fast multiplication

When an algorithm is programmed, the speed of the program depends

on many details, one of which is how much time required for a standard

arithmetic operation. We saw that

T (a + b) = O(max{log a, log b}),

and using the multiplication that we learned in elementary school we have

T (a× b) = O(max{log a, log b}).

Faster methods for the multiplication algorithm were found in the 1960s and

1970s, and modern computers already use them. In this chapter, we describe

these types of multiplication based on the book by Das [1].
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8.1 Karatsuba-Ofman multiplication

The first fast multiplication algorithm is due to Karatsuba and Ofman

[2]. We will describe the algorithm using Das’s book [1].

Let a and b be two n-digit numbers in a B-based number system. For

simplicity, assume that n is even. Let m = n/2. Write a and b in the form

a = A1Bm + A0, b = B1Bm + B0,

where A0, A1, B0, B1 are numbers consisting of at most m = n/2 digits. Then

ab = (A1B1)B2m + (A1B0 + A0B1)Bm + A0B0. (8.1)

At first, we would think that 4 products need to be calculated here. However,

we really only need the following 3 coefficients: A1B1, A1B0 + A0B1, A0B0.
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We can notice that

A1B0 + A0B1 = (A1 + A0)(B1 + B0)− A1B1 −A0B0.

That is, it is enough to calculate 3 products: (A1 + A0)(B1 + B0), A1B1,

A0B0. Unfortunately, two multiplication factors in (A1 + A0)(B1 + B0) can

also be numbers with m + 1 digits. We can help with this, too by

A1B0 + A0B1 = A1B1 + A0B0 − (A1 −A0)(B1 − B0).

In other words, we have to calculate the following 3 multiplications: A1B1,

A0B0, (A1 − A0)(B1 − B0). Each of these factors has at most m = ⌈n/2⌉
digits. Thus, if the the time required to multiply 2 numbers with n digits is

denoted by tn, then the time required to calculate the coefficients in (8.1) is

3t⌈n/2⌉ + O(n), since the time required to calculate the 3 multiplications is

3tm = 3t⌈n/2⌉ and there are also some additions and subtractions, their time

required is O(n). That is, we get the following recursion:

tn ≤ 3t⌈n/2⌉ + O(n).

If n is of the form n = 2k, then

t2k ≤ 3t2k−1 + O(2k).

Then, by induction on k, it is easy to prove that

t2k ≤ 3k + O(2k).

We can obtain the estimate of tn for a general n as follows. Let’s take the

smallest power of 2, which is greater than or equal to n:

2k−1 < n ≤ 2k.

Then

tn ≤ t2k ≤ 3k + O(2k) ≤ 3 · 3k−1 + O(2k) = 3 ·
(
2k−1

)log 3/ log 2
+ O(n)
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= O(nlog 3/ log 2).

That is, the time required for the Karatsuba-Ofman multiplication is

O(nlog 3/ log 2). This is already significantly faster than the time required for

the standard schoolbook-method, which is O(n2).
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8.2 Toom-Cook multiplication

Toom [2] and Cook [3] generalized the Karatsuba-Ofman multiplication

as follows: Let a and b be two numbers consisting of n digits. Let m = ⌈n/3⌉
and write a and b in the form

a = A2R
2 + a1R + A0, b = B2R

2 + B1R + B0, (8.2)

where R = Bm. Then

c = ab = C4R
4 + C3R

3 + C2R2 + C1R + C0, (8.3)

where

C4 = A2B2

C3 = A2B1 + A1B2

C2 = A2B0 + A1B1 + A0B2

C1 = A1B0 + A0B1

86



C0 = A0B0.

At first examination, this appears to be a 9-piece multiplication. That is,

if we denote by tn the time required for multiplying n-digit numbers, then

from the above (including the additions) we get the following recursion:

tn ≤ 9t⌈n/3⌉ + O(n).

However, now, similarly to the Karatsuba-Ofman’s algorithm, in (8.3), less

than 9 multiplications are enough to calculate the coefficients. Let

a(x) def= A2x
2 + A1x + A0

b(x) def= B2x
2 + B1x + B0

c(x) def= C4x
4 + C3x

3 + C2x
2 + C1x + C0 = a(x)b(x)

Here, the variable x can take any real or complex number. For every k ∈ C

we have

c(k) = a(k)b(k). (8.4)

Usually, the domain of a polynomial p is R or C, but now we extend the

domain with an ∞ symbol, for the polynomial

p(x) = rnxn + rn−1xn−1 + · · ·+ r1x + r0

let p(∞) = rn. Obviously, then the formula (8.4) for k =∞ also holds, i.e.,

c(∞) = a(∞)b(∞).

We will use the following:

c(∞) = C4 = A2B2

c(0) = C0 = A0B0

c(1) = C4 + C3 + C2 + C1 + C0 = (A2 + A1 + A0)(B2 + B1 + B0)

c(−1) = C4 − C3 + C2 − C1 + C0 = (A2 − A1 + A0)(B2 −B1 + B0)
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c(−2) = 16C4 − 8C3 + 4c2 − 2C1 + C0

= (4A2 − 2A1 + A0)(4B2 − 2B1 + B0) (8.5)

From this using matrices we get



c(∞)

c(0)

c(1)

c(−1)

c(−2)




=




1 0 0 0 0

0 0 0 0 1

1 1 1 1 1

1 −1 1 −1 1

16 −8 4 −2 1







C4

C3

C2

C1

C0




.

Multiplying by the inverse matrix we get



C4

C3

C2

C1

C0




=




1 0 0 0 0

2 −1/2 1/6 1/2 −1/6

−1 −1 1/2 1/2 0

−2 1/2 1/3 −1 1/6

0 1 0 0 0







c(∞)

c(0)

c(1)

c(−1)

c(−2).




That is

C4 = c(∞)

C3 = (12c(∞)− 3c(0) + c(1) + 3c(−1)− c(−2)) /6

C2 = (−2c(∞)− 2c(0) + c(1) + c(−1)) /2

C1 = (−12c(∞) + 3c(0) + 2c(1)− 6c(−1) + c(−2)) /6

C0 = c(0) (8.6)

That is, to calculate C4, C3, C2, C1, C0 in (8.3), we need to calculate 5 prod-

ucts, namely the numbers c(∞), c(0), c(1), c(−1), c(−2), whose product form

is given by (8.5).

Using Toom-Cook multiplication, for the time required to multiply two

n-digit numbers we get the following recursion:

tn ≤ 5t⌈n/3⌉ + O(n).
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If n is of the form n = 3k, then

t3k ≤ 5t3k−1 + O(3k).

From this, it is easy to prove by induction on k that

t3k ≤ 5k + O(3k).

We can obtain the estimate of tn for a general n as follows. Let’s take the

smallest power of 3, which is greater than or equal to n, that is

3k−1 < n ≤ 3k.

Then

tn ≤ t3k ≤ 5k + O(3k) ≤ 5 · 5k−1 + O(3k) = 5 ·
(
3k−1

)log 5/ log 3
+ O(n)

= O(nlog 5/ log 3).

That is, the time required for the Toom-Cook multiplication is O(nlog 5/ log 3).

The Toom-Cook multiplication can be further generalized to higher degree

polynomials. If in (8.2) we have m = ⌈n/k⌉ and

a = Ak−1R
k−1 + Ak−2R

k−2 + · · ·+ A1R + A0

b = Bk−1R
k−1 + Bk−2R

k−2 + · · ·+ B1R + B0,

where R = Bm, then in order to calculate the product

ab = C2k−1R
2k−1 + C2k−2R

2k−2 + · · ·+ C1R + C0

it is enough to perform k multiplications. Thus, the time requirement be-

comes O(nlog(2k−1)/ log k), where the constant in O depends only on k. If k

is appropriately chosen as a function of n, the best theoretically achievable

running time is O
(
n25

√
log n

)
, but practical applications show that k should

not be chosen greater than 4.
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8.3 Fast Fourier Transform

Schönhage and Strassen [3] in 1971 provided an alternative method for

fast multiplication, which was based on polynomial evaluation and interpo-

lation. The time requirement of this new method reached O(n log n log log n)

limit, so it is practically the fastest algorithm for multiplying integers whose

size consists of at least one or two thousand digits. The entire Schönhage-

Strassen algorithm is a bit complicated to discuss in this introductory lecture

notes, so here we present a slightly simplified version based only on the book

by Das [1].

Suppose a and b are n-digit numbers in a B-based number system, where

B is now a power of two, i.e., B = 2r. Let

2t−1 < n ≤ 2t

and

N = 2t+1.

(That is, N is the smallest power of two, which is ≥ 2n.) Let’s write both

a and b in the B-based number system, so we write a few zero digits at the

beginning of both numbers to consider both numbers as consisting of exactly
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N (= 2t+1) digits. Then:

a = aN−1B
N−1 + aN−2BN−2 + · · ·+ a1B + a0

b = bN−1BN−1 + bN−2BN−2 + · · ·+ b1B + b0. (8.7)

Since a and b originally (without leading zeros) had only n ≤ N
2

digits, we

know in (8.7) that N
2
≤ fori, j < N , ai = 0 and bj = 0. Based on (8.7), we

can assign a polynomial to both a and b:

a(x) def= aN−1xN−1 + aN−2x
N−2 + · · ·+ a1x + a0

b(x) def= bN−1xN−1 + bN−2xN−2 + · · ·+ b1x + b0.

Clearly then

a = a(B) and b = b(B).

The product of a and b is

ab = c = cN−1B
N−1 + cN−2B

N−2 + · · ·+ c1B + c0,

where

ck =
∑

0≤i,j≤N−1
i+j=k

aibj .

Similarly to polynomials a(x) and b(x), we can define a polynomial c(x) by

the following:

c(x) def= cN−1xN−1 + cN−2x
N−2 + · · ·+ c1x + c0.

Then c(x) = a(x)b(x), moreover

c = ab = c(B) = a(B)b(B).

Let ωN be an N -th primitive root of unity. (If we calculate in the field

of complex numbers, then ωN can be taken as e2πi/N . But we can also take

fields different from complex numbers, we will return to this later.)
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Definition 8.1. The discrete Fourier transform (DFT) of the sequence

(aN−1, aN−2, . . . , a1, a0) is that sequence (AN−1, AN−2, . . . , A1, A0) for which

Ak
def=

N−1∑

j=0

ωkj
N aj . (8.8)

Remark 8.2. Using the notations so far

Ak = a
(
ωk

N

)
.

Let the discrete Fourier transform of the sequence (bN−1, bN−2, . . . , b1, b0)

be (BN−1, BN−2, . . . , B1, B0) and the discrete Fourier transform of the se-

quence (cN−1, cN−2, . . . , c1, c0) be (CN−1, CN−2, . . . , C1, C0). Using the nota-

tions so far

Bk = b
(
ωk

N

)
and Ck = c

(
ωk

N

)
.

Since a(x)b(x) = c(x), we have

Ck = c
(
ωk

N

)
= a

(
ωk

N

)
b
(
ωk

N

)
= AkBk.

Thus, if we can quickly and efficiently calculate the discrete Fourier trans-

form of a series (i.e., (AN−1, AN−2, . . . , A1, A0) and (BN−1, BN−2, . . . , B1, B0)),

then by n piecis of multiplications, we get (CN−1, CN−2, . . . , C1, C0).

If we take another discrete Fourier transformation on the sequence

(CN−1, CN−2, . . . , C1, C0) (let the resulting sequence be (C̃N−1, C̃N−2, . . . , C̃1, C̃0)

), then we get back the elements of the original sequence, more precisely:

(cN−1, cN−2, . . . , c1, c0) =
1
N

(C̃0, C̃1, . . . , C̃N−1, C̃N). (8.9)

The above connection can be easily verified:

C̃k =
N−1∑

j=0

ωkj
N Cj =

N−1∑

j=0

ωkj
N

(
N−1∑

i=0

ωji
Nci

)

=
N−1∑

i=0




N−1∑

j=0

ω
j(k+i)
N



 ci. (8.10)
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Here

N−1∑

j=0

ω
j(k+i)
N =






N ha N | k + i

0 ha N ∤ k + i
=






N ha i = N − k

0 ha i 6= N − k

Writing this in (8.10), we get C̃k = NCN−k, which proves (8.9).

In other words, the effectiveness of the above algorithm depends on how

quickly we can calculate the DFT of a sequence.

Our next goal is to provide a fast algorithm for calculating the DFT of a

N -long sequence, as well as to calculate the time required for this algorithm.

For the sake of simplicity, the length of the sequence N should always be a

power of two (this can easily be assumed, since we gave N as a power of two

at the beginning of the chapter). The time required for Fourier transform of

the sequence to be determined shortly is denoted by TN in the case of a N

long sequence.

Our algorithm for computing the DFT will be recursive. For a N = 20 =

1-long sequence, the algorithm is very simple, since the sum in (8.8) has only

one term, and thus the time required is T1 = 1. Let’s look at the recursive

step. Let’s assume that the algorithm has already been given in the cases

N = 20, 21, . . . , 2r−1 with T1, T2, T4, . . . , T2r−1 time requirements. Now we

would like to give the algorithm in the case of N = 2r, and after giving the

algorithm, we would like to estimate its time requirement T2r .

Let our sequence be (aN−1, aN−2, . . . , a1, a0) and the primitive N -th

root of unity be ωN , with which we define the DFT, i.e., the sequence

(AN−1, AN−2, . . . , A1, A0), that is

Ak =
N−1∑

j=0

ωkj
N aj .

Consider the polynomial assigned to the sequence (aN−1, aN−2, . . . , a1, a0)

i.e.,

a(x) = aN−1xN−1 + aN−2xN−2 + · · ·+ a1x + a0,
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and write it as the sum of two polynomials, namely

a(x) = a0(x2) + xa1(x2),

where

a0(y) def= aN−2y
N/2−1 + aN−4y

N/2−2 + aN−6y
N/2−3 + · · ·+ a2y + a0

a1(y) def= aN−1y
N/2−1 + aN−3y

N/2−2 + aN−5y
N/2−3 + · · ·+ a3y + a1.

From the coefficients of the two polynomials, we can form two N/2 long

sequences. These are:

(aN−2, aN−4, aN−6, . . . , a2, a0) (8.11)

and

(aN−1, aN−3, aN−5, . . . , a3, a1). (8.12)

Since N is even (moreover a power of two), if ωN is a primitive N -th root

of unity, then ω2
N is a primitive N/2-th root of unity. Calculate the DFT

of the N/2-long sequences (8.11) and (8.12). Then we get the following two

sequences:

(
A

(0)
N
2

−1
, A

(0)
N
2

−2
, . . . , A

(0)
1 , A

(0)
0

)

(
A

(1)
N
2

−1
, A

(1)
N
2

−2
, . . . , A

(1)
1 , A

(1)
0

)

Then

A
(0)
k =

N/2−1∑

j=0

(
ω2

N

)kj
a2j

A
(1)
k =

N/2−1∑

j=0

(
ω2

N

)kj
a2j+1

Using the polynomials a0(y) and a1(y) we get

A
(0)
k = a0(ω2k

N ), A
(1)
k = a1(ω2k

N ).
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Since a(x) = a0(x2) + xa1(x2), writing x = ωk
N we get

a(ωk
N) = a0(ω2k

N ) + ωk
Na1(ω2k

N ).

That is

Ak = A
(0)
k + ωk

NA
(1)
k .

Since ω
N/2
N = −1 (the reasoning is simple: 0 = ωN

n −1 = (ωN/2
N −1)(ωN/2

N +1)

but ωN is primitive N -th root of unity, so ω
N/2
N − 1 6= 0, i.e., ω

N/2
N + 1 = 0).

Therefore, if k is replaced by N/2 + k we get:

AN/2+k = a(ωN/2+k
N ) = a0(ωN+2k

N ) + ω
N/2+k
N a1(ωN+2k

N ).

Using ωN
N = 1 and ω

N/2
N = −1 we get

AN/2+k = a0(ω2k
N )− ωk

Na1(ω2k
N ) = A

(0)
k − ωk

NA
(1)
k .

In summary: The DFT’s of the sequences are calculated in 2TN/2 time, after

these N pieces of multiplications and additions are used to obtain the DFT

of the original sequence. In terms of time requirements, we get the following

recursion

T1 = 1

TN ≤ 2TN/2 + N.

From this, it can be easily proved by complete induction that for N ≥ 2

TN ≤ 2N log2 N.

During the algorithm given above, we have not taken into account that the

N -th roots of unity over complex numbers are infinite decimal fractions. Ac-

cording to Knuth [2], in the case of N = 2t+1, it is enough to calculate to

6(t + 1) decimal places during the algorithm. The time requirement of the

resulting algorithm is O(n log n log log n . . . logk n), where this time logk n de-

notes the logarithm function iterated k times so that logk n = log log . . . log n
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and k is the smallest positive integer for which logk n = log log . . . log n < 2.

Schönhage and Strassen [3] proposed the following: instead of C, we use the

algorithm Z2s+1 where 2 primitive 2s-th unit roots with suitable s. The run-

ning time thus achieved is O(n log n log log n). We omit the details in this

lecture notes.

A few notes for programmers: For small numbers, the schoolbook-method

is the best method. For slightly larger numbers, the Karatsuba-Ofman

method, for even larger numbers, the Toom-Cook method, and for the

largest numbers, the FFT-based multiplication suggested by Schönhage and

Strassen. FFT multiplication becomes the quickest at a few tens of thou-

sands of digits, and it is actually the most common multiplication for huge

numbers in practice.
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9 Primality tests

Primality tests are algorithms that determine whether a given number

is prime or not. In contrast to factorization, primality tests do not provide

the prime factorization of a given number, they are just concerned with

determining whether the integer in question is composite or prime. There

are many different algorithms for primality testing, and the most modern

primality tests are polynomial time algorithms. However, we conjecture that

factorization is a non-polynomial algorithm.

The most effective in practical applications are the so-called probability

primality tests, which, however with not absolute certainty, but can deter-

mine whether an integer number is prime or composite with a very high

probability. We only briefly describe a polynomial-time and deterministic

primality test in the final section of the chapter because it is substantially

more complicated than the previous primality tests. In terms of running

time, this deterministic test is slower than the probabilistic tests, but it is

still a polynomial time algorithm.

9.1 Trial division

The simplest primality test is called the trial division. Let the number

given as input be n, and we have to decide whether n is prime. During

the trial division, we check whether d is a divisor of n for the numbers

d = 2, 3, 4, · · · [√n]. If we find a divisor, n is composite. If none of these d is

a divisor of n, then n is prime. The basis of the above reasoning is that every

composite number n has a divisor smaller than or equal to [
√

n], because

if n = ab, then a or b is less than
√

n. Trial division is not a polynomial

algorithm, it takes [
√

n](log n)2 bit operations. The algorithm is based on

Eratosthenes’ sieve, which was first mentioned in Nicomákhos of Gerasa’s

Introduction to Arithmetic [1] (2nd century BC), and he attributed the sieve
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to Eratosthenes of Cyrene. If we wish to find all the primes up to a certain

limit, the Eratosthenes sieve is still the fastest.
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9.2 Fermat primality test

The Fermat primality test is based on Fermat’s little theorem.

Theorem 9.1. (Fermat’s little theorem) If p is a prime and (a, p) = 1

for an integer a, then

ap−1 ≡ 1 (mod p).

Next we describe the test based on [1] and [2]. The Fermat primality test

is as follows: Let n be the input number.

Step 1: Take a randomly chosen integer a for which n ∤ a.

Step 2: Check if

an−1 ≡ 1 (mod n)

holds or not. If an−1 6≡ 1 (mod n), then according to the little-Fermat theo-

rem, n is composite. If an−1 ≡ 1 (mod n), we return to Step 1 with another

randomly chosen integer a .

If we repeat the steps of the test for enough randomly chosen a and we

always get that an−1 ≡ 1 (mod n), then a is “probably” a prime number. If

for a single a we get that an−1 6≡ 1 (mod n), then (based on the little-Fermat

theorem) n must be a composite number. Since this test never says that a

number is definitely prime, it is called a probabilistic primality test.
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Today, the most commonly used primality tests are probabilistic primality

tests, since their running time is significantly faster than the running time

of deterministic primality tests. Deterministic tests will be discussed later in

the chapter. Now let’s return to the Fermat primality test. This test never

says that a number n is definitely prime. But is the inversion of the Fermat’s

little theorem true at all, i.e., is the following true?

Question: If for a given integer n, for every integer (a, n) = 1 we have

an−1 ≡ 1 (mod n),

then is it certain that n is prime?

The answer to this question is no. For example, let n = 561 = 3 · 11 · 17.

We prove that then a560 ≡ 1 (mod 561) for every (a, 561) = 1. But now 561

is a composite number, since 561 = 3 · 11 · 17. Let’s see the proof:

Let (a, 561) = 1. Then by 561 = 3 · 11 · 17 we also have (a, 3) = (a, 11) =

(a, 17) = 1. Write Fermat’s little theorem for p = 3:

a2 ≡ 1 (mod 3).

Raising the above congruence to the 280th power:

a560 ≡ 1 (mod 3).

That is 3 | a560 − 1.

Write Fermat’s little theorem for p = 3:

a10 ≡ 1 (mod 11).

Raising the above congruence to the 56th power:

a560 ≡ 1 (mod 11).

That is 11 | a560 − 1.
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Write Fermat’s little theorem for p = 17:

a16 ≡ 1 (mod 17).

Raising the above congruence to the 35th power:

a560 ≡ 1 (mod 17).

That is 17 | a560 − 1. So 3 · 11 · 17 = 561 | a560 − 1, and this completes the

proof.

Definition 9.2. A positive integer n is called a Carmichael number, if

n is a composite and for all (a, n) = 1 we have

an−1 ≡ 1 (mod n).

The smallest Carmichael number is 561. We will study in more detail

Carmichael numbers in the next section. Returning to the Fermat primality

test, we can see that it determines the Carmichael numbers likely to be

primes despite they are composite. As a result, the Fermat primality test

is not considered one of the most optimal primality tests. Nonetheless, the

test is only rarely incorrect since, according to Pomerence [3], the number of

Carmichael numbers smaller than x is less than x1−o(1).

Assume that the integer n is a composite but not a Carmichael number.

In other words, there is an integer b for which

bn−1 6≡ 1 (mod n).

Next, we divide the integers (a, n) = 1 into two classes. The number a is

called a Fermat liar if

an−1 ≡ 1 (mod n).

The name is justified by the fact that the Fermat’s little theorem holds for

the number a, even though the modulus n is a composite number. Thus,
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trying the Fermat primality test on this a, the test (wrongly) predicts that

n is prime. The number a is called a witness if

an−1 6≡ 1 (mod n).

This definition is justified by the fact that when we apply the Fermat pri-

mality test to this a, we find that n is a composite. That is, the number a

”witnesses” to the fact that n is a composite.

Theorem 9.3. Let n be a complex number that is not a Carmichael number.

Then at least half of the numbers (a, n) = 1, 1 ≤ a ≤ n are witnesses.

This theorem states that when the test is run for a fixed a, the probability

that the test is incorrect (that is, that it determines n to be likely prime,

however it is composite) is at most 50%. If we run the test on two pieces of

a, the probability that the test is incorrect in both cases is
(

1
2

)2
, i.e., 25%. If

we run the test with r distinct a’s, the error probability is
(

1
2

)r
. For larger

r, this is an exceedingly low likelihood. Even with 300 pieces of a, the error

probability is less than
(

1
2

)300
, which is less than the reciprocal of the total

number of atoms in the universe... Let’s see the proof of the theorem.

Proof of Theorem 9.3. Since n is not a Carmichael number, there is at

least one witness. Let this be b. Then

bn−1 6≡ 1 (mod n). (9.1)

List the Fermat liars: a1, a2, . . . , ar. Then

an−1
i ≡ 1 (mod n) (1 ≤ i ≤ r).

However, based on (9.1):

(bai)n−1 6≡ 1 (mod n), (1 ≤ i ≤ r).

In other words, ba1, ba2, . . . , bar are witnesses as well. That is, there are at

least as many witnesses as liars, and thus we have proved the theorem.
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9.3 Carmichael numbers

The Carmichael numbers were already defined in the previous chapter,

but it’s worth repeating, so I’ll describe the definition now.

Definition 9.4. A positive integer n is called a Carmichael number, if

n is a composite and for all (a, n) = 1 we have

an−1 ≡ 1 (mod n).

As the integers increase, Carmichael numbers become less frequent on

the number line. To illustrate this, we show a table. Let C(x) denote the

number of Carmichael numbers between 1 and x. Then:

bigskip

n 1 2 3 4 5 6 7 8 9 10 11 12

C(10n) 0 0 1 7 16 43 105 255 646 1547 3605 8241

n 13 14 15 16 17 18 19

C(10n) 19279 44706 105212 246683 585355 1401644 3381806

For a very long time it was conjectured that there were an infinite num-

ber of Carmichael numbers. Finally Alford, Granville, and Pomerance [1]

confirmed this and proved that

C(x) > x2/7.
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This was sharpened by Harman [3]:

C(x) > x0.33336704.

In 1956, Erdős [2] conjectured that C(x) < x1−o(1). Erdős’ heuristic argument

was confirmed by Pomerance [5] in 1981. He proved that

C(x) < x1− (1+o(1) log log log x)
log log x .

The most important result concerning the form of Carmichael numbers

is the Korselt criterion [4].

Theorem 9.5. (A. Korselt, 1899) A positive integer n is a Carmichael

number if and only if n is square-free and if p − 1 | n − 1 holds for every

prime divisor p of n.

Proof of Theorem 9.5. First, we see that if n is a square-free number and

for every prime divisor p of n we have p− 1 | n− 1, then n is a Carmichael

number. Indeed, let n have the following prime factor decomposition:

n = p1p2 . . . pr,

where the primes p1, p2, . . . , pr are distinct. Let

(a, n) = 1.

Then

(a, p1) = (a, p2) = · · · = (a, pr) = 1.

Since (a, pi) = 1 by Fermat’s little theorem

api−1 ≡ 1 (mod pi). (9.2)

Since pi − 1 | n− 1, there exists a positive integer ki such that

n− 1 = ki(pi − 1)

103



Thus, by raising the congruence (9.2) to the kith power, we get

aki(pi−1) ≡ 1 (mod pi)

an−1 ≡ 1 (mod pi)

pi | an−1 − 1. (9.3)

Since (9.3) holds for i = 1, 2, . . . , r, thus

p1p2 · · · pr | an−1 − 1

n | an−1 − 1

an−1 ≡ 1 (mod n). (9.4)

Then the congruence (9.4) holds for every integer (a, n) = 1, so a is a

Carmichael number.

Then we turn to the second part of the proof of the theorem, namely, if n

is a Carmichael number, then n is square-free on the one hand, and for every

prime divisor of n we have p − 1 | n − 1 on the other hand. First, we see

that n is square-free. We prove this indirectly, we assume that there exists a

prime p for which n is of the form

n = pkm

where k ≥ 2 is an integer and (m, p) = 1 for the integer m. Consider the

integer a for which

a ≡ 1 + p (mod p2) and a ≡ 1 (mod m).

By the Chinese remainder theorem, such an integer a exists. Based on the

binomial theorem

an−1 ≡ (1 + p)n−1 (mod p2)

an−1 ≡ 1 +

(
n− 1

1

)
p +

(
n− 1

2

)
p2 + · · ·+

(
n− 1
n− 1

)
pn−1 (mod p2)
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an−1 ≡ 1 + (n− 1)p (mod p2). (9.5)

On the other hand, n is a Carmichael number, so

an−1 ≡ 1 (mod n)

n | an−1 − 1

p2 | an−1 − 1

an−1 ≡ 1 (mod p2).

Comparing this with (9.5), we get that

1 ≡ 1 + (n− 1)p (mod p2)

p2 | (n− 1)p

p | n− 1,

which contradicts p | n. By this, we realized that n has no prime square

divisor, i.e., n is a squarefree number.

We can continue the proof by that for every prime divisor p of n we have

p − 1 | n − 1. Write n in the form n = pm. Since n is squarefree number,

we can assume that (m, p) = 1. Consider a primitive root g modulo p. Then

g, g2, g3, . . . , gp−2 6≡ 1 (mod p), but gp−1 ≡ 1 (mod p) since the order of g is

p − 1. That is, the infinite sequence 1, g, g2, . . . will be periodic modulo p,

and the period length is p− 1, so

gk ≡ 1 (mod p)⇔ p− 1 | k. (9.6)

Assume that for all (a, n) = 1 we have

an−1 ≡ 1 (mod n).

By the Chinese remainder theorem, there exists an integer a for which

a ≡ g (mod p) and a ≡ 1 (mod m).
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Since g is a primitive root, (g, p) = 1 and thus (g + tp, p) = 1 also holds for

every integer t. That is, (a, p) = 1. Similarly, by a ≡ 1 (mod m) we also

have (a, m) = 1 also holds. Thus (a, n) = (a, pm) = 1. Then

an−1 ≡ 1 (mod n)

n | an−1 − 1

pm | an−1 − 1

p | an−1 − 1

an−1 ≡ 1 (mod p)

gn−1 ≡ 1 (mod p).

Then, using (9.6), we get that p− 1 | n− 1, which completes the proof.
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9.4 An example of the Fermat primality test

During the Fermat primality test, we must compute large powers

modulo n. Consider the following example:

Question. Is 211 − 1 = 2047 prime or not? Let’s test it with the Fermat

primality test!

Solution. The algorithm is as follows:

Step 1. Take a random element a ∈ Z2047.

Step 2. Let’s check that

a2046 ≡ 1 (mod 2047) (9.7)

holds or not? If it does not hold, then 2047 is composite, if it holds, return

to Step 1 with another number a. If the congruence (9.7) holds for many a’s,

then the 2047 is probably prime.

During the first step of the algorithm, we choose a random number a ∈
Z2047, 2047 ∤ a. For the sake of simplicity, let’s assume that a = 2 (although,

the probability of this is extremely small 1/2046...). During Step 2 of the

algorithm, we must check whether the congruence

22046 ≡ 1 (mod 2047) (9.8)

holds or not. Note that 211 = 2048 ≡ 1 (mod 2047). By this

22046 =
(
211
)186 ≡ 1 (mod 2047).

That is, (9.8) is indeed holds. So far it has not been revealed that 2047 is

a composite number. That is, 2 is a Fermat liar. If a2046 ≡ 1 (mod 2047)

holds for many a’s, then we could say that it is probable that 2047 is a

prime number or a Carmichael number. But for now, we only studied the

case a = 2. Let’s try again with another random a. As before, we can
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choose all a ∈ Z2047, 2047 ∤ a with equal probability, but now for the sake of

simplicity, let’s assume that a = 3. (In fact, it often happens in practice that

when programmers are looking for random numbers that are not secret, i.e.,

they are not used for cryptographic purposes, they simply take consecutive

natural numbers... This detracts a lot from the true effectiveness of the

random algorithm. Even if we provide similar example, we strongly advise

the reader to avoid such simplifications when they want to program...) In

case of a = 3, we have to check that

32046 ≡ 1 (mod 2047) (9.9)

holds or not. In other words, we have to calculate a very large power using

modular exponentiation. This can be done by repeated squaring. To do this,

first write 2046 as the sum of two powers.

2046 = 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2.

Let’s make a table with the values of the powers of 32k

(mod 2047).

31 32 34 38 316 332 364 3128 3256 3512 31024

mod
2047 3 9 81 420 358 1250 639 968 1545 223 601

Based on this:

32046 ≡ 31024 · 3512 · 3256 · 3128 · 364 · 332 · 316 · 38 · 34 · 32

601 · 223 · 1545 · 968 · 639 · 1250 · 358 · 420 · 81 · 9 · 3 (mod 2047).

By doing the multiplications in succesion and always reducing the result mod

2047, finally we get

32046 ≡ 1013 6≡ 1 (mod 2047).

That is, 2047 is not a prime number, and 3 was a Fermat witness, while 2

was a Fermat liar. Indeed, 2047 is composite, since 2047 = 11 ·23. Usually, it

is difficult to find the prime factor decomposition of large numbers, while the

running time of the Fermat test is fast: O(k · log3 n), where k is the number

of rounds, i.e., the testing is based on k different random a’s.
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9.5 Soloway-Strassen primality test

In the previous section we talked about the Fermat primality test. We

have seen that the test does not work for Carmichael numbers, since the

test determines Carmichael numbers as problable primes. To understand

the following test, you need the know the definitions of Legendre and Jacobi

symbols, see Chapter 3. We have seen that if n is a prime number, then the

value of the Jacobian symbol
(

a
n

)
is the same as the value of the Legendre

symbol
(

a
n

)
. The Soloway-Strassen primality test [2],[3] is based on the

following theorem:

Theorem 9.6. (Euler-lemma) For any prime number p and integer a with

(a, p) = 1 we have

a(p−1)/2 ≡
(

a

p

)
(mod p),

where
(

a
p

)
denotes the Legendre symbol.

Proof of Theorem 9.6. By Fermat’s little theorem

ap−1 ≡ 1 (mod p)

p | ap−1 − 1

p |
(
a(p−1)/2 − 1

) (
a(p−1)/2 + 1

)
,

thus p | a(p−1)/2 − 1 or p | a(p−1)/2 + 1. That is

a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p). (9.10)

If
(

a
p

)
= 1, then the congruence

x2 ≡ a (mod p)

is solvable. Denote a solution of the above congruence by x0. Then

x2
0 ≡ a (mod p).
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By Fermat’s little theorem:

a(p−1)/2 ≡
(
x2

0

)(p−1)/2
= xp−1

0 ≡ 1 (mod p).

Now
(

a
p

)
= 1, thus

a(p−1)/2 ≡
(

a

p

)
(mod p).

Next we turn to the proof of the case
(

a
p

)
= −1. Lagrange’s theorem states

the following:

Lemma 9.7. (Lagrange) If p is a prime number, f(x) ∈ Z[x], then either

all coefficients of f(x) are divisible by p, or

f(x) ≡ 0 (mod p)

congruence has at most deg f incongruent solutions, where deg f denotes the

degree of the polynomial f(x).

We will not prove Lagrange’s theorem here, its proof can be found in any

book dealing with elementary number theory. Based on Lagrange theorem,

we know that the congruence

x(p−1)/2 ≡ 1 (mod p)

has at most (p− 1)/2 solutions. We have seen that for
(

a
p

)
= 1

a(p−1)/2 ≡ 1 (mod p),

thus, the solutions of the congruence x(p−1)/2 ≡ 1 (mod p) are the quadratic

residues a. We know that there are a total of (p − 1)/2 quadratic residues,

thus we have found all the solutions of the x(p−1)/2 ≡ 1 (mod p) congruence,

these are the quadratic residues. So for
(

a
p

)
= −1 we have a(p−1)/2 6≡ 1

(mod p). Then by (9.10)

a(p−1)/2 ≡ −1 (mod p).
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Since now
(

a
p

)
= −1, we also proved

a(p−1)/2 ≡
(

a

p

)
(mod p).

This completes the proof of Euler-lemma.

Then we describe the Soloway-Strassen primality test [2], [3]. The

test was based on an idea of Artjuhov [1].

So we want to determine whether a given odd number n is prime or

composite.

Step 1. We take a random a for which (a, n) = 1.

Step 2. By the repeated squaring algorithm, we calculate a(n−1)/2 (mod n).

Step 3. We calculate the value of the Jacobi symbol
(

a
n

)
.

Step 4. We check whether the congruence a(n−1)/2 ≡
(

a
n

)
(mod n) holds or

not. If the answer is NO, then it is certain that n is composite and a is called

an Euler witness. If the answer is YES we return to Step 1 with another a

A new definition: if n is composite and a(n−1)/2 ≡
(

a
n

)
(mod n), we called a

as an Euler-liar.

If we look at the above algorithm for many a’s, and it always comes

out that a(n−1)/2 ≡
(

a
n

)
(mod n), then the test determines n as a probable

prime.

Example. The number −1 is always Euler-liar, since it always holds for the

Jacobi symbol that

(−1
n

)
≡ (−1)(n−1)/2 (mod n).

Theorem 9.8. For every composite odd n, at least half of the reduced residue

classes mod n are Euler witnesses.
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Proof of the Theorem 9.8.. Let the Euler liars be ℓ1, ℓ2, . . . , ℓk, and the

Euler witnesses be w1, w2, . . . , wm. Then we need to prove that k ≤ m. First,

we just prove that there is at least one Euler witness. If n is not squarefree,

then n cannot be a Carmichael number, i.e., there exists a residue a for which

(a, n) = 1 and an−1 6≡ 1 (mod n). Thus

a(n−1)/2 6≡ ±1 (mod n)

(because if a(n−1)/2 ≡ ±1 (mod n), then after squaring we would get an−1 ≡ 1

(mod n) which is contradiction). However, the value of the Jacobi symbol
(

a
n

)
is ±1, that is

a(n−1)/2 6≡
(

a

n

)
(mod n).

Then a is an Euler witness. If n is squarefree, write the prime factor decom-

position of n that is

n = p1p2 . . . pr,

where pi’s are distinct primes.

Fix a quadratic non-residue mod p1, and denote it by m. That is,
(

m
p1

)
=

−1. Let a be the solution of the following simultaneous congruence system:

x ≡ m (mod p1) x ≡ 1 (mod p2p3 . . . pr).

By the Chinese remainder theorem, such a exists and it is unique mod

p1p2 . . . pr. That is

a ≡ m (mod p1) a ≡ 1 (mod p2p3 . . . pr).

Calculate the value of the Jacobi symbol
(

a
n

)
:

(
a

n

)
=

(
a

p1

)(
a

p2

)
. . .

(
a

pr

)

=

(
m

p1

)(
1
p1

)
. . .

(
1
pr

)

= −1 · 1 · · ·1
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= −1.

If

a(n−1)/2 ≡
(

a

n

)
(mod n)

holds, then

a(n−1)/2 ≡ −1 (mod n)

n | a(n−1)/2 + 1

p2 | a(n−1)/2 + 1

a(n−1)/2 ≡ −1 (mod p2)

1(n−1)/2 ≡ −1 (mod p2),

which is contradiction. That is, a(n−1)/2 6≡
(

a
n

)
(mod n). So a is an Euler

witness. By this, we proved that for every composite number there is at least

one Euler witness. Let the Euler liars be ℓ1, ℓ2, . . . , ℓk, and the Euler witnesses

be w1, w2, . . . , wm. We have already seen that m ≥ 1, however, in order to

prove the theorem, we need that k ≤ m. Let’s fix an Euler witness, say w1.

We prove that then w1ℓ1, w1ℓ2, . . . , w1ℓk are also Euler witnesses. Since the

above elements are incongruent modulo n, it follows from this statement that

m ≥ k. By the multiplicity of the Jacobi symbol
(

w1ℓi

n

)
=
(

w1

n

)(
ℓi

n

)
. (9.11)

Since ℓi is Euler-liar then
(

ℓi

n

)
≡ ℓ

(n−1)/2
i (mod n). However, w1 is an Euler

witness, so
(

w1

n

)
6≡ w

(n−1)/2
1 (mod n). Comparing the above with (9.11), we

get
(

w1ℓi

n

)
=

(
w1

p

)(
ℓi

p

)
6≡ w

(n−1)/2
1 ℓ

(n−1)/2
i = (w1ℓi)

(n−1)/2 (mod n),

that is, w1ℓi is indeed an Euler witness. This completes the proof of the

theorem.
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Based on the above theorem, if we run the test on k pieces of a, the prob-

ability that n is a composite number, but the test determines as a probable

prime number is less than 2−k. This is an extremely small probability even

for k = 100.

References

[1] M. M. Artjuhov, Certain criteria for primality of numbers connected with

the little Fermat theorem, Acta Arith., 12 (1966/67), 355–364.

[2] R. M. Solovay, V. Strassen, A fast Monte-Carlo test for primality, SIAM

Journal on Computing. 6 (1) (1977), 84–85.

[3] R. M. Solovay, V. Strassen, Erratum: A fast Monte-Carlo test for pri-

mality, SIAM Journal on Computing. 7 (1) (1978) 118.

9.6 An example of the Soloway-Strassen primality test

Below, we determine whether n = 209 is prime or composite using the

Soloway-Strassen primality test.

Step 1. Take a random a, e.g., say a = 153.

Step 2. Calculate a(n−1)/2 (mod n) using the repeated squaring algorithm.

153(209−1)/2 ≡ 153104 ≡ 15364 · 15332 · 1538 (mod 209).

Let’s make a table with the values 1532k

(mod 209).

1531 1532 1534 1538 15316 15332 15364

mod 209 153 1 1 1 1 1 1

Based on these

153(209−1)/2 ≡ 1 · 1 · 1 ≡ 1 (mod 209).
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Step 3. Let’s calculate the Jacobi symbol
(

a
n

)
:

(153
209

)
= (−1)(153−1)/2·(209−1)/2

(209
153

)
=
(209

153

)
=
( 56

153

)

=
( 2

153

)3 ( 7
153

)
= (−1)(1532−1)/8

( 7
153

)
=
( 7

153

)

= (−1)(7−1)/2·(153−1)/2
(153

7

)
=
(153

7

)
=
(6

7

)

=
(2

7

)(3
7

)
= (−1)(72−1)/8

(3
7

)
=
(3

7

)

= (−1)(3−1)/2·(7−1)/2
(7

3

)
= −

(7
3

)
= −

(1
3

)

= −1.

That is, 153(209−1)/2 6≡
(

153
209

)
(mod 209). Thus 153 is an Euler witness, and

so 209 is a composite number (actually 209 = 11 · 19).

9.7 Miller-Rabin primality test

The Miller-Rabin primality test was first discovered by Gary L. Miller [5]

in 1976. Miller’s version of the test was deterministic, but the reliability of the

test was based on an unproven conjecture, the general Riemann hypothesis.

Later Michael O. Rabin [6] modified the test in 1980 in such a way that it

no longer depended on unproven conjecture, but thus the test was no longer

deterministic, but a probabilistic primality test.

First, we note that if p is prime, then from congruence

x2 ≡ 1 (mod p)

follows that

x ≡ ±1 (mod p).

Let’s see the proof of this:

x2 ≡ 1 (mod p)
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p | x2 − 1

p | (x− 1)(x + 1)

p | x− 1 or p | x + 1

x ≡ ±1 (mod p).

It is important to note that in the above proof it is a necessary condition

that p is a prime. The statement is not even true for the most composite

numbers. (Take 8 for example. The congruence x2 ≡ 1 (mod 8) has 4

solutions: x ≡ ±1, ±3 (mod 8).)

Below the algorithm of the Miller-Rabin primality test is described. The

test works for odd numbers. Assume that n is odd and write

n− 1 = 2kr,

where k ∈ N and r is an odd positive integer. By Fermat’s little theorem, if

n is prime, then for every number a ∈ Z, where a 6≡ 0 (mod n) we have

an−1 ≡ 1 (mod n).

Here n− 1 = 2kr, that is

a2kr ≡ 1 (mod n). (9.12)

If n is prime, then for x2 ≡ 1 (mod n) we have x ≡ ±1 (mod n), so it follows

from (9.12) that

a2k−1r ≡ ±1 (mod n).

In case a2k−1r ≡ 1 (mod n), then a2k−2r ≡ ±1 (mod n) and so on...

Based on the above, the residue a modulo n, where a 6≡ 0 (mod n), is

called a Miller-Rabin liar if

ar ≡ 1 (mod n)

or the sequence

ar, a2r, a4r, . . . , a2k−1r (mod n)

116



contains the residue −1 modulo n. If n is prime, then every residue class

a 6≡ 0 (mod n) is a Miller-Rabin liar. A residue class a modulo n is called a

Miller-Rabin witness if (a, n) = 1 and a is not a Miller-Rabin liar, i.e.,

ar 6≡ 1 (mod n),

and the sequence

ar, a2r, a4r, . . . , a2k−1r (mod n)

does not contain the residue class −1 modulo n. If n is prime, then there is

no Miller-Rabin witness modulo n. That is, if we find a Miller-Rabin witness,

it is certain that n is a composite number.

Using primitive roots, it can be proved that for composite n at least

75% of all reduced residue classes modulo n are Miller-Rabin wit-

nesses. Thus, if we check for k pieces of a’s whether the given a is

a Miller-Rabin liar, the probability that each a is a Miller-Rabin

liar is less than 4−k in case of composite n. However, before moving on

to the proof, we note that Keith [4] has given a tricky, elementary proof of a

slightly weaker claim than the one above.

So let us see the proof that if n > 9 is an odd composite number, then at

least 75% of all reduced residue classes modulo n are Miller-Rabin witnesses.

This is based on the following theorem, the proof of which is given based

on Crandall and Pomerence’s book [2].

Theorem 9.9. Let n > 9 an odd composite number. Write n−1 of the form

n− 1 = 2kr, where k > 1 is an integer and r is odd. Let

B = {a ∈ Z∗
n : ar = 1 or a2ir = −1 for some 0 ≤ i < k}.

Then
|B|

ϕ(n)
≤ 1

4
.
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Proof of Theorem 9.9.. Denote by 2ℓ the largest power of two such that

2ℓ is a divisor of p − 1 for every prime divisor of p in n. Then the set B

contains the following set:

B′ = {a ∈ Z∗
na2ℓ−1r = ±1}.

Indeed, it is clear that if ar = 1, then a ∈ B′. On the other hand, if a2ir = −1

for some 0 ≤ i < k, then a2i

r ≡ −1 (mod p) holds for all prime divisor p

of n. Hence, 2i+1 exact divisor of order a is modulo p, i.e., 2i+1 | op(a), but

2i+2 ∤ op(a). But then 2i+1 | p − 1 for every prime divisor p of n. Hence

ℓ ≥ i + 1. That is, a2ℓ−1r = (−1)2ℓ−i−1
, which can be −1 or +1. Thus indeed

B′ ⊂ B.

According to the Chinese remainder theorem, the number of a for which

a2ℓ−1r = 1 is exactly
∏

p|n
g(p),

where g(p) is the number of the solutions of the congruence x2ℓ−1r ≡ 1

(mod pαp), where pαp is the largest power of p that divides n. Since Z∗
pαp

is a cyclic group (i.e., there exists a primitive root mod pαp) we have

g(p) = ((p− 1)pαp, 2ℓ−1r) = (p− 1, r)2ℓ−1. (9.13)

Indeed, if q is a fixed primitive root modulo pαp , then x ≡ qu (mod pαp) is a

solution of the congruence x2ℓ−1r ≡ 1 (mod pαp) if and only if pαp−1(p− 1) |
u2ℓ−1r. We know that (r, p) = 1 (due to r | n−1 and p | n), so then pαp−1 | u
and

p− 1
(p− 1, 2ℓ−1r)

| u is also satisfied. So then
pαp−1(p− 1)
(p− 1, 2ℓ−1r)

| u. On the

interval 0 ≤ u < pαp−1(p− 1) there are (p− 1, 2ℓ−1r) pieces of u of this kind,

and with this we proved (9.13).

Thus
∣∣∣{a : Z∗

n : a2ℓ−1r = 1}
∣∣∣ =

∏

p

(p− 1, r)2ℓ−1. (9.14)

Similarly,
∣∣∣{a : Z∗

n : a2ℓr = 1}
∣∣∣ =

∏

p

(p− 1, r)2ℓ,
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which is exactly twice (9.14). Thus
∣∣∣{a : Z∗

n : a2ℓ−1r = −1}
∣∣∣ =

∏

p

(p− 1, r)2ℓ−1.

That is

|B′| = 2
∏

p

(p− 1, r)2ℓ−1.

Then:
|B′|
ϕ(n)

= 2
∏

p|n

(p− 1, r)2ℓ−1

(p− 1)pαp−1
.

Suppose that, contrary to the statement of the theorem |B|
ϕ(n)

> 1
4
. Since

B ⊂ B′ then
1
4

< 2
∏

p|n

(p− 1, r)2ℓ−1

(p− 1)pαp−1
. (9.15)

Note that (p − 1, r)2ℓ−1 | p−1
2

, so the right-hand side of (9.15) is at most

21−ω(n), where ω(n) denotes the number of different prime divisors of the

number n. Hence ω(n) ≤ 2.

Assume that ω(n) = 2. Then n has two different prime divisors, denoted

by p and q. If the square of one of them is also a divisor of n, say p2 | n, i.e.,

αp ≥ 2, then the right-hand side of (9.15) is at least 21−2

p
≤ 21−2

3
= 1

6
, which

is a contradiction. So αp = αq = 1, i.e., n = pq. Then (9.15) can be written

in the following form:

p− 1
(p− 1, r)2ℓ

· q − 1
(q − 1, r)2ℓ

< 2.

Since the factors on the left are integers, both are necessarily 1. That is

p− 1 = (p− 1, r)2ℓ, q − 1 = (q − 1, r)2ℓ.

That is, 2ℓ is an exact divisor of both p − 1 and q − 1, and the largest odd

divisors of p − 1 and q − 1 are necessarily divisors of r. Denote the largest

odd divisor of p− 1 by s and the largest odd divisor of q− 1 by t. According

to the former, s | r and t | r. Since p ≡ 1 (mod s) and

pq − 1 = n− 1 = 2kr,
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we have

q − 1 ≡ pq − 1 ≡ 2kr ≡ 0 (mod s).

That is, s | q − 1, but the largest odd divisor of q − 1 is t, so s | t. Similarly,

t | s. That is, t = s. In other words, p− 1 = q − 1, and in this case we also

reached a contradiction.

Finally, if n = pα, then by (9.15) we have

1
4

<
(p− 1, r)2ℓ

(p− 1)pα
≤ p− 1

(p− 1)pα
=

1
pα−1

,

from which pα−1 < 4. This can only happen if p = 3 and α = 2, contradicting

the condition n > 9 of the theorem. In each case, we got a contradiction,

and so we have proved the statement of the theorem.

Erich Bach [1] proved that if the generalized Riemann hypothesis is true,

then the smallest Miller-Rabin witness is ≤ 2 (log n)2.

The primality tests listed so far are very fast and are still among the

most popular primality tests due to their simplicity. In theory, however,

there are also faster primality tests, e.g., Grantham [3] gave a test that is

asymptotically about three times faster than the Miller-Rabin test. However,

this primality test is significantly more complicated than the previous ones,

so we will not describe its steps. However, interested readers can look it up

in [3].
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9.8 An example of the Miller-Rabin primality test

Let n = 561 (= 3 · 11 · 17) (see chapter 9.2). This is the Carmichael

number, so the Fermat primality test does not tell us that n is composite.

However, let’s test 561 with the Miller-Rabin test. Then

561− 1 = 24 · 35.

Let’s choose a random a. Let’s say a = 7. Consider the following sequence

735, 770, 7140, 7280, 7560 (mod 561).

First, we calculate 735 by repeated squaring.

71 72 74 78 716 732

mod 561 7 49 157 -35 103 -50

Now

735 ≡ 732 · 72 · 7 ≡ (−50) · 49 · 7 ≡ 241 (mod 561).

Then, by repeated squaring, we calculate the elements of the sequence

735, 770, 7140, 7280, 7560 (mod 561):

735 770 7140 7280 7560

mod 561 241 -263 166 67 1

Since the sequence 735, 770, 7140, 7280 (mod 561) does not contain the

residue −1 modulo 561, so 7 is a Miller-Rabin witness. Thus 561 is a com-

posite number according to the test.

121

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf


9.9 AKS primality test

In 2002, three Indian mathematicians, Manindra Agrawal, Neeraj Kayal,

and Nitin Saxena [1] created a deterministic polynomial algorithm for pri-

mality testing. This algorithm is too complicated to describe here in full

detail, but we will say a few words about it. The algorithm is based on the

following theorem:

Theorem 9.10. Let a ∈ Z, n ∈ Z and (a, n) = 1. Then n is prime if and

only if

(x + a)n ≡ xn + a (mod n).

Proof of the Theorem 9.10.

First, we see the following: if n is prime and 1 ≤ i ≤ n− 1, then n |
(

n
i

)
.

Indeed
(

n
i

)
= n!

i!(n−i)!
is an integer, so i!(n − i)! | n!. But n is a prime

number and thus it is not included in the prime factorization of i!(n − i)!,

i.e., i!(n − i)! | (n − 1)! also holds. Thus (n−1)!
i!(n−i)!

is an integer, and hence
(

n
i

)
= n!

i!(n−i)!
= n · (n−1)!

i!(n−i)!
is divisible by n. Now we can continue by the proof

of the theorem.

First let n be a prime number. Now the coefficient of xi in (x+a)n−xn−a

is
(

n
i

)
an−i if 1 ≤ i ≤ n − 1. This coefficient is divisible by n. Moreover, the

constant term is an − a, which is divisible by n by Fermat’s little theorem.

Next assume that n is composite. Let q be prime such that qk | n for

some k but qk+1 ∤ n. Then qk ∤
(

n
q

)
= n(n−1)(n−2)···(n−q+1)

q!
and since (qk, a) =

1 also holds, the coefficient of xq is not divisible by n in the polynomial

(x + a)n − xn − a. This completes the proof of the theorem.

The starting point of the AKS test is the above theorem, however, the

algorithm itself is slightly complicated, and its proof requires serious number

theory tools. We now only describe the steps of the algorithm without proof:

(1) If n = ab for some a ∈ N and b > 1, then n is composite.
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(2) We look for the smallest r for which or(n) > log2
2 n, where or(n) denotes

the order of n modulo r. (This r is always less then or equal to ⌈(log2 n)5⌉.)

(3) For every 2 ≤ a ≤ min(r, n− 1), we check whether a is a divisor of n. If

so, then n is composite.

(4) If n ≤ r, then n is prime. (This step can be omitted if n ≥ 5.7 · 106.)

(5) If 0 ≤ a ≤
√

ϕ(r) log2 n exists, such that

(x + a)n 6≡ xn + a (mod xr − 1, n),

then n is composite, otherwise prime.

In the last step, (mod xr − 1, n) is connected to an equivalence rela-

tion that is understood over Zn and the polynomial xr is equivalent to the

polynomial constant 1 (that is, both n and xr − 1 is also equivalent to 0).

The running time of the algorithm is O
(
(log n)12+ε

)
. In 2005, Lenstra

and Pomerance [4] developed such a variant of AKS primality test, which has

running time O((log n)6 (log log n)c). An updated version is also available in

[5].

It is important to highlight that many Hungarian records have been set

in the last 30 years in the research of the largest primes. For example, T.

Csajbók, G. Farkas, A. Járai, Z. Járai and J. Kasza [2] from the Eötvös

Loránd University IK held the world record in 2006, in the largest twin

prime research. Additional records are also available on the following web-

site: http://compalg.inf.elte.hu/~ajarai/worldr.htm. Those who are

interested can read an interesting article about the so-called Járai method,

for example, in [3]. These methods do not use AKS, but deterministic pri-

mality tests developed for specially shaped primes (such as Mersenne primes

or generalized Fermat primes).
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10 RSA

Ron Rivest, Adi Shamir, and Len Adlema [1] created one of the best-

known public-key cryptosystem called RSA, in the mid-1970s. (The name

RSA comes from the initials of the authors’ names...) For a long time, RSA

plays an important role in various IT, computer, and communication sys-

tems. However, many people today (for certain applications) do not consider

it safe enough. The reason for this is that Peter Shor proved in [2] that fac-

torization and the discrete logarithm problem can be solved with a quantum

algorithm in polynomial time. In the last 30 years, quantum-resistant cryp-

tography has developed a lot, but in terms of efficiency, they cannot even

come close to methods based on RSA, discrete logarithm, or elliptic curve

discrete logarithm.
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10.1 RSA encrypting algorithm

Let N = pq be the product of two large primes, where in the binary

number system each prime consists of n digits. This N is called the RSA

modulus. Today, the typical length of N is 4096 bits, which means 1234

decimal places. At first, the N = 128 bit modulus also proved to be safe,

then as a result of the development of attacks and technology, it continuously
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increased: 256, 512, 1024 and then 2048 bits.

Let e, d be two integers, where

ed ≡ 1 (mod ϕ(N)).

Here, by N = pq we have ϕ(N) = (p − 1)(q − 1). The exponent e is called

the public exponent, while d is called the private exponent.

The pair (N, e) is the public key, while the pair (N, d) is the private or

(in other words) secret key. The latter is known only to the person to whom

we send the encrypted message and who will decode our messages.

A message can be thought of as an integer such that 0 < M < N . (For

the sake of simplicity, we now assume that (M, N) = 1 is satisfied for the

message. This can be easily achieved with a possible small modification of

the message. However, in fact, the condition (M, N) = 1 is not needed, only

in the general case the proof of the decoding procedure is a few lines longer

than the one below.)

The encrypted message is

C ≡Me (mod N) ← RSA function.

During decoding we know

ed ≡ 1 (mod ϕ(N)),

thus ∃k ∈ Z+ such that ed = kϕ(N) + 1. By Euler-Fermat theorem

M ≡ Cd (mod N), ← this is the decoding,

since

Cd ≡ (Me)d = Mkϕ(N)+1 = M
(
Mϕ(N)

)k ≡M · 1k ≡M (mod N).

RSA is a one-way function, since the encryption can be easily done with

the knowledge of the public key (N, e) by modular exponentiation, the time
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required of which is O(log e(log N)2) bit operations, however, the inversion

without knowing the private key d is very difficult. Most of the RSA attacks

focus on how to invert the RSA function without knowing d. More precisely,

if only the triple (N, e, C) is given (and p, q, d are secret), can we recover the

original message M from C?

Remark: d can be calculated from p, q, e, since d is the solution of the

following linear congruence:

ex ≡ 1 (mod (p− 1)(q − 1)).

But here p, q are secret, only N = pq is given, to know p, q we need to

factorize N , but this is very slow for large numbers N .

Is there another inversion that avoids the factorization of N?
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10.2 RSA attacks

Based on the informative paper by Tamás Dénes [3], below, we describe

some known RSA attacks that we should definitely pay attention to when

using RSA. For those interested in the topic I also recommend reading the

paper [4].

Implementation dependent attacks

By examining the computer’s server, e.g. delimiting the area of the server

in which the keys are stored, even in coded form.

127



Time measurement of current consumption.

These attacks require not only theoretical considerations, but also serious

technique.

Timing attack

Known, see e.g. Lovász-Gács book [5] that the complexity of squaring

a n digit number is less than multiplying two n digit numbers. This is not

only a theoretical result, but also practically so. Modular exponentiation

includes exactly such operations. Implementations have been made that

take advantage of this difference and achieve a significant speedup.

In response, the electrical engineers drew attention to the fact that if

someone could observe the processor, due to the time difference, he could

determine when he was squaring and when he was multiplying, from which

the binary form of the exponent of the secret decoder could easily be written.

After that, the above acceleration option was no longer used.

Attacks based on incorrect applications of RSA

Often, only p is chosen as a random prime, and q is chosen as the smallest

prime following p. Then

N = p(p + 2) e.g.,

from which p can be calculated very quickly. If p, q are consecutive primes

and q − p = d is relatively small,

and from N = p(p + d) p is easily calculated . . .

There are several similar cases that are not excluded by the official RSA

algorithm, but in which cases the RSA can be broken.

Careful use of RSA is important!
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Common moduli

It is important that a fixed N module is used by only one person, because

people with the same modulus can decipher each other’s messages based on

the following theorem of Simmons. (The full description of the theorem below

was first published in [2] in the publication J. DeLaurentis, who mentioned

at the beginning of the paper that the theorem originated from Simmons.)

Theorem 10.1. (Simmons) Let (N, e) be an RSA public key. If the private

exponent d is given, the factorization of N can be done efficiently. The

reverse is also true: If the factorization of N is known, then for each public

exponent e, the private exponent d can be efficiently calculated.

Some computer systems (communities) do not care about this theorem

and give all users the same N modulus, although they give each a different

private and public exponent... There are often economic reasons behind

this, since generating large p and q primes costs a lot, and if each user

needs a different pair of primes, it certainly multiplies the prices... However,

this is certainly not worth saving on it if IT security is important! (We

note here that if we do not stipulate that p and q are definitely prime,

but only with a very, very high probability, it significantly speeds up the

generation time of p and q. For example, in practice, a number that satisfies

the Miller-Rabin primality test for 511 integers can be considered a prime

number.) The probability that such a number is composite is less than

4−511 = 2−1022, which is a negligible probability in practice. Then number

of 1024 bit odd numbers number is 21023, so it is expected that there are at

most two "cheating" numbers. By the way, it does not take long to run a 511

Miller-Rabin primality test, but in practice a 100 test is more than enough.

Deterministic primality tests are much slower than the above primality tests.)

Proof of Theorem 10.1.

p, q, e given ⇒ d is efficiently calculated
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Then d is the solution of the following congruence:

ex ≡ 1 (mod ϕ(N))

ex ≡ 1 (mod (p− 1)(q − 1)).

N, e, d given ⇒ p, q is efficiently calculated

Let k
def= ed− 1.

ed ≡ 1 (mod ϕ(N))

ϕ(N) | ed− 1

ϕ(N) | k.

Now ϕ(N) is even, since ϕ(N) = (p− 1)(q − 1). That is, k is also even:

k = 2tr, where r is odd. Then

∀ (g, N) = 1 we have gk ≡ 1 (mod N)

since ϕ(N) | k. Thus gk/2 second root of unity modulo N :

(
gk/2

)2
= gk ≡ 1 (mod N).

By the Chinese remainder theorem, there are 4 roots of unity modulo pq

(now N = pq). Two of them are ±1. The other two roots of unity are ±x,

where

x ≡ 1 (mod p) x ≡ −1 (mod q).

Then by p | x− 1 and p | N we get

p | (x− 1, N)⇒ p = (x− 1, N). (10.1)

(Here we used the fact that N has only 4 divisors: 1, p, q, pq so (x − 1, N)

can be one of the above four values that is divisible by p, that is, p and pq.

But x− 1 is no longer divisible by q, so indeed p = (x− 1, N).)
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Consider the following sequence:

gk, gk/2, gk/4, . . . , gk/2t

(mod N).

It starts with some 1’s:

1,1,1,1,...,1,...

This is followed by

one of the 4 unit roots. 

In other words, there is at least a 1/2 chance that the beginning of the

sequence has the following form:

1, 1, 1, 1, . . . , 1,±x, . . . .

In this case gk/2s ≡ ±x (mod N) for some s, so x can be quickly determined

by modular exponentiation applied to g, and if we calculate the greatest

common divisor of x − 1 and N by the Euclidean algorithm, we get the

prime divisor p (see (10.1)).

Small private exponent

In practical applications of RSA, a small d may be chosen instead of a

randomly chosen private exponent d to reduce key generation time or to make

decryption faster. However, a theorem proved by M. Wiener [6] shows that

if d is a given becomes smaller than a certain bound, then the RSA will be

decipherable...

Let the prime-factor decomposition of N be pq, where now q < p. Since p

and q have the same number of digits in the binary number system, we also

know that p < 2q. Wiener proved the following:

Theorem 10.2. (Wiener) Let N = pq, where q < p < 2q and let

d <
1
3

N1/4. (10.2)
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If (N, e) is given (i.e., the RSA modulus and the public exponent), but we

do not know the value of the private exponent d, but we know that (10.2) is

satisfied, then the private exponent d can be efficiently calculated from the

values of N and e (provided that d is a solution of the congruence ed ≡ 1

(mod ϕ(N))).

Proof of Theorem 10.2. We know that

ed ≡ 1 (mod ϕ(N)).

Let

ed = tϕ(N) + 1 ⇒ ed − tϕ(N) = 1.

Then: ∣∣∣∣∣
e

ϕ(N)
− t

d

∣∣∣∣∣ =
1

dϕ(N)
.

Since e
ϕ(N)

is close to e
N

, t
d

is an approximation of e
N

, and therefore (as a

consequence of theorem 3.24.) d can be obtained from the continued fraction

form. Precisely:

N = pq q < p < 2q

q2 < pq = N ⇒ q <
√

N

p2

2
< pq = N ⇒ p <

√
2
√

N

p + q < 3
√

N

N − ϕ(N) = pq − (p− 1)(q − 1) = p + q − 1 < 3
√

N

|N − ϕ(N)| < 3
√

N.

Thus
∣∣∣∣

e

N
− t

d

∣∣∣∣ =

∣∣∣∣∣
ed− tϕ(N)− tN + tϕ(N)

Nd

∣∣∣∣∣

=

∣∣∣∣∣
1− t (N − ϕ(N))

Nd

∣∣∣∣∣ ≤
3t
√

N

Nd
=

3t

d
√

N
.
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Here

tϕ(N) = ed− 1 < ed.

By e < ϕ(N) we have

tϕ(N) < ϕ(N)d

t < d <
1
3

N1/4.

That is
∣∣∣∣

e

N
− t

d

∣∣∣∣ ≤
3t

d
√

N
<

N1/4

d
√

N
=

1
dN1/4

<
1

2d2
.

Based on the theory of continued fractions, see Theorem 3.24., all such frac-

tions t
d

can be obtained from the continued fraction form e
N

. Since

ed− tϕ(N) = 1 ⇒ (t, d) = 1.

That is, if the value of r = t
d

is given, then since we know that (t, d) = 1, we

immediately get both t and d.

Attacks based on the factorization of the modulus

Theorem 10.3. If a number of the form N = pq is given, so N is the product

of two different primes, then obtaining the values of p and q is essentially

polynomially equivalent to the computation of ϕ(N). More precisely:

Knowing N, p, q we get T (ϕ(N)) = O(log N)

Knowing N, ϕ(N) we get T (p, q) = O((log N)3).

Proof of Theorem 10.3.

a) The value of ϕ(N) = (p − 1)(q − 1) = pq − p − q + 1 = N − p − q + 1

can be calculated with 2 subtractions and 1 addition, so the time required is

O(log N).
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b) Since ϕ(N) = N − p− q + 1, thus

p + q = N − ϕ(N) + 1

pq = N

From the relation between the roots and coefficients, we get that p and q

are the roots of following second degree polynomial:

x2 − (N − ϕ(N) + 1)x + N = 0.

as a quadratic equation. By the quadratic formulas

p, q =
N − ϕ(N) + 1±

√
(N − ϕ(N) + 1)2 − 4N

2
,

which requires O ((log N)3) bit operations.

The most well-known group of theoretical RSA attacks is the one in which

the attack is based on the factorization of the modulus, since ϕ(N) can be

easily calculated from the prime factorization of N , and from this d ≡ e−1

(mod ϕ(N)) can be calculated easily.

Factorization algorithms are slow, they will be discussed in more detail

in the next chapter.
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11 Factorization

All primality tests discussed so far (except for the "trial division"), which

very slow), just shows that n is composite or not, but usually does not give

a factor. Thus, numbers of the form n = pq, where q > p > q/2 as used in

RSA [13], cannot also be factorized.

In almost all cases, Miller-Rabin [8] primality testing, which determines

whether a given integer is prime, is a polynomial time algorithm. Although

the AKS primality test [1] takes slightly longer, it is always a polynomial

time algorithm. To the best of our knowledge, factorization cannot be a

polynomial-time algorithm (perhaps it is not).

Many factorization methods are known, and I will present some of them

in this lecture notes, using the book of Koeblitz [4].

These are: Fermat’s factorization method [3], [7], Dixon’s random square

method [2], continued fraction method [9] and Lenstra’s elliptic curve algo-

rithm [5] (which will be discussed later in section 13.5). Apart from those

mentioned above, various more factorization algorithms are known, like: Pol-

lard ρ method [10], quadratic sieve [11], number field sieve [6].

To the best of our knowledge, the quadratic sieve is the fastest up to 100

decimal digits, and the number field sieve is the fastest above 100 decimal

digits.
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11.1 Fermat’s factorization method

Look at the example where we need to factor an odd integer n that is the

product of two nearly equal large numbers.

ab = n, a > b, a− b is small compared with a.

Instead of factorizing n (i.e., searching for a, b ∈ Z with n = ab), we attempt

to find x, y ∈ Z for which

n = x2 − y2.

In the following, we will assume that n is an odd number. These two problems

are equivalent due to the following arguments. Let n = ab first. Define x, y

by

x + y = a,

x− y = b. (11.1)

Then:

x =
a + b

2
, y =

a− b

2

x2 − y2 =

(
a + b

2

)2

−
(

a− b

2

)2

=
2ab

4
+

2ab

4
= ab = n.

Conversely, if x2 − y2 = n, then define a and b by (11.1). Then

x2 − y2 = (x + y︸ ︷︷ ︸
a

)(x− y︸ ︷︷ ︸
b

) = ab = n.

Following these:

Definition 11.1. (Fermat’s factorization method [1]) . Suppose that

n is not a square. Let’s take the first square number greater than n, which is

t2, where t = [
√

n] + 1. First, let x = t = [
√

n] + 1. If

x2 − n = t2 − n = square = y2,

x2 − y2 = n.
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If t2 − n is not a square, we look at the following square, x = t + 1:

x2 − n = (t + 1)2 − n = square = y2,

x2 − y2 = n.

If (t + 1)2 − n is not a square, we look at x = t + 2-t, and so on.
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11.2 Factor base algorithm

Fermat factorization [2], can be further developed into a more efficient

algorithm using a tricky idea.

Suppose that we would like to factorize the odd number n. During Fermat

factorization, we saw that it is sufficient to find such integers x, y for which

x2 − y2 = n. Instead, start looking for integers x, y for which:

x2 − y2 ≡ 0 (mod n),

y 6≡ ±x (mod n). (11.2)

For this:

n | x2 − y2 = (x− y)(x + y),

n ∤ x− y, n ∤ x + y,

1 < (n, x− y), (n, x + y) < n.

So we can use the Euclidean algorithm to calculate (n, x + y) and get a real

divisor of n, which is a factor. The procedure can be repeated for the factors

of n and so on until the prime factorization of n is obtained.
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Next we consider the factor base algorithm [4] or in another name Dixon’s

random square algorithm [1], in which we would like to find the pair (x, y)

that satisfies (11.2). The factor base algorithm was established by Lehmer

and Powers [4].

Definition 11.2. The set {p1, p2, . . . , pk}, where p1 < p2 < . . . < pk is called

factor base, if p1 = −1 and p2, . . . , pk are different primes. Furthermore, if

we fix the integer n ∈ N to be factored, we say that a is a B-number if the

least absolute residue of a2 modulo n can be expressed as a product of integers

from B.

Example. If n = 4633 and B = {−1, 2, 3}, then 67, 68, 69 are B-numbers,

since

672 ≡ −144 ≡ (−1) · 24 · 32 (4633),

682 ≡ −9 ≡ (−1) · 32 (4633),

692 ≡ 128 ≡ 27 (4633).

Definition 11.3. (Dixon’s random square algorithm [1]) Let n, B =

{b1, b2, . . . , bh} be given. Then we need to find h+1 pieces of B-numbers, say

we will denote them by a1, . . . , ah+1. Then

ai
2 ≡ b

αi1
1 . . . b

αih

h (mod n) for i = 1, . . . , h + 1.

Let αi,j mod 2 is the least nonnegative residue of βi,j modulo 2, that is

αi,j ≡ βi,j (mod 2) and 0 ≤ βi,j ≤ 1. Consider the h + 1 vectors

ui = (βi1 , . . . , βih
) (i = 1, . . . , h + 1)

over F2. These vectors are from a vectorspace of h dimensions over F2.

Using linear algebra we know that these vectors are linearly dependent, that

is ∃ ε1, . . . , εn+1 ∈ F2 such that

ε1u1 + . . . + εh+1uh+1 = 0 over F2. (11.3)
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Then:
h+1∏

i=1

a2εi

i =
h+1∏

i=1

b
εiαi,1

1 . . . b
εiαi,h

h ≡
h∏

j=1

b
∑h+1

i=1
εiαi,j

j .

Here
h+1∑
i=1

∑h+1
i=1 εiαi,y is even because of (11.3), so let

∑h+1
i=1 εiαi,j

def
= 2kj. Then:

(
h+1∏

i=1

ai
εi

︸ ︷︷ ︸
x

)2

≡
(

h∏

j=1

bj
kj

︸ ︷︷ ︸
y

)2

(mod n).

If x 6≡ ±y (n), we are done, we have found a pair x, y which satisfies (11.2).

If x ≡ −y or x ≡ +y (mod n), we need to find new h + 1 pieces of

B-numbers, say, a1
′, . . . , ah+1

′ and so on.

In the general Dixon’s random square algorithm [1], the candidates for

B-numbers are chosen randomly. If we find a B-number, we are pleased; if

the integer does not turn out to be a B-number, we choose another candidate

at random.

Example. In the previous example

672 → (1, 4, 2)→ (1, 0, 0) = u1,

682 → (1, 0, 2)→ (1, 0, 0) = u2,

692 → (0, 7, 0)→ (0, 1, 0) = u3.

One additional vector would be required for a solid linear dependence, but

in this case, the first two vectors are already linearly dependent since

1u1 + 1u2 + 0 · u3 = (2, 0, 0)→ (0, 0, 0).

Based on this:

672 · 682 ≡ (−1)12432 · (−1)132 = (−1)22432 ≡ (22 · 32)2 ≡ 362 (mod 4633).

Here 67 · 68 ≡ −77 (mod 4633), thus

772 ≡ 362 (mod 4633).
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That is

4633 | (77− 36)
︸ ︷︷ ︸

41

(77 + 36)
︸ ︷︷ ︸

113

.

Computing

(41, 4633) = 41

we get a real divisor of 4633, and, indeed, the prime factorization of 4633 is:

4633 = 41 · 113.

The factor base in Dixon’s random square algorithm [1] is typically

B = {−1} ∪ {p : p prím , p ≤ y},

where y is a function of n such that the running time of the algorithm tends

to be optimal. For optimally chosen y, the running time of this algorithm

is exp(c
√

log n log log n). An abbreviated description of this estimate can be

found e.g., in Koeblitz’s book [3].
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11.3 Continued fraction method

We would like to factor n using Dixon’s random square algorithm [1], and

in order to do so we use a

B = {−1} ∪ {p : p ≤ y}

factor base and look for B-numbers.

To be more exact, we took a number a ∈ Z, computed the least absolute

residue of a2 (mod n) (which is between −n
2

and n
2
) and tested it to see

whether it is a B-number. This method was extended further by Morrison

and Brillhart [3] using continued fractions.

The continued fracton method [3]: In this algorithm a is chosen so that

in the continued fraction form of
√

n, we take the convergents pi

qi
and fix an

a = pi. If rn(p2
i ) denotes the least absolute residue of p2

i (mod n), that is

rn(p2
i ) ≡ p2

i (mod n), where − n

2
≤ rn(p2

i ) ≤
n

2
,

then we know that
∣∣∣rn(pi

2)
∣∣∣ ≤ 2

√
n. (11.4)

That is, rn(p2
i ) is more likely to be B-number than a2 for a randomly chosen

a ∈ Zn, since it is significantly (radically) smaller than the expected value

around cn. To see (11.4), simply apply Theorem 3.23. for x =
√

n:

∣∣∣pi
2 − nqi

2
∣∣∣ < 2

√
n,

that is
∣∣∣rn(pi

2)
∣∣∣ < 2

√
n.

Since for pi’s we have

pi = aipi−1 + pi−2,

we also know the same recursion modulo n:

pi ≡ aipi−1 + pi−2 (mod n).

143



Thus in order to compute pi’sit is enough to determine the continued fraction

digits ai’s of
√

n. Since
√

n is the root of a quadratic equation, thus by

Theorem 3.20., the sequence of digits a0, a1, a2, . . . will sooner or later become

periodic.

The authors also suggested that, if necessary, we repeat the procedure

with
√

kn, where k is a small natural number. It can even be k = 2. For

example, in Morrison and Billhart’s paper [3], during the factorization of the

7th Fermat number, 227
+ 1, k = 257 was a good choice.

The running time of the algorithm is exp(c
√

log n log log n), but with a

better constant c than in the case of general Dixon’s random square algo-

rithm.
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11.4 Quadratic sieve method

The quadratic sieve method [2] is a tricky variant of Dixon’s random

square algorithm [1], developed by Pomerance. Then, up to a certain limit,

we add primes p to the factor base, for which p’s the n is the quadratic

residue modulo p, more precisely:

B = {−1, 2} ∪ {p : p prím p ≤ y,

(
n

p

)
= 1}.
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Then we look for B-numbers in a set

S = {t2 − n : [
√

n] + 1 ≤ t ≤ [
√

n] + A},

where A (as a function of n) is appropriate chosen constant. The running

time is still exp(c
√

log n log log n), but with a smaller constant c than the

ones used so far.
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11.5 Number field sieve

In number theory, the general number field sieve [1] is a classic algorithm

that is to be known as the fastest in case of integers to factorize greater than

10100

In this algorithm, knowing the number n to be factorized, using a cleverly

fixed irreducible polynomial f , we look for B-numbers between the elements

of a certain set S based on the irreducible polynomial f .

The detailed description of the algorithm can be found in [1]. The running

time of the algorithm is exp(c(log n)1/3(log log n)2/3).
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12 Diffie–Hellman key-exchange

The Diffie–Hellman key exchange system [1], [2] is one of the most im-

portant chapters of public key cryptography, in which the partners agree on

a common secret key that others will not be able to figure out even if all of

their communications are public. Since this algorithm was first published in

[1], it is named after the authors of that paper, who were inspired by Merkle’s

idea. (Indeed, in 2002, Hellman suggested that the algorithm be renamed

Diffie - Hellman - Merkle key exchange, which is still in use today, see e.g.,

[3].)

Assume that the two parties, Alice and Bob, are geographically separated

(living in different countries), want to agree on a common secret key, and are

worried that the channel through which they communicate (telephone or

email) will be monitored. How can they come to an agreement on a common

secret key?

Consider the simplest case, where the common secret key is an element

of Z∗
p. Then Alice chooses a secret integer 1 ≤ a ≤ p− 1, and Bob chooses a

secret integer 1 ≤ b ≤ p − 1, but they never share the values of a and b to

anyone. They kept them secret. They have agreed on a common primitive

root g, which may have been made public.

It is not absolutely necessary that g to be a primitive root (though it is

preferable), but it is enough that the order of g is very large.

146



Alice computes Bob computes

ga ( mod p) gb ( mod p)

ga, gb←→
they send to each other

common private key: gab (mod p)

Alice can easily compute gab (mod p) since Bob sent her gb (mod p) and

she created a ∈ Z, so gab (mod p) can be calculated quickly using a simple

modular exponentiation:

Alice: gab ≡ (gb)a (mod p).

Bob does the same procedure: gab ≡ (ga)b (mod p), thus they can both

compute gab (mod p).

Suppose Eve eavesdrops on the channel. She does not know a and b

because Alice and Bob kept them in mind, but she may be able to obtain
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the values of

g, ga, gb (mod p)

Eve now must solve a Diffie-Hellman problem to calculate gab (mod p). This

is what it is:

Diffie–Hellman-problem. If you know the prime p, the primitive root g,

the powers ga and gb (mod p), how can you quickly determine gab (mod p)?

Abbreviation: DHP.

Conjecture. There is no fast algorithm for solving the Diffie-Hellman prob-

lem.

A related problem is the discrete logarithm problem, which is discussed

in the next sections.

The Diffie-Hellman key exchange algorithm can be easily generalized from

Z∗
p to cyclic groups of order n, where the role of the primitive root is replaced

by a generator element of the cyclic group.
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12.1 Discrete logarithm problem

The problem studied in the following few sections is:
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Discrete logarithm problem. For a given prime p, primitive root g and

c ∈ Z∗
p, compute the x for which

c ≡ gx (mod p).

Abbreviation: DLP.

Clearly, if DLP is known to be solved fast, so is DHP, since

ga, gb a, b given  (ga)b ≡ gab ( mod p)

by DLP Modular exponentiation

However, it is not clear that if a fast solution is known for DHP, it is also

for DLP. The general assumption is that these two problems are equivalent.

But that is just a conjecture.

In the following, I present one or two (far from ideal, slow) methods

for calculating the discrete logarithm. The DLP is widely assumed to be

impossible to solve in a reasonable amount of time (for large groups). This

assumption is widely used in cryptography.
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12.2 Baby–Step–Giant–Step

Based on Das’ book [1], the Baby–Step–Giant–Step method is presented

here.

Although this method is slightly out of date, it has the advantage of

working not only in Z∗
p, but in any group. However, no faster approach is

known in generic groups, such as those based on elliptic curves.
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In the following, let G be a finite multiplicative, cyclic group of size n.

Let g be a generator element of G.

Shank’s [2] Baby–Step–Giant–Step algorithm:

Let m be the ceiling function of
√

n, i.e., m =
⌈√

n
⌉
. For i = 1, 2, . . . , m

we compute the values gi’s. We create a table, e.g .:

G = F97
∗ g = 23 m =

⌈√
97
⌉

= 10

i 0 1 2 3 4 5 6 7 8 9

gi (mod 97) 1 23 44 42 93 5 18 26 16 77
.

This is O(
√

n(log n)2) bit-operations, expressed by m the running time is:

O(m(log m)2). Then, sort the table by the size of gi:

i 0 5 8 6 1 7 3 2 9 4

gi (mod 97) 1 5 16 18 23 26 42 44 77 93
.

Next we compute g−m, where g−m is the inverse of gm, that is

g−mgm = 1 in G.

By Lagrange’s theorem gn = 1 for g ∈ G, where n = |G|. Thus

g−m = gn−m can be computed by O((log n)3) bit-operations,

since using modular exponentation we get the value of g−m. In our example

(G = Z∗
97, n = 96, g = 23, m = ⌈

√
97⌉ = 10):

g−m = 66 ( mod 97)

Suppose the DLP we need to solve is as follows: We are looking for the

solution of the equation a = gx in G, where a and g are given. As j =

1, 2, . . . , m− 1, we calculate

ag−jm.
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We will see if it matches any of the gi in the table. This is a O(log n) pieces

of comparisons for each j, so it takes time O((log n)2). Studied for all j, the

time required is: O(
√

n(log n)2).

If we find i for which

ag−jm = gi in G,

then

a = gjm+i,

and we have solved the discrete logarithm problem. Since all x can be written

in the form jm + i, this algorithm always gives a solution.

Disadvantages: slow, with a running time of O(
√

n(log n)3) and a high

storage demand of O(
√

n log n).
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12.3 Pollard’s ̺-algorithm for logarithms

This section discusses a variant of the rho-algorithm [3], which is related

to integer factorization. Although I describe the algorithm using Das’ book

[1], Pollard published the first variant of the method in [4].

Let us suppose we would like to solve the DLP problem

a = gx

in a cyclic group G, where |G| = n, and g is a generator element of G. To do

this, we construct a random walk in G. Starting element:

w0 = gs0at0 .
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Then for i = 1, 2, 3, . . ., we consider the i-th element of the walk in the form

wi = gsiati

Then w0, w1, w2, . . . behave like a random walk in G. According to the Birth-

day Paradox [2], there will be a coincidence after 20
√

n steps in this walk

with high probability (99%). Then

gsiati = gsj atj .

That is

ati−tj = gsj−si.

Since g is a generator element of G, its order is n. Thus:

(ti − tj)indga ≡ sj − si (mod n).

If (ti − tj , n) = 1, then

indga ≡ (sj − si)(ti − tj)−1 (mod n).

To make the method work, we will need a function f : G → G that assigns

wi to wi−1. To achieve this, we fix a relatively small positive integer r and

assign an element of the set {0, 1, 2, . . . , r − 1} to each w ∈ G. In addition,

we generate r pieces of "multipliers"

Mj = gσj aτj , j = 0, 1, 2, . . . , r − 1.

If for w (= gsiati) we assigned u ∈ {0, 1, . . . , r − 1}, then

f(w) = w · Mu

(
= gsiati · gσuaτu

)
.

↑

group multiplication

In practice, this method works well with r ≈ 20. Time required for this

method: O(
√

n(log n)3). With a clever idea the method of needing storage
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space can be minimized at the cost of that the time required doubles. We

know that after about 20
√

n steps there will be a coincidence with high

probability, but then there will be another coincidence at each step, as the

walk in the resulting loop goes round and round. So, if an element is fixed

after 20
√

n steps, it is most likely in the loop section of the walk. It is enough

to store this fixed element in permanent memory and always compare it to

the current element of the walk, as there will be a coincidence with this fixed

element in another 20
√

n steps (which is greater than the length of the loop).
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12.4 Pollard’s kangaroo algorithm

Pollard described this method in the same paper as the ρ method, see [2].

This approach is a slightly modified version of Pollard’s ̺ method, which I

describe in the same way as Das’ book [1]. The only difference is that there

are now two walks:

wi = f(wi−1) and wi
′ = f(wi−1

′).

When the two random walks meet, the walks begin to coincide from this

point, forming the Greek letter λ. (As a result, another name for the method
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is the Pollard’s lambda-algorithm.) If

wi = wj
′,

then

gsiati ≡ gsj
′

atj
′

, gsiati = gsj
′

atj
′

,

so

ati−tj = gs′
j
−si.

Thus

(ti − tj
′)−1(sj

′ − si) ≡ indga (mod n).

This method is sometimes referred to as the "method of wild and tame kan-

garoos".

The tame kangaroo walks through each step of its walk, digging holes at

each step, and when the wild kangaroo reaches a point in its walk, it falls

into the hole and becomes trapped...
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12.5 Pohlig–Hellman-algoirthm

Now let |G| = n, where the prime factorization of n is

n = p1
α1p2

α2 . . . pr
αr .

Pohlig and Hellman [2] discovered an algorithm that solves the discrete log-

arithm problem in

O
(√

max{p1, . . . , pr}(log n)c
)

bit operations.

That is, the method works if the largest prime divisor of n is small.

The algorithm appears to have been discovered by Roland Silver, but the

result was never published, hence the algorithm is sometimes referred to as

the Silver-Pohlig-Hellman algorithm. The following description is based on

Das’s book [1].

We will compute x by first computing the residue of x modulo pαi

i for

each i, and then using the Chinese remainder theorem to get x.

Assume p is prime and pα | n, but pα+1 ∤ n, and a = gx in G. We’d like

to find the residue of x modulo pα. Then:

a = gx, \̂ {n/pα}

an/pα

=
(
gn/pα

)x
,

but here the order of gn/pα

is pα, and thus we need to solve the DLP

a′ = (g′)x
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in G′, where a′ = an/pα

and g′ = gn/pα

. This gives the residue of x modulo

pα, which will be denoted b rpα(x).

Next write rpα(x) of the form

rpα(x) = x0 + x1p + x2p2 + · · ·+ xα−1pα−1. (12.1)

We start with x0 and then determine x1, x2, and so on. Let’s take a

closer look at one of the steps of the algorithm. Let us suppose we have

x0, x1, x2, . . . , xi−1 and we would like to compute xi. Let

λ = x0 + x1p + · · ·+ xi−1pi−1.

We know:

a′ = (g′)x in G′,

thus

a′(g′)−λ = (g′)xip
i+xi+1pi+1+···+xα−1pα−1

in G′.

Taking pα−i−1-th power:

(
a′(g′)−λ

)pα−i−1

= (g′)xipα−1+xi+1pα+···+xα−1p2α−i−2

in G′.

But the order of g′ is pα, thus

(
a′(g′)−λ

)pα−i−1

= (g′)xipα−1

=
(
(g′)pα−1

)xi

in G′.

That is, we would like to solve the DLP

a′′ = (g′′)xi

in G′′ =< (g′)pα−1
>, where a′′ =

(
a′(g′)−λ

)pα−i−1

and g′′ = (g′)pα−1
. Then

the order of G′′ is p.

We calculate the digits x0, x1, . . . , xα−1 using the prior approach, giving

the residue of x modulo pα.

Then we get x by repeating the process for all prime powers divisors of n

and then applying the Chinese remainder theorem to the resulting residues.
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12.6 Index-calculus algorithm

I describe the index calculus algorithm method in about the same way

as Das does in his book [1]. This method is an adaption of Dixon’s random

square algorithm [2], but it has historically gone beyond that. Western and

Miller [4] created the algorithm, which is based on Kraitchik’s ideas [3].

The factor base contains t small primes (t to be determined later):

B = {p1, p2, . . . , pt}.

The first step is to find a u’s for which the least absolute value residue of the

power gu modulo p is a B-number. Say

gu ≡ p1
γ1 . . . pt

γt ( mod p).

From such u you need s≫ t pieces (where≫ means that about s ≥ 2t). For

the indexes, we get the following:

γ11 indg (p1) + . . . + γ1t indg(pt) ≡ u1 (mod p− 1)
...

γs1 indg (p1) + . . . + γst indg(pt) ≡ us (mod p− 1)

Here γij ’s are given. The values of indg(p1), . . . , indg(pt) are obtained by

solving the system of linear congruences.

Now gx = a. In the second step, we look for α for which agα is a B-

number. That is,

agα ≡ p1
γ1 . . . pt

γt (mod p).
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From this we get ind a:

ind a ≡ −α + γ1 ind p1 + . . . + γs ind ps (mod p− 1).
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12.7 Zero-knowledge protocol

The Zero Knowledge Protocol is the name of a cryptographic approach

for addressing the discrete logarithm issue that was developed in the early

1980s [2]. The purpose of the approach is to show people that you can solve

a cryptographic challenge without revealing the method of solution. A great

example of this is the discrete logarithm problem.

Let’s say Picara wants to show others that he can solve the DLP

a = gx,

but he does not want to tell them anything about x. (The first letter of

Picara’s name matches to the first letter of the word "prover.")

So, a and g are given, Picara claims to have calculated x, but he has no

intention of telling anyone the value of x. Can he convince us that he knows

the value of x?

The verifier, let’s call him Vivale, checks it as follows:
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1st step Picara generates a random number y < p − 1 and sends a′ = gy to

Vivale.

2nd step: Vivale flips a coin.

If head: Picara sends y to Vivale. Vivale checks to see if a′ = gy is

correct.

If tail: Picara sends Vival x + y (mod p). Vivale checks to see if

a′a = gx+y is correct.

These two steps are repeated until Vivale is convinced that Picara really

knows the solution or Picara falls for bluffing.

Indeed, if Picara does not cheat, that is, if he knows both a′ and the

related y, then the solutions of the discrete logarithm problems a′a = gx+y

and a = gx are equivalent.

If Vivale flips a coin, he can check whether a′a = gx+y really holds, i.e.,

whether Picara knows the answer to the corresponding discrete logarithm

problem a = gx. However, unlike Picara, Vivale only knows a′ while y is a

secret, so he does not come any closer to solving a = gx (unless he knows

how to solve another discrete logarithm problem a′ = gy, but in theory Vivale

does not know any method of solving discrete logarithm problems).

Picara might cheat by generating a random z and then calculating the

a′ for which a′ = gza−1, i.e., a′a = gz and intending to send z to Vivale as

x+y. Then, if Vivale flips a coin with a tail, Picara is not busted. Yes, but if

Vivale flips a coin with head, he asks about y, which Picara can not answer

unless he knows the solution of a′ = gy. Vivale, on the other hand, does not

get any closer to solving the discrete logarithm problem a = gx by knowing

the equation a′ = gy...

If Vivale repeats this verification method enough times, cheating will

almost likely be discovered sooner or later. However, if Picara never fails,

it is practically certain that he knows the answer to the discrete logarithm

problem a = gx. At the same time, whether Vivale flips heads or tailes, he
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gets no closer to solving the discrete logarithm problem a = gx. As a result,

the above method is truly a zero-knowledge protocol.

Further descriptions of zero-knowledge protocols can be found in e.g., [1],

[4] is. For number theory related zero-knowledge protocols can be found in

e.g., [3].
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13 Elliptic Curve Cryptography

We frequently calculate in a finite field Fp (where p is prime) or its ex-

tension Fq (where q is a prime power) during cryptographic applications of

number theory. However, it is frequently useful if the group in which the

operations are carried out has a different, more ”random” structure than

the ones described above, ensuring more protection against future hacking

attempts. Groups defined on elliptic curves are ideal for this.

The history of elliptic curves itself goes back to Diophantus, who, without

today’s notations, identities, group addition, elementary studied the curve

y(a − y) = x3 − x see [3]. The paper [1] contains a brief but informative

survey of this and the history of elliptic curves.

In 1985, Koeblitz [4] and Miller [5] independently proposed the crypto-

graphic usage of elliptic curves. However, widespread cryptographic applica-

tions have been available only after 2004.

For readers who are more interested in this issue, I recommend studying

the book ”Handbook of Elliptic and Hyperelliptic Curve Cryptography” [2].

We provide algebraic structures during the definition of elliptic curves

that offer a large number of Abelian groups with easily countable operations,

”far more” than F∗
q’s. These are the following.

Definition 13.1. a) Let K be a field, mostly R, Q, C or Fq for some q

whose characteristic is greater than 3, and let x3 + ax + b (a, b ∈ K)

is a third-degree polynomial with no multiple roots. An elliptic curve

over K is the set of points (x, y) (with x, y ∈ K) for which

y2 = x3 + ax + b (13.1)

plus one more point marked with 0, called “the point at infinity”.

b) If K is a field with characteristic 2, then an elliptic curve over K is the
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set of points (x, y) for which

y2 + cy = x3 + ax + b, (13.2)

or

y2 + xy = x3 + ax2 + b (13.3)

is fulfilled by given a, b, c ∈ K (now the third-degree polynomial on the

right can have multiple roots) + “the point at infinity” 0.

c) If the characteristic of K is 3, then an elliptic curve over K is the fol-

lowing

y2 = x3 + ax2 + bx + c, (13.4)

where the polynomial in the right-hand side has no multiple roots.

In order to be able to define a well-interpreted group on an elliptic curve,

the curve must be non-singular, which means that the curve is “smooth”,

i.e., it has no peaks or intersections. This is equivalent to the fact that all

points of the curve are not singular, which is defined as follows:

Definition 13.2. Let’s write (13.1) (or similarly (13.2), (13.3), (13.4)) in

the form F (x, y) = 0:

F (x, y) def= y2 − (x3 + ax + b) = 0.

We say that a point (x, y) on the curve is “nonsingular” (or “plain”), if at

least one of
∂F

∂y
6= 0 or

∂F

∂x
6= 0 is satisfied at (x, y).

We do not prove it in this lecture notes, but we can see the condition

that it is on the right-hand side of (13.1) and (13.4) polynomial does not

have multiple roots, then all points are on the curve is not singular. Using a

discriminant, we also know that e.g., in the case of (13.1), this is equivalent

to 4a3 + 27b2 6= 0.
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In the remaining parts of this chapter, we mostly studied fields

whose characteristic is greater than 3, i.e., our elliptic curve It is

of the form (13.1):

y2 = x3 + ax + b.

In most cases, the elliptic curve is defined over a field, but there is also

an application where it is over a group Zn. Here, we are thinking of the

factorization method based on elliptic curves, where the elliptic curve is not

defined over a field, but over a group Zn, where (usually) n is a composite

number.

The applicability of elliptic curves depends on the fact that the points

of the curve form an Abelian group for a suitable operation. For this, an

operation must be defined between the points of the curve. For the sake of

clarity, we first restrict ourselves to K = R (the same applies to other fields,

only the geometric illustration does not work there), this will be the topic of

our next subsection.
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13.1 Elliptic curves over R

In this subsection, we define an addition on the points of elliptic curves

over R. However, before moving on to the definition of addition, we show a

figure of the possible forms of elliptic curves over R.

Then we can define the addition. First, we give a definition based on

illustrative geometry.

Definition 13.3. Let E be an elliptic curve over R, and let P and Q be two

points of E. The point at infinity is still denoted by 0. Then:

1. P + 0 = 0 + P = P .

2. If P = (xP , yP ) 6= 0 and Q = (xQ, yQ) 6= 0, then
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a) For xP 6= xQ, the line connecting P, Q intersects the curve at a

point R = (xR, yR). Let P + Q be the mirror image of R on the x

axis, i.e.,

P + Q
def= (xR,−yR).

b) In the case of xP = xQ we have one of the following two cases.

b1) If yP = yQ, i.e., P = Q, then the tangent in P intersects the

curve at only one other point R = (xR, yR), let

P + Q = 2P
def
= (xR,−yR)

(if P is an inflection point: R = (xR, yR) = P ).

b2) If yP = −yQ then

P + Q
def= 0

.

The proof that the addition given in Definition 13.3. is well defined and

that this addition forms an Abel group at the points E can be found e.g., in

Silverman’s book [1]. It is also clear that the unit element in this group is 0,

the point at infinity since

P + 0 = 0 + P.

The inverse of an element P = (x, y) is −P = (x,−y).
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The following formulas can be calculated using elementary geometry (see

[1]):

If P = (xP , yP ) and Q = (xQ, yQ), where P 6= ±Q, then the slope of the

line P Q is:

m =
yp − yQ

xP − xQ

.

The line P Q intersects the curve at point R = (xR, yR), here:

xR = m2 − xP − xQ (13.5)

yR = yp + m(xR − xP ),

or equivalent

yR = yQ + m(xR − xQ).

If S = P + Q, then the point S is the mirror image of the point R on the x

axis, so for the coordinates of S = P + Q = (xS, yS) we have

xS = m2 − xP − xQ,

yS = −yp + m(xP − xR) = −yQ + m(xQ − xR).

Let us see the proof of (13.5). Our curve is of the form y2 = x3 + ax + b,

while the line P Q is of the form y = mx+d. Both the line P Q and the curve

have the points P , Q and R, so xP , xR and xQ are solutions of

(mx + d)2 = x3 + ax + b.

By rearranging

x3 −m2x2 − 2mdx + ax + b− d2 = 0.

Then xP , xR and xQ are roots of the above equation, so according to the

relationship between roots and coefficients:

xP + xQ + xR = m2,

which proves (13.5).
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If P = Q by adding the points P and Q of the curve, then the slope of

the curve at the point P must be written, this is

m =
3x2

p + a

2yp

.

Then for the coordinates of S = P + Q = (xS , yS):

xS = m2 − xp − yp,

yS = −yp + m(xP − xR) = −yQ + m(xQ − xR).

Finally, for P = −Q, P + Q = 0.
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13.2 Elliptic curves over Fp

In cryptographic applications, elliptic curves are usually defined over a

field Fp. Unfortunately, at that time the nice continuous curve disappears,

instead we get a figure consisting of discrete points. In the subsection, we

rely on Corbellini’s online lecture note [1], the figures in the chapter also

come from him. The following figure shows the points of the elliptic curve

y2 = x3−7x+10 over the field Fp, where p is 19, 97, 127 and 487, respectively.

Note that there are at most 2 points with the given x coordinate on the

curve, and the figure is always symmetric to the line y = p/2.

169



It is clear that the figure of the “line” passing through the points P and Q

of the curve will be completely different from the real case. But fortunately,

lines have a coordinate geometric formula, ax+by = c, with which we can also

work over Fp. Now again the line passing through he points P , Q intersects

the curve at a third point R, whose reflection on the line y = p/2 will be

P + Q. This is illustrated by the following figure, which shows the sum of

the points P = (16, 20) and Q = (41, 120) on the elliptic curve y2 = x3−x+3

(mod 127).

It can be seen that if the field of the elliptic curve is finite, the geometric

formulation will be difficult to handle. In this situation, though, the addi-

tion described by algebraic formulas can be transferred without any further

explanation:

Definition 13.4. If P = (xP , yP ) and Q = (xQ, yQ), where P 6= ±Q, then

the slope of the line P Q is:

m =
yp − yQ

xP − xQ
.
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If S = P + Q, then the point S is the mirror image of the point R on the x

axis, so for the coordinates of S = P + Q = (xS, yS) we have:

xS = m2 − xP − xQ,

yS = −yp + m(xP − xR) = −yQ + m(xQ − xR).

If P = Q, then the slope of the curve at the point P must be written, this is

m =
3x2

p + a

2yp
.

Then for the coordinates of S = P + Q = (xS , yS):

xS = m2 − xp − yp,

yS = −yp + m(xP − xR) = −yQ + m(xQ − xR).

Finally, for P = −Q, P + Q = 0.

A very important question is how many points of an elliptic curve E

defined over a finite field Fq can have. According to Hasse’s theorem [2] this

value can only differ from q + 1 by 2
√

q:

Theorem 13.5. (Hasse)

|card E(Fq)− (q + 1)| ≤ 2q1/2.

As a conjecture, the theorem was formulated by Artin in his thesis in

1924. It was only 12 years later that Hasse managed to prove it, and his

proof was presented in a series of articles [2]. Weil [5] further generalized the

estimate to curves more general than elliptic curves.

It is also known that the structure of the group E(Fq) is either cyclic or

the direct product of two cyclic groups.

In cryptographic applications, we often need the exact order (i.e., exact

number of elements) of the elliptic curve. Schoof [3], [4] gave a polynomial
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algorithm for this, however, the description and proof of the algorithm goes

beyond the scope of this lecture notes.

A brief description of elliptic curve cryptography (ECC) can be found on

the related Wikipedia page [6]. In this lecture notes, we take a look at some

chapters of the ECC without claiming to be complete. Thus, we will talk

about the analog of Diffie-Hellman key exchange, digital signature based on

elliptic curves and Lenstra’s factorization algorithm.
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23/elliptic-curve-cryptography-finite-fields-and-discrete-

logarithms/

13.3 Diffie-Hellman key exchange on elliptic curves

Suppose that Alice and Bob want to agree on a shared secret key, which

is now symbolized by a point S of an elliptic curve over Fp. (We can easily

make a point of Fp correspond to S, e.g., we take the x or y coordinates of

S.) Eve watches the channel on which Alice and Bob communicate. The

question is whether Eve can figure out the shared secret key S from what

she listens to on the channel.

The analog of Diffie-Hellman key exchange for elliptic curves is the fol-

lowing:

Alice and Bob agree on a public elliptic curve E over Fp and a point P

of it whose order is a large prime. Alice thinks of a natural number a, Bob

thinks of a natural number b. They both keep the number they thought a

secret, they don’t tell anyone, not even each other. Alice calculates aP , Bob

calculates bP . The values of aP and bP are sent to each other on the channel,

and the shared secret key is abP .
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But how to quickly calculate the multiple of an arbitrary point P on the

elliptic curve, say cP ? This is done using a double-and-add algorithm. Let’s

write c as a sum of two powers:

c = 2a1 + 2a2 + · · ·+ 2ar ,

where 2a1 is the largest power of two. First, we calculate the multiples of the

form Pi = 2iP , where i = 1, 2, . . . , a1, with the following recursion:

P0 = P,

Pi = Pi−1 + Pi−1 ha i ≥ 1.

Then:

cP = Pa1 + Pa2 + · · ·+ Par
.

This algorithm is very fast and polynomial time. (Here we note that Morain

and Olivos [7] noticed that if we write c in the binary number system, but

with digits {0, 1,−1}, and we try to make this form as short as possible in

the context the non-0 digits, then a 25−30% speed increase can be achieved.

This is due to the fact that addition and subtraction on elliptic curves take

almost the same amount of time.)

So, knowing a, Alice can quickly calculate aP , and Bob, knowing b, can

calculate bP . Both of them can quickly calculate the common secret key,

since Alice adds aP exactly b times, and Bob adds bP exactly a times.

However, it is generally assumed that in order to find out the common

secret key, Eve needs to be able to determine a or b, but she only knows the

values of the points P , aP and bP on the curve. This is a discrete logarithm

problem, discussed in more detail in Chapter 12.

The algorithm still has some questionable points. For example, Alice and

Bob, how do they find a high-order common point P ? It happens the other

way around than we think. So it is not the case that we take a random P

point, calculate its order, and if this order is large, we keep P , and if it is
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not large we try a small new random P point. Based on Schoof’s algorithm,

we can determine the order of the curve [9], [10], but this is not suitable for

determining the order of any point on the curve. Compared to this, we are

moving in the opposite direction. We calculate the order of the curve, let it

be N . We take a large prime divisor n of this N . Next, we search for a point

P of order n. For this we choose a random R. We calculate:

P =
N

n
R.

If it is 0, then we choose a new random R, if it is not 0, then the order of P

is n.

It is easy to think that any random curve is good for the cryptographic

application of elliptic curves. This is far from the case. So, for example,

based on Smart’s attack [11], if the order of the curve over Fp is exactly

p, then the discrete logarithm can be solved in linear time. We can also

think of the well-known MOV attack [6] (e.g., when the order of the curve

is p + 1). Fortunately, the number of such, so-called anomalous curves is

relatively small. To exclude the above and similar attacks, in 1999 NIST

published a publication [8] about elliptic curves that were considered safe

at the time. You can also read about attacks against cryptography based

on elliptic curves and the weak cryptographic properties of certain elliptic

curves, e.g., [1], [4], [5] and [3]. The last reference is also related to quantum

computer attacks.
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An important question is why is an ECC encryption system based on an

elliptic curve better or more reliable than a traditional encryption system?

The size of ECC encryption keys is much smaller than those used before.

This is illustrated in the table published by NIST:

You can see the size difference between the keys. Thus, smaller electronic

devices, e.g. in the case of mobile phones, encryption based on ECC is more

obvious.

References

[1] , I. Biehl, B. Meyer, V. Müller, Differential fault attacks on elliptic

curve cryptosystems, Advances in Cryptology – CRYPTO 2000. Lecture

Notes in Computer Science Vol. 1880. (2000), 131–146,

https://www.iacr.org/archive/crypto2000/18800131/18800131.

pdf.

[2] A. Corbellini, Elliptic Curve Cryptography: finite fields and discrete log-

arithms, https://andrea.corbellini.name/2015/05/23/elliptic-

curve-cryptography-finite-fields-and-discrete-logarithms/

[3] L. De Feo; P. Jao, Plut, Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies, Cryptology ePrint Archive, Report

176

https://www.iacr.org/archive/crypto2000/18800131/18800131.pdf
https://www.iacr.org/archive/crypto2000/18800131/18800131.pdf
https://andrea.corbellini.name/2015/05/23/elliptic-curve-cryptography-finite-fields-and-discrete-logarithms/
https://andrea.corbellini.name/2015/05/23/elliptic-curve-cryptography-finite-fields-and-discrete-logarithms/


2011/506. IACR. Archived from the original on 2014-05-03. Retrieved 3

May 2014:

https://eprint.iacr.org/2011/506

[4] M. Hedabou, P. Pinel, L. Beneteau, A comb method to render ECC

resistant against Side Channel Attacks,

https://eprint.iacr.org/2004/342.pdf

[5] How to design an elliptic-curve signature system, Cr.yp.to: 2014.03.23,

http://blog.cr.yp.to/20140323-ecdsa.html

[6] A. Menezes, T. Okamoto, S. A. Vanstone, Reducing elliptic curve loga-

rithms to logarithms in a finite field, IEEE Transactions on Information

Theory. 39 (5) (1993), 1639–1646.

[7] F. Morain, J. Olivos, Speeding up the computations on an elliptic curve

using addition-subtraction chains, RAIRO - Theoretical Informatics and

Applications - Informatique Théorique et Applications 24.6 (1990), 531-

543, http://eudml.org/doc/92374

[8] National Institute of Standards and Technology, Recommended Elliptic

Curves for Federal Government Use, July 1999.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.doc

[9] R. Schoof, Elliptic curves over finite fields and the computation of square

roots mod p. Math. Comp., 44 (170), 483–494, 1985,

http://www.mat.uniroma2.it/~schoof/ctpts.pdf.

[10] R. Schoof, Counting points on elliptic curves over finite fields, J. Theor.

Nombres Bordeaux 7, 219–254, 1995,

http://www.mat.uniroma2.it/~schoof/ctg.pdf.

177

https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2004/342.pdf
http://blog.cr.yp.to/20140323-ecdsa.html
http://eudml.org/doc/92374
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.doc
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.doc
http://www.mat.uniroma2.it/~schoof/ctpts.pdf
http://www.mat.uniroma2.it/~schoof/ctg.pdf


[11] N. P. Smart, The discrete logarithm problem on elliptic curves of trace

one, 1997,

http://www.hpl.hp.com/techreports/97/HPL-97-128.html.

13.4 Elliptic Curve Digital Signature Algorithm

Digital signatures are extremely important in today’s IT world. In ad-

dition to traditional handwritten signatures, it is now often necessary to

electronically verify that a given document originates from us.

The idea of a digital signature was proposed by Diffie and Hellman in [2],

but did not become feasible until when RSA was published. It took decades

for the digital signature to be recognized as legal equivalent to the traditional

one.

Since then, nathematicians have invented many algorithms for digital

signatures. In accordance with the topic of this chapter, we will now discuss

elliptic curve digital signature algorithms (ECDSA).

ECDSA was first proposed by Vanstone [4] in 1992, adopted by ISO (In-

ternational Standard Organization) in 1998, and ANSI (American National

Standard Institute) in 1999. A paper summarizing the main cryptographic

properties of ECDSA was published in 2001 by Johnson, Menezes and Van-

stone [3]. In this chapter, we only briefly analyze ECDSA, based on the work

of Corbellini [1].

Let’s say that Alice wants to electronically sign a message. In the case

of ECDSA, this requires a public prime p, an elliptic curve E over Fp, and a

point G of prime order in it. These are all public. Denote the order of G by

n. Then n is a prime number. (We note here that the order of most standard

elliptic curves in use are prime numbers, i.e., n is the same as the order of

the elliptic curve E, so there is no need to factorize the order of E.) Alice

has another secret key, which is a natural number between 1 and n, denote
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it by dA. Alice’s public key is the following point of the elliptic curve:

HA = dAG.

It is important that anyone in the world can be convinced that Alice is

the person who signed the message.

For example, in our narrative, let’s call the other character Bob, who

wishes to ensure that the sent message truly has been signed by Alice. He

can use it for this the elliptic curve E, the point G on it, the signed document,

and Alice’s public key HA.

Most of the time, Alice does not sign the original message (because it’s

usually too long), but a shortened version of it with a hash function. Crypto-

graphically secure hash functions must satisty many requirements, e.g., you

can read about it in more details in [5]. The shortened version of the message

with the hash function is an integer whose binary length cannot be greater

than the binary length of n (where n is the order of the subgroup generated

by point G). Let z denote the hash function shortened version of the mes-

sage. Then z ∈ N and z can be greater than n, but its binary form cannot

be longer than n.

Alice’s algorithm for signing is the following:

1. Alice chooses a random k from the set {1, 2, 3, . . . , n− 1}.

2. Alice calculates the point P = kG of the elliptic curve E.

3. Alice denotes the coordinate of the point P on the x axis with r: r = xp.

4. If r = 0, she chooses another random k and tries again, i.e., she goes back

to step 1.

5. She calculates s ≡ k−1(z + rdA) (mod n) (where dA is Alice’s secret key,

and k−1 is the multiplicative inverse of k modulo n. )
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6. If s ≡ 0 (mod n), Alice chooses another random k and tries again, i.e.,

goes back to step 1.

The digital signature is the pair (r, s).

(Note that the operations in Step 5 are the usual addition and multiplication

in Zn. In contrast, in Step 2 the addition is defined over the points of the

elliptic curve, and kG = G + G + · · ·+ G︸ ︷︷ ︸
k pieces of G

.)

We can then move on to how Bob can verify the authenticity of the signature.

1. Bob calculates the number u1 = s−1z (mod n).

2. Bob defines the number u2 = s−1r (mod n).

3. Bob calculates the point P = u1G + u2HA of the elliptic curve.

The digital signature is valid if r = xP .

At first sight, it is unclear why this control method works, but when the

equations are put together, everything becomes clear:

We know that P = u1G + u2HA and HA = dAG, thus

P = u1G + u2HA

= u1G + (u2dA)G
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= (u1 + u2dA)G.

If we recall the definition of u1 and u2, i.e., u1 = s−1z (mod n) and u2 = s−1r

(mod n), then

P = (u1 + u2dA)G

= (s−1z + s−1rdA)G

= s−1(z + rdA)G.

Previously, s was given by k−1(z + rdA), so ks = z + rdA, from which

P = kG.

This proved the correctness of the control method.

Today, ECDSA is used e.g. during the TLS protocol that provides pro-

tection for communication over the Internet. Its safety depends on the fact

that there is no fast algorithm for solving the discrete logarithm problem on

elliptic curves. (That is, from the equation HA = dAG, knowing only HA

and G, there is no fast algorithm to calculate the private key dA.) Thus, if

the parameters of the elliptic curve are large enough, the discrete logarithm

problems given on the given elliptic curve cannot be solved even with the

help of computers.

It is important that the random k used in the algorithm has to be used

only once. If it is used repeatedly, Alice’s private key becomes quickly com-

putable. In the same way, it is very important to choose k in a truly random

way, because if k can be predicted in some way, then dA can be easily de-

termined. You can read more about this in Corbellini’s note [1] and on the

ECDSA-related Wikipedia page [6].
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13.5 Lenstra’s factorization method based on elliptic

curves

Until now, elliptic curves were always defined over a field. But there is an

important case when the elliptic curve is not defined over a field, but over a

group Zn. This is Lenstra’s [3] factorization algorithm. If n is composite, the

elliptic curve will have points that cannot be added with the usual addition,

because the denominator in the slope of the line passing through the two

points will not be invertible modulo n. However, this at first sight unpleasant

property is actually very useful: it can lead to finding a real divisor of n,

182

https://andrea.corbellini.name/2015/05/30/elliptic-curve-cryptography-ecdh-and-ecdsa/
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://andrea.corbellini.name/2015/05/30/elliptic-curve-cryptography-ecdh-and-ecdsa/
https://andrea.corbellini.name/2015/05/30/elliptic-curve-cryptography-ecdh-and-ecdsa/


because by calculating the greatest common divisor of this denominator and

n, we get a divisor of n.

The starting point of the factorization method is Pollard’s p− 1 method

[4]. This algorithm will only be described very briefly, since there are many

faster methods available today. However, this is the method that is the

starting point of Lenstra’s [3] algorithm, which is still considered one of the

fastest factorization algorithms.

The algorithm works if n is a prime divisor of p and p− 1 is a B-smooth

number, i.e., p − 1 is a divisor of every prime power ≤ B. In other words,

p − 1 | [1, 2, 3, . . . , B], where the square bracket denotes the least common

multiple.

From now on

LB = [1, 2, 3, . . . , B].

By the little-Fermat theorem, if p is prime and (a, p) = 1 then

ap−1 ≡ 1 (mod p).

If p− 1 is a smooth number related to B, i.e., p− 1 | LB, then by raising the

above congruence to the power of LB/(p− 1) we get

aLB ≡ 1 (mod p).

That is, for p | n we have

p | (n, aLB − 1).

Thus, if we use the Euclidean algorithm to calculate the greatest common

divisor of n and aLB − 1, if it is smaller than n, we get a real divisor of n. If

we do not succeed, we choose another a. In the algorithm, the value of B is

continuously increased: B = 1, 2, 3, . . . . The interesting feature of Pollard’s

paper [4] is that he determines the time requirement of the algorithm based

on the operating time of Turing machines.

Pollard’s p− 1 method works fast if p− 1 is a smooth number related to

B, in case of relatively small B. Here p− 1 is the order of the multiplicative
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group Z∗
p. Lenstra moved from this group to groups of elliptic curves defined

over Zp. This will be good because the order of such a group is of the form

p + 1± k

based on Hasse’s theorem [2], where k ≤ 2
√

p. If the order p + 1 ± k is a

smooth number related to B, the algorithm will probably give a real divisor

of the composite number n.

In the following, we describe a simplified version of Lenstra’s algorithm.

Let n be a composite number that we would like to factor, and let B be a

suitably chosen constant depending on n. First, we take a point P = (xP , yP )

of Z2
n, then we choose integers a 6= 0 and b for which

6(4a3 + 27b2)

is relative prime to n-hez. Moreover let

y2 = x3 + ax + b

be an elliptic curve such that it contains the point P , i.e.,

b = y2
p − x3

p − axP .

Then, by repeated addition, we consider the points

P, 2!P, 3!P, · · · , B!P

of the elliptic curve. Suppose that we study the same elliptic curve and the

same points, but now over Zp. Now if the order of the curve, for s we have

s | B!,

then, based on Lagrange’s theorem, B!P gives the point 0 (now the elliptic

curve is studied over Zp). What does it mean? During the repeated addition,

there was a point R and S of the curve (where R = aP and S = bP ), when
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the denominator of the slope of the line passing through R and S is divisible

by p, i.e., p | xR − xS. That is, if we add R and S on the curve defined over

Zn, then the result of the addition is either 0, or we simply cannot add the

two points, since in the formula of the line passing through them xR − xS is

not invertible. If we cannot add the two points, then

1 < (xR − xS , n) < n,

and by calculating it, we get a real divisor of n. The points P, 2!P, 3!P, · · · , B!P

are calculated by repeated addition. Indeed, if Pi = i!P , then Pi = iPi−1 can

be calculated quickly, e.g., with the double-and-add algorithm. If we cannot

add two points during the procedure, say R and S, then by calculating

1 < (xR − xS, n) < n

we get a real divisor of n.

Let us return to the order of the elliptic curve defined over Zp which is

s. According to Hasse’s theorem [2], s = p + 1± k, where k ≤ 2
√

p. If B is

large enough for and we have

s | B!,

then B!P is the 0 element over Zp, in which case either B!P is the 0 element

also over Zn, or the addition is undefined, and in this case we get a real

divisor of n.

During the procedure, it may also happen that during additions over Zn

a

P, 2!P, 3!P, · · · , B!P

points are all elements of the elliptic curve. In this case, we choose a new

point P and a new elliptic curve, until we get a real divisor of n.

The time requirement of the algorithm is exp
(
(
√

2 + o(1))(log p)1/2 log log p
)
,

where p is the smallest prime factor of n .

A famous competition was the RSA Factorization Challenge (see [1], [7]),

which was published by the RSA Laboratory in 1991, where the factorization
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of semiprimes (the product of two large primes) given by them was the task,

in return for a significant fee. For the factorization of a single large number,

they paid up to $20,000 at that time. The last two, RSA-240 and RSA-

250 (12-13 years after the deadline) were factored in 2019 and 2020 using

the combined application of general number field sieve and elliptic curves

factorization see [5], [6]. After the results were published, experts in the

applied field suggested that it is safe to use modulus with a length of at least

2048 bits when applying RSA (although, the first criterions requiring such a

large modulus already appeared around the end of the twentieth century).

Unfortunately, the awarding of the competition ended in 2007, but we

hope that there will be a similar call in the future...

Thank you for your attention!
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