
DOUBLE AND TRIPLE SUMS MODULO A PRIMEKATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSAAbstrat. We study the onnetion between the sizes of 2A and 3A (twofold andthreefold sums), where A is a set of residues modulo a prime p.1. IntrodutionLev [3℄ observed that for a set A of integers the quantityjkAj � 1kis inreasing. The �rst ases of this result assert that(1.1) j2Aj � 2jAj � 1and(1.2) j3Aj � 32 j2Aj � 12 :Inequality (1.1) an be extended to di�erent summands as(1.3) jA+Bj � jAj+ jBj � 1;and this inequality an be extended to sets of residues modulo a prime p, the onlyobstrution being that a ardinality annot exeed p:(1.4) jA+Bj � min(jAj+ jBj � 1; p);this familiar result is known as the Cauhy-Davenport inequality.In this paper we deal with the possibility of extending inequality (1.2) to residues.We also have the obstrution at p, and the third author initially hoped that this is theonly one, so an inequality likej3Aj � min�32 j2Aj � 12 ; p�may hold; in partiular, this would imply 3A = Zp for j2Aj > 2p=3. M. Garaev asked(personal ommuniation) whether this holds at least under the stronger assumptionj2Aj > p with some absolute onstant  < 1. It turned out that the answer even to thisquestion is negative, and the relationship between the sizes of 2A and 3A is seeminglyompliated.1991 Mathematis Subjet Classi�ation. 11B50, 11B75, 11P70.Supported by Hungarian National Foundation for Sienti� Researh (OTKA), Grants No. T 43631,T 43623, T 49693.Supported by the Russian Foundation for Basi Researh, Grant 05-01-00066, and by Grant NSh-5813.2006.1.Supported by Hungarian National Foundation for Sienti� Researh (OTKA), Grants No. T 43623,T 42750, K 61908. 1



2 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSATheorem 1.1. Let p be a prime.(a) For every m < pp=3 there is a set A � Zp suh that j3Aj � p � m2 andj2Aj � p�m(2pp�m + 3)� Cp1=4. Here C is a positive absolute onstant.(b) In partiular, there is a set A � Zp suh that 3A 6= Zp and j2Aj � p�2pp�Cp1=4.Our positive results are as follows. (Sine the struture of sumsets is trivial when theset has 1 or 2 elements, we assume jAj � 3.)Theorem 1.2. Let p � 29 be a prime, A � Zp, jAj � 3 and write j2Aj = n, j3Aj = s.(a) There is a positive absolute onstant  suh that for n < p we haves � 3n� 12 :(b) For 6 � n < p=2 we have s > p2n.() If n = (p+ 1)=2, then s � 3n� 12 = 3p+ 14 :(d) For n � (p+ 3)=2 we have s � n(2p� n)p :(e) If n > p�p2p+ 2, then 3A = Zp.A drawbak of this theorem is the disontinuous nature of the bounds in (a){(b){(). It is possible to modify the argument in the proof of () to get a ontinuouslydeteriorating bound for n just below p=2, but it is hardly worth the trouble. It isunlikely that the atual behaviour of min s hanges in this interval, so it seems safe toonjeture the following.Conjeture 1.3. If n � (p+ 1)=2, then s � (3n� 1)=2.To �nd the smallest value of n provided by Theorem 1.1 for whih s < (3n � 1)=2an happen we have to solve a quadrati inequality for m. This gives m � pp=5 andn � 16p=25.Theorem 1.1 and part (d) of Theorem 1.2 desribe the quadrati onnetion betweenn and s for large values of n. Indeed, (d) an be reformulated as follows: if s � p�m2,then n � p � mpp, thus the di�erene is the oeÆient 1 or 2 of mpp. Similarly,the theorems loate the point after whih neessarily 3A = Zp between p � 2pp andp�p2p. We do not have a plausible onjeture about the orret oeÆient of pp inthese results. 2. ConstrutionWe prove Theorem 1.1.Without loss of generality we may assume that p is large enough.We will use the integers 0; : : : ; p�1 to represent the residues modulo p. We will write[a; b℄ to denote a disrete interval, that is, the set of integers a � i � b.Take an integer q � pp, and write p = qt + r with 1 � r � q � 1. We will onsidersets of the form A = K [ L, whereK = [0; k � 1℄; jKj = k � q � 1



DOUBLE AND TRIPLE SUMS MODULO A PRIME 3and L = f0; q; 2q; : : : ; (l � 1)qg; jLj = l � t� 1:Our parameters will satisfy k > q=2 + 3 and l � 2t=3 + 2. We assume that t > 6.All the sums x + y, x 2 K, y 2 L are distint and hene we havej2Aj � jK + Lj = kl:It would not be diÆult to alulate j2Aj more exatly, but it would only minimallya�et the �nal result.The set 3A is the union of 3K, 2K + L, K + 2L and 3L. We onsider 2K + L �rst.We have 2K = [0; 2k � 2℄. Sine 2k � 2 > q, the sets 2K, 2K + q, . . . overlap and wehave 2K + L = [0; q(l � 1) + 2k � 2℄ = [0; ql + (2k � 2� q)℄:So 3A ontains [0; ql℄ and we will study in detail the struture in [ql; p� 1℄.We have 3K � [0; 3q℄, so we do not get any new element (assuming l � 3).Now we study K + 2L. The set 2L ontains 0; q; : : : ; qt and then q(t + 1) � p =q � r; 2q � r; : : : ; q(2l � 2)� p = q(2l � 2� t)� r. By adding the set K to the seondtype of elements we get numbers in[0; q(2l� 1� t)℄ � [0; ql℄;so no new elements again. By adding K to iq we stay in [0; ql℄ as long as i � l� 1, andfor l � i � t we get[ql; ql+k�1℄[[(l+1)q; (l+1)q+k�1℄[� � �[[(t�1)q; (t�1)q+k�1℄[[qt; qt+min(k�1; r)℄:If r � k � 1, the last of the above intervals overs [qt; p℄, so we an restrit ourattention to [ql; qt � 1℄. If r > k � 1, then some elements near p � 1 may not be inK + 2L, but as r � k � 1 will typially hold in our hoie, we will not try to exploitthis possible gain. Note that the �nal segment of 2K +L, that is, [ql; ql+ (2k� 2� q)℄is ontained in the �rst of the above intervals.Finally 3L onsists of elements of the form iq�jp, where 0 � i � 3l�3 and 0 � j � 2.Those with j = 0 are already listed above. Those with j = 2 are in [0; ql℄, so no newelement. Finally with j = 1 we have iq � p = (i� t)q � r with t+ 1 � i � 2t, and alsowith i = 2t+ 1 if r > q=2. Among these elements the possible new ones are(l + 1)q � r; (l + 2)q � r; : : : ; (t+ 1)q � r:This gives no new element if(2.1) r � q � k + 1:So under this additional assumption the intervals [iq + k; iq + q � 1℄ are disjoint to 3Afor l � i � t� 1, and this givesj3Aj � p� (t� l)(q � k):For a given m we will take l = t�m, k = q�m, hene the bound j3Aj � p�m2. Withthis hoie we have(2.2) j2Aj � kl = (q �m)(t�m) = p�m(q + t�m)� r:Now we selet q, t and r. De�ne the integer v by(v � 1)2 < p < v2;



4 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSAand write p = v2 � w, 0 < w < 2v. With arbitrary i we havep = (v � i)(v + i) + (i2 � w):Hene q = v� i, t = v+ i and r = i2�w may be a good hoie. We have a lower boundfor r given by (2.1), whih now reads r � m+ 1, but otherwise the smaller the value ofr the better the bound on 2A in (2.2), so we takei = 1 + hpw +m + 1i :Then r = m+O(pw +m + 1) = m+O(p1=4). Sine q+ t = 2v < 2pp+2, (2.2) yieldsthe bound in part (a) of Theorem 1.1.3. EstimatesHere we prove Theorem 1.2.We will assume that 0 2 A and onsequently A � 2A, sine this an be ahieved bya translation whih does not a�et the studied ardinalities.The proof will be based on ertain Pl�unneke-type estimates. These will be quotedfrom [5℄; the basi ideas go bak to Pl�unneke [4℄.Proof of (a).Lemma 3.1. Let i < h be integers, U , V sets in a ommutative group and writejU j = m, jU + iV j = �m. We have jhV j � �h=im:This is Corollary 2.4 of [5℄.Take a set A � Zp suh that j2Aj = n, j3Aj = s and s < 3n=2. We apply the abovelemma with i = 1, h = 4, U = 2A, V = A. We getj4V j < (3=2)4 jU j :Sine 4V = 4A = 2U , this means that the set U = 2A has a small doubling property,namely j2U j < (81=16) jU j, and this permits us to \retify" it. There are several waysto do this; the most omfortable is the following form, taken from [1℄, Theorem 1.2,with some hange in the notation.Lemma 3.2. Let p be a prime and let U � Z=pZ be a set with jU j = Æp andmin(j2U j; jU�U j) = �jU j. Suppose that Æ � (16�)�12�2. Then the diameter of U is at most(3.1) 12Æ1=4�2plog(1=Æ)p:The diameter in the above lemma is the length of the shortest arithmetial progressionontaining the set. We apply this lemma for our set U = 2A. We �x � = 81=16 andselet  so that for Æ �  the bound in (3.1) be < p=4, and it should inlude the upperbound imposed on Æ. (Atually the seond requirement is stronger and it gives the value = 2�39=24 .) This will be the onstant  in (a) of the theorem.The lemma yields that A � 2A � f�kd;�(k � 1)d; : : : ;�d; 0; d; 2d; : : : ; ldg with asuitable d and integers k; l suh that k + l < p=4. LetA0 = fj : �k � j � l; jd 2 Ag:Then 4A0 � [�4k; 4l℄, still an interval of length < p, hene j4Aj = j4A0j and the laimfollows from Lev's result (1.2) on sets of integers. �



DOUBLE AND TRIPLE SUMS MODULO A PRIME 5Proof of (b).Lemma 3.3. Let U; V � Zp, jU j � 2, jV j � 2, jU j + jV j � p � 1. Then eitherjU + V j � jU j + jV j, or U; V are arithmeti progressions with a ommon di�erene.This is the Cauhy-Davenport inequality with Vosper's desription of the extremalpairs inorporated; see e. g. [2℄.Lemma 3.4. If A � Zp and 2A is an arithmeti progression, then s � min(p; (3n �1)=2).Proof. First, use a dilation to make the di�erene of the arithmeti progression 1, andthen a translation to ahieve 0 2 A; these transformations do not hange the size of oursets. In this ase A � 2A, so we an write2A = fk; k + 1; : : : ;�1; 0; 1; : : : ; lg; k � 0 � l; l � k = n� 1:Let the �rst and last elements of A (in the list above) be a and b. We have k � a � 0 �b � l. Furthermore 2A � [2a; 2b℄, that is, n = j2Aj � 2(b�a)+1 and so b�a � (n�1)=2.Now 3A ontains the residue of every integer in the set[k; l℄ + fa; bg = [k + a; l + b℄;an interval of length l+ b� k� a � 3(n� 1)=2 (to see that it is an interval observe thatl + a � k + b), hene its ardinality is at least the ardinality of this interval or p. �Lemma 3.4 allows us to prove slightly stronger results than we would obtain byapplying the Cauhy-Davenport inequality diretly, the main bene�t being that thestatements of the results beome simpler.Lemma 3.5. Let i < h be integers, U , V sets in a ommutative group and writejU j = m, jU + iV j = �m. There is an X � U , X 6= ; suh thatjX + hV j � �h=ijXj:This is Theorem 2.3 of [5℄.Now we prove part (b). We apply the above lemma with i = 1, h = 2 for U = 2A,V = A, so that � = s=n. We get that there is a nonempty X � 2A suh that(3.2) jX + 2Aj � �2 jXj :We will now apply Lemma 3.3 to the sets X and 2A. To hek the onditions observethat jXj + j2Aj � 2n � p � 1. The ondition jXj � 2 may not hold. If it fails, then(3.2) redues to n � �2 and hene � � p2. If 2A is an arithmeti progression, thenwe get (b) by Lemma 3.4. If none of these happens, then by Lemma 3.3 we know thatjX + 2Aj � jXj+ n, and then (3.2) an be rearranged asn � (�2 � 1) jXj � (�2 � 1)n;that is, � � p2 as laimed. �Proof of (e). If 3A 6= Zp, then j2Aj + jAj � p (by the Cauhy-Davenport inequality,or by an appropriate appliation of the pigeonhole priniple). Write jAj = m. Wehave n � m(m + 1)=2, hene m � p2n � 1=2 and the previous inequality impliesn+p2n � p+ 1=2. By solving this as a quadrati inequality for pn we obtainn � p�p2p+ 2 + 32 < p�p2p+ 2:



6 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSA �Proof of () and (d). We will prove thats � min�3n� 12 ; n(2p� n)p � ;whih implies both () and (d). Indeed, observe that the bound in (), (3n � 1)=2, issmaller than the bound n(2p� n)=p in (d) for n = (p+ 1)=2 and it is larger otherwise.If s = p, we are done. If s = p� 1, then from part (e) we get that n < p�p2p+2 <p�pp and then n(2p� n)=p < p� 1, and again we are done. So assume s � p� 2.Lemma 3.6. Let i < h be positive integers, U , V;W sets in a ommutative group andwrite jU j = m, j(U + iV )n (W +(i�1)V )j � �m. There is an X � U , X 6= ; suh thatj(X + hV ) n (W + (h� 1)V )j � �h=ijXj:This is Theorem 2.8 of [5℄.Lemma 3.7. Let U , V be sets in a ommutative group and write jU j = m, jU + V j ��m. There is an X � U , X 6= ; suh thatjX + 2V j � �m+ (�� 1)2jXj:Proof. We apply the previous lemma with i = 1, h = 2, W = U + v with an arbitraryv 2 V ; learly � = �� 1. We obtain the existene of an X � U , X 6= ; suh thatj(X + 2V ) n (U + V + v)j � (�� 1)2jXj:The laim follows by observing that jU + V + vj � �m. �Consider the set D = Zp n (�3A). We have m = jDj = p� s � 2. The set D + A isdisjoint to �2A, hene jD + Aj � p � n. We apply the previous lemma with U = D,V = A and � = (p � n)=(p� s). We obtain the existene of a nonempty X � D suhthat(3.3) jX + 2Aj � p� n + (�� 1)2jXj:We have jXj+ j2Aj � p� s+ n � p� 1. By lemma 3.3 either we have(3.4) jX + 2Aj � jXj+ j2Aj ;or jXj = 1, or 2A is an arithmeti progression. In the last ase the laim follows fromLemma 3.4, sine n(2n� p)=p < (3n� 1)=2 for n > (p+ 1)=2.If (3.4) holds, then (3.3) implies(3.5) 2n� p � �(�� 2) jXj :Sine the left side is positive, so is the right side, that is, neessarily � � 2, and thenusing that jXj � jDj = p� s, (3.5) beomes(3.6) 2n� p � �(�� 2)(p� s):Substituting � = (p� n)=(p� s) and �� 2 = (2s� n� p)=(p� s) this beomes(2n� p)(p� s) � (p� n)(2s� n� p)whih an be rearranged to give the bound in (d).If (3.4) fails, then jXj = 1 and (3.3) beomes(3.7) 2n� p � (�� 1)2:
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