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Introduction

This course is taught at Eötvös Loránd University to MSc and

PhD mathematics students who would like to study the basics of

deeper number theory.

We wish the readers a pleasant time!

Books on which the material is based:
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[7] I. M. Vinogradov, The Method of Trigonometrical Sums in the
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The basic concepts were discussed mainly using [6] and [7]. The

description of the large sieve is based on the books [1], [4]. In addi-

tion to the above, the lecture note is based on a few papers, these

references are given at the end of each chapter.

For further studies, we suggest [2] for Weyl sums, the van-der

Corput method, and exponent pairs. Those who are interested in

the continuation might also study the books [3] and [5].
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1 Notations

What exactly is an exponential sum?

Trigonometric form of complex numbers:

z = r(cosα + i sinα) = reiα.

Exponential sum: is a sum that contains complex numbers in expo-

nential form.

ei(α1+α2) = eiα1eiα2

(
eiα
)n

= einα.

Complex Analysis theory::

f(x) = ex : R → R

can be uniquely extended

f(z) = ez : C → C.

Here, by writing iα instead of z, we get eiα defined above.

eiα = ei(−α).

Real analysis:

f : R → R.

Complex analysis:

f : C → C.

Analytic number theory: complex variable functions.
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Here:

f : R → C,

i.e., complex functions with real variables.

It is almost the same as real analysis

f(t) = g(t) + ih(t),

where g, h are real functions, i.e., the study of f can be reduced to

g and h.

The definition of continuity, differentiability, integrability can be re-

duced to the real case.

f ′(t) = g′(t) + ih′(t)
∫ b

a

f(t)dt =

∫ b

a

g(t)dt + i

∫ b

a

h(t)dt

Differentiability and integrability rules are the same.

E.g., for f(t) = eit

f ′(t) = (cos t + i sin t)′

= (cos t)′ + i(sin t)′

= − sin t + i cos t

= i(cos t + i sin t)

= ieit.

Similarly,

∫ b

a

eitdt =

[

eit

i

]b

a
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=
1

i

(
eib − eia

)
.

Why is this function f(t) = eit so important in number theory?

Since

f(t) = eit = cos t + i sin t

is periodic with period length 2π.

⇒

Here g(t) = e2πit is periodic with period 1.

The value of g(t) depends only on the fractional part of t.

We use this function so often that we introduce a new notation:

Definition 1.1 Let e(α)
def
= e2πiα. Then the value of e(α) depends

only on the fractional part of α. In addition, we also use the notation

em(α), where em(α)
def
= e2πi

α

m = e
(
α
m

)
.

The following play a particularly important role:

f(t)=

N∑

n=0

ane(nt)

=
N∑

n=0

an (e(t))n

is an exponential (trigonometric) polynomial and

F (t) =
∞∑

n=0

ane(nt)

is a power series; here we assume that it is absolutely convergent:

∞∑

n=0

|an| < ∞.
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As in real analysis, here as well, every piecewise continuous function

F (t) can be expressed as a power series, so-called Fourier series.

Let

f(t)=
N∑

n=0

ane(nt).

Then what is f ′(t) and
∫ b

a f(t)dt equal to?

Clearly

f ′(t) =

N∑

n=0

2πinane(nt).

Next, instead of computing
∫ 1

0 f(t)dt, we study more generally,

namely for integers 0 ≤ k ≤ N we have

∫ 1

0

f(t)e(−kt)dt =
N∑

n=0

an

∫ 1

0

e((n − k)t)dt

= ak

∫ 1

0

e(0)dt +

N∑

n=0,
n6=k

an

∫ 1

0

e((n − k)t)dt

= ak +
N∑

n=0,
n6=k

an

[
e((n − k)t)

2πi(n − k)

]1

0

= ak.

Similarly,

∫ 1

0

f(t)e(−kt)dt = 0 if k < 0 or k > N.
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2 Parseval formula and Ramanujan sums

The following theorem is one of the most fundamental techniques

for estimating exponential sums.

Theorem 2.1 (Parseval formula)

a) If f(t) =
∑N

n=0 ane(nt) then

∫ 1

0

|f(t)|2 dt =
N∑

n=0

|an|2.

b) If f(t) =
∑∞

n=0 ane(nt) and
∑∞

n=0 |an|2 is absolute conver-

gent, then
∫ 1

0

|f(t)|2 dt =
∞∑

n=0

|an|2.

The proof of Theorem 2.1.

a)

∫ 1

0

|f(t)|2 dt =
∫ 1

0

f(t)f(t)dt

=

∫ 1

0

N∑

n=0

ane(nt)

N∑

m=0

ame(−mt)dt

=

∫ 1

0

N∑

n=0

N∑

m=0

aname((n − m)t)dt

=
N∑

n=0

N∑

m=0

anam

∫ 1

0

e((n − m)t)dt.

Here, the last integral is 0 if n 6= m and 1 if n = m, i.e.,

∫ 1

0

|f(t)|2 dt =
N∑

n=0

anan
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=
N∑

n=0

|an|2 .

b) similarly.

Lemma 2.1 a) For α ∈ R we have

|1 − e(α)| ≤ 2π |α| .

b) For |α| ≤ 1
2

we have

|1 − e(α)| ≥ 4 |α| .

The proof of Lemma 2.1.

a)

2πα
x

y

e(α)

1

|1 − e(α)| ≤ arc = 2π|α|
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b)

|1− e(α)|2 = (1 − e(α)) (1 − e(α))

= (1 − e(α)) (1 − e(−α))

= 1− e(α) − e(−α) + 1

= 2− 2Ree(α)

= 2(1 − cos 2πα)

= 2 · 2 sin2 πα.

Taking the square root:

|1 − e(α)| = 2| sinπα| = 2 sinπ|α|.

Since sinx
x

is monotonically decreasing in [0, π/2]:

sinx

x
≥ sinπ/2

π/2
=

2

π
,

thus

sin x ≥ 2

π
x.

That is

|1 − e(α)| = 2 sin |πα| ≥ 2 · 2
π
π|α| = 4 |α| .

Example. p ∈ Z, q ∈ N

q−1
∑

n=0

e

(

n
p

q

)

=

q−1
∑

n=0

e

(
p

q

)n

=







q if q | p,
1−e(q p

q)
1−e(p

q)
= 1−1

1−e(p

q)
= 0 if q ∤ p.
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Theorem 2.2 (Jensen-Ramanujan formula) If q ∈ N then

S =
∑

0≤p<q
(p,q)=1

e

(
p

q

)

= µ(q).

That is, the sum of the primitive qth roots of unity is µ(q).

The proof of Theorem 2.2. Let µ denote the Möbius function. We

use the following:

∑

d|n
µ(d) =

{

1 if n = 1

0 if n > 1.

Then:

S =

q−1
∑

p=0




∑

d|(p,q)
µ(d)



 e

(
p

q

)

=
∑

d|q
µ(d)

∑

0≤p≤q−1
d|p

e

(
p

q

)

.

In the last sum, write p = kd. Then kd ≤ q − 1, so k ≤ q
d
− 1.

Thus:

S =
∑

d|q
µ(d)

q

d
−1
∑

k=0

e

(

k
d

q

)

.

In the first sum, we distuingish the cases d = q and d < q. Then

S = µ(q) +
∑

d|q
d<q

µ(d)

q

d
−1
∑

k=0

e

(

k
d

q

)

= µ(q) +
∑

d|q
d<q

µ(d)
1− e

(
q
d
· d
q

)

1− e
(
d
q

) = µ(q) +
∑

d|q
d<q

µ(d)0

= µ(q).
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3 Group characters

In number theory, characters usually mean multiplicative charac-

ters, possibly additive characters, these will be discussed later.

First, let’s define the so-called group characters, using minimal

group theory (so it looks better, more modern).

First, let’s see what we mean by the group character in algebra. We

now only look at the case of finite Abel groups (much simpler and

enough for us).

Definition 3.1 Let G be a finite Abelian group,

χ : G → C

with the following properties

1. χ(q) 6≡ 0 in G

2. χ(g) multiplicative in G:

χ(g1g2) = χ(g1)χ(g2) ∀g1, g2 ∈ G.

Then χ is called a group character (defined on G).

Corollary 3.1

1 If e is the identity element of G, then χ(e) = 1.

2 ∀ g ∈ G we have (χ(g))|G| = 1.

3 Define χ0 : G → C by

χ0(g) ≡ 1 ∀ g ∈ G,

then χ0 is a character in G, this is the so-called main character,

trivial character or principal character.
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4 If χ is a character on G, then we define

χ : G → C by

χ(g)
def
= χ(g) ∀g ∈ G,

Then χ is also a character on G, this is the so-called conjugate

character.

5 If χ1, χ2 are characters on G, then define χ by

χ(g)
def
= χ1(g)χ2(g) ∀ g ∈ G,

then χ is also a character on G. (So the product of two char-

acters is also a character, in fact, the characters form a group.)

6 If G = G1 × G2, then χ : G → C is a character in G if and

only if ∃ character χ1 in G1 and character χ2 in G2 such that

∀ g = g1g2 ∈ G we have

χ(g) = χ(g1g2) = χ1(g1)χ2(g2).

7 If G = Cn = {g}n is the cyclic group of order n, then χ is a

character on G if and only if ∃ a ∈ {0, 1, 2, . . . , n − 1} such

that

χ(gk) = e

(

k
a

n

)

∀ k ∈ Z.

8 The explicit form of characters defined in G = Cn1 × Cn2 ×
· · · × Cnr

is

χ(gk1

1 · · · gkr

r ) = e

(

k1

a1

n1

+ · · · + kr

ar

nr

)

,

where ai ∈ {0, 1, 2, . . . , ni − 1} ∀ 1 ≤ i ≤ r. Note that if

χ = χ0 ⇔ ai = 0 ∀i.

14



9 The number of (different) characters defined on G is |G|.

Proof of Corollary 3.1.

1 ∃ g : χ(g) 6= 0, thus

χ(e)χ(g) = χ(eg) = χ(g) / : χ(g)(6= 0)

χ(e)= 1.

2

(χ(g))|G| = χ
(

g|G|
)

= χ(e) = 1

↑ ↑
property 2. Lagrange t.

3 Trivial.

4 Trivial. Remark:

1 = χ(e) = χ(gg−1) = χ(g)χ(g−1) / · χ(g)

χ(g) =
(

χ(g)χ(g)
)

χ(g−1)

By 2 we have χ(g)χ(g) = |χ(g)|2 = 1. Thus

χ(g) = χ(g−1).

5 , 6 Trivial, HW.

7 Follows from 2 and χ(gk) = χ(g)k.

8 This is a corollary of 7 .

9 This is a corollary of 8 .
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Further properties

Corollary 3.2

10 If χ is a group character defined on G, then

∑

g∈G
χ(g) =

{

|G| if χ = χ0

0 if χ 6= χ0.

11 ∀ g ∈ G we have

∑

χ

χ(g) =

{

|G| if g = e

0 if g 6= e.

Proof of Corollary 3.2. 10 : Let G = Cn1
× Cn2

× · · · × Cnr
=

{g1}n1
× {g2}n2

× · · · × {gr}nr
. Then ∀g ∈ G can be uniquely

written in the form gk1

1 · · · gkr

r , where 0 ≤ ki < ni. Since, according

to 8 the explicit form of ∀ χ is

χ(gk1

1 · · · gkr

r ) = e

(

k1

a1

n1

+ · · · + kr

ar

nr

)

,

where ai ∈ {0, 1, . . . , ni − 1}, thus

∑

g∈G
χ(g) =

n1−1∑

k1=0

· · ·
nr∑

kr=0

e

(

k1

a1

n1

+ · · ·+ kr

ar

nr

)

.

So:

∑

g∈G
χ(g) =

(
n1−1∑

k1=0

e

(

k1

a1

n1

))

· · ·
(

nr−1∑

kr=0

e

(

kr

ar

nr

))

=

{

n1 if a1 = 0

0 if a1 6= 0
· · ·
{

nr if ar = 0

0 if ar 6= 0.
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That is

∑

g∈G
χ(g) =







n1 · · ·nr = |C1| · · · |Cr| = |G| , if a1 = · · · = ar = 0,

⇔ χ = χ0,

0, if ∃ ai 6= 0 ⇔ χ 6= χ0.

Proof of 11 :

Let G = Cn1
×· · ·×Cnr

= {g1}n1
×· · ·×{gr}nr

. Furthermore,

we write the fixed element g ∈ G in the form g = gk1

1 · · · gkr

r , where

0 ≤ ki < ni.

Again by 8 we get:

∑

g∈G
χ(g) =

n1−1∑

a1=0

· · ·
nr∑

ar=0

e

(

k1

a1

n1

+ · · · + kr

ar

nr

)

.

Thus:

∑

χ

χ(g) =

(
n1−1∑

a1=0

e

(

a1

k1

n1

))

· · ·
(

nr−1∑

ar=0

e

(

ar

kr

nr

))

=

{

n1 if k1 = 0

0 if k1 6= 0
· · ·
{

nr if kr = 0

0 if kr 6= 0.

That is

∑

χ

χ(g) =

{

n1 · · ·nr = |G| , if k1 = · · · = kr = 0, ⇔ g = e,

0, if ∃ ki 6= 0 ⇔ g 6= e.

Theorem 3.1 Let G be an arbitrary finite Abelian group, g ∈ G and

g1, g2, . . . , gt ∈ G elements (where gi = gj is allowed). Then

|{i : 1 ≤ i ≤ t, gi = g}| = 1

|G|
∑

χ

χ(g)
t∑

i=1

χ(gi).
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Proof of Theorem 3.1.

∑

χ

χ(g)
t∑

i=1

χ(gi) =
t∑

i=1

(
∑

χ

χ(g)χ(gi)

)

=
t∑

i=1

(
∑

χ

χ(g−1)χ(gi)

)

=
t∑

i=1

(
∑

χ

χ(g−1gi)

)

=
t∑

i=1

{

|G| if g−1g = e ⇔ gi = g

0 if g−1g 6= e ⇔ gi 6= g

=
∑

1≤i≤t
gi=g

|G|

= |G| · |{i : 1 ≤ i ≤ t, gi = g}| ,

from which, dividing by |G|, we get the statement of the theorem.

In number theory, there are two important special cases:

1. G =< Zm,+ >, the additive group of residue classes

mod m ⇒ additive characters.

2. G =< Z∗
m,× >, where the group of reduced residue classes

of Zm is Z∗
m, the operation is multiplication ⇒ multiplicative

characters.
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4 Additive characters

In the case of fixed m, k ∈ Z, we denote the residue class mod-

ulo m represented by k by k:

k = {x : x ∈ Z, x ≡ k (mod m)}.

Then, according to 7 of Corollary 3.1, the characters defined on

Zm are:

Ψ(k) = e

(

k
a

m

)

,

where a ∈ {0, 1, . . . ,m − 1}. From now on, for the sake of sim-

plicity, we omit the overline from k, so

Ψ(k) = e

(

k
a

m

)

,

These are more recently called additive characters. For these ad-

ditive characters, the statements 1 - 11 of Corollaries 3.1 and 3.2

hold, e.g., from the last theorem we get the following:

Theorem 4.1 If A ⊂ Zm is finite, r ∈ Z and m ∈ N, then writing

f(t) =
∑

a∈A
e(at)

we have

|{a : a ∈ A, a ≡ r (mod m)}| = 1

m

m−1∑

k=0

e

(

−rk

m

)

f

(
k

m

)

=
1

m

m−1∑

k=0

e

(

−rk

m

)
∑

a∈A
e

(
ak

m

)

.

Proof of Theorem 4.1. By Theorem 3.1

|{i : 1 ≤ i ≤ t, gi = g}| = 1

|G|
∑

χ

χ(g)
t∑

i=1

χ(gi). (4.1)
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In this theorem, let G = Zm, g
def
= r, A = {a1, a2, . . . , as} (that is

t = s), gi
def
= ai.

If χ is a character on G = Zm, then

χ(1) = e

(
k

m

)

,

where 0 ≤ k ≤ m − 1. By (4.1) we get

|{a : a ∈ A, a ≡ r (mod m)}| = 1

m

∑

χ

χ(r)
s∑

i=1

χ(ai)

=
1

m

m−1∑

k=0

e

(

−
kr

m

) s∑

i=1

e

(
kai

m

)

=
1

m

m−1∑

k=0

e

(

−kr

m

)
∑

a∈A
e

(
ka

m

)

=
1

m

m−1∑

k=0

e

(

−
rk

m

)

f

(
k

m

)

.

In Theorem 4.1 f(t) is the generator function of the set A, also

called Fourier transform.

Now it becomes clear why the function e(α) is so important in num-

ber theory:

We know e(α) is periodic with period 1. Thus, e
(
n
m

)
depends

only on the residue class n (mod m).

Thus e
(
a k

m

)
for fixed k and m depends only on the residue class

a (mod m).

So, if we can control the generator function (Fourier transform) of

the sequence A (which is f(t) = fA(t)), then the distribution of the

elements of A in the residue classes can be controlled.
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This principle can also be applied in the opposite direction.

Known distribution in the residue classes ⇒ control of the gener-

ator function f(t) ⇒ other arithmetic properties of A can also be

studied.

The applicability of additive characters is based on this.

Of course, the formula in the theorem could be calculated without

using characters, but it looks better this way.

4.1 Applications

Theorem 4.2 If ℓ ∈ N, f(x1, . . . , xℓ) ∈ Z[x1, . . . , xℓ], then the

number of solutions of the congruence

f(x1, . . . , xℓ) ≡ 0 (mod p)

is

N =
1

m

m−1∑

k=0

m−1∑

t1=0

· · ·
m−1∑

tℓ=0

e

(

f(t1, . . . , tℓ)
k

m

)

.

Proof of Theorem 4.2. We use the previous theorem with r = 0

and

A = {f(t1, . . . , tℓ) : (t1, . . . , tℓ) ∈ {0, 1, . . . ,m − 1}ℓ}.

Then

N = | {f(t1, . . . , tℓ) : (t1, . . . , tℓ) ∈ {0, 1, . . . ,m − 1}ℓ,

f(t1, . . . , tℓ) ≡ 0 (mod m)} |

=
1

m

m−1∑

k=0

e

(

−0 · k
m

)m−1∑

t1=0

· · ·
m−1∑

tℓ=0

e

(

f(t1, . . . , tℓ)
k

m

)

.
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Here e
(
−0·k

m

)
= 1, and with this we proved the statement of the

theorem.

Studying the special case of linear congruences:

Theorem 4.3 Let ℓ ∈ N, a1, a2, . . . , aℓ, b ∈ Z and

d
def
= (a1, a2, . . . , aℓ,m).

Then the number of solutions of the congruence

a1x1 + · · · + aℓxℓ ≡ b (mod m)

is

N =

{

mℓ−1d, if d | b
0, if d ∤ b.

Remark. For ℓ = 1, to solve ax ≡ b (mod m) we really get that

N =

{

d = (a,m), if d | b
0, if d ∤ b.

Proof of Theorem 4.3. Using the previous theorem with

f(x1, . . . , xℓ) = a1x1 + · · · + aℓxℓ − b we get:

N =
1

m

m−1∑

k=0

m−1∑

t1=0

· · ·
m−1∑

tℓ=0

e

(

(a1t1 + · · · + aℓtℓ − b)
k

m

)

=
1

m

m−1∑

k=0

e

(

−b
k

m

)(m−1∑

t1=0

e

(

a1t1
k

m

))

. . .

(
m−1∑

tℓ=0

e

(

aℓtℓ
k

m

))

{

m, if m | a1k

0, if m ∤ a1k
. . .

{

m, if m | aℓk

0, if m ∤ aℓk

=
1

m

∑

0≤k<m
m|(a1k,...,aℓk)

e

(

−b
k

m

)

mℓ
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=
1

m

∑

0≤k<m
m|(a1,...,aℓ)k

e

(

−b
k

m

)

mℓ.

Let d
def
= (a1, . . . , aℓ,m), and m = m∗d, (a1, . . . , aℓ) = a∗d,

where (m∗, a∗) = 1.

The index of the last sum includes m | (a1, . . . , aℓ)k, let’s ana-

lyze this a bit:

m | (a1, . . . , aℓ)k ⇔ m∗d | a∗dk

⇔ m∗ | a∗k

where by (m∗, a∗) = 1 we get

⇔ m∗ | k.

Therefore, in the limits of the sum, we can write k = m∗t, where t

runs on the numbers 0, 1, . . . , m
m∗ −1, i.e., on 0, 1, . . . , d− 1. Then

k
m

= m∗t
m∗d

= t
d
. So

N =
1

m

d−1∑

t=0

e

(

−b
t

d

)

mℓ

=

{

mℓ−1d, if d | b
0, if d ∤ b.

This completes the proof of the theorem.

So far we have studied such exponential sums where the expo-

nent is a linear function of the variable, i.e.,

e((r(n)),

where r(n) is the first degree polynomial of n. The next step is

when there is a quadratic polynomial in the exponent. We will study

this case in the next chapter.
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5 Gauss sums

Definition 5.1 Let m ∈ N, a ∈ Z. Then the sum

S(a,m) =

m−1∑

x=0

e

(

x2 a

m

)

is called the Gauss sum.

Theorem 5.1 If p > 2 is a prime, (a, p) = 1, then

S(a, p) =

{

±√
p, if p ≡ 1 (mod 4)

±i
√
p, if p ≡ 3 (mod 4)

Thus |S(a, p)| = √
p.

Proof of Theorem 5.1. First, we only determine the value of

|S(a, p)|.

|S(a, p)|2 = S(a, p)S(a, p)

=

p−1
∑

x=0

e

(

x2a

p

) p−1
∑

y=0

e

(

−y2a

p

)

=

p−1
∑

x=0

p−1
∑

y=0

e

(

(x2 − y2)
a

p

)

=

p−1
∑

x=0

p−1
∑

y=0

e

(

(x − y)(x + y)
a

p

)

.

Now, we introduce new variables according to the value of x − y.

Let

x − y ≡ t (mod p),

where 0 ≤ t ≤ p − 1 can be assumed. Here only the residue of

x − y ≡ t (mod p) is important. Originally, the sums run on x, y.
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The new variables are t, y. Thus:

|S(a, p)|2 =

p−1
∑

t=0

p−1
∑

y=0

e

(
t(t + 2y)a

p

)

=

p−1
∑

t=0

p−1
∑

y=0

e

(
t2a

p

)

e

(
2tya

p

)

=

p−1
∑

t=0

e

(
t2a

p

) p−1
∑

y=0

e

(
2tya

p

)

{

0, if p ∤ 2at, that is t > 0

p, if p | 2at, that is t = 0.

= 1 · p,

whence

S(a, p) =
√
p.

If p ≡ 1 (mod 4), then −1 is a quadratic residue. That is, we list

all quadratic residues twice on the left and right sides of the following

congruence:

{12, 22, . . . , (p − 1)2} ≡ {−12,−22, . . . ,−(p − 1)2} (mod p).

Thus:

S(a, p) =

p−1
∑

x=0

e

(

x2
a

p

)

=

p−1
∑

x=0

e

(

−x2a

p

)

= S(a, p).

That is, S(a, p) is real and its absolute value is
√
p. So S(a, p) =

±√
p.
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If p ≡ 3 (mod 4) then

S(a, p) + S(a, p) =

p−1
∑

x=0

e

(

x2a

p

)

+

p−1
∑

y=0

e

(

−y2a

p

)

↑ ↑
quadratic

residues 2×
and ”0” 1×

quadratic

non-residues 2×
and ”0” 1×

= 2

p−1
∑

z=0

e

(

z
a

p

)

= 0.

That is Re S(a, p) = 0, but since |S(a, p)| = √
p we have

S(a, p) = ±i
√
p.

Theorem 5.2 If (a, p) = 1, then

S(a, p) =

(
a

p

)

S(1, p).

Proof of Theorem 5.2. We use the following lemma.

Lemma 5.1 For a, b ∈ Z∗
p we have

S(ab2, p) = S(a, p).

Proof of Lemma 5.1. Indeed

S(a, p) =

p−1
∑

x=0

ep(ax
2) =

p−1
∑

x=0

e(
a

p
x2).
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As x runs on Zp, obviously bx also runs on Zp therefore

S(a, p) =

p−1
∑

x=0

ep(a(bx)
2)

=

p−1
∑

x=0

ep(ab
2x2)

= S(ab2, p),

which is the statement of the lemma.

Let us fix a quadratic non-residue n (mod p). Based on the

lemma:

S(a, p) = S(1, p),

if a is quadratic residue. Thus we get

S(a, p) =

(
a

p

)

S(1, p)

if
(
a
p

)

= 1. The case
(
a
p

)

= −1 is missing. Also based on the

lemma:

S(a, p) = S(n, p),

if a is quadratic non-residue. Let’s study the sum

p−1
∑

a=0

S(a, p).

On the one hand, this is

S(0, p) +
p − 1

2
S(1, p) +

p − 1

2
S(n, p),

since there are p−1
2

quadratic residues and p−1
2

quadratic non-

residues. On the other hand:

p−1
∑

a=0

S(a, p) =

p−1
∑

a=0

p−1
∑

x=0

ep(ax
2)
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=

p−1
∑

x=0

p−1
∑

a=0

ep(ax
2)

︸ ︷︷ ︸

This is 0 except for
x = 0 when it is p

= p.

That is:

S(0, p)
︸ ︷︷ ︸

This is p

+
p − 1

2
S(1, p) +

p − 1

2
S(n, p) = p.

So

S(n, p) = −S(1, p)

S(n, p) =

(
n

p

)

S(1, p).

That is, even in the case
(
a
p

)

= −1 we have

S(a, p) = S(n, p) = −S(1, p) =

(
a

p

)

S(1, p).

The following Theorem can be found e.g. in the “small” Vino-

gradov book [6, page 67, problem 11b β]. We will not prove it here.

Theorem 5.3 For m > 2, (a,m) = 1 we have

1.

|S(a,m)| =







√
m, if m ≡ 1 (mod 2)

0, if m ≡ 2 (mod 4)
√
2m, if m ≡ 0 (mod 4).

2.

S(1,m) =







(1 + i)
√
m, if m ≡ 0 (mod 4)

√
m, if m ≡ 1 (mod 4)

0, if m ≡ 2 (mod 4)

i
√
m, if m ≡ 3 (mod 4).
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Consider the following as an example:

Theorem 5.4 The number of solutions of the congruence x2+y2 ≡
a (mod p) is

N =







2p − 1, if a ≡ 0 (mod p), p ≡ 1 (mod 4)

p − 1, if a 6≡ 0 (mod p), p ≡ 1 (mod 4)

1, if a ≡ 0 (mod p), p ≡ −1 (mod 4)

p + 1, if a 6≡ 0 (mod p), p ≡ −1 (mod 4)

The proof of Theorem 5.4. Due to the studied theorem, the number

of solutions of f(x1, x2)
def
= x2 + y2 − a ≡ 0 (mod m) is

N =
1

p

p−1
∑

x=0

p−1
∑

y=0

p−1
∑

k=0

e

(

(x2 + y2 − a)
k

p

)

=
1

p

p−1
∑

k=0

e

(

−a
k

p

) p−1
∑

x=0

p−1
∑

y=0

e

(

(x2 + y2)
k

p

)

.

Separating the term k = 0:

N =
1

p2
· p2 +

1

p

p−1
∑

k=1

S(k, p)2

︸ ︷︷ ︸

This is

{

p, if p ≡ 1 (mod 4)

−p, if p ≡ −1 (mod 4)

= δp · p, where δp =

{

1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4).

Thus:

N = p + δp

p−1
∑

k=1

e

(

−a
k

p

)

= p + δp ·
{

p − 1, if a = 0

−1, if a 6= 0
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=







p + (p − 1) = 2p − 1, if a ≡ 0 (mod p), p ≡ 1 (mod 4)

p + 1 · (−1) = p − 1, if a 6≡ 0 (mod p), p ≡ 1 (mod 4)

p − (p − 1) = 1, if a ≡ 0 (mod p), p ≡ −1 (mod 4)

p − 1 · (−1) = p + 1, if a 6≡ 0 (mod p), p ≡ −1 (mod 4).

Corollary 5.1 For each prime p ∃ a, b ∈ Z such that

a2 + b2 + 1 ≡ 0 (mod p).

This was used in the proof of the Lagrange’s four-square theo-

rem.

Proof of Corollary 5.1. We state that the congruence

x2 + y2 ≡ −1 (mod p)

is solvable. This is trivial for p = 2 (x = 0, y = 1). If p > 2, then,

according to Theorem 5.4, the number of solutions is:

N =

{

p − 1 > 0 if p ≡ 1 (mod 4)

p + 1 > 0 if p ≡ −1 (mod 4).
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6 Vinogradov’s lemma

Next we present an important inequality about additive charac-

ters.

Roth noted in the preface to Vinogradov’s book [2] that the basis of

Vinogradov’s method is that the problem in question is derived to

estimating of sums of the form

∑

u

∑

v

e(αuv).

The first step in this direction:

Lemma 6.1 (Vinogradov) Let (a, q) = 1, q > 1 and

S
def
=

q−1
∑

x=0

q−1
∑

y=0

ξ(x)η(y)e

(

xy
a

q

)

(i.e., if we write the additive character Ψ(n) = e
(
a
q
n
)

mod q,

then S =
∑

x

∑

y ξ(x)η(y)Ψ(xy)), and let

q−1
∑

x=0

|ξ(x)|2 = X0,

q−1
∑

y=0

|η(y)|2 = Y0.

Then

|S| ≤ (X0Y0q)
1/2 .

The proof of Lemma 6.1. By the Cauchy-Schwarz inequality:

|S|2 =

∣
∣
∣
∣
∣

q−1
∑

x=0

q−1
∑

y=0

ξ(x)η(y)e

(

xy
a

q

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

q−1
∑

x=0

ξ(x)
︸ ︷︷ ︸

a(x)

q−1
∑

y=0

η(y)e

(

xy
a

q

)

︸ ︷︷ ︸

b(x)

∣
∣
∣
∣
∣
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≤
(

q−1
∑

x=0

|ξ(x)|2
)

︸ ︷︷ ︸

X0

·





q−1
∑

x=0

∣
∣
∣
∣
∣

q−1
∑

y=0

η(x)e

(

xy
a

q

)
∣
∣
∣
∣
∣

2




︸ ︷︷ ︸
∑q−1

x=0

∑q−1
y=0 η(y)e(xy

a

q)
∑q−1

y′=0
η(y′)e(−xy′ a

q
.)

That is

|S|2 ≤ X0

q−1
∑

y=0

q−1
∑

y′=0

η(y)η(y′)
q−1
∑

x=0

e

(
x(y − y′)a

q

)

︸ ︷︷ ︸

=

{

q, if q | (y − y′)a ⇔ y = y′

0, if y 6= y′

= X0

q−1
∑

y=0

q−1
∑

y′=0

η(y)η(y′)q

= X0Y0q.

Whence:

|S| ≤ (X0Y0q)
1/2.

In the following, we will study an application. If the sets A,B, C,D ⊆
Zp are large, then the congruence

a + b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D

is solvable in Zp.

Theorem 6.1 (Sárközy [1], 2005) If p is a prime, A,B, C,D ⊆ Zp

and we denote the number of solutions of

a + b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D (6.1)

by N , then
∣
∣
∣
∣
N − |A| · |B| · |C| · |D|

p

∣
∣
∣
∣
≤ (|A| · |B| · |C| · |D|)1/2 p1/2.
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Corollary 6.1 If p is a prime, A,B, C,D ⊆ Zp and

|A| · |B| · |C| · |D| > p3, (6.2)

than (6.1) is solvable.

Remark. Corollary 6.1, i.e., (6.2) is the best possible apart from the

best constant factor: consider A = B = {n : 1 ≤ n < p/2},

C = Zp, D = {0}, then

|A| · |B| · |C| · |D| =
(
1

4
+ o(1)

)

p3,

and (6.1) is not solvable.

The theorem cannot be extended from a prime modulus to a com-

posite one, i.e. from Zp to Zm: If m = 2k, A = C = {2, 4, . . . , 2k},

B = {1, 3, . . . , 2k − 1}, D = Zm, then

|A| · |B| · |C| · |D| =
(
1

8
+ o(1)

)

m4,

and (6.1) is not solvable.

Many interesting corollaries exist, e.g. for

C = D = {xk : x ∈ Z∗
p}

we have

{cd : c ∈ C, d ∈ D} = {zk : z ∈ Z∗
p},

thus for |A| · |B| ≥
(
k2 + o(1)

)
p we know that the congruence

a + b = xk a ∈ A, b ∈ B

is solvable.
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So if, for example, A = {xm : x ∈ Z∗
p}, B = {yn : y ∈ Z∗

p}, then

we get that the congruence

xm + yn ≡ zk (mod p), xyz 6≡ 0 (mod p)

is solvable. Particularly, the congruence xn + yn ≡ zn (mod p),

xyz 6≡ 0 (mod p) is solvable (this is the Fermat congruence).

The following corollaries are also important: if C = D = {z2 : z ∈
Z∗
p} and |A| · |B| ≥ (4 + o(1))p, then

(
a + b

p

)

= 1, a ∈ A, b ∈ B

is solvable. Obviously, it also follows that if |A| · |B| ≥ (4 + o(1))p,

then (
a + b

p

)

= −1, a ∈ A, b ∈ B

is solvable. Furthermore, the value of the least quadratic non-

residue is related to his problem.

Proof of Theorem 6.1. Let F (a, b, c, d) = a + b − cd, then by

Theorem 4.2 the number of solutions of the congruence

F (a, b, c, d) = a + b− cd ≡ 0 (mod p)

is

N =
1

p

∑

a∈A

∑

b∈B

∑

c∈C

∑

d∈D

p−1
∑

k=0

e

(

(a + b − cd)
k

p

)

︸ ︷︷ ︸
{

p, if a, b, c, d are solutions

0, if a, b, c, d are not solutions.

Usually, the main character, the case k = 0 gives the main term, the

rest can go to the error term. So that we separate the term k = 0:

N =
|A| · |B| · |C| · |D|

p
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+
1

p

p−1
∑

k=1

∑

a∈A
e

(

a
k

p

)
∑

b∈B
e

(

b
k

p

)
∑

c∈C

∑

d∈D
e

(

−cd
k

p

)

.

Thus
∣
∣
∣
∣
N −

|A| · |B| · |C| · |D|
p

∣
∣
∣
∣

≤ 1

p

p−1
∑

k=1

∣
∣
∣
∣
∣

∑

a∈A
e

(

a
k

p

)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

b∈B
e

(

b
k

p

)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

c∈C

∑

d∈D
e

(

−cd
k

p

)
∣
∣
∣
∣
∣
.

By Vinogradov’s lemma (see Lemma 6.1):

∣
∣
∣
∣
∣

∑

c∈C

∑

d∈D
e

(

−cd
k

p

)
∣
∣
∣
∣
∣
≤ (|C||D|p)1/2 .

That is
∣
∣
∣
∣
N − |A| · |B| · |C| · |D|

p

∣
∣
∣
∣

≤
1

p1/2
(|C||D|)1/2

p−1
∑

k=1

∣
∣
∣
∣
∣

∑

a∈A
e

(

a
k

p

)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

b∈B
e

(

b
k

p

)
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Cauchy-Schwarz

≤
1

p1/2
(|C||D|)1/2





p−1
∑

k=1

∣
∣
∣
∣
∣

∑

a∈A
e

(

a
k

p

)
∣
∣
∣
∣
∣

2




1/2



p−1
∑

k=1

∣
∣
∣
∣
∣

∑

b∈B
e

(

b
k

p

)
∣
∣
∣
∣
∣

2




1/2

We know that if F (α) =
∑p−1

j=0 aje(jα) then

p−1
∑

k=0

∣
∣
∣
∣
F

(
k

p

)∣
∣
∣
∣

2

= p

p−1
∑

k=0

|ak|2 . (6.3)

(This is a Parseval-type inequality, HW.) Thus:

∣
∣
∣
∣
N −

|A| · |B| · |C| · |D|
p

∣
∣
∣
∣
≤

1

p1/2
(|C||D|)1/2 (p|A|)1/2 (p|B|)1/2

= p1/2 (|A| · |B| · |C| · |D|)1/2 .
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Proof of Corollary 6.1.

N ≥ |A| · |B| · |C| · |D|
p

− p1/2 (|A| · |B| · |C| · |D|)1/2

= p1/2 (|A| · |B| · |C| · |D|)1/2
(

(|A| · |B| · |C| · |D|)1/2

p3/2
− 1

)

> 0.
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7 Weyl sums and Weil theorem

We saw ∣
∣
∣
∣
∣

p−1
∑

x=0

e

(
ax2

p

)
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Gauss sum

=
√
p

By the method of the proof:
∣
∣
∣
∣
∣

∑

x

e

(
f(x)

p

)
∣
∣
∣
∣
∣

2

=
∑

x

e

(
f(x)

p

)
∑

y

e

(
f(y)

p

)

=
∑

x

∑

y

e

(

(f(x) − f(y))
︸ ︷︷ ︸

/p

)

(x − y)
︸ ︷︷ ︸

t

g(x, y)

=
∑

t

∑

y

e (tg(t + y, y)/p) ,

here, the degree of g(t + x, y) in y is one less than the degree of

f , and thus we reduced the estimation to polynomials of one degree

less. Sums of the type
∑N

x=M e (f(x)) are called Weyl sums.

With this idea, Weyl [3] e.g., proved the following:

Theorem 7.1 If M , N , a and q are integers, where (a, q) = 1,

q > 0 and f is a polynomial of degree k with real coefficients,

where for the leading coefficient ak holds the inequality
∣
∣
∣
∣
ak − a

q

∣
∣
∣
∣
≤ t

q2
,

with some t ≥ 1, then ∀ ε > 0 we have

M+N∑

x=M

e(f(x)) = O

(

N 1+ε

(
t

q
+

1

N
+

t

Nk−1
+

q

Nk

)21−k
)

as N → ∞.
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This estimate is non-trivial only if q < Nk.

There is another related general theorem:

Theorem 7.2 (Weil [2], 1941) Let p be a prime, f(x) ∈ Fp[x], is a

polynomial of degree d, where 1 ≤ d < p. Ekkor
∣
∣
∣
∣
∣

p−1
∑

x=0

e

(
f(x)

p

)
∣
∣
∣
∣
∣
≤ (d − 1)

√
p.

Sharp: if f(x) = x2.

We do not prove the theorem, since it is based on very deep alge-

braic geometry. (Later, Stepanov + Schmidt [1] gave an elementary

but lengthy proof.)
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8 Erdős and Moser’s problem

Another illustration. Diophantus asked:

How many integers a1, a2, . . . , at can be given such that aiaj + 1

is always a square number if i 6= j?

Euler, Fermat, Dujella and many others worked on the problem (in-

cluding me).

Erdős and Moser asked the following problem independently in

1963:

Let A = {a1, a2, . . . , at} such that

ai + aj

is always a square if i 6= j. (The sum of different ai’s is always a

square.) How large can t be? Can it be arbitrarily large?

Remark: here i and j must be different because otherwise the crite-

rion that

ai + ai = 2ai = n2

ai =
n2

2

is too strong, in this case, we would get a Pythagorean triple-like

problem.

Lagrange [4] and Nicolas [5] gave an example with t = 6:

A = { − 15863902, 17798783, 21126338, 49064546, 82221218,

447422978}.

Since then, there is no other example with t = 6.
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It is possible that max t = 6 and it is very likely that max t = O(1),

but this seems hopeless. Therefore, in the case of sets in the interval

[1, x], we estimate the value of t as a function of x.

Theorem 8.1 (Rivat, Stewart, Sárközy [6]) There exist an integer

x0 such that x0 < x ∈ N, A ⊂ {1, 2, 3, . . . , x}, and for a, a′ ∈ A
we know that a + a′ is a square, then

|A| < 37 log x.

Proof of Theorem 8.1. Now here is the lemma, which is the essen-

tial part, the rest is easy (sieve application)... So the lemma, which

is perhaps of independent interest:

Lemma 8.1 If p is a prime, p > 2, B ⊆ Zp and for b, b′ ∈ B, b 6≡ b′

(mod p) we have
(
b+ b′

p

)

= 1 or b + b′ ≡ 0 (mod p),

then

|B| ≤ 6
√
p.

Before we go any further, why does it help us?

Consider a “good” A sequence. If a, a′ ∈ A, a 6= a′, then

a + a′ = n2,

that is (
a + a′

p

)

= 1 or a + a′ ≡ 0 (mod p),

Thus, due to the lemma, for ∀ p the set A intersects only a few

< 6p1/2 residue classes modulo p.
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This shows that A ⊆ {1, 2, . . . , x} is “sparse” ( |A| “small”) as a

function of x .

Lemma 8.1 also follows from Sárközy’s theorem (Theorem 6.1), but

now let’s see the original proof.

Proof of Lemma 8.1. Let

G(h, p)=
p−1
∑

x=0

e

(
hx2

p

)

(Gauss sum)

G0 = G(1, p), |G0| =
√
p.

Then by Theorem 5.2 we have

G(h, p) =

(
h

p

)

G(1, p), if (h, p) = 1.

So

G(h, p) =







G0, if
(
h
p

)

= 1

−G0, if
(
h
p

)

= −1

p, if p | h.
(8.1)

Now consider

S
def
=

p−1
∑

x=0

(
∑

b∈B
e

(
bx2

p

))2

.

Then, by giving an upper-lower estimate for |S|, the statement of the

lemma follows.

Let’s look at the lower estimate first.

|S| =
∣
∣
∣
∣
∣

p−1
∑

x=0

∑

b∈B

∑

b′∈B
e

(
(b + b′)x2

p

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

b∈B

∑

b′∈B
G(b + b′, p)

∣
∣
∣
∣
∣
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=

∣
∣
∣
∣
∣

∑

b∈B

∑

b′∈B
G0 +

∑

b∈B

∑

b′∈B
(G(b + b′, p) − G0)

∣
∣
∣
∣
∣

Here in the second term, G(b+ b′, p)−G0 is almost always 0, since

b + b′ is a quadratic residue for different b, b′ or 0, and here we can

use (8.1). The only exceptions are the cases when b ≡ b′ (mod p)

or p | b + b′.

Thus, by the triangle inequality:

|S| ≥ |B|2 |G0| −
∑

b∈B
|G(2b, p) − G0| −

∑

b,b′∈B,b6=b′

p|b+b′

|G(0, p) − G0|

≥ |B|2√p −
∑

b∈B
2p −

∑

b,b′∈B,b6=b′

p|b+b′

↑
∀ b at least one b′ ∃

2p

≥ |B|2√p −
∑

b∈B
2p −

∑

b∈B
2p

≥ |B|2√p − 4p|B|.

On the other hand:

|S| ≤
p−1
∑

x=0

∣
∣
∣
∣
∣

∑

b∈B
e

(
bx2

p

)
∣
∣
∣
∣
∣

2

.

As x runs on the residue classes 0, 1, . . . , p − 1 modulo p, x2

takes each residue class at most 2 times. So:

|S| ≤ 2

p−1
∑

y=0

∣
∣
∣
∣
∣

∑

b∈B
e

(
by

p

)
∣
∣
∣
∣
∣

2

≤ 2

p−1
∑

y=0

∑

b∈B

∑

b′∈B
e

(
(b − b′)y

p

)
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= 2
∑

b∈B

∑

b′∈B

p−1
∑

y=0

e

(
(b − b′)y

p

)

= 2
∑

b,b′∈B
b−b′≡0 (mod p)

↑
only for b=b′

p

= 2|B|p.

Thus:

|B|2√p − 4p|B| ≤ |S| ≤ 2|B|p
|B|2√p ≤ 6|B|p

|B| ≤ 6
√
p.

In the following, we will study the other tool used, Gallagher’s

larger sieve [2].

The present version was stated by Erdős, Stewart and Sárközy [1]

in 1994.

Theorem 8.2 (Gallagher’s larger sieve) Suppose m,n ∈ N, A ⊂
{m + 1,m + 2, . . . ,m + n} and P ⊂ N is a finite set whose

elements are pairwise relative primes. For each p ∈ P , denote by

ν(p) the number of residue classes mod b that intersect A . Then

|A| ≤

∑

p∈P
log p − log n

∑

p∈P

log p
ν(p)

− logn
, (8.2)

provided that the denominator is positive.

First Gallagher formulated this statement in the case when P
contains only primes.
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Why do we call such a theorem a sieve? In this case the number

of elements of the set A is estimated using the ν(p) functions. If

A does not contain elements from many residue classes mod p,

then ν(p) is small, so the fraction in the denominator of (8.2) is large,

which gives a strong upper estimate for |A|.

We proved the theorem in the course “Combinatorial Number The-

ory”, see [3].

Theorem 8.1 follows from Gallagher’s larger sieve.

Let m = 1, n = x and

P = {p : p is a prime and p < 36(log x)2}.

Denote by Bp ⊆ Zp the set of residue classes mod p for which

there exists a congruent a ∈ A modulo p:

Bp
def
= {b ∈ Zp : ∃a ∈ A, b ≡ a (mod p)}.

Since a + a′ is always a square, thus b, b′ ∈ Bp-re:

(
b+ b′

p

)

= 1 or b + b′ ≡ 0 (mod p).

By Lemma 8.1:

µ(p) = |Bp| ≤ 6p1/2.

Using this:

|A| ≤

∑

p≤36(logx)2
log p − log x

∑

p≤36(logx)2

log p
6
√
p
− log x

. (8.3)

After calculating sums in this formula, we get the following esti-

mate:

|A| ≤ 37 log x.
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But how do we handle the two sums running on primes:
∑

p≤36(logx)2
log p and

∑

p≤36(logx)2

log p
6
√
p
?

There are two options for handling sums running on primes:

Option 1: with the Lebesgue-Stieltjes integral (of the two options,

this gives a more accurate estimate). We will say a few words about

this option at the end of the chapter, but now we will proceed accord-

ing to Option 2.

Option 2: with prime number theorem. By this, the expression in

the numerator is:

∑

p≤36(logx)2

log p − log x = log




∏

p≤36(logx)2

p



− log x.

According to the Wikipedia page “Primorial” [7] we have
∏

p≤n =

e(1+o(1))n, thus

∑

p≤36(logx)2

log p − log x = log
(

e(1+o(1))36(logx)2 − log x
)

= (1 + o(1))36 (log x)2 − log x

= (1 + o(1))36 (log x)2 .

Unfortunately, for the denominator, we are not lucky enough to find

the sum running on the primes in question on Wikipedia. This must

be calculated...

So, now follows the estimate of the denominator. We immediately

merged what we could into o(1). Our sum is:

∑

p≤36(logx)2

log p

6
√
p

− log x.
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In the interval [1.36(log x)2], the primes in increasing order are:

p1 = 2, p2 = 3, p3 = 5, . . . , pt. Then

t = π(36 (log x)2)

= (1 + o(1))
36(log x)2

log (36(log x)2)

= (1 + o(1))18
(log x)2

log log x
.

The sum in the denominator is

t∑

i=1

log pi

6
√
pi

− log x =

(1+o(1))18 (log x)2

log log x∑

i=1

log pi

6
√
pi

− log x.

By prime number theorem:

pi = (1 + o(1))i log i

log pi = (1 + o(1)) log i
√
pi = (1 + o(1))

√

i log i.

Thus the sum n the denominator is

(1+o(1))18 (log x)2

log log x∑

i=1

(1 + o(1))

√
log i

6
√
i

− log x.

We approximate this with an integral:

∫ (1+o(1))18 (log x)2

log log x

i=1

(1 + o(1))

√
log i

6
√
i

− log x.

The primitive function of (1+o(1))
√
log i

6
√
i

is (1+o(1))1
3

√
i log i (this

is not an exact value, but one in which we allow an error term with

ordo. Derive the latter function and get the former function such a

way that we keep the main term, and all the other terms can go to

the ordo.)
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So now

∑

p≤36(logx)2

log p

6
√
p

− log x

= (1 + o(1))
1

3

√

i log i

](1+o(1))18 (log x)2

log log x

2

− log x

= (1 + o(1))
1

3

√

18
(log x)2

log log x
· 2 log log x − log x

= 2(1 + o(1)) log x − log x

= (1 + o(1)) log x.

That is

|A| ≤
(1 + o(1))36(log x)2

(1 + o(1)) log x
< 37 log x.

We mentioned that (8.3) can be estimated in a different way (this

was the first of the 2 options mentioned), namely with the Lebesgue-

Stieltjes integral. These estimates are based on:

∑

p≤x

f(p) =

∫ x

2

f(t)d pi(t)

= f(t)π(t)

∣
∣
∣
∣
∣

x

2

−
∫ x

2

f ′(t)π(t)dt

It is your turn to work out this approach. In this regard, those inter-

ested can also view the following: link.

It would follow:

q
∑

x=1

e

(

xka

q

)

,

q
∑

x=1

e

(

f(x)
a

q

)

,
n∑

x=m

e

(

f(x)
a

q

)

,

Waring, Weil sum... Later... However, now in the next chapter there

is one more sum with additive characters, after which we will move

on to multiplicative characters.
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9 Kloosterman sums

Two definitions:

Definition 9.1 If q ∈ N, q > 1, a, b ∈ Z, then the sum

U(a, b; q)
def
=

∑

0≤x<q
(x,q)=1

e

(
ax + bx∗

q

)

(where x∗ is defined by xx∗ ≡ 1 (mod q)) is called Kloosterman

sum.

Definition 9.2 A sum of type

q
∑

x=1

e

(

f(x)
a

q

)

or
∑

1≤x≤q
(x,q)=1

e

(

f(x)
a

q

)

is called complete, while a sum of type

∑

u<x<v

e

(

f(x)
a

q

)

or
∑

u<x<v
(x,q)=1

e

(

f(x)
a

q

)

is called incomplete.

So far we have studied complete sums (Ramanujan sums, Gauss

sums); the above Kloosterman sums are also complete, but incom-

plete sums can also be defined by

U(a, b; q)
def
=

∑

u<x<q
(x,q)=1

e

(
ax + bx∗

q

)

.

Incomplete Kloosterman sums will be discussed later.

First complete Kloosterman sums. Some basic properties (see

“small” Vinogradov [2, page 51] or Hooley [1]):
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Theorem 9.1

a) U(a, b; q) ∀ a, b, q is real.

b) U(a, b; q) = U(b, a; q) ∀ a, b, q.

c) If (h, q) = 1 then

U(a, bh; q) = U(ah, b; q).

d) Multiplicative property: If q1, q2 ∈ N, q1, q2 > 1, (q1, q2) = 1

and for given a, b, q1, q2 we define b1, b2 such that

b1q
2
2 + b2q

2
1 ≡ b (mod q1q2) (9.1)

holds, then

U(a, b; q1q2) = U(a, b; q1)U(a, b; q2).

Proof of Theorem 9.1.

a) It’s enough to prove: U(a, b; q) = U(b, a; q).

Indeed:

U(a, b; q) =
∑

0≤x<q
(x,q)=1

e

(
ax + bx∗

q

)

(−x)∗

=
∑

0≤x<q
(x,q)=1

e




a(−x) + b

︷ ︸︸ ︷

(−x∗)

q





=
∑

0≤y<q
(y,q)=1

e

(
ay + by∗

y

)

= U(a, b; q)
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b), c) Similarly easy, HW.

d) Here the key is: With this property d), the study of Kloosterman

sums can be reduced to the case q = pα.

During the proof, we start from the following: if

x(u, v)
def
= uq2 + vq1

and u runs on a reduced residue system mod q1, and v runs

on a reduced residue system mod q2, then x(u, v) runs on a

reduced residue system mod q1q2.

So on the left-hand side

U(a, b; q) =
∑

1≤x≤q
(x,q)=1

e

(
ax + bx∗

q

)

is included, where the summation for x means that x runs over

reduced residue system mod q1q2. Instead of x we may take

→ x(u, v), where u, v runs as above:

U(a, b; q1q2) =
∑

1≤u≤q1
(u,q1)=1

∑

1≤v≤q2
(v,q2)=1

e

(
ax(u, v) + bx(u, v)∗

q1q2

)

Here, by to the definition of ∗, x∗(u, v) is such that

x(u, v)
︸ ︷︷ ︸

uq2 + vq1

x∗(u, v) ≡ 1 (mod q1q2)

uq2x
∗(u, v) + vq1x

∗(u, v) ≡ 1 (mod q1q2)

uq2x
∗(u, v) ≡ 1 (mod q1)

vq1x
∗(u, v) ≡ 1 (mod q2). (9.2)
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Thus, using this and b ≡ b1q
2
2 + b2q

2
1 (mod q1q2)

e

(
ax(u, v) + bx(u, v)∗

q1q2

)

=

= e

(
a(uq2 + vq1) + (b1q

2
2 + b2q

2
1)x

∗(u, v)

q1q2

)

= e

(
au

q1
+

av

q2
+

b1q2x
∗(u, v)

q1
+

b2q1x
∗(u, v)

q2

)

.

Here by (9.2):

q2x
∗(u, v) ≡ u∗ (mod q1)

q1x
∗(u, v) ≡ v∗ (mod q2),

that is

e

(
ax(u, v) + bx(u, v)∗

q1q2

)

= e

(
au

q1
+

av

q2
+

b1u
∗

q1
+

b2v
∗

q2

)

= e

(
au + b1u

∗

q1

)

e

(
av + b1v

∗

q2

)

.

So

U(a, b; q1q2) =
∑

0≤u<q1
(u,q1)=1

e

(
au + b1u

∗

q1

)
∑

0≤v<q2
(v,q2)=1

e

(
av + b2v

∗

q2

)

= U(a, b; q1)U(a, b; q2).

After this, what is known about the absolute value of a Kloosterman

sum?

Theorem 9.2

a) For (a, p) = (b, p) = 1 we have |U(a, b; p)| ≤ 2
√
p.

b) ∀ a, b we have |U(a, b; p)| ≤ 2
√

p(b, p).
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c) In case of α ∈ N, α > 1, (a, p) = (b, p) = 1 we have

|U(a, b; pα)| ≤ 3
√
pα.

d) ∀ a, b:

|U(a, b; pα)| ≤ d(pα)
√

p(b, pα).

e) ∀ a, b, q:

|U(a, b; q)| ≤ d(q)
√

p(b, q).

Proof of Theorem 9.2.

a) This is due to Weil, who used very deep, algebraic geometry,

we will not prove it.

b) 3 cases:

1. (a, p) = (b, p) = 1: same as a).

2. p | b: Then |U(a, b; p)| ≤ p trivially. Right-hand side

2
√

p(b, p) = 2p.

3. p | a, (b, p) = 1:

U(a, b; p) =

∣
∣
∣
∣
∣
∣
∣
∣

∑

0≤x<p
(x,p)=1

e

(
bx∗

p

)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

p−1
∑

y=1

e

(
y

p

)
∣
∣
∣
∣
∣

= 1.

c) Salié proved it elementary, we will not prove.

d) This follows from b) and c). HW.
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e) The multiplicative property of Theorem 9.1 + d). HW.

So far we have studied complete Kloosterman sums. Usually

handling incomplete exponential sums, estimation is much more dif-

ficult; usually only much weaker estimates can be given. 2 important

exceptions: Gauss sums (we will return this) and Kloosterman sums;

this is partly their importance.

Theorem 9.3 If ε > 0, q ∈ N, q > q0(ε), a, b ∈ Z and 0 ≤
v − u ≤ 2q, then

∣
∣
∣
∣
∣
∣
∣
∣

∑

u≤x≤v
(x,q)=1

e

(
ax + bx∗

q

)

∣
∣
∣
∣
∣
∣
∣
∣

< q1/2+ε
√

(b, q).

Proof of Theorem 9.3. It can be deduced from the previous the-

orem; we will use similar technique in case of Pólya-Vinogradov’s

theorem (see also Hooley [1, page 36].)
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10 Multiplicative characters

We have seen that there are two important finite groups in num-

ber theory: Zm and Z∗
m (= multiplicative group of reduced residue

classes mod m.)

We discussed the former; now we will study the group characters

defined on the latter. But for technical reasons, we will slightly modify

(extend) the original definition.

Definition 10.1 If m ∈ N, then a function χ(n) : Z → C is called

multiplicative character if ∃ a group character χ1 defined on Z∗
m such

that

χ(n) =

{

χ1(n), if (n,m) = 1

0, if (n,m) > 1.

(So, actually, the only difference is that if (n,m) > 1 then χ(n) is

taken as 0.)

It could also be defined without group characters:

Definition 10.2 For m ∈ N, a function χ(n) : Z → C is called a

multiplicative character if

a) u, v ∈ Z, u ≡ v (mod m) ⇒ χ(u) = χ(v).

b) u, v ∈ Z ⇒ χ(uv) = χ(u)χ(v).

c) (n,m) > 1 ⇒ χ(n) = 0.

d) χ(n) 6≡ 0.

The equivalence of the two definitions is HW.

Example. Let p be a prime. Then

χ(n) =







(
a
p

)

, if (a, p) = 1

0, if p | a.
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The following basic properties of the multiplicative characters

mod m follow from the studied properties of group characters (see

Corollary 3.1).

1. χ(1) = 1.

2. For (a,m) = 1, χ(a) is a ϕ(m) (= |Z∗
m|)-th root of unity.

3. The character

χ0(a) =

{

1, if (a, n) = 1

0, if (a, n) > 1

is the so-called main character.

χ is a character ⇒ χ is also a character, where χ(a) =

χ(a) (= χ(a−1))

χ1, χ2 are characters ⇒ χ1χ2 is also a character, where

χ1χ2(a) = χ1(a)χ2(a).

4. The number of characters mod m is ϕ(m).

5.
m∑

a=1

χ(a) =

{

ϕ(m), if χ = χ0

0, if χ 6= χ0.

6.
∑

χ (mod m)

χ(a) =

{

ϕ(m), if a = 1

0, if a 6= 1.

Theorem 10.1 If a, n1, n2, . . . , nt ∈ Z, m ∈ N, (a,m) = 1, then

|{i : 1 ≤ i ≤ t, ni ≡ a (mod m)}| = 1

ϕ(m)

∑

χ

χ(a)
t∑

i=1

χ(ni).

56



Because of the studied properties of group characters, it is

enough to write Z∗
m as a direct product of cyclic groups. By the

Chinese remainder theorem, for m = pα1

1 pα2

2 · · · pαr

r we have

Z∗
m = Z∗

p
α1
1

× · · · × Z∗
pαr
r
.

If Z∗
p
αi
i

were always cyclic, i.e., there would be a primitive root for

∀ pαi

i , we would be ready. Unfortunately, this is not the case. Two

number theory theorems follow:

Theorem 10.2 There ∃ a primitive root mod m if and only if m =

2, 4, pα or 2pα, where p > 2 is a prime.

Theorem 10.3 For α > 2 we have

Z∗
2α = {−1}2 × {5}2α−2

Proof of Theorems 10.2 and 10.3. See “small” Vinogradov [2, 76-

78. page].

Using these two auxiliary theorems of number theory it follows that

the explicit form of mod m multiplicative characters is the following:

Theorem 10.4 Let m = 2αpα1

1 · · · pαr

r , where 2 < p1 < · · · < pk,

0 ≤ β, 0 < β1, . . . , βk. Moreover let gi be a primitive root mod pαi

i .

Then χ : Zm → C is a multiplicative character modulo m if and

only if ∃ integers a1, a2, b1, . . . , bk such that

0 ≤ a1 < c1
def
=

{

1, if α = 0 or 1

2, if α ≥ 2,

0 ≤ a2 ≤ c2
def
=

{

1, if α = 0 or 1

2α−2, if α ≥ 2
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and

0 ≤ bi ≤ ϕ(pαi

i ) − 1,

moreover

a) for (n,m) = 1 define the integers k1, k2, ℓ1, . . . , ℓk by

n ≡ (−1)k15k2 (mod 2β), 0 ≤ k1 < c1, 0 ≤ k2 < c2

n ≡ gℓi
i (mod pαi

i ), 0 ≤ ℓi < ϕ(pαi

i ),

then

χ(n) = e

(

k1

a1

c1
+ k2

a2

c2
+ ℓ1

b1

ϕ(pα1

1 )
+ · · · + ℓk

bk

ϕ(pαk

k )

)

b) For (n,m) > 1, χ(n) = 0.

Proof of Theorem 10.4. Davenport [1, 29. page], “small” Vino-

gradov [2, 80. page].

Definition 10.3 We call the character χ mod m primitive, if ∄ in-

teger m1 such that χ1 is a character mod m1, where m1 | m,

m1 < m and for n ∈ Z, (n,m) = 1 we have χ(n) = χ1(n).

If, on the other hand, such m1, χ1 exists, then χ is imprimitive, and

the smallest m1 with this property called the “conductor” of χ, and

χ itself is said to be induced by character χ1.

Remark.

1. According to Davenport, χ0 is neither primitive nor imprimitive.

2. If p is prime, then every mod p character χ 6= χ0 is primitive.

3. Another possible definition: χ imprimitive, if ∃ m1 | m,

1 < m1 < m such that the values of χ(n) for n satisfying

(n.m) = 1 are periodic with period m1.
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11 Gauss sums (part 2)

Definition 11.1 if q ∈ N and χ is a character mod m, then the sum

τ (χ) =

q−1
∑

m=0

χ(m)e

(
a

m

)

is also called the Gauss sum.

Why?

We first proved that if p is prime and (a, p) = 1, then the absolute

value of the Gauss sum

S(a, p) =

p−1
∑

x=0

e

(

x2a

p

)

is

|S(a, p)| = √
p.

Consider the following Gauss sum S(a, p):

S(a, p) =

p−1
∑

x=0

e

(

x2a

p

)

= 1 +

p−1
∑

x=1

e

(

x2a

p

)

︸ ︷︷ ︸

x2≡(−x)2≡y

counted 2x if (y

p)=1,

counted 0x if(y

p)=−1

= 1 +

p−1
∑

y=1

((
y

p

)

+ 1

)

e

(

y
a

p

)

=

p−1
∑

y=0

e

(

y
a

p

)

︸ ︷︷ ︸

=0, by (a,p)=1

+

p−1
∑

y=1

(
y

p

)

e

(

y
a

p

)
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=

p−1
∑

y=1

(
y

p

)

e

(

y
a

p

)

Let

χ(n) =







(
n
p

)

, if (n, p) = 1

0 if (n, p) > 1.

Then S(a, p) is of the form

S(a, p) =

p−1
∑

y=0

χ(y)e

(
ya

p

)

.

Here substituting ya ≡ t (mod p) we get y ≡ ta∗ (mod p),

where a∗ is the multiplicative inverse of a. That is:

S(a, p) =

p−1
∑

t=0

χ(ta∗)e

(
t

p

)

= χ(a∗)
p−1
∑

t=0

χ(t)e

(
t

p

)

= χ(a)

p−1
∑

t=0

χ(t)e

(
t

p

)

︸ ︷︷ ︸

Considering this the
definition is clear.

Theorem 11.1 If m ∈ N, χ is a primitive character mod m, then

|τ (χ)| =
√
m.

Proof of Theorem 11.1. We only prove if m is a prime p. Then χ

being primitive means χ 6= χ0. Thus

|τ (χ)|2 =

p−1
∑

a=1

χ(a)e

(
a

p

) p−1
∑

b=1

χ(b)e

(
b

p

)

=

p−1
∑

a=1

χ(a)e

(
a

p

) p−1
∑

b=1

χ(b)
︸ ︷︷ ︸

χ(b∗)

e

(

−b

p

)
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=

p−1
∑

a=1

p−1
∑

b=1

χ(ab∗)e

(
a − b

p

)

Let ab∗ ≡ t (mod p), so a ≡ tb (mod p). Then

|τ (χ)|2 =

p−1
∑

t=1

p−1
∑

b=1

χ(t)e

(
bt − b

p

)

=

p−1
∑

t=1

(
t−1∑

b=0

e

(
b(t − 1)

p

)

︸ ︷︷ ︸






p, if t = 1

0, if t 6= 1

−1

)

= χ(1)(p − 1) +

p−1
∑

t=2

χ(t)(−1)

= p − 1 +

p−1
∑

t=1

χ(t) + χ(1)

= 0.

In the following, we study a transition formula from a multiplicative

to an additive character.

Theorem 11.2 If q ∈ N, n ∈ Z, χ is multiplicative character mod p

and

a) (n, q) = 1

or

b) χ is a primitive character, then

χ(n)τ (χ) =

q−1
∑

h=0

χ(h)e

(

n
h

p

)

.
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Proof of Theorem 11.2. a)

χ(n)τ (χ) = χ(n)
︸ ︷︷ ︸

χ(n∗)

q−1
∑

m=0

χ(m)e

(
m

q

)

=

q−1
∑

m=0

χ(mn∗)e

(
m

q

)

=

q−1
∑

h=0

χ(h)e

(
hn

q

)

,

where in the last line h ≡ mn∗ (mod q) ⇔ m ≡ hn (mod q).

b) More complicated, see Davenport [1, 65. page].
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12 The dual of Vinogradov’s lemma

Applying the transition formula studied in the previous chapter,

i.e., Theorem 11.2, we will prove the dual of Vinogradov lemma (see

Lemma 6.1).

For, as follows, there is a duality principle according to which, in

the case of certain theorems, additive characters can be replaced by

multiplicative characters, and products by sums, and vice versa, and

proofs are often convertible. Now we will see an example of this.

In Chapter 6, we proved the following in Lemma 6.1:

Theorem 12.1 (Vinogradov) Let (a, q) = 1, q > 1 and

S
def
=

q−1
∑

x=0

q−1
∑

y=0

ξ(x)η(y)e

(

xy
a

q

)

(i.e., if we write the additive character Ψ(n) = e
(
a
q
n
)

mod q,

then S =
∑

x

∑

y ξ(x)η(y)Ψ(xy)), and let

q−1
∑

x=0

|ξ(x)|2 = X0,

q−1
∑

y=0

|η(y)|2 = Y0.

Then

|S| ≤ (X0Y0q)
1/2 .

Particularly, if q = p is prime, then the condition (a, q) = (a, p) = 1

in the theorem states that Ψ 6= Ψ0 (here, Ψ(n) = e
(
a
q
n
)

). Thus,

in this special case, we get:

The dual of the above theorem is::
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Theorem 12.2 (Gyarmati - Sárközy [7]) If p is a prime and χ 6= χ0

is a multiplicative character modulo p, then

|S| =
∣
∣
∣
∣
∣

p−1
∑

x=0

p−1
∑

y=0

ξ(x)η(y)χ(x + y)

∣
∣
∣
∣
∣
≤ (X0Y0p)

1/2,

where
p−1
∑

x=0

|ξ(x)|2 = X0,

p−1
∑

y=0

|η(y)|2 = Y0.

Remark. Both Vinogradov’s lemma and its dual above can be easily

extended from Fp to any finite field.

Corollary 12.1 If p is prime and ξ(x) and η(y) are characteristic

functions of certain sets A,B ⊆ Zp, i.e.,

ξ(x) =

{

1, if x ∈ A
0, if x /∈ A

η(y) =

{

1, if y ∈ B
0, if y /∈ B,

then ∣
∣
∣
∣
∣

∑

a∈A

∑

b∈B
χ(a + b)

∣
∣
∣
∣
∣
≤ (|A||B|p)1/2 .

This theorem was proved by Erdős and Shapiro [4] in 1957.

We note that if χ is the quadratic character, i.e., χ(n) =
(
n
p

)

if

(n, p) = 1 and χ(n) = 0, if (n.p) > 1, then we get the following:

∣
∣
∣
∣
∣

∑

a∈A

∑

b∈B

(
a + b

p

)
∣
∣
∣
∣
∣
≤ (|A||B|p)1/2 .

The proof of Theorem 12.2. Since p is prime and χ 6= χ0, χ is a

primitive character. Thus, the transformation formula, i.e., Theorem
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11.2 can be applied:

χ(n)τ (χ) =

p−1
∑

h=0

χ(h)e

(

n
h

p

)

.

Since χ is primitive τ (χ) =
√
p 6= 0, so we can divide it by:

χ(n) =
1

τ (χ)

p−1
∑

h=0

χ(h)e

(

n
h

p

)

.

That is, |S| can be estimated as follows:

|S| =
∣
∣
∣
∣
∣

p−1
∑

x=0

p−1
∑

y=0

ξ(x)η(y)

(

1

τ (χ)

p−1
∑

h=0

χ(h)e

(

(x + y)
h

p

))
∣
∣
∣
∣
∣

=
1

|τ (χ)|

∣
∣
∣
∣
∣

p−1
∑

h=0

χ(h)

p−1
∑

x=0

ξ(x)e

(

x
h

p

) p−1
∑

y=0

η(y)e

(

y
h

p

)
∣
∣
∣
∣
∣

≤
1
√
p

p−1
∑

h=0

∣
∣
∣
∣
∣

p−1
∑

x=0

ξ(x)e

(

x
h

p

)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

p−1
∑

y=0

η(y)e

(

y
h

p

)
∣
∣
∣
∣
∣

By the Cauchy-Schwarz inequality:

|S| ≤ 1
√
p





p−1
∑

h=0

∣
∣
∣
∣
∣

p−1
∑

x=0

ξ(x)e

(

x
h

p

)
∣
∣
∣
∣
∣

2




1/2



p−1
∑

h=0

∣
∣
∣
∣
∣

p−1
∑

y=0

η(y)e

(

y
h

p

)
∣
∣
∣
∣
∣

2




1/2

According to a previously studied Parseval formula (see (6.3)):

|S| ≤ 1
√
p

(

p

p−1
∑

x=0

|ξ(x)|2
)1/2(

p

p−1
∑

y=0

|η(y)|2
)1/2

=
1

√
p
(pX0)

1/2 (pY0)
1/2

= (pX0Y0)
1/2 .

As we saw, for example, related to Diophantus’ problem (Chapter

8), a multiplicative problem (e.g. aa′ +1 is always a square number
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if a 6= a′ and a, a′ ∈ A) has an additive analog (a + a′ is always a

square number if a 6= a′ and a, a′ ∈ A), and vice versa.

So if we have a statement for sums of type a + b, an interesting

question is whether the same can be said for ab+ 1.

Thus, for example, it is an interesting question whether the esti-

mate of
∣
∣
∣
∑p−1

x=0

∑p−1
y=0 ξ(x)η(y)χ(x + y)

∣
∣
∣ can be converted to the

estimate of
∣
∣
∣
∑p−1

x=0

∑p−1
y=0 ξ(x)η(y)χ(xy + 1)

∣
∣
∣? The answer to this

question is affirmative, i.e. the following is true:

Corollary 12.2 (Gyarmati - Sárközy) If p is a prime and χ 6= χ0 is

a multiplicative character modulo p, then

|S| =
∣
∣
∣
∣
∣

p−1
∑

x=0

p−1
∑

y=0

ξ(x)η(y)χ(xy + 1)

∣
∣
∣
∣
∣
≤ (pX0)

1/2
(

Y
1/2
1 + |η(0)|

)

,

where
p−1
∑

x=0

|ξ(x)|2 = X0,

p−1
∑

y=1

|η(y)|2 = Y1.

Proof of Corollary 12.2. Basically, the proof is just that we apply

Theorem 12.2 with η(y−1)χ(y−1) in place of η(y) and then intro-

ducing the new variable z = x−1 in the sum, we get the desired

result:

|S| =
∣
∣
∣
∣
∣

p−1
∑

x=0

p−1
∑

y=0

ξ(x)η(y)χ(xy + 1)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

p−1
∑

x=0

p−1
∑

y=1

ξ(x) η(y)χ(y)
︸ ︷︷ ︸

=η′(y−1)=η′(z)

χ(x + y−1

︸︷︷︸
=z

)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

p−1
∑

x=0

ξ(x)η(0)χ(1)
︸ ︷︷ ︸
=1

∣
∣
∣
∣
∣
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≤
(

pX0

p−1
∑

z=1

|η′(z)|2

︸ ︷︷ ︸

p−1
∑

z=1

|η(z−1)|2
∣
∣χ(z−1)

∣
∣
2

︸ ︷︷ ︸
=1

= Y1

)1/2

+

∣
∣
∣
∣
∣

p−1
∑

x=0

ξ(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Cauchy-Shwarz

|η(0)|

≤ (pX0Y1)
1/2 + |η(0)| (X0p)

1/2

= (pX0)
1/2
(

Y
1/2
1 + |η(0)|

)

.

Corollary 12.3 If p is a prime, A,B ⊆ Zp, 0 /∈ B, ξ(x) and η(y)

are the characteristic functions of A and B, then:
∣
∣
∣
∣
∣

∑

a∈A

∑

b∈B
χ(ab + 1)

∣
∣
∣
∣
∣
≤ (|A||B|p)1/2 .

I proved this last corollary in [6], and even earlier Vinogradov

studied the case χ(n) =
(
n
p

)

.

Speaking of additive and multiplicative analogies (the cases a + b

and ab + 1), we mention that Sárközy in Theorem 6.1 studied the

solvability of the equation

a + b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D, (12.1)

if A,B, C,D ⊆ Zp are large sets.

An interesting problem is the multiplicative analogue of the above:

Theorem 12.3 (Sárközy [9], 2005) If p is a prime, A,B, C,D ⊆ Zp

and we denote the number of solutions of

ab+ 1 = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D (12.2)

by N , then
∣
∣
∣
∣
N − |A||B||C||D|

p

∣
∣
∣
∣
≤ 8 (|A||B||C||D|)1/2 p1/2 + 4p2.
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Corollary 12.4 If p is a prime, A,B, C,D ⊆ Zp and

|A||B||C||D| > 100p3,

then (12.2) is solvable.

Proof of Theorem 12.3. The proof is HW, we only mention that it is

similar to the proof of Theorem 6.1, with the difference that for the

estimation of |∑a

∑

b χ(ab + 1)| we use Corollary 12.3.

Remark. Both (12.1) and (12.2) are special case of an algebraic

equation of type

f(a1, a2, . . . , ak) = 0, a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak,

where f(a1, . . . , ak) ∈ Zp[a1, . . . , ak] and A1, . . . ,Ak are large

subsets of Zp. Jointly with András Sárközy, we studied the solvability

of equations of the this type in [8].

The Weil theorem plays a key role in these results. The form of

Weil’s theorem for multiplicative characters is the following:

Theorem 12.4 (Weil) Let p be a prime, χ is a multiplicative charac-

ter of order d modulo p, where d > 1 and the polynomial f(x) ∈
Fp[x] has s distinct roots over the algebraic closure of Fp moreover

f(x) is not of the form cg(x)d, where c ∈ Fp, g(x) ∈ Fp[x]. Then
∣
∣
∣
∣
∣
∣

∑

x∈Fp

χ(f(x))

∣
∣
∣
∣
∣
∣

≤ (s − 1)p1/2 ≤ (degf − 1)p1/2.

Definition 12.1 The order of a character is the smallest positive in-

teger d for which χd = χ0
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It follows from the Euler-Fermat theorem that if χ is an arbitrary

character modulo m and (n,m) = 1, then

χ(n)ϕ(m) = χ(nϕ(m)) = χ(1) = 1 = χ0(n).

We also know that for (n,m) > 1 we have χ(n) = 0 = χ0(n).

So χϕ(m) = χ0 always holds, i.e., the order of a character is always

≤ ϕ(m).

In Weil’s theorem, the condition f(x) 6= cg(x)d is important, since

if f(x) = cg(x)d and χ is a character of order d, then
∣
∣
∣
∣
∣
∣

∑

x∈Fp

χ(f(x))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

x∈Fp

χ(cg(x)d)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

x∈Fp

χ(c)χd(g(x))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∑

x∈Fp

g(x)6=0

χ(c)

∣
∣
∣
∣
∣
∣
∣
∣

≥ p − degg.

We also note that in Weil’s theorem, the polynomial f(x) can

be replaced by a fractional function f(x)
g(x)

, namely, if g(x) 6= 0, then

1
g(x)

def
= g∗(x) = g(x)p−2, and so

∣
∣
∣
∣
∣
∣
∣
∣

∑

x∈Fp

g(x)6=0

χ

(
f(x)

g(x)

)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

x∈Fp

χ
(
f(x)g(x)p−2

)

∣
∣
∣
∣
∣
∣

≤ (#number of distinct roots of f(x)g(x)) p1/2,

provided that f(x)g(x)p−2 is not of the form ch(x)d (which is equiv-

alent with f(x) or g(x) is not of the form ch(x)d in the case of
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(f, g) = 1).

In our joint papers with András Sárközy [7] and [8] we needed to

estimate the following character sums: |
∑

x∈Fp

∑

y∈Fp
Ψ(f(x, y))|,

where Ψ is an additive character, and |∑x∈Fp

∑

y∈Fp
χ(f(x, y))|,

where χ is a multiplicative character and f is a two-variable polyno-

mial .

Sums of this type are most strongly estimated by Delinge [2], [3],

then Fouvry and Katz [5], however, during these estimations there

is a condition that f(x, y) is not singular, which unfortunately not

always holds in our special applications... As a result we had to use

weaker estimates where the conditions of the used theorem is more

flexible...

We also note that in our joint triple paper with Csikvári [1] we ex-

tended the problem from Fp to N, Z and Q, but combinatorial tools

dominate in these cases.
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13 Is Weil’s theorem sharp?

Winterhof (slightly more general than below) proved the following

in [1, Lemma 2]:

Lemma 13.1 Let A ⊆ Fp be an arbitrary set. Then

∑

x∈Fp

∣
∣
∣
∣
∣

∑

a∈A
χ(x + a)

∣
∣
∣
∣
∣

2

= p|A| − |A|2.

Proof of Lemma 13.1. Indeed,

∑

x∈Fp

∣
∣
∣
∣
∣

∑

a∈A
χ(x + a)

∣
∣
∣
∣
∣

2

=
∑

x∈Fp

∑

a,b∈A
χ(x + a)χ(x + b)

=
∑

x∈Fp

∑

a∈A

∣
∣
∣
∣
∣
χ(x + a)

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸






1, ha x 6= −a

0, ha x = −a

+
∑

a,b∈A
a 6=b

∑

x∈Fp

χ(x + a)χ(x + b)

= (p − 1)|A| +
∑

a,b∈A
a 6=b

∑

x∈Fp

χ(x + a)χ(x + b)

= (p − 1)|A|
∑

a,b∈A
a 6=b

∑

x∈Fp

x 6=−b

χ

(
x + a

x + b

)

.

It is easy to see that as x runs over the elements of the set Fp \{b},
x+a
x+b

takes on all values except 1. Thus:

∑

x∈Fp

∣
∣
∣
∣
∣

∑

a∈A
χ(x + a)

∣
∣
∣
∣
∣

2

= (p − 1)|A| +
∑

a,b∈A
a 6=b

∑

y∈Fp

y 6=1

χ(y)
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= (p − 1)|A| +
∑

a,b∈A
a 6=b

(−1)

= (p − 1)|A| − |A| (|A| − 1)

= p|A| − |A|2.

The above theorem immediately has an interesting conse-

quence. In Lemma 13.1, take the set A of consecutive numbers:

A = {1, 2, . . . , N}. Then by Lemma 13.1:

∑

x∈Fp

∣
∣
∣
∣
∣

N∑

a=1

χ(x + a)

∣
∣
∣
∣
∣

2

= pN − N 2.

That is, there exists an x ∈ Fp, say x = M , for which

∣
∣
∣
∣
∣

N∑

a=1

χ(M + a)

∣
∣
∣
∣
∣

2

≥ N − N 2

p
∣
∣
∣
∣
∣

N∑

a=1

χ(M + a)

∣
∣
∣
∣
∣
≥
√

N −
N 2

p
∣
∣
∣
∣
∣

M+N∑

x=M+1

χ(x)

∣
∣
∣
∣
∣
≥
√

N − N 2

p
.

If p ≥ 3, choosing N to be (p − 1)/2, we get the following:

Corollary 13.1 If p ≥ 3 is a prime, then ∃ M ∈ Fp, for which
∣
∣
∣
∣
∣
∣

M+(p−1)/2
∑

x=M+1

χ(x)

∣
∣
∣
∣
∣
∣

≥
√

p − 1

2
− 1

4p
>

√
p

√
2
− 1.

In the next chapter we will study how sharp this result is.

There is an even more exciting application when we test how

sharp the Weil’s theorem in case of multiplicative characters (12.4

Theorem) is.
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For the sake of simplicity, let the order of the character χ now be

p − 1 and f(x) = xk + m, where the degree of the polynomial

is k | p − 1 and k < p − 1 holds. Then f(x) is obviously not a

polynomial of the form cg(x)p−1. We will prove the following:

Corollary 13.2 Let p be an odd prime, k | p − 1, k < p − 1 and χ

be a multiplicative character of order p − 1. Then ∃ m ∈ F∗
p such

that for the polynomial f(x) = xk + m we have

∑

x∈Fp

χ(f(x)) >
√

(k − 1)p.

In order to prove the theorem, it is only necessary to slightly mod-

ify the proof of Lemma 13.1.

Proof of Corollary 13.2. Let us now study the sum
∑

x∈Fp

∣
∣
∣
∑

a∈F∗
p
χ(x + ak)

∣
∣
∣

2

.

∑

x∈Fp

∣
∣
∣
∣
∣
∣

∑

a∈F∗
p

χ(x + ak)

∣
∣
∣
∣
∣
∣

2

=
∑

x∈Fp

∑

a,b∈F∗
p

χ(x + ak)χ(x + bk)

=
∑

x∈Fp

∑

a,b∈F∗
p

ak=bk

∣
∣
∣
∣
∣
χ(x + ak)

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸






1, ha x 6= −ak

0, ha x = −ak

+
∑

a,b∈F∗
p

ak 6=bk

∑

x∈Fp

χ(x + ak)χ(x + bk)

For a fixed b 6≡ 0 (mod p), there are always exactly k pieces a for

which ak ≡ bk (mod p). (Here we use that in the case of (c, p) =

1, congruence xk ≡ c (mod p) can be solved if c(k−1)/(k−1,p) ≡ 1

(mod p) and then the number of solutions is (k, p − 1).) Thus:
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∑

x∈Fp

∣
∣
∣
∣
∣
∣

∑

a∈F∗
p

χ(x + ak)

∣
∣
∣
∣
∣
∣

2

= (p − 1)2k +
∑

a,b∈F∗
p

ak 6=bk

∑

x∈Fp

χ(x + ak)χ(x + bk)

= (p − 1)2k +
∑

a,b∈F∗
p

ak 6=bk

∑

x∈Fp

x 6=−bk

χ

(

x + ak

x + bk

)

.

It is easy to see that as x runs, x+ak

x+bk
takes all values on the elements

of the set Fp \ {−bk} except for 1. Thus:

∑

x∈Fp

∣
∣
∣
∣
∣
∣

∑

a∈F∗
p

χ(x + ak)

∣
∣
∣
∣
∣
∣

2

= (p − 1)2k +
∑

a,b∈F∗
p

ak 6=bk

∑

y∈Fp

y 6=1

χ(y)

= (p − 1)2k − (p − 1)(p − 1 − k)

= (p − 1)(pk − p + 1)

≥ (p − 1)p(k − 1) + 2. (13.1)

Note that for x = 0 we have

∑

a∈F∗
p

χ(x + ak) =
∑

a∈F∗
p

χ(ak) =
∑

a∈F∗
p

χk(a) = −1,

since χk is a multiplicative character. Thus by (13.1):

∑

x∈F∗
p

∣
∣
∣
∣
∣
∣

∑

a∈F∗
p

χ(x + ak)

∣
∣
∣
∣
∣
∣

2

≥ (p − 1)p(k − 1) + 1.

That is, there exists an x ∈ F∗
p, say x = m, for which

∣
∣
∣
∣
∣
∣

∑

a∈F∗
p

χ(m + ak)

∣
∣
∣
∣
∣
∣

2

> (k − 1)p
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∑

a∈F∗
p

χ(m + ak) >
√

(k − 1)p.

By writing x instead of a in this, the statement of Corollary 13.2

immediately follows.
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14 Pólya-Vinogradov inequality and

Vinogradov’s method for estimating

imcomplete character sums

In 1918, Pólya and Vinogradov independently proved the follow-

ing:

Theorem 14.1 (Pólya-Vinogradov inequality) ∃ positive absolute

constant c such that if m ∈ N, m > 2, χ is a multiplicative character

mod m, χ 6= χ0, M ∈ Z and N ∈ N then
∣
∣
∣
∣
∣

M+N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
< c

√
m logm.

Remark. The trivial upper bound for the sum is N . Thus, the Pólya-

Vinogradov inequality is not trivial if N ≫ √
m logm.

We prove the theorem using Vinogradov’s principle, which re-

duces the estimation of imcomplete sums to the estimation of com-

plete sums.

Theorem 14.2 (Vinogradov) If m ∈ N, x, y ∈ N, (0 <)x < y ≤
m and a1, a2, . . . , am ∈ C, then writing

F (t) =

m∑

j=1

aje

(
jt

m

)

and

A =
m∑

j=1

aj,

we get
∣
∣
∣
∣
∣

y
∑

n=x

an − y − x + 1

m
A

∣
∣
∣
∣
∣
≤ 1

2m

m−1∑

ℓ=1

|F (ℓ)|
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
,

where ||s|| denotes the distance of s to the nearest integer.
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Corollary 14.1 (Vinogradov)
∣
∣
∣
∣
∣

y
∑

n=x

an − y − x + 1

m
A

∣
∣
∣
∣
∣
≤ (logm + 1) max

1≤ℓ≤m−1
|F (ℓ)|.

Proof of Theorem 14.2.

S =

y
∑

n=x

an

=

y
∑

n=x

m∑

j=1

1

m

m−1∑

ℓ=0

e

(
ℓ(j − n)

m

)

aj

=
1

m

m−1∑

ℓ=0

y
∑

n=x

m∑

j=1

aje

(
ℓ(j − n)

m

)

︸ ︷︷ ︸

aje(− ℓn

m)e( ℓj

m)

=︸︷︷︸
We separate
the term ℓ=0

=
1

m

y
∑

n=x

A
︷ ︸︸ ︷
m∑

j=1

aj

︸ ︷︷ ︸
y−x+1

m
A

+
1

m

m∑

ℓ=1

(
y
∑

n=x

e

(

−ℓn

m

))( m∑

j=1

aje

(
ℓj

m

)

︸ ︷︷ ︸

F (ℓ)

)

.

So:

∣
∣
∣
∣
S −

y − x + 1

m
A

∣
∣
∣
∣
≤

1

m

m∑

ℓ=1

∣
∣
∣
∣
∣

y
∑

n=x

e

(

−
ℓn

m

)
∣
∣
∣
∣
∣
|F (ℓ)| .

Here:

∣
∣
∣
∣
∣

y
∑

n=x

e

(

−
ℓn

m

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1− e
(

−(y−x+1)ℓ
m

)

1− e
(
− ℓ

m

)

∣
∣
∣
∣
∣
∣

≤
2

∣
∣1 − e

(
ℓ
m

)∣
∣
.

↑
arithmetic progression with

common difference e(− ℓ

n)

Then using |1 − e(α)| ≥ 4 ||α|| (see 2.1 Lemma):
∣
∣
∣
∣
∣

y
∑

n=x

e

(

−ℓn

m

)
∣
∣
∣
∣
∣
≥ 2

4
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
=

1

2
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
.
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That is

∣
∣
∣
∣
S − y − x + 1

m
A

∣
∣
∣
∣
≤ 1

m

m∑

ℓ=1

∣
∣
∣
∣
∣

y
∑

n=x

e

(

−ℓn

m

)
∣
∣
∣
∣
∣
|F (ℓ)|

≤ 1

2m

m−1∑

ℓ=1

|F (ℓ)|
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
,

which is the statement of the theorem.

Proof of Corollary 14.1.

1

2m

m−1∑

ℓ=1

|F (ℓ)|
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣

≤
(

max
1≤ℓ≤m−1

|F (ℓ)|
)

1

2m

m−1∑

ℓ=1

1
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
. (14.1)

Here:

m−1∑

ℓ=1

1
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
≤ 2

∑

1≤ℓ≤[m/2]

1
ℓ
m

= 2m
∑

1≤ℓ≤[m/2]

1

ℓ
, (14.2)

where

∑

1≤ℓ≤a

1

ℓ
= 1 +

∑

2≤ℓ≤a

1

ℓ
≤ 1 +

∫ a

1

1

x
dx = 1 + log a.

This last inequality can be illustrated with the following figure:
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Writing this in (14.2):

m−1∑

ℓ=1

1
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣
≤ 2m(1 + log[m/2]) ≤ 2m(1 + logm).

Thus, based on (14.1):

1

2m

m−1∑

ℓ=1

|F (ℓ)|
∣
∣
∣
∣ ℓ
m

∣
∣
∣
∣

≤
(

max
1≤ℓ≤m−1

|F (ℓ)|
)

1

2m
· 2m(1 + logm)

= (logm + 1)

(

max
1≤ℓ≤m−1

|F (ℓ)|
)

.

Proof of Theorem 14.1.

Case A. Assume that χ is a primitive character mod m. Consider

those n’s for which

M ≤ n ≤ M + N.

Then by
∑m

n=1 χ(n) = 0 and the periodicity we get that the studied

sum on the middle intervals in the following figure is 0, while the
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terms in the first and last short interval can be shifted to the interval

(0, p]:

Thus the task is to estimate a following type sum:
∣
∣
∣
∣
∣

y
∑

n=x

χ(n)

∣
∣
∣
∣
∣
,

where 0 ≤ x ≤ y, y − x ≤ p (If the interval (0, p] has two disjoint

subintervals at the very beginning and at the very end, then we esti-

mate the sum on the complementary interval, while if the above two

intervals intersect, then it is enough to estimate on the intersection

sum, since
∑m

n=1 χ(n) = 0.)

Using Corollary 14.1 with an = χ(n) we get that

A =
m∑

n=1

χ(n) = 0

and ∣
∣
∣
∣
∣

y
∑

n=x

χ(n)

∣
∣
∣
∣
∣
≤ (logm + 1)max |F (ℓ)| ,

where, based on the properties of Gaussian sums (see chapter 5):

|F (ℓ)| =

∣
∣
∣
∣
∣
∣

m∑

j=1

χ(j)e

(
jℓ

m

)
∣
∣
∣
∣
∣
∣

= |χ(ℓ)τ (χ)| ≤
√
m.

So indeed:
∣
∣
∣
∣
∣

y
∑

n=x

χ(n)

∣
∣
∣
∣
∣
≤ (logm + 1)

√
m
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∣
∣
∣
∣
∣

M+N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
≤ (logm + 1)

√
m.

Case B. For imprimitive characters χ: This can be reduced to case

A, see Davenport [1, 136. page].

Remarks. Pólya-Vinogradov is almost sharp: logm cannot be com-

pletely omitted (see e.g. Corollary 13.1), at best it can be replaced

by a log logm. The first result was obtained by Schur in 1918, who

proved that for every primitive character χ

max
M,N

∣
∣
∣
∣
∣

N+M∑

n=N

χ(N)

∣
∣
∣
∣
∣
>

1

2π

√
m.

Here, we managed to reduce the constant 1
2π

almost to 1√
2

in the

case of a prime modulus in Corollary 13.1.

There are infinitely many characters with even sharper estimates.

Payley [3] proved the following in 1932:

Theorem 14.3 (Payley) There are infinitely many characters m and

χ 6= χ0 mod m for which

max
M,N

∣
∣
∣
∣
∣

N+M∑

n=N

χ(N)

∣
∣
∣
∣
∣
> c

√
m log logm.

Assuming the generalized Riemann hypothesis in 1977, Mont-

gomery and Vaughan [2] proved the following:

Theorem 14.4 (Montgomery-Vaughan) ∃ absolute positive con-

stant c such that if the generalized Riemann hypothesis holds, then

for m,N ∈ N, m > 2 and multiplicative character χ mod m,

χ 6= χ0, M ∈ Z we have
∣
∣
∣
∣
∣

M+N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
< c

√
m log logm.
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15 Short multiplicative character sums

and the least quadratic non-residue.

The Pólya-Vinogradov inequality: if χ 6= χ0 is a multiplicative

character mod m and M ∈ Z, N ∈ N, then

∣
∣
∣
∣
∣

N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
< c

√
m logm. (15.1)

Trivially
∣
∣
∣
∣
∣

N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
< N

(since the absolute value of each term is ≤ 1 and there are M terms

in total). Thus, (15.1) is non-trivial only if the upper estimate in (15.1)

is < N , i.e.,

c
√
m logm < M.

What happens if this doesn’t hold, i.e., short character sums are

considered for which

N = o(
√
m logm)?

It is very important to be able to give a non-trivial estimate in these

cases, say a
∣
∣
∣
∣
∣

M+N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
= o(N)

type estimate.

In the following, we present an application of this type of estimate,

namely we will study the estimate of the least quadratic non-residue.

This is one of the 5− 6 most important problems in number theory.
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Definition 15.1 If p is prime, then the smallest positive integer q =

q(p), with
(
q
p

)

= −1 is called the least quadratic non-residue.

The Pólya-Vinogradov inequality immediately gives an estimate

for q(p). Indeed, applying (15.1) to χ(n) =
(
n
p

)

, M = 0, N =

q(p) − 1 we get that

∣
∣
∣
∣
∣
∣

q(p)−1
∑

n=1

(
n

p

)
∣
∣
∣
∣
∣
∣

≤ c
√
p log p,

but for 1 ≤ n ≤ q(p) − 1 we have
(
n
p

)

= 1, so

q(p) − 1 < c
√
p log p

q(p) = O(
√
p log p).

This estimate can be further improved by Burgess’ theorem [1].

But, before we get started, it’s important to consider which type

of elementary estimate can be given for q(p).

Suppose that q(p) ≥ √
p+1. Then

⌈
p

q(p)

⌉

≤ p
q(p)

+1 < q(p), so
⌈

p
q(p)

⌉

is a quadratic non-residue, since every positive integer value

smaller than q(p) is a quadratic residue mod p.

So
⌈

p
q(p)

⌉

q(p) is a quadratic non-residue. However

p =
p

q(p)
q(p) <

⌈
p

q(p)

⌉

q(p) <

(
p

q(p)
+ 1

)

q(p) = p + q(p)

(here we used that p
q(p)

is not an integer, i.e.,
⌈

p
q(p)

⌉

is strictly be-

tween p
q(p)

and p
q(p)

+ 1).
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That is, the residue of
⌈

p
q(p)

⌉

q(p) (which is quadratic non-

residue) modulo p is strictly less than q(p), which contradicts of the

definition of q(p). So

q(p) <
√
p + 1.

Even in an elementary method, we can go a little lower if we also

suppose that p is a prime of the form 4k + 1. Let

A = {0, 1, 2, . . . , q(p) − 1},

and n be a fixed quadratic non-residue. Then in the set

A + nA = {a + na′ : a, a′ ∈ A}

each element is represented only once. Indeed for

a1 + na′
1 ≡ a2 + na′

2 (mod p)

a1 − a2 ≡ n(a′
2 − a′

1) (mod p),

but here

a1−a2, a
′
2−a′

1 ∈ {−q(p)+1,−q(p)+2, . . . , q(p)−2, q(p)−1},

in which set all numbers except 0 are quadratic residues.

By the multiplicative property of the Legendre symbol

(
a1 − a2

p

)

=

(
n

p

)(
a′
2 − a′

1

p

)

1 = (−1) · 1,

which is a contradiction. There is only one exception, namely a1 −
a2 = 0 and a′

2 − a′
1 = 0, i.e., a1 = a2 and a′

1 = a′
2.
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That is, in the set

A + nA = {a + na′ : a, a′ ∈ A}

each element is represented only once. So |A + nA| = |A|2. On

the other hand

A + nA ⊆ Z2
p,

thus

|A|2 ≤ p

|A| ≤ √
p

q(p) ≤ √
p.

This concludes the section on the elementary estimation of the least

quadratic non-residue. But is it possible to say more than the above

with deeper tools? Then Burgess’ theorem helps:

Theorem 15.1 (Burgess) ∃ c > 0, such that if p is a prime and

N, r ∈ N, N ∈ Z, then
∣
∣
∣
∣
∣

M+N∑

n=M+1

χ(n)

∣
∣
∣
∣
∣
< cN 1−1

rp
r+1

4r2 (log p)
1
r .

We do not prove this theorem here. The proof is based on Weil’s

theorem, i.e., the estimate of
∣
∣
∣
∑

x∈Fp
χ(x)

∣
∣
∣.

Using this theorem we get:

q(p) − 1 < cq(p)1−1/rp(r+1)/4r2

(log p)1/r

q(p)1/r ≪ p(r+1)/4r2

(log p)1/r

q(p) ≪ p(r+1)/4r log p),
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so ∀ ε > 0 we have

q(p) = o
(

p1/4+ε
)

.

This estimate can be improved using Vinogradov’s method [3].

Theorem 15.2 (Vinogradov) If
∣
∣
∣
∑M+N

n=M+1 χ(n)
∣
∣
∣ = o(N) hols for

some N , then for ε > 0, M > M0(ε) we have

q(p) < M
1

4
√

e .

Corollary 15.1

Pólya-Vinogradov: M = p1/2+δ ⇒ q(p) ≪ p
1

2
√

e
+ε

.

Burgess: M = p1/4+δ ⇒ q(p) ≪ p
1

4
√

e
+ε

for all ε > 0.

Proof of Theorem 15.2.

Lemma 15.1

∑

p≤x

1

p
= log log x + c + o(1),

where c is the Meissel–Mertens constant.

Proof of Lemma 15.1. This lemma is the Mertens’ second theorem

[2], we will not prove it here.

Similarly to the Pólya-Vinogradov inequality, we estimate a short

character sum with

χ(n)







(
n
p

)

if (n, p) = 1

0 if p | n.
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By the conditions of the theorem we have

o(M) =

M∑

n=1

(
n

p

)

=
M∑

n=1

1 +
M∑

n=1

((
n

p

)

− 1

)

= M − 2
∣
∣
∣ {n : 1 ≤ n ≤ M,

(
n

p

)

= −1}
︸ ︷︷ ︸

∃ r prime such that r ≤ n,
(
r
p

)

= −1, r | n,

by the definition of q(p)

q(p) ≤ r ≤ n ≤ M

∣
∣
∣

≥ M − 2
∑

q(p)≤r≤n
r prime

|{n : 1 ≤ n ≤ M, r | n}|

≥ M − 2
∑

q(p)≤r≤n
r prime

M

r

= M






1 − 2







∑

r≤M
r prime

1

r
−

∑

r<q(p)
r prime

1

r













= 2M

(
1

2
− (log logM + c + o(1)) + (log log q(p) + c+ o(1))

)

= 2M

(
1

2
− log

logM

log q(p)
+ o(1)

)

.

Then we prove the theorem indirectly. We assume that

q(p) ≥ M 1/
√
e+ε.

Then

o(M) ≥ 2M

(
1

2
− log

logM

log q(p)
+ o(1)

)
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≥ 2M

(
1

2
− log

logM

log q(p)

)

≥ 2M

(
1

2
− log

logM

logM 1/
√
e+ε

)

≥ 2M

(
1

2
− log

1

1/
√
e + ε

)

≥ 2M

(
1

2
+ log

(
1/

√
e+ ε

)
)

≥ 2M

(
1

2
+ log(1/

√
e) + log

(
1 + ε

√
e
)
)

= 2M log
(
1 + ε

√
e
)

︸ ︷︷ ︸

constant >0

6= o(M).
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16 Large sieve

This method was discovered by Linnik in 1941 while studying

the distribution of quadratic non-residues. Later, Rényi (1947-1950)

generalized Linnik’s method, systematically studied and proved the

following famous result:

Theorem 16.1 (Rényi) ∃ an integer k such that ∀ n ∈ N can be

written of the form

p + Pk = n

where p is a prime and Pk is a product of ≤ k pieces of primes.

This theorem is a partial result on the way to solving the Gold-

bach conjecture. Rényi did not calculate an explicit k, but it was later

determined: Barban k = 4, Bombieri k = 3, and finally Chen [3]

k = 2 for ∀ n > n0.

During the development of the large sieve, Roth, Bombieri, Dav-

enport, Halberstam, Montgomery and Gallagher made significant

progress.

The analytic form the large sieve was first formulated by Daven-

port and Halberstam.

Theorem 16.2 (Analytic form of large sieve) Suppose M ∈ Z,

N ∈ N, aM+1, aM+2, . . . , aM+N ∈ C, X = {x1, . . . , xR} ∈ R

such that for 1 ≤ i < j ≤ R ||xi − xj|| ≥ delta >0. Let

S(α) =

M+N∑

n=M+1

ane(nα), (16.1)

then
R∑

i=1

|S(xi)|2 ≤
(
1

δ
+ πN

) M+N∑

n=M+1

|an|2. (16.2)

92



Remark. If the {xi} is uniformly distributed on the interval [0, 1]

such that δ = 1
R

and N ≪ R, then (16.2) says:

1

R

R∑

i=1

|S(xi)|2

︸ ︷︷ ︸

Riemann sum for
∫ 1

0 |S(α)|2dα

≪
M+N∑

n=M+1

|an|2

︸ ︷︷ ︸

by Parseval formula

=
∫ 1

0 |S(α)|2dα

.

The theorem states the following: a “quite fine” Riemann sum

can be estimated from above by the constant multiple of the integral.

Selberg (see e.g. [8]) improved the estimate of the large sieve by a

constant factor, proving that

R∑

i=1

|S(xi)|2 ≤
(
1

δ
+ N − 1

) M+N∑

n=M+1

|an|2. (16.3)

is also true.

Proof of Theorem 16.2. Gallagher’s idea [5] is the following:

|S(α)|2 is close to 1
δ

∫ α+δ/2

α−δ/2 |S(β)|2 dβ.

The relation between the two expressions can be expressed using

S(β) and S′(β). In order to do so, we use a “Sobolev-type” inequal-

ity [10]:

Lemma 16.1 If f(x) : [0, 1] → C has a continuous first derivative,

then for 0 ≤ x ≤ 1

|f(x)| ≤
∫ 1

0

(|f(y)| + |f ′(y)|) dy (16.4)

and ∣
∣
∣
∣
f

(
1

2

)∣
∣
∣
∣
≤
∫ 1

0

(

|f(x)|+ 1

2
|f ′(x)|

)

dx (16.5)
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Proof of Lemma 16.1.

Statement 1.

f(x) =

∫ 1

0

f(u)du +

∫ x

0

uf ′(u)du +

∫ 1

x

(u − 1)f ′(u)du.

Indeed, written the last integral in two parts:

∫ 1

0

f(u)du +

∫ x

0

uf ′(u)du +

∫ 1

x

uf ′(u)du
︸ ︷︷ ︸
∫ 1

0
uf ′(u)du=[uf(u)]10−

∫ 1

0
f(u)du

−
∫ 1

x

f ′(u)du

=

∫ 1

0

f(u)du + [uf(u)]10 −
∫ 1

0

f(u)du −
∫ 1

x

f ′(u)du

= [uf(u)]10 −
∫ 1

x

f ′(u)du

= f(1) − (f(1) − f(x))

= f(x).

In order to prove (16.4):

|f(x)| ≤
∣
∣
∣
∣

∫ 1

0

f(u)du

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ x

0

uf ′(u)du

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ 1

x

(u − 1)f ′(u)du

∣
∣
∣
∣

≤
∫ 1

0

|f(u)| du +

∫ x

0

|u| |f ′(u)| du +

∫ 1

x

|u − 1| |f ′(u)| du.

(16.6)

First of all, we note that on the interval [0, 1] |u| and |u − 1| ≤ 1, so

due to (16.6)

|f(x)| ≤
∫ 1

0

|f(u)| du +

∫ x

0

|f ′(u)| du +

∫ 1

x

|f ′(u)| du

=

∫ 1

0

|f(u)| du +

∫ 1

0

|f ′(u)| du,

which proves (16.4).
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To prove (16.5), let’s substitute x = 1
2

in (16.6). Then

∣
∣
∣
∣
f

(
1

2

)∣
∣
∣
∣
≤
∫ 1

0

|f(u)| du +

∫ 1/2

0

1

2
|f ′(u)| du +

∫ 1

1/2

1

2
|f ′(u)| du

=

∫ 1

0

|f(u)| du +

∫ 1

0

1

2
|f ′(u)| du,

which completes the proof of the lemma.

In the proof of Theorem 16.2, we can assume that M =
[
−1

2
(N + 1)

]
.

To see this let M ′ def
=
[
−1

2
(N + 1)

]
, and a′

M ′+i

def
= aM+i. Then

|S(xr)| =
∣
∣
∣
∣
∣

M+N∑

n=M+1

ane(nxr)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

i=1

aM+ie((M + i)xr)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

i=1

aM+ie((M
′ + i)xr)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

i=1

a′
M ′+ie((M

′ + i)xr)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

M ′+N∑

n=M ′+1

a′
ne(nxr)

∣
∣
∣
∣
∣
.

Furthermore:
M+N∑

n=M+1

|an|2 =

M ′+N∑

n=M ′+1

∣
∣a′

n

∣
∣
2

That is, if we prove the theorem for this M ′ =
[
−1

2
(N + 1)

]
and

arbitrary a′
n’s, then by the above re-indexing we also proved it for all

M and an’s.
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Next, we would like to estimate |S(xi)|2 on the interval

Ir = [xr − δ/2, xr + δ/2]. Let

g(x) : [xr − δ/2, xr + δ/2] → C

be a function that has a continuous derivative. Write

f(x) = g(δx + (xr − δ/2)),

where x ∈ [0, 1]. Then
∣
∣
∣
∣
f

(
1

2

)∣
∣
∣
∣
=

∣
∣
∣
∣
g

(
δ

2
+

(

xr −
δ

2

))∣
∣
∣
∣
= g(xr)

≤
∫ 1

0

|f(x)| dx +

∫ 1

0

1

2
|f ′(x)| dx

=

∫ 1

0

∣
∣
∣
∣
g

(

δx + xr −
δ

2

)∣
∣
∣
∣
dx +

∫ 1

0

1

2

∣
∣
∣
∣
δg′

(

δx + xr −
δ

2

)∣
∣
∣
∣
dx.

Substitute y = δx + xr − δ
2
:

dy

dx
= δ, dx =

dy

δ
.

Limits of the integrand:

x = 0 ⇒ y = xr −
δ

2

x = 1 ⇒ y = xr +
δ

2
.

Thus:

g(xr) ≤
∫ xr+δ/2

xr−δ/2

|g (y)| 1
δ
dy +

∫ xr+δ/2

xr−δ/2

1

2
|δg′ (y)| 1

δ
dy

=
1

δ

∫ xr+δ/2

xr−δ/2

|g (y)| dy +
1

2

∫ xr+δ/2

xr−δ/2

|δg′ (y)| dy.

Using this inequality for g(x) = S2(x):

|S(xr)|2 ≤
1

δ

∫ xr+δ/2

xr−δ/2

|S(α)|2 dα +

∫ xr+δ/2

xr−δ/2

|S(α)S′(α)| dα.

(16.7)
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According to the condition of the theorem, the intervals [xr −
δ/2, xr + δ/2] are disjoint modulo 1. Using that S(α) is periodic

with period 1, we get that

R∑

r=1

(

1

δ

∫ xr+δ/2

xr−δ/2

|S(α)|2 dα +

∫ xr+δ/2

xr−δ/2

|S(α)S′(α)| dα
)

≤ 1

δ

∫ 1

0

|S(α)|2 dα +

∫ 1

0

|S(α)S′(α)| dα.

That is, adding the inequalities in (16.7) for r = 0, 1, 2, . . . , R:

R∑

r=1

|S(xr)|2 ≤
1

δ

∫ 1

0

|S(α)|2 dα
︸ ︷︷ ︸

Parseval formula

+

∫ 1

0

|S(α)S′(α)| dα
︸ ︷︷ ︸

Cauchy-Schwarz

≤ 1

δ

M+N∑

n=M+1

|an|2 +
(
∫ 1

0

|S(α)|2 dα
︸ ︷︷ ︸

Parseval formula

)1/2(∫ 1

0

|S′(α)|2 dα
︸ ︷︷ ︸

Parseval formula

)1/2

≤ 1

δ

M+N∑

n=M+1

|an|2 +
(

M+N∑

n=M+1

|an|2
)1/2( M+N∑

n=M+1

|2πinan|2
)1/2

.

We use here that we may assume M =
[
−1

2
(N + 1)

]
. In this case

n ∈ [M + 1,M + N ] ⊆ [−N/2, N/2], |n| ≤ N/2, so in the last

parenthesis:

M+N∑

n=M+1

|2πinan|2 ≤
M+N∑

n=M+1

|2π|2
∣
∣
∣
∣

N

2

∣
∣
∣
∣

2

|an|2

= π2N 2
M+N∑

n=M+1

|an|2 ,

that is

R∑

r=1

|S(xr)|2 ≤ 1

δ

M+N∑

n=M+1

|an|2 +
(

M+N∑

n=M+1

|an|2
)1/2(

π2N 2
M+N∑

n=M+1

|an|2
)1/2
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≤
(
1

δ
+ πN

) M+N∑

n=M+1

|an|2 .

This proves the theorem.

Corollary 16.1 We define S(α) as in Theorem 16.2. Then for all

Q ∈ N, Q ≥ 2

∑

q≤Q

∑

1≤a≤q

|S(a/q)|2 ≤ (Q2 + πN)

M+N∑

n=M+1

|an|2 .

Proof of Corollary 16.1. We prove that the conditions of the theo-

rem holds for the set

X =

{
a

q
: a, q ∈ N+, q ≤ Q, 1 ≤ a ≤ q, (a, q) = 1

}

and δ = 1
Q2 since this set X is δ = 1

Q2 -”spaced”: i.e., let a
q
, b
r
∈ X,

(a, q) = (b, r) = 1, a
q
6= b

r
. Then we know

0 <

∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣

and 0 < a
q
, b
r
≤ 1, thus

∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣
< 1.

On the other hand define c ∈ Z by

∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣
=

|ar − qb|
qr

=
c

qr
,

then ∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣
∈
{

1

qr
,
2

qr
,
3

qr
, · · · qr − 1

qr
,

}

.
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So
∣
∣
∣
∣

∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣

∣
∣
∣
∣
=

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

a

q
− b

r

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
∈
{

1

qr
,
2

qr
,
3

qr
, · · · qr − 1

qr
,

}

thus ∣
∣
∣
∣

∣
∣
∣
∣

a

q
−

b

r

∣
∣
∣
∣

∣
∣
∣
∣
≥

1

qr
≥

1

QQ
=

1

Q2
.

Applying the theorem to X and δ, we get that

∑

x∈X

|S(x)|2 =
∑

q≤Q

∑

1≤a≤q
(a,q)=1

∣
∣
∣
∣
S

(
a

q

)∣
∣
∣
∣

2

≤
(
1

δ
+ πN

) M+N∑

n=M+1

|an|2

≤
(
Q2 + πN

)
M+N∑

n=M+1

|an|2 .

Theorem 16.3 (Arithmetic form of the large sieve) Let M ∈ Z,

Q,N ∈ N, M ⊆ {1, 2, . . . , Q} such that m,m′ ∈ M, m 6=
m′ ⇒ (m,m′) = 1, and let A ⊆ {M + 1,M + 2, . . . ,M +N},

Z
def
= |A|,

Z(m, h) =
∑

a≡h (mod m)
a∈A

1.

Then

∑

m∈M
m

(
m∑

h=1

Z(m, h) − Z

m

)

≤ (Q2 + πN)Z.

If we choose M = {p : p prime, p ≤ Q} in the theorem, we

get the following:

Corollary 16.2 If M ∈ Z, Q,N ∈ N, A ⊆ {M + 1,M +

2, . . . ,M + N}, Z, Z(m, h) are defined as in Theorem 16.3 then

∑

p≤Q

p

(
p
∑

h=1

Z(p, h) − Z

p

)

≤ (Q2 + πN)Z.
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Remark. Suppose that for a positive percentage of the primes

p ≤ Q and a positive percentage of these residue classes modulo

p are forbidden.

If h is a forbidden residue class modulo p, then
(

Z(p, h)− Z

p

)

=
Z2

p2
,

from which

∑

p≤Q

p

(
p
∑

h=1

Z(p, h) − Z

p

)

≫
∑∗

p≤Q

p
∑∗

h

Z2

p2

≫
∑∗

p≤Q

p
Z2

p

≫ Z2
∑∗

p≤Q

1

≫ Z2π(Q).

Thus it follows from Corollary 16.2 that

Z2π(Q) ≪ (Q2 + πN)Z

z ≪ Q2 + πN

π(Q)
≪ Q2 + N

π(Q)
.

Montgomery [7] proved a slightly sharper form of the large sieve.

Theorem 16.4 (Montgomery, 1968) Let M ∈ Z, Q,N ∈ N, Q ≥
2 A ⊆ {M + 1,M + 2, . . . ,M + N}, and let |A| = Z. Assume

that ∀ p ≤ Q ∃ ω(p) pieces of residue classes modulo p that does

not intersect A. Suppose ω(p) < p. Then

Z ≤ Q2 + πN

L
,

where

L =
∑

q≤Q

µ2(q)
∏

p≤Q

ω(p)

p − ω(p)
.
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We do not prove Theorem 16.4, but we do prove Theorem 16.3.

Proof of Theorem 16.3. We will use the following identity of Parse-

val type.

Lemma 16.2 If m ∈ N, b1, b2, . . . , bm ∈ C, F (α) =
∑m

h=1 bhe(hα), then

m∑

k=1

∣
∣
∣
∣
F

(
k

m

)∣
∣
∣
∣

2

= m
m∑

h=1

|bh|2.

Proof of Lemma 16.2.

m∑

k=1

∣
∣
∣
∣
F

(
k

m

)∣
∣
∣
∣

2

=
m∑

k=1

m∑

h=1

bhe

(

h
k

m

) m∑

j=1

bje

(

−j
k

m

)

=
m∑

h=1

m∑

j=1

bhbj

m∑

k=1

e

(

(h − j)
k

m

)

︸ ︷︷ ︸






m, if h = j

0, if h 6= j

= m
m∑

h=1

|bh|2,

which completes the proof of the lemma.

Apply the lemma with bh = Z(m, h) − Z
m

and let S(α) =
∑

a∈A e(aα). Then by the lemma

m

m∑

h=1

(

Z(m,h) −
Z

m

)2

=

m∑

k=1

∣
∣
∣
∣
F

(
k

m

)∣
∣
∣
∣

2

. (16.8)

Here

F

(
k

m

)

=

m∑

h=1

(

Z(m, h)− Z

m

)

e

(

h
k

m

)
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=
m∑

h=1

Z(m, h)e

(

h
k

m

)

− Z

m

m∑

h=1

e

(

h
k

m

)

=
∑

a∈A
e

(

a
k

m

)

− Z

m

{

m, if m | k
0, if m ∤ k

=

{

|A| − Z = 0, ha m | k
S
(
k
m

)
, ha m ∤ k.

Thus, by (16.8):

m

m∑

h=1

(

Z(m, h) − Z

m

)2

=
∑

m∈M

m−1∑

k=1

∣
∣
∣
∣
S

(
k

m

)∣
∣
∣
∣

2

. (16.9)

Since if m 6= m′ ∈ M we have (m,m′) = 1, then for m 6= m′

or k 6= k′ we have k
m

6= k′

m′ . Thus, writing a
q

(where (a, q) = 1) in

place of k
m

on the right-hand side of (16.9), we get that

m

m∑

h=1

(

Z(m, h) −
Z

m

)2

≤
∑

q≤Q

∑

1≤a≤q
(a,q)=1

|S(a/q)|2

By Corollary 16.1

m

m∑

h=1

(

Z(m,h) −
Z

m

)2

≤ (Q2 + πN)

M+n∑

n=M+1

|an|2 ,

where now

an =

{

1, ha an ∈ A
0, ha an /∈ A.

Thus

m
m∑

h=1

(

Z(m,h) − Z

m

)2

≤ (Q2 + πN)Z,

which completes the proof.

It can be deduced from Selberg’s estimate (16.3) that the con-
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stant factor π in 16.1, 16.3, 16.2 and 16.4 can be omitted from these

theorems and corollaries. However, within the framework of this lec-

ture note, we only use the present (slightly weaker) versions of these

theorems and corollaries because of their shorter proofs.

A simple application: let

P (n)
def
= max

p|n
p prím

p.

Theorem 16.5 (Balog-Sárközy [2]) If N > N0, A ⊆
{1, 2, . . . , N} and

|A| > 33N 1/2 logN, (16.10)

then ∃ a, a′ ∈ A, such that

P (a + a′) >
|A|

33 logN
. (16.11)

Remark. What does this theorem state? For such an a + a′, write

P (a + a′) = p, a+a′

p
= m. Then

m =
a + a′

p
<

N + N
|A|

33 logN

= 66
N

|A|
logN.

If, say, (16.10) is true in the much sharper form, i.e., |A| > εN , then

m < 66
N

|A|
logN <

66

ε
logN

and

p >
|A|

33 logN
>

ε

33

N

logN
.
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That is, then a + a′ = mp, where p is “very large” and m is “very

small”, so the sum a + a′ is “close” to a prime.

An interesting question might be the case a+a′ = prime, it turns

out there is no such theorem, let A = {n : n even, n ≤ N}. Then

∀ a + a′ is even, ∀ a + a′ is composite.

Proof of Theorem 16.5. We prove this indirectly. Suppose that in

contrast with (16.11), ∀ a + a′ we have

P (a + a′) ≤
⌈ |A|
33 logN

⌉
def
= t.

Then ∀ p > t for a, a′ ∈ A p ∤ a + a′, so that

a + a′ 6≡ 0 (mod p) (∀a, a′ ∈ A, p > t)

a 6≡ −a′ (mod p).

Let ν(p) denote the number of residue classes mod p intersecting

A:

ν(p) = |{r : 0 ≤ r < p, ∃a ∈ A, where a ≡ r (mod p)}| .

Then

A : ν(p) different residue classes

−A : ν(p) different residue classes

}

Together, they

are all different.

Thus

ν(p) + ν(p) ≤ p

ν(p) ≤ p

2
.

So A does not intersect at least p − ν(p) ≥ p
2

residue classes

mod p. Thus for ∀ p > t:

S =
∑

t<p≤2t

p

p
∑

h=1

(

Z(p, h) − Z

p

)2
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≥
∑

t<p≤2t

p
∑

1≤h≤p
Z(p,h)=0

(

0 − Z

p

)2

=
∑

t<p≤2t

p
Z2

p2

∑

1≤h≤p
Z(p,h)=0

1

︸ ︷︷ ︸

≥ p

2

(16.12)

≥ Z2

2

∑

t<p≤2t

1

=
Z2

2
(π(2t) − π(t)) . (16.13)

Here by (16.10)

t =

⌈ |A|
33 logN

⌉

>
33N 1/2 logN

33 logN
= N 1/2 → ∞,

as N → ∞.

By the prime number theorem, π(x) ∼ x
logx

as x → ∞. So

π(2t) − π(t) = (1 + o(1))
2t

log 2t
− (1 + o(1))

t

log t

= (1 + o(1))
t

log t
,

that is

π(2t) − π(t) >
t

2 log t
, if N > N0. (16.14)

Then by (16.13) and (16.14) we have

S >
Z2

2
·

t

2 log t
. (16.15)
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On the other hand, by the arithmetic form of the large sieve (see

Theorem 16.3):

S =
∑

t<p≤2t

p

p
∑

h=1

(

Z(p, h) − Z

p

)2

≤
∑

p≤2t
def
=Q

p

p
∑

h=1

(

Z(p, h)−
Z

p

)2

≤ (Q2 + πN)Z

< 4(t2 + N)Z. (16.16)

Thus by (16.15) and (16.16):

1

4
Z2 t

log t
< S < 4(t2 + N)Z

Z < 16
logN

t
(t2 + N). (16.17)

By (16.10):

t2 =

⌈ |A|
33 logN

⌉2

≥
⌈

1

33

33N 1/2 logN

logN

⌉2

=
⌈

N 1/2
⌉2

= N

(16.18)

By (16.17) and (16.18):

Z < 16
logN

t
· 2t2 = 32t logN = 32

⌈ |A|
33 logN

logN

⌉

< 32

(

1 +
|A|

33 logN
logN

)

=
32

33
|A| + logN < |A| = Z,

which is contradiction.

Remark. The theorem can be extended from sums a + a′ to sums

a + b, and then a similar theorem can be proved. The following

results also due to Balog and Sárközy [1], [2]:

If ε > 0, N > N0(ε), A,B ⊆ {1, 2, . . . , N}, |A|, |B| > εN , then

∃a ∈ A, b ∈ B, such that
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1. P (a + b) > c(ε)N (⇒ a + b = pO(1)).

2. ∃p : p2 | a + b, p2 > c′(ε)N

3. P (a + b) < exp
(
c′′(ε)

√
logN log logN

)
i.e., “small” =

No(1).

There exist many similar theorems for dense sets A, B, where

by the statements there is a sum a + b that has certain arithmetic

properties.

Recall the following corollary of the analytical form of the large

sieve:

∑

q≤Q

∑

1≤a≤q

| S(a/q)
︸ ︷︷ ︸
∑

n ane(na

q)

|2 ≤ (Q2 + πN)

M+N∑

n=M+1

|an|2 . (16.19)

Since there is a duality between additive and multiplicative charac-

ters, we hope that ∃ a multiplicative analogue of the above corollary.

Indeed:

Theorem 16.6 (Gallagher [6]) If Q ∈ N, Q ≥ 2 then

∑

q≤Q

q

ϕ(q)

∑∗

χ primitive
character modq

∣
∣
∣
∣
∣

M+N∑

n=M+1

anχ(n)

∣
∣
∣
∣
∣

2

≤ (Q2 + πN)

M+N∑

n=M+1

|an|2.

(16.20)

Proof of Theorem 16.6. We would like to derive (16.20) from

(16.19). Thus, we have to switch from additive characters to mul-

tiplicative characters, for which we use a translation formula, see

Theroem 11.2. By this theorem, if χ is a primitive character mod q,

then

χ(n)τ (χ) =

q−1
∑

h=0

χ(h)e

(

n
h

q

)

, (16.21)
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where τ (χ) is a Gauss sum:

τ (χ) =
∑

1≤a≤q

χ(a)e

(
a

q

)

.

We also studied (see Theorem 11.1) that for a primitive character

|τ (χ)| = √
q.

So by (16.21):

χ(n) =
1

τ (χ)

q−1
∑

h=0

χ(h)e

(

n
h

q

)

.

Thus, for a primitive character χ:

M+N∑

n=M+1

anχ(n) =

M+N∑

n=M+1

an

1

τ (χ)

q−1
∑

h=0

χ(h)e

(

n
h

q

)

=
1

τ (χ)

q−1
∑

h=0

χ(h)

M+N∑

n=M+1

ane

(

n
h

q

)

=
1

τ (χ)

q−1
∑

h=0

χ(h)S

(
h

q

)

.

That is, the left-hand side of (16.20):

∑

q≤Q

q

ϕ(q)

∑∗

χ primitive
character modq

∣
∣
∣
∣
∣

M+N∑

n=M+1

anχ(n)

∣
∣
∣
∣
∣

2

=
∑

q≤Q

q

ϕ(q)

∑∗

χ primitive
character modq

1

|τ (χ)|2
︸ ︷︷ ︸

=q since
χ is primitive

∣
∣
∣
∣
∣

q−1
∑

h=0

χ(h)S

(
h

q

)
∣
∣
∣
∣
∣

2

.

Here on the right, ∀ term is ≥ 0, so we get an upper estimate if we

also take the non-primitive characters, i.e.,

∑

q≤Q

q

ϕ(q)

∑∗

χ primitive
character modq

∣
∣
∣
∣
∣

M+N∑

n=M+1

anχ(n)

∣
∣
∣
∣
∣

2
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≤
∑

q≤Q

1

ϕ(q)

∑

χ

∣
∣
∣
∣
∣

q−1
∑

h=0

χ(h)S

(
h

q

)
∣
∣
∣
∣
∣

2

=
∑

q≤Q

1

ϕ(q)

∑

χ

q−1
∑

h=0

χ(h)S

(
h

q

) q−1
∑

k=0

χ(k)S

(
k

q

)

since χ(k) = 0, if (k, q) = 1 and χ(h) = 0, if (h, q) = 1 így

=
∑

q≤Q

1

ϕ(q)

∑

χ

∑

0≤h<q
(h,q)=1

∑

0≤k<q
(k,q)=1

χ(h)χ(k)
︸ ︷︷ ︸

χ(h∗k)

S

(
h

q

)

S

(
k

q

)

=
∑

q≤Q

1

ϕ(q)

∑

0≤h<q
(h,q)=1

∑

0≤k<q
(k,q)=1

S

(
h

q

)

S

(
k

q

)
∑

χ

χ(h∗k)

︸ ︷︷ ︸






ϕ(q), if h∗k ≡ 1 (q)

⇔ h = k

0, if h 6= k.

=
∑

q≤Q

1

ϕ(q)

∑

0≤h<q
(h,q)=1

∣
∣
∣
∣
S

(
h

q

)∣
∣
∣
∣

2

ϕ(q)

=
∑

q≤Q

∑

0≤h<q
(h,q)=1

∣
∣
∣
∣
S

(
h

q

)∣
∣
∣
∣

2

≤ (Q2 + πN)
M+N∑

n=M+1

.

This completes the proof of the theorem.
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17 The reverse of the large sieve

Recall the large sieve: A dense set of integers is uniformly dis-

tributed in almost every residue class for almost every modulus.

On the other hand, Roth [4] proved that this distribution cannot

be excessively uniform, i.e., ∃ is a residue class whose elements are

either much more or much less in the studied set than expected.

Later, Roth [5] also proved the following:

Theorem 17.1 Let k be a positive integer and suppose that N >

(10k)7. Then, for the sequence of real numbers s1, s2, . . . , sN we

know ∃n, q ∈ Z+, for which

1 ≤ n ≤ n + (k − 1)q ≤ N

and
∣
∣
∣
∣
∣

k−1∑

i=0

sn+iq

∣
∣
∣
∣
∣
≥




k

10N

N∑

j=1

|sj|2




1/2

.

In [6], Sárközy developed some modular analogues of of Roth’s

general results. However, in these generalizations, a slightly modi-

fied and more precise form of the above theorem was required. This

more general theorem was the following:

Theorem 17.2 Let N,Q ∈ N, Q ≥ 2, s1, s2, . . . , sN ∈ C, Q1 =
[
Q
2

]

and sj
def
= 0 if j ≤ 0 or j > N , moreover for ∀n ∈ Z, q, k ∈ Z+

let

D(n, q, k)
def
= sn + sn+q + sn+2q + · · · + sn+(k−1)q.

Then
Q
∑

q=1

N∑

n=1−(Q1−1)q

|D(n, q,Q1)|2 ≥
(
2

π
Q1

)2 N∑

m=1

|sm|2. (17.1)
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In this chapter, following Sárközy’s original calculations, we prove

Theorem 17.2 and also see how Roth’s original first question (see

later Corollary 17.3) follows from this theorem. But before this, we

see some important remarks and corollaries.

Remark. Typically s1 + s2 + · · · + sN = 0 ⇒ sn + sn+q +

· · · + sn+(k−1)q is also expected to be 0, or at least ‘ ‘small”

⇒ |D(n, q, k)| measures its standard deviation from the expected

value, this is the discrepancy. So the theorem says: the standard

deviation of the discrepancy is large.

Some corollaries:

Corollary 17.1 ∃ n ∈ Z, q ∈ N such that q ≤ Q and

|D(n, q,Q1)| ≥
2

π

[
Q

2

]

Q−1/2

(

N +
Q2

4

)−1/2
(

N∑

m=1

|sm|2
)1/2

.

(17.2)

Proof of Corollary 17.1. Write

M
def
= max

m,q
|D(n, q,Q1)|.

Here we have to prove that M ≥ than the right-hand side of (17.2).

For the left-hand side of (17.1):

≤
Q
∑

q=1

N∑

n=1−(Q1−1)q

M 2

= M 2

Q
∑

q=1

N∑

n=1−(Q1−1)q

1

= M 2

Q
∑

q=1

(N + (Q1 − 1)q)
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= M 2

(

NQ + (Q1 − 1)

Q
∑

q=1

q

)

= M 2

(

NQ +

([
Q

2

]

− 1

)
Q(Q + 1)

2

)

≤ M 2Q

(

N +

(

Q

2
− 1
︸︷︷︸

<1
2

)(
Q

2
+

1

2

))

< M 2Q

(

N +
Q2

4
− 1

4

)

< M 2Q

(

N +
Q2

4

)

. (17.3)

(17.1) and (17.3):

M 2Q

(

N +
Q2

4

)

≥ 2

π

[
Q

2

]2 N∑

m=1

|sm|2 .

Dividing this by Q
(

N + Q2

4

)

and taking the square root, we get

(17.2).

We get the best estimate for maxn,q,Q |D(n, q, Q1)| if Q ≍
√
N .

Namely, if Q =
[√

N
]

, then by Corollary 17.1:

Corollary 17.2 If ε > 0, N > N0(ε), N ∈ N, s1, s2, . . . , sN ∈ C

⇒ ∃ n ∈ Z, q ∈ Z+ such that q ≤
√
N and

|D(n, q, [
√
N/2])| ≥

(
2

π
√
5
− ε

)(∑N
m=1 |sm|2

N

)1/2

N 1/4.

(17.4)

Proof of Corollary 17.2. Now Q =
[√

N
]

. Then the right-hand

side of (17.2) in Corollary 17.1:

(1 + o(1))

(

2

π

√
N

2
N−1/4

(

N +
N

4

)−1/2
(

N∑

m=1

|sm|2
))1/2
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= (1 + o(1))




1

π

(
4

5

)1/2

N 1/4

(∑N
m=1 |sm|2

N

)1/2




≥
(

2

π
√
5
− ε

)

N 1/4

(∑N
m=1 |sm|2

N

)1/2

. (17.5)

Then from (17.2) and (17.4) follows (17.5).

After this, we will study the special case originally studied by Roth

[4].

Corollary 17.3 For ε > 0, N > N0(ε), A ⊆ {1, 2, . . . , N}, write

η = |A|
N

and A(u, q, t)
def
= |{u, u+ q, . . . , u+(t− 1)q}∩A|, then

∃ u, q, t such that {u, u + q, . . . , u + (t − 1)q} ⊆ {1, 2, . . . , N},

q ≤ N and

|A(u, q, t)− ηt| ≥
(

2

π
√
5
− ε

)
√

η(1 − η)N 1/4. (17.6)

Remark. This is a reverse of the large sieve: at least one arithmetic

sequence exists with the irregularity of order
4
√
N .

Proof of Corollary 17.3. We use Corollary 17.2 with

sn =







η, ha n /∈ A, 1 ≤ n ≤ N

−(1 − η), ha n ∈ A, 1 ≤ n ≤ N

0, ha n < 1 vagy n > N.

Then, by Corollary 17.2 ∃ n, q, q ≤ N , for which

|D(n, q, [
√
N/2])| = |sn + sn+q + · · · + sn+([

√
N/2]−1)q|

≥
(

2

π
√
5
− ε

)(∑N
m=1 |sm|2

N

)1/2

N 1/4.

(17.7)
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In principle, it may happen here that our arithmetic sequence

n, n + q, . . . , n + ([
√
N/2] − 1)q extends beyond the interval

[1, N ], in which case we discard those si’s, for which i /∈ [1, N ]

(then si = 0), i.e., only 0 are discarded. We keep the intersection.

{u, u + q, . . . , u + (t − 1)q} def
=

{n, n + q, . . . , n + ([
√
N/2] − 1)q} ∩ {1, 2, . . . , N}.

Then

D(n, q, [
√
N/2]) =

[
√
N/2]−1
∑

j=0

sn+jq

=

t−1∑

j=0

su+jq

=
∑

0≤j<t
u+jq /∈A

η +
∑

0≤j<t
u+jq∈A

−(1 − η)

= ηt − A(u, q, t). (17.8)

While the right-hand side of (17.7)

1

N

N∑

m=1

|sm|2 =
1

N







∑

n/∈A
1≤n≤N

η2 +
∑

n∈A
1≤n≤N

(1 − η)2







=
1

N

(
η2(N − ηN) + (1 − η)2ηN

)

= η(1 − η) (η + (1 − η))

= η(1 − η). (17.9)

Thus from (17.7), (17.8) and (17.9) follows (17.6).

Proof of Theorem 17.2. We will use the generator function method,

which was introduced by Euler.
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In the case of generator function methods, we usually assign a

function S(α) to a sequence s1, s2, . . . (here S(α) is typically a

polynomial or power series). Next, we study the analytic properties

of S(α) and derive certain arithmetic properties of the original se-

quence from this:

sequence → generator function analysis
→ analytic properties →

→ arithmetic properties of the sequence

So let’s look at the studied squence in the theorem: s1, s2, . . . , sN

and assign a polynomial

S(α)
def
=

N∑

n=1

sne(nα)

to the sequence. Then we use the complex version of the so-called

Fejér kernel: for M ∈ N let

FM(α)
def
=

M−1∑

j=0

e(jα).

Then the (complex) Fejér kernel is |FM(α)|2.

Lemma 17.1 If α ∈ R, |α| ≤ 1
2M

, then |FM(α)| ≥ 2
π
M .

Proof of Lemma 17.1. If α = 0, then the lemma is trivial since

FM(0) = M > 2
π
M .

We also know that FM(−α) = FM(α), i.e., |FM(−α)| =

|FM(α)|. So, during the proof, we can assume that 0 < α ≤ 1
2M

.

Then FM(α) is a geometric sequence with quotient e(α) 6= 1, so

|FM(α)|2 =

∣
∣
∣
∣

1 − e(Mα)

1 − e(α)

∣
∣
∣
∣

2

.
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Here, both the denominator and the numerator are the form |1 −
e(β)|2, where

|1 − e(β)|2 = (1 − e(β))(1 − e(β))

= (1 − e(β))(1 − e(−β))

= 2 − (e(β) + e(−β))

= 2 − 2Re e(β)

= 2 − 2 cos 2πβ

= 4 sin2 πβ,

that is

|FM(α)|2 =
4 sin2 Mπα

4 sin2 πα
=

∣
∣
∣
∣

sinMπα

sinπα

∣
∣
∣
∣

2

.

Next write

f(x) =
sinMx

sinx

(where now M is fixed).

Statement. The function f(x) is monotonically decreasing on the

interval
(
0, π

2M

]
.

Then we have to show that f ′(x) < 0. Indeed, for x = π
2M

this is

trivial, and for 0 < x < π
2M

:

f ′(x) =
M cosMx sinx − sinMx cosx

sin2 x

=
cosx cosMx

sin2 x

(

M
sinx

cosx
− sinMx

cosMx

)

=
cosx cosMx

sin2 x
(M tan x − tanMx) .

Here the first factor is cosx cosMx
sin2 x

> 0, since 0 < x ≤ Mx < π
2
,

while M tanx − tanMx < 0, since if we plot the tangent function

we get the following figure:
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By the convexity, the function x = tanx (blue curve) is above the

line connecting the origin with the point (x, tanx) (red line) on the

interval
[
x, π

2

)
. (By the convexity we have tan x−tan 0

x−0
≤ tan′ x ≤

tanMx−tan x
Mx−x

.)

So M tanx < tanMx, which completes the proof of the state-

ment.

By this statement for 0 < x ≤ π
2M

we have

f(x) ≥ f

(
π

2M

)

=
sinM π

2M

sin π
2M

=
1

sin π
2M

>
1
π

2M

=
2

π
M.
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↑
sinx < x

That is

|FM(α)| = |f(π|α|
︸ ︷︷ ︸

)| ≥ 2

π
M,

here 0 ≤ π|α| ≤
π

2M
,

which completes the proof of Lemma 17.1.

Let Q1
def
=
[
Q
2

]

(as defined in the theorem) and

G(α)
def
=

Q
∑

q=1

|FQ1
(qα)|2 . (17.10)

Lemma 17.2 For all α ∈ R we have

G(α) ≥
(
2

π
Q1

)2

.

Proof of Lemma 17.2. By Dirichlet’s approximation theorem, if α ∈
R, Q ∈ N, then ∃ p ∈ Z, q ∈ N, for which q ≤ Q, (p, q) = 1 and

∣
∣
∣
∣
α − p

q

∣
∣
∣
∣
<

1

qQ
,

from which

|qα − p| < 1

Q
≤ 1

2[Q/2]
=

1

2Q1

. (17.11)

By Lemma 17.1:

G(α) =

Q
∑

q=1

|FQ1
(qα)|2 .
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We keep a single q from the sum, the one for which (17.11) holds.

Then

G(α) ≥ |FQ1(qα)|2 = |FQ1(qα − p)|2 .

Here we can use Lemma 17.1 with M = Q1, since |qα−p| < 1
2Q1

.

So:

G(α) ≥
(
2

π
Q1

)2

.

Then consider the function

J def
=

∫ 1

0

|S(α)|2G(α)dα,

where |S(α)|2 is the Jensen function, and G(α) is the weight func-

tion defined in (17.10). Then we can give the following lower esti-

mate for J :

J ≥ (minG(α))
︸ ︷︷ ︸

Lemma 17.2

∫ 1

0

|S(α)|2dα ≥
(
2

π
Q1

)2 N∑

m=1

|sm|2. (17.12)

On the other hand, J can be calculated using the Parseval formula:

J =

∫ 1

0

|S(α)|2 G(α)dα

=

∫ 1

0

|S(α)|2
Q
∑

q=1

|FQ1
(qα)|2 dα

=

Q
∑

q=1

∫ 1

0

|S(α)FQ1
(qα)|2 dα

=

Q
∑

q=1

∫ 1

0

∣
∣
∣
∣
∣
∣

N∑

n=1

sne(nα)

Q1−1
∑

j=0

e(jqα)

∣
∣
∣
∣
∣
∣

2

dα
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=

Q
∑

q=1

∫ 1

0

∣
∣
∣
∣
∣
∣

N∑

n=1

sn

Q1−1
∑

j=0

e((n + jq)α)

∣
∣
∣
∣
∣
∣

2

dα.

Substitute m = (n + jq) in this formula. Then n = m − jq, i.e.,

J =

Q
∑

q=1

∫ 1

0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N+(Q1−1)q
∑

m=1





Q1−1
∑

j=0

sm−jq





︸ ︷︷ ︸

D(m−q(Q1−1),q,Q1)

e(mα)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

dα.

By the Parseval formula:

J =

Q
∑

q=1

N+(Q1−1)q
∑

m=1

|D(m − q(Q1 − 1), q, Q1)|2 .

Then we substitute n = m − q(Q1 − 1):

J =

Q
∑

q=1

N∑

n=1−q(Q1−1)

|D(n, q,Q1)|2 .

So by (17.12):

Q
∑

q=1

N∑

n=1−q(Q1−1)

|D(n, q,Q1)|2 ≥
(
2

π
Q1

)2 N∑

m=1

|sm|2, (17.13)

which completes the proof of the theorem.

Question. How far is Roth’s inequality, i.e., (17.13) from the best

possible estimate?

For simplicity, consider Corollary 17.2 in the case of

s1, s2, . . . , sN ∈ {−1,+1}. Then we know that ∃ n ∈ Z, q ∈ Z+,

for which
∣
∣
∣D(n, q, [

√
N/2)]

∣
∣
∣≫ N 1/4.
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From the other direction, Roth noticed that, using probabilistic

methods, one can see that there is an N -long ±1 sequence for

which max |D(n, q, k)| ≪ N 1/2(logN)1/2 and guessed that this

result cannot be significantly improved, i.e.,

max |D(n, q, k)| ≫ N 1/2−ε.

holds for every N -long ±1 sequence and positive ε (where the ap-

plied constant factor in ≫ depends only on ε).

This conjecture was disproved by Sárközy ([2, §8]), proving the ex-

istence of a sequence for which

max |D(n, q, k| ≪ N 1/3(logN)2/3. (17.14)

Beck [1] proved a smaller upper bound N 1/4(logN)5/2. Finally, Ma-

toušek and Spencer [3] proved the sharpest possible estimate, i.e.

they showed the existence of a sequence for which

max |D(n, q, k)| ≪ N 1/4.

Here we only prove (17.14), i.e., the following:

Theorem 17.3 (Sárközy) For all positive integer N , ∃ a sequence

s1, s2, . . . , sN ∈ {−1,+1} for which

max
n,q,t

∣
∣sn + sn+q + · · · + sn+(t−1)q

∣
∣≪ N 1/3(logN)2/3.

Proof of Theorem 17.3. By Chebyshev’s theorem, there is always

a prime between n and 2n, so let us now fix a prime p such that

(
N

logN

)2/3

< p < 2

(
N

logN

)2/3

.
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We define the sequence sn as follows

sn =







(
n
p

)

, ha p ∤ n

1, ha p | n.

Then D =
∑t−1

j=0 sn+jq can be estimated as follows:

Case I.: p | q. Then

n+ (t − 1)q ≤ N

(t − 1)q ≤ N − n ≤ N − 1

t ≤ N − 1

q
+ 1 ≤ N − 1

p
+ 1 ≪ N

(
N

logN

)2/3

t ≪ N 1/3(logN)2/3.

That is, t ≪ N 1/3(logN)2/3 holds for the difference of the arith-

metic progression, and then the theorem is trivial.

Case II.: p ∤ q. Denote by χ the quadratic character, i.e.,

χ(n) =







(
n
p

)

, if p ∤ n,

0, if p | n,

then

sn =

{

χ(n), if p ∤ n,

0, if p | n.

So:

|D| =

∣
∣
∣
∣
∣
∣
∣
∣

t−1∑

j=0

χ(n + jq) +
∑

0≤j≤t
p|n+jq

1

∣
∣
∣
∣
∣
∣
∣
∣

.
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By the triangle inequality:

|D| ≤

∣
∣
∣
∣
∣
∣

t−1∑

j=0

χ(n + jq)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣

∑

0≤m≤N
p|m

1

∣
∣
∣
∣
∣
∣
∣
∣

.

In this case p ∤ q, i.e., there exists q∗ for which qq∗ ≡ 1 (mod p).

So:

|D| ≤

∣
∣
∣
∣
∣
∣

χ(q∗)
t−1∑

j=0

χ(n + jq)

∣
∣
∣
∣
∣
∣

+

[
N

p

]

≤

∣
∣
∣
∣
∣
∣

t−1∑

j=0

χ(nq∗ + j)

∣
∣
∣
∣
∣
∣

+
N

p
.

By the Pólya-Vinogradov inequality (Theorem 14.1):

|D| ≤ √
p log p +

N

p

≪
(

N

logN

)1/3

log

(
N

logN

)2/3

+
N

(
N

logN

)2/3

≪ N 1/3(logN)2/3.

Thus, in both cases, we proved the statement of the theorem.
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