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Abstract

In Part I of this paper we studied the irregularities of distribution
of binary sequences relative to short arithmetic progressions. First we
introduced a quantitative measure for this property. Then we studied
the typical and minimal values of this measure for binary sequences of
a given length. In this paper our goal is to give constructive bounds
for these minimal values.

1 Introduction

First we recall some definitions and results from Part I of this paper [2].
K. F. Roth [12] was the first who studied the irregularities of distribution

of sequences relative to arithmetic progressions. It follows from his results
that

Theorem 1 (Roth [12]). If N,Q P N with Q ¤ N1{2 and EN � pe1, e2, ..., eNq Pt�1,�1uN , then there are integers a, t, q such that

1 ¤ a ¤ a� pt � 1qq ¤ N, q ¤ Q
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and ����t�1̧

j�0

ea�jq

���� ¡ c1Q
1{2

with some absolute constant c1.

Binary sequences with strong pseudorandom properties play a crucial role
in cryptography and elsewhere. Thus in [7] Mauduit and Sárközy initiated a
new constructive and quantitative approach to study pseudorandomness of
binary sequences

EN � pe1, e2, . . . , eNq P t�1,�1uN . (1)

Among others, in [7] they introduced the following measures of pseudoran-
domness of binary sequences:

Definition 1. The well-distribution measure of the binary sequence (1) is
defined by

W pENq � max
a,b,t

����t�1̧

j�0

ea�jb

����
where a, b, t P N and 1 ¤ a ¤ a� pt� 1qb ¤ N .

Definition 2. For k P N, k ¤ N the correlation measure of order k of the
sequence (1) is defined as

CkpENq � max
M,D

���� M̧

n�1

en�d1en�d2 . . . en�dk

����.
Then the sequence EN P t�1,�1uN is said to possess strong pseudoran-

dom properties or, briefly, it is considered a “good” PR (= pseudorandom)
sequence if bothW pENq and CkpENq (at least for “small” k) are small. There
are many papers written on these measures and constructions of “good” PR
sequences, see Part I of this paper [2] for some related results and references.

We pointed out in Part I that in the applications one also needs binary se-
quences of form (1) such that their “short” but “not too short” subsequences

EN pn,Mq � pen�1, en�2, . . . , en�Mq (2)

(say of length M with N1�c   M   N for some c ¡ 0) also possess strong
PR properties. Thus our goal is to look for binary sequences of this type.
First in this series we focus on the measure W (and we will study Ck, resp.
the combination of W and Ck later).
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It follows from Theorem 1 and an upper bound estimate for min
ENPt�1,�1uN W pENq

given by Matoušek and Spencer [6] that for all N P N we have

c2N
1{4   min

ENPt�1,�1uN W pENq   c3N
1{4. (3)

Note that Matoušek and Spencer proved their upper bound by an existence
proof, and no constructive proof is known. Indeed, the best known construc-
tion (presented in [4] in 1978) gives only

W pENq   c4N
1{3plogNq2{3. (4)

In Part I first we introduced a weighted version Wα of the measure W for
studying subsequences:

Definition 3. If EN is the binary sequence EN in (1) and 0 ¤ α ¤ 1{2, then
the weighted α-well-distribution measure of EN is defined as

WαpEN q � max
0¤n n�M¤N

M�αW pENpn,Mqq.
We also needed the following modification of this measure:

Definition 4. If EN is the binary sequence EN in (1) and 0 ¤ α ¤ 1{2, then
the modified α-well-distribution measure of EN is defined as

W αpEN q � max
0 M N

�
M�α max

1¤a¤a�pM�1qb¤N

����M�1̧

j�0

ea�jb

����
.
Next we showed that for a truly random EN P t�1,�1uN theWα measure

of it is around N1{2�α (we present this result here in a slightly simplified but
less sharp form):

Theorem 2. Assume that 0 ¤ α ¤ 1{2. Then for all ε ¡ 0 there are
numbers N0 � N0pεq and δ � δpεq such that if N ¡ N0, then for a truly
random sequence EN � t�1,�1uN (i.e. choosing each EN P t�1,�1uN with
probability 1{2N) we have

P
�
δN1{2�α   WαpEN q   6N1{2�αplogNq1{2� ¡ 1� ε.

Write
mαpNq � min

ENPt�1,�1uN WαpEN q
and

mαpNq � min
ENPt�1,�1uN WαpENq.

A trivial lower bound for mαpNq is
mαpNq " N1{4�α for all 0 ¤ α ¤ 1{2. (5)
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We conjectured that much more is true:

Conjecture 1. For 0 ¤ α ¤ 1{2 we have

c5N
1{4�α{2   mαpNq   c6N

1{4�α{2. (6)

Note that by (3) this is true for α � 0. For α ¡ 0 we have not been
able to improve on (5). Thus instead we proved two theorems which can be
considered as partial results towards the lower bound part of this conjecture:
first we gave a lower bound for mαpNq, and then we proved a lower bound for
W αpEN q from which it follows that for almost all EN P t�1,�1uN the Wα

measure of EN is greater than the lower bound in (6) divided by a logarithm
factor:

WαpENq " N1{4�α{2plogNq1{4�α{2 .
In this paper our goal is to study certain special sequences EN with small

values of WαpEN q. First in Section 2 we will show that the Rudin–Shapiro
sequence possesses small Wα measure for all α. Then in Sections 3 and 4 we
will give upper bounds for small values of Wα in case of Legendre symbol
sequences. Finally, in Section 5 we will give lower bound for Wα for the
Legendre symbol construction.

2 Upper bound for small values of Wα uni-

formly in α for the Rudin–Shapiro sequence

Unfortunately, we have not been able to prove that the upper bound in (3)
can be extended to the case of general α as presented in Conjecture 1; namely,
we have not been able to extend the existence proof given by Matoušek and
Spencer in [6]. On the other hand, we will be able to extend and sharpen
the constructive upper bound (4) in various directions by giving constructive
proofs. First in this section we will give a partial answer to the questions
asked at the end of Section 1 in [2]: we will show that the truncated Rudin–
Shapiro sequence is well-distributed in short blocks of consecutive elements
of it, in other words, Wα is small uniformly in α for this sequence.

The Rudin–Shapiro [13], [15] sequence plays a role of basic importance in
harmonic analysis. Its definition is the following:

First we define pairs of polynomials P2npzq, Q2npzq pn � 0, 1, 2, . . . q of
degree 2n � 1 by the following recursion: Let

P1pzq � Q1pzq � 1,
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and if P2npzq and Q2npzq have been defined for a non-negative integer n, then
let

P2n�1pzq � P2npzq � z2
n

Q2npzq and Q2n�1pzq � P2npzq � z2
n

Q2npzq. (7)

It can be shown easily by induction on n that��P2npzq��2 � ��Q2npzq��2 � 2n�1 for n � 0, 1, 2, . . . and all |z| � 1

whence��P2npzq�� ¤ ?
2�2n{2 and

��Q2npzq�� ¤ ?
2�2n{2 for n � 0, 1, 2, . . . and all |z| � 1.

It follows from these upper bounds and the Parseval formula that the max-
imum of the polynomials P2npzq, Q2npzq on the unit circle is less than a
constant multiple of their mean square; this is the most important property
of these polynomials.

Clearly, the construction above defines a unique binary sequence R �pr0, r1, . . . q P t�1,�1u8 such that

P2npzq � 2n�1̧

j�0

rjz
j for n � 0, 1, 2, . . . ;

this sequence R is called Rudin–Shapiro sequence. Its elements have the
following properties:

r0 � 1,

r2n � rn pfor n � 1, 2, . . .q,
r2n�1 � p�1qnrn pfor n � 0, 1, 2, . . .q

and

r2n�1a�b � rarb for non-negative integers a, b and n such that b   2n.

(Their proofs and further formulas can be found in [11].)
Write RN � pr0, r1, . . . , rN�1q. Denote the coefficients of the polynomial

Q2npzq by s0, s1, . . . , s2n�1 so that Q2npzq � °2n�1

j�0 sjz
j , and write S2n �ps0, s1, . . . , s2n�1q. Then by (7) we have

2n�1̧

j�0

rjz
j � z2

n
2n�1̧

i�0

siz
i � 2n�1̧

j�0

rjz
j � 2n�1̧

i�0

siz
2n�i � 2n�1�1

j̧�0

rjz
j

whence
S2n � �

s0, s1, . . . , s2n�1

� � �
r2n , r2n�1, . . . , r2n�1�1

�
. (8)

Mauduit and Sárközy [8] proved that
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Theorem 3 (Mauduit and Sárközy [8]). We have

W pRNq ¤ 2p2�?
2qN1{2 for all N P N.

We will also need

Corollary 1. For all n

W pS2nq ¤ 4
�?

2� 1
�
2n{2 for n � 0, 1, 2, . . . .

Proof of Corollary 1. In the remaining sections we will use some facts which
are nearly trivial. We will call these facts propositions, and in some cases we
will give a hint, but we will always omit the details.

Proposition 1. If a binary sequence DM�N P t�1,�1uM�N is the concate-
nation of the sequences AM � pa1, a2, . . . , aMq and BN � pb1, b2, . . . , bNq:
DM�N � pa1, . . . , aM , b1, . . . , bN q, then we have

max
�
W pAMq,W pBNq� ¤W pDM�Nq.

All the sums ax� ax�y � � � � � ax�ty considered when computing W pAMq
are also considered when computing W pDM�Nq.

By (8), R2n�1 � �
r0, r1, . . . , r2n�1, r2n , r2n�1, . . . , r2n�1�1

�
is a concatena-

tion of R2n and S2n thus by Proposition 1 and Theorem 3 we have

W
�
S2n

� ¤ W
�
R2n�1

� ¤ 2
�
2�?

2
�
2pn�1q{2 � 4

�?
2� 1

�
2n{2

which proves the corollary.

Now we are ready to prove our main result in this section:

Theorem 4. Let N P N, and for n P t0, 1, . . . u, M P N, 0 ¤ n   n �M ¤
N write RN pn,Mq � prn, rn�1, . . . , rn�M�1q. Then for each of these pairspn,Mq we have

W pRN pn,Mqq   40M1{2. (9)

It follows trivially from this theorem that

Corollary 2. For all 0 ¤ α ¤ 1{2 and every N P N we have

WαpRNq   40N p1{2q�α, (10)

in particular,
W1{2pRN q   40.
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By (9), the Rudin–Shapiro sequence completely satisfies the requirement
formulated at the end of Section 1 of [2] as far as the measureW is concerned:
for every subsequence of length M the measure W is ! M1{2, we could not
expect better than that.

Proof of Theorem 4. We will need

Proposition 2. If a, t are any non-negative integers, then
�
ra2t , ra2t�1, . . . ,

rpa�1q2t�1

�
is one of the 4 sequences R2t , �R2t

�� ��r0,�r1, . . . ,�r2t�1

��
,

S2t , �S2t .

This follows from the recursive formula (7).

Proposition 3. Let EN � pe1, e2, . . . , eN q P t�1,�1uN and 1 ¤ n0   n1  � � �   nk ¤ N � 1, and write

E
piq
N � �

eni
, eni�1

, . . . , eni�1�1

�
for i � 0, 1, . . . , k � 1

and ENpn0, nk � 1q � �
en0

, en0�1, . . . , enk�1

�
. Then we have

W
�
ENpn0, nk � 1q� ¤ k�1̧

i�0

W pEpiq
N q.

On the left-hand side we have the absolute value of the greatest sum°
j

ea�jb where the subscripts a� jb form an arithmetic progression contained

in pn0, n0� 1, . . . , nk� 1q. The numbers n1, n2, . . . , nk�1 split this arithmetic
progression into at most k pieces, and the absolute values of the sums over
these pieces can be estimated by W pEp1q

N q,W pEp2q
N q, . . . ,W pEpkq

N q. It remains
to refer to the triangle inequality.

Now we are ready to prove (9). Define the integer t by M{2   2t   M .
There is an integer m with 2t | m which belongs to the set H � tn, n �
1, . . . , n �M � 1u. Write mi � m � i2t for i � �2, �1, 0 and 1, but we
drop mi if it is negative. For the remaining (at most 4) mi’s we form the
sequence Rpiq � �

rmi
, rmi�1, rmi�2, . . . , rmi�2t�1

�
. Each of these sequences

is of the form described in Proposition 2 and their concatenation includes
the subsequence RNpn,Mq, thus by Propositions 1, 2 and 3, Theorem 3 and
Corollary 1 we have

W pRNpn,Mqq ¤ ¸�2¤i¤1

W pRpiqq � ¸�2¤i¤1

W
�
RN pmi, 2

tq� ¤¤ ¸�2¤i¤1

max
�
W pR2tq,W pS2tq� ¤ 4 � 4�?2� 1

�
2t{2   40M1{2

which completes the proof of Theorem 4.
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We have seen that the behaviour of the measure W is completely satis-
factory for the truncated Rudin–Shapiro sequence. On the other hand, in
case of the correlation measure the situation is just the opposite. Indeed, by
Theorem 3 in [8] we have

Theorem 5. For N P N and N ¥ 4 we have

C2pRN q ¡ 1

6
N.

Thus if we want to make WαpENq and the correlation measures CkpENq
small simultaneously, then we have to look for a different sequence. We will
return to this problem in a subsequent paper.

3 Upper bounds for small values of Wα for

fixed α by using the Legendre symbol

Recall from Section 1 that by (3) we have

m0pNq � min
ENPt�1,�1uN W pEN q   c3N

1{4
and this is sharp apart from the value of the constant c3 but the proof of this
is an existence proof. The best known construction presented in 1978 in [4]
gives only the much weaker bound in (4), and since that no improvement has
been made on this estimate. This upper bound was achieved by considering
the following construction:

If N P N and p is a prime with p ¤ N , then define the sequence E
p
N �pe1, e2, . . . , eNq by

en � #�
n
p

	
for p ∤ n,�1 for p | n pfor all 1 ¤ n ¤ Nq (11)

where
�

n
p

	
denotes the Legendre symbol. Choosing here p as the greatest

prime p with p   �
N

logN

	2{3
, it is easy to see by using the Pólya–Vinogradov

inequality [10], [16] that this sequence satisfies (4) with E
p
N in place of EN .

First we will extend this construction to estimate small values of Wα for
any fixed α, and we will also improve on it slightly (in particular, we will be
able to remove the logarithm factor from (4)).
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Theorem 6. For every α with 0 ¤ α ¤ 1{2 there is a number N0 � N0pαq
such that if N P N, N ¡ N0 then there is a prime p with

1

2
N

2p1�αq
3   p ¤ N

2p1�αq
3 (12)

so that for the sequence E
p
N defined by (11) we have

WαpEp
N q   c5N

1�α
3 (13)

where c5 is an absolute constant (independent of α).

Compare this upper bound with the upper bound for WαpRN q in (10): in
(10) the exponent of N is 1

2
�α while here in (13) the exponent is 1�α

3
which

is smaller than 1

2
� α for 0 ¤ α   1{4.

In the α � 0 special case we get from Theorem 6 that

Corollary 3. For N P N, N ¡ N0 there is a prime p with

1

2
N2{3   p ¤ N2{3

such that for the sequence E
p
N we have

W pEp
Nq �W0pEp

Nq   c5N
1{3.

(Indeed, this is better than (4) by a factor plogNq2{3.)
Proof of Theorem 6. The proof will be based on a result of Montgomery and
Vaughan [9]:

Lemma 1. There is an absolute constant c6 such that for N P N, N ¥ 2
there is a prime p satisfying

N

2
  p ¤ N

and ���� X�Y̧

n�X�1

�
n

p


����   c6p
1{2 for all X P Z, Y P N. (14)

(Here and in the rest of this paper we define
�

n
p

	 � 0 for p | n.)
Proof of Lemma 1. This follows from (ii) in the Corollary in [9] by taking
any θ ¡ 1{2 there (and using also the prime number theorem).
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For Y P N write

dpp, Y q � max
XPZ ���� X�Y̧

n�X�1

�
n

p


����. (15)

We will also need

Lemma 2. If M,N P N, n P t0, 1, . . . , N � 1u, n�M ¤ N and p is a prime
with p ¤ N , then we have

W
�
E

p
Npn,Mq� ¤ max

Y¤M
dpp, Y q � 2M

p
� 2. (16)

Proof of Lemma 2. By the definitions of W pENq, Ep

N � pe1, e2, . . . , eNq and
EN pn,Mq we have

W
�
E

p
N pn,Mq� � max

a,b,t

����t�1̧

j�0

ea�jb

���� �� max
a,b,t

����t�1̧

j�0

�
a� jb

p


 � ¸
0¤j t
p|a�jb

1

���� (17)

where a, b, t P N and

n� 1 ¤ a ¤ a� pt� 1qb ¤ n �M. (18)

It follows from (18) thatpt� 1qb � pa� pt� 1qbq � a ¤ pn�Mq � pn� 1q �M � 1 (19)

whence

t ¤ M � 1

b
� 1   M

b
� 1 ¤M � 1

so that
t ¤M. (20)

If pb, pq � 1 then by the definition of dpp, Y q and (20) we have����t�1̧

j�0

�
a� jb

p


� ¸
0¤j t
p|a�jb

1

���� ¤¤ ����t�1̧

j�0

�
a� jb

p


����� ¸
0¤j t
p|a�jb

� 1 �
10



� ����t�1̧

j�0

�
ab�1 � j

p


����� ��tj : jb � �a pmod pq, 0 ¤ j   tu�� ¤¤ dpp, tq � �
t

p
� 1


 ¤ max
t¤M

dpp, tq � M

p
� 1 pfor pb, pq � 1q. (21)

If pb, pq ¡ 1 then we have b ¥ p thus it follows from (19) thatpt� 1qp ¤ pt� 1qb ¤M � 1

whence

t ¤ M � 1

p
� 1   M

p
� 1.

Thus we have����t�1̧

j�0

�
a� jb

p


� ¸
0¤j t
p|a�jb

1

���� ¤ 2
t�1̧

j�0

1 � 2t   2M

p
� 2 pfor pb, pq ¡ 1q. (22)

(16) follows from (17), (21) and (22) which completes the proof of the
lemma.

In order to prove the statement of the theorem we use Lemma 1 with

N
2p1�αq

3 in place of N . We get for N large enough that there is a prime p

satisfying (12) such that (14) holds. Then by the definition of Wα, (12), (14),
(15) and Lemma 2 we have

WαpEp

N q � max
0¤n n�M¤N

M�αW
�
E

p

N pn,Mq� ¤¤ max
0¤n n�M¤N

M�α

�
max
Y¤M

dpp, Y q � 2
M

p
� 2


 ¤¤ max
M¤N

M�α

�
c6p

1{2 � 2
M

p
� 2


    max
M¤N

c7

�
p1{2 � M1�α

p


 ¤ c7

�
p1{2 � N1�α

p


   c8N
1�α
3 (23)

which completes the proof of Theorem 6.

For 0   α p¤ 1{2q one can improve further on the upper bound in (13)
by using the Burgess inequality:

Theorem 7. For every α with 0 ¤ α ¤ 1{2 there is a number N1 � N1pαq
such that if N P N, N ¡ N1 and p is a prime which satisfies the inequalities

in Lemma 1 with N
8p1�αq
12�5α plogNq� 8α

12�5α in place of N :

1

2
N

8p1�αq
12�5α plogNq� 8α

12�5α   p ¤ N
8p1�αq
12�5α plogNq� 8α

12�5α (24)
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and (14) holds, then we have

WαpEp
Nq   c9N

p1�αqp4�5αq
12�5α plogNq 8α

12�5α (25)

where c9 is an absolute constant (independent of α).

Observe that the exponent p1�αqp4�5αq
12�5α

in the upper bound in (25) is

smaller than the exponent 1�α
3

in (13) in Theorem 6 for all 0   α (in partic-
ular, for α � 1{2 these exponents are 3

38
and 1

6
, respectively).

Proof of Theorem 7. By the Burgess inequality [1] we have

Lemma 3. If p is a prime number and H P N, r P N then

dpp,Hq � max
XPZ ���� X�Ḩ

n�X�1

�
n

p


����   c10H
1� 1

r p
r�1

4r2 plog pq1{r
where c10 is an absolute constant.

(Here c10 � 30 can be taken [17].)
In order to estimate WαpEp

Nq in the theorem again we use Lemma 2:

WαpEp
N q � max

0¤n n�M¤N
M�αW

�
E

p
N pn,Mq� ¤¤ max

M¤N
M�α

�
max
H¤M

dpp,Hq � 2
M

p
� 2


 ¤¤ max
M¤N

�
M�α max

H®M
dpp,Hq � 2

M1�α

p
� 2M�α


 ®¤ max
M¤N

�
M�α max

H¤M
dpp,Hq	� 4

N1�α

p
(26)

since we have p   N1�α by the upper bound for p in (24) and α ¤ 1{2. By
α ¥ 0 here we have

max
M¤N

�
M�α max

H¤M
dpp,Hq	 ¤ max

H¤N
dpp,Hq max

H¤M¤N
M�α �� max

H¤N
H�αdpp,Hq � max

H¤N
F pHq (27)

where F pHq � H�αdpp,Hq.
It remains to estimate F pHq for H P p0, Ns. To do this, we split the

interval p0, Ns into subintervals. To define these subintervals we introduce
the following notations:
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Let R be a positive integer large enough in terms of α which will be fixed
later. Let t1 � N , t2 � p5{8plog pq�1,

tr � p
r2�r�1

4pr�1qr log p for r � 3, 4, . . . , R� 1

and tR�2 � 0 (where p is the prime p defined in the theorem). A simple
computation shows that if N is large enough (in terms of α), then we have

0 � tR�2   tR�1   � � �   t2   t1 � N. (28)

Let Ir � ptr�1, trs for r � 1, 2, . . . , R � 1. Then it follows from (28) that the
interval p0, Ns is a disjoint union of the intervals Ir:p0, Ns � R�1¤

i�1

Ir, Ir X Ir1 � H for 1 ¤ r   r1 ¤ R� 1. (29)

First for H P I1 we estimate F pHq by (14):

F pHq � H�αdpp,Hq   t�α
2 c6p

1{2 � c6p
�5α{8plog pqαp1{2 �� c6p

1{2�5α{8plog pqα � c6Gp1q � c6p
u1plog pqv1 pfor H P I1q (30)

with Gp1q � pu1plog pqv1 , u1 � 1{2� 5α{8, v1 � α.
For H belonging to the r-th interval Ir � ptr�1, trs with 1   r   R � 1

we use the Burgess inequality in Lemma 3 with this r (indeed, Ir is defined
so that this r value should give the optimal bound):

F pHq � H�αdpp,Hq   c10H
�αH1� 1

r p
r�1

4r2 plog pq1{r � c10H
1�α� 1

r p
r�1

4r2 plog pq1{r.
By α ¤ 1{2 the exponent of H is non-negative, thus we get

F pHq   c10t
1�α� 1

r
r p

r�1

4r2 plog pq1{r
whence for r � 2 we have

F pHq   c10t
1{2�α

2 p3{16plog pq1{2 �� c10p
5{16�5α{8plog pqα�1{2p3{16plog pq1{2 �� c10p
1{2�5α{8plog pqα � c10Gp2q � c10p

u2plog pqv2 pfor H P I2q (31)

with Gp2q � pu2plog pqv2 , u2 � 1

2
� 5α

8
and v2 � α, while for 2   r   R � 1

we get

F pHq   c10

�
p

r2�r�1

4pr�1qr log p	1�α� 1

r

p
r�1

4r2 plog pq 1

r �
13



� c10p
r�2

4r
�α r2�r�1

4pr�1qr plog pq1�α � c10Gprq �� c10p
urplog pqvr pfor H P Ir, 2   R   R � 1q (32)

with Gprq � purplog pqvr , ur � r�2
4r
� α r2�r�1

4pr�1qr and vr � 1� α.
Finally, for H P IR�1 we use the trivial estimate

F pHq � H�αdpp,Hq ¤ H�αH � H1�α ¤ t1�α
R�1 �� �

p
R2�3R�1

4RpR�1q 	1�αplog pq1�α �� GpR� 1q � puR�1plog pqvR�1 pfor H P IR�1q (33)

with GpR� 1q � puR�1plog pqvR�1 , uR�1 � R2�3R�1
4RpR�1q p1� αq, vR�1 � 1� α.

By (30) and (31) we have

Gp1q � Gp2q � p1{2�5α{8plog pqα. (34)

For 2 ¤ r   R we have

ur � ur�1 � �
r � 2

4r
� α

r2 � r � 1

4pr � 1qr 
� �
r � 3

4pr � 1q � α
r2 � 3r � 1

4rpr � 1q 
 �� 1

2rpr � 1q � α
1

2pr � 1qpr � 1q � p1� αqr � 1

2p1� rqrpr � 1q
whence

ur

#¡ ur�1 for α   1{2 or α � 1{2, r ¡ 2,� ur�1 for α � 1{2, r � 2,
(35)

and clearly
vr � vr�1 for r � 2, α � 1{2. (36)

It follows from (34), (35) and (36) that

p1{2�5α{8plog pαq � Gp1q � Gp2q ¥ Gp3q ¡ Gp4q ¡ � � � ¡ GpRq. (37)

By (33), for R Ñ8 clearly we have

GpR� 1q � pp 1

4
�op1qqp1�αq pfor R Ñ8q. (38)

Comparing the exponents of p in (37) and (38), we get that

1

2
� 5

8
α ¡ 1

4
p1� αq

14



by α ¤ 1{2. Thus it follows from (37) and (38) that for every R large enough
we have

GpR� 1q   Gp1q. (39)

Now we fix the value of R: let R be the smallest integer R with R ¡ 2
for which (39) holds. Then it follows from (26), (27), (29), (30), (31), (32),
(33), (37) and (39) that

WαpEp
Nq   c11p

1{2�5α{8plog pqα � 4
N1�α

p
(40)

whence (25) follows using that the prime p satisfies (24) (note that this
choice of p balances the two terms in (40)) and this completes the proof of
Theorem 7.

4 Upper bounds under hypothesis for the Leg-

endre symbol construction

In Section 3 we estimated WαpEp
N q for the Legendre symbol sequence E

p
N in

(11) by using the best known estimates for Legendre symbol sums. However,
these estimates are probably very far from being sharp so that WαpEp

N q is
much smaller than our upper bounds. Thus it seems worth to study what
upper bound can be given for WαpEp

Nq having a plausible hypothesis on the
size of Legendre symbol sums? Such a hypothesis was formulated, e.g., by
L. Zhao in [17]: If χ is a non-principal character modulo a prime number p
and we set

SχpNq � ¸
M n¤M�N

χpnq,
then “the expected bound is

SχpNq ! ?
N pε.” (41)

We will call (41) hypothesis H , and we will estimate WαpEp
N q under this

hypothesis.

Theorem 8. Assume that hypothesis H holds with χpnq � �
n
p

	
, i.e., for

every ε ¡ 0 there is a number p0 � p0pεq such that for every prime p ¡ p0
we have

dpp, Y q � max
XPZ ���� X�Y̧

n�X�1

�
n

p


���� ! Y 1{2pε pfor all p ¡ p0 and Y P Nq. (42)

15



Then for every α and ε with 0 ¤ α ¤ 1{2 and ε ¡ 0 there is a number
N0 � N0pα, εq such that if N P N, N ¡ N0, then there is a prime p with

1

2
N

2�2α
3�2α   p ¤ N

2�2α
3�2α

�¤ N1�α
�

(43)

so that for the sequence E
p
N defined by (11) we have

WαpEp
Nq   N

p1�αqp1�2αq
3�2α

�ε. (44)

Note that the exponent p1�αqp1�2αq
3�2α

in this upper bound is significantly

smaller than the exponent p1�αqp4�5αq
12�5α

in (25).

Proof of Theorem 8. By Lemma 1 there is a prime p satisfying (43) with

max
Y PN dpp, Y q � max

Y PN max
XPZ ���� X�Y̧

n�X�1

�
n

p


����   c6p
1{2. (45)

We will show that for this prime p the sequence E
p
N satisfies (44).

As in (23), by Lemma 2, (42), (43) and (45) we have

WαpEp
N q � max

0¤n n�M¤N
M�αW

�
E

p
Npn,Mq� ¤¤ max

1¤M¤N
M�α

�
max
Y¤M

dpp, Y q � 2
M

p
� 2


 ¤¤ max
1¤M¤N

M�α

�
max
Y¤M

min
�
Y 1{2pε, c6p1{2�� 2

M

p
� 2


 ¤¤ max
1¤M¤p1�2ε

M�α max
Y¤M

min
�
Y 1{2pε, c6p1{2��� max

p1�2ε M¤N
M�α max

Y¤M
min

�
Y 1{2pε, c6p1{2��� max

1¤M¤N
M�α

�
2
M

p
� 2


 ¤¤ max
1¤M¤p1�2ε

M1{2�αpε � max
p1�2ε M¤N

M�αc6p
1{2 � 2

�
N1�α

p
� 1


 !! pp1�2εqp1{2�αq�ε � p�αp1�2εq�1{2 � N1�α

p
!! p�αp1�2εq�1{2 � N1�α

p
� p1{2�αp2αε � N1�α

p
¤¤ p1{2�αN ε � N1�α

p
¤
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¤ N
p1�αqp1�2αq

3�2α
�ε �N

p1�αqp1�2αq
3�2α

(observe that by choosing p in the interval (43) the two terms have been
balanced apart from an N ε factor) whence (44) follows.

5 Lower bound for Wα for the Legendre sym-

bol construction

In this section our goal is to give a lower bound for Wα for the Legendre
symbol sequence E

p
p�1 defined as in (11):

E
p
p�1 � ��

1

p



,

�
2

p



, . . . ,

�
p� 1

p




. (46)

Such a lower bound follows easily from a result of Sárközy ([14] Corollary 4,
proved there by adapting Roth’s method applied in the proof of his result
presented as Theorem 1 above) which was also used in Part I of this paper.
In this way one gets

WαpEp
p�1q " 2αp1{4�α{2 (47)

for all 0 ¤ α ¤ 1{2. However, by using a recent result of Gong [5], we will
be able to improve on this estimate significantly:

Theorem 9. Let p be a prime with p ¡ 2, and define the sequence E
p
p�1 by

(46). Then for all 0 ¤ α ¤ 1{2 we have

WαpEp
p�1q ¡ 1

10
p1{2�α.

Note that the exponent on the right-hand side is the double of the expo-
nent in the upper bound in (6) and in (47), and comparison with Theorem 2
shows that the order of magnitude of Wα for the Legendre symbol sequence
is at least as large as for a random sequence of the same length.

Proof of Theorem 9. Throughout the proof we will identify Fp with the field
of the modulo p residue classes, and we will use the same notation for a
residue class and an integer representing it. The proof will be based on the
following result of Gong:

Lemma 4 (Gong [5]). For any subset D � Fp and any multiplicative char-
acter χ � χ0 modulo p we have the identity

a̧PFp

����
x̧PD χpx� aq����2 � p|D| � |D|2. (48)
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Proof of Lemma 4. With F�p in place of Fp this is presented and proved by
Gong as Theorem 2 in [5]. However, 0 R D is not used in the proof of the
lemma, and the proof goes through in exactly the same way if we replace
the assumption D � F�p by D � Fp, thus we may use the lemma in the form
presented above.

(We remark that here we will need only the special case of Lemma 4 when
D consists of consecutive residues, i.e., it is of form D � tn, n�1, . . . , n�mu,
and this special case of the lemma was proved and used already in 1952
by Davenport and Erdős [3]. However, we prefered to present the lemma
here in this more general form since in the sequel of this paper and other
related problems where we will use the same method we will need this greater
generality.)

We will use Lemma 4 with D �  
1, 2, . . . , p�1

2

(
and the character χpnq

generated by the Legendre symbol modulo p (so that χpnq � �
n
p

	
for pp, nq �

1 and χpnq � 0 for ppnq). Let a1 be an a value which defines a maximal term
in the sum in (48) so that this term is at least as large as the average of the
terms: ����

x̧PD χpx� a1q����2 ¥ |D| � |D|2
p

� |D|�1� p� 1

2p


 ¡ |D|
2

whence ����
x̧PD χpx� a1q���� ¡ 2�1{2|D|1{2. (49)

Write

D1 � D � ta1u � "
a1 � 1, a1 � 2, . . . , a1 � p� 1

2

*
.

Then either we have

D1 � t1, 2, . . . , p� 1u, |D1| � |D| � p� 1

2
(50)

or D1 can be represented in the form

D1 � t�b,�pb� 1q, . . . ,�1, 0, 1, 2, . . . , cu � D2 Y t0u YD3 (51)

with

D2 � t�b,�b� 1, . . . ,�1u, D3 � t1, 2, . . . , cu, max
�|D2|, |D3|�   p� 1

2
.

(52)
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Now we define the set D1 � Fp so that D1 � D1 in case (50), while if (51)

and (52) hold, then let D1 be that one of D2 and D3 for which

���� °
yPDi

χpyq���� is
greater. In this second case by (49) we have

2�1{2|D|1{2   ����
x̧PD χpx� a1q���� � ����

y̧PD1

χpyq���� � ����
y̧PD2

χpyq �
y̧PD3

χpyq���� ¤¤ ����
y̧PD2

χpyq����� ����
y̧PD3

χpyq���� ¤ 2

����
y̧PD1 χpyq����

whence ����
y̧PD1 χpyq���� ¡ 2�3{2|D|1{2. (53)

In the first case (50) we have����
y̧PD1 χpyq���� � ����

y̧PD1

χpyq���� � ����
x̧PD χpx� a1q����

from which again (53) follows by (49).
It follows from the definition of D1 that in both cases it is of the form

D
1 � tn � 1, n� 2, . . . , n�Mu (54)

with
1 ¤ n� 1   n �M ¤ p� 1 (55)

and, by also using (50) and (52), we have

M � |D1| ¤ p� 1

2
. (56)

We obtain from (53), (54), (55) and (56) that

W pEp
p�1q ¥M�αW

�
E

p
p�1pn,Mq� ¥M�α

��en�1 � en�2 � � � � � en�M

�� ��M�α

����
y̧PD1 χpyq���� �M�α

���� M̧
i�1

�
n� i

p


���� ¡ |D1|�α2�3{2|D|1{2 ¥¥ |D|�α2�3{2|D|1{2 � 2�3{2|D|1{2�α � 2�3{2�p� 1

2


1{2�α ¥¥ 2�3{2 �p
4

	1{2�α � 2�3{2p2�2q1{2�αp1{2�α ¥ 2�5{2p1{2�α ¡ 1

10
p1{2�α

which completes the proof of the theorem.
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