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Abstract

In two earlier papers the authors studied pseudorandomness of
binary functions defined on uniform trees and rooted plane trees, i.e.,
of functions of the type f : V(T ) → {−1,+1} where V(T ) is the vertex
set of the tree. Here we extend the problem further by considering
Bratteli diagrams.

1 Introduction

Recently in a series of papers a new constructive and quantitative approach
has been developed to study pseudorandomness of binary sequences

EN = {e1, . . . , eN} ∈ {−1,+1}N .
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In particular, first in [16] the following measures of pseudorandomness were
introduced: the well-distribution measure of EN is defined by

W (EN) = max
a,b,t
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j=0

ea+jb
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where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,
the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D
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n=1

en+d1 . . . en+dk
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where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 ≤ d1 < · · · < dk ≤ N −M , and the normality measure of order k of EN is
defined as

Nk(EN )= max
X∈{−1,+1}k

max
0<M<N+1−k
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{

n : 0≤n<M, (en+1, . . . , en+k)=X
}
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.

We note that the combination of the well-distribution measure and cor-
relation measure of order k, called combined pseudorandom measure of order
k, was also introduced in [16]:

Qk(EN) = max
a,b,t,D
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t
∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+dk

∣

∣

∣

∣

where the maximum is taken over all a, b, t,D = (d1, d2, . . . , dk) such that
0 < d1 < d2 < · · · < dk and all the subscripts a + jb + di belong to
{1, 2, . . . , N}. The advantage of using this measure is that clearly we have
max

{

W (EN), Ck(EN )
}

≤ Qk(EN), thus it suffices to give an upper bound
for Qk. On the other hand, restricting ourselves to the study of Qk has two
disadvantages: first, the formulas are much more complicated than in case
of W and Ck, and secondly, it can be a useful information to know if, say,
W is small while Ck is large or vice versa, but studying only Qk these facts
cannot be detected. Thus typically both the well-distribution and correla-
tion measures are studied instead of the combined measures; in this paper,
we will also use this approach.

Then the sequence EN is considered to be a “good” pseudorandom se-
quence if both W (EN) and Ck(EN ) (at least for “small” k) are “small” in
terms of N ; in particular, both are o(N) as N → ∞. (It was shown in
[16] that the normality measures can be estimated in terms of the correla-
tion measures.) Indeed, later Cassaigne, Mauduit and Sárközy [5] proved
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that this terminology is justified since for almost all EN ∈ {−1,+1}N both
W (EN) and Ck(EN) are less than N1/2(logN)C (see also [2], [15]). It was
also shown in [16] that the Legendre symbol forms a “good” pseudorandom
sequence.

[16] was followed by numerous papers written on pseudorandomness of
binary sequences.

In particular, the problem of pseudorandomness of sequences of k symbols
was studied first by Mauduit and Sárközy [17]. They introduced the following
definitions and notations (which we will need later):

Let k ∈ N, k ≥ 2, and let A = {a1, a2, . . . , ak} be a finite set (“alphabet”)
of k symbols (“letters”), and consider a sequence EN = (e1, e2, . . . , eN ) ∈ AN

of these symbols. They introduced the following new measures of pseudo-
randomness (motivated by the definition of the normality measure above,
we may formulate these definitions in terms of any fixed ℓ-tuple, also called
as “word”,

(

ai1 , ai2, . . . , aiℓ
)

∈ Aℓ occurring with the expected frequency in
certain positions in EN). For a ∈ A and positive integers M,u, v write

σ(EN , a,M, u, v) =
∣

∣{j : 0 ≤ j ≤M − 1, eu+jv = a}
∣

∣

and for w =
(

ai1 , ai2, . . . , aiℓ
)

∈ Aℓ, positive integers M,u, v and D =
(d1, d2, . . . , dℓ) with non-negative integers d1 < d2 < · · · < dℓ write

τ(EN , w,M,D) =
∣

∣

{

n : 1 ≤ n ≤M,
(

en+d1 , en+d2 , . . . , en+dℓ

)

= w
}∣

∣.

Then the f -well-distribution (“f” for “frequency”) measure of EN is defined
as

δ(EN ) = max
a,M,u,v

∣

∣

∣

∣

σ(EN , a,M, U, V )− M

k

∣

∣

∣

∣

where the maximum is taken over all a ∈ A and u, v,M with u+(M −1)v ≤
N , while the f -correlation measure of order ℓ of EN is defined as

γℓ(EN) = max
w,M,D

∣

∣

∣

∣

τ(EN , w,M,D)− M

kℓ

∣

∣

∣

∣

where the maximum is taken over all w ∈ A′, and D = (d1, . . . , dℓ) and M
such that M + dℓ ≤ N . It was shown later by Bérczi [3] that for almost all
EN ∈ AN both these measures are small in terms of N .

Moreover, in [12] and [13] we studied pseudorandomness of binary func-
tions defined on almost uniform trees and on rooted plane trees, respectively.
In this paper our goal is to extend the problem further by studying binary
functions on Bratteli diagrams.

The notion of Bratteli diagram was introduced in 1972 by O. Bratteli [4].
They are used in the theory of algebras, dimension groups, substitutions,
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transcendence, geometry and theoretical physics; the connection between
Bratteli diagrams and these fields is discussed in [8]. (See also [7] for further
applications.) The notion of Bratteli diagram is defined in [8] in the following
way:
“Definition 1. A Bratteli diagram is an infinite directed graph (V,E) such
that the vertex set V and the edge set E can be partitioned into finite sets

V = V0 ∪ V1 ∪ V2 ∪ . . . and E = E1 ∪ E2 ∪ . . .

with the following properties:
i) V0 = {v0} is a one-point set.
ii) r(En) ⊆ Vn, s(En) ⊆ Vn−1, n = 1, 2, . . . where r is the associated range

map and s is the associated source map. Also, s−1(v) 6= ∅ for all v ∈ V and
r−1(v) 6= ∅ for all v ∈ V \ V0.

There is an obvious notion of isomorphism between Bratteli diagrams
(V,E) and (V ′, E ′): namely, there exist a pair of bijections between V and V ′

and between E and E ′, respectively, preserving the gradings and intertwining
the respective source and range maps. It is convenient to give a diagrammatic
presentation of the Bratteli diagram with Vn the vertices at (horizontal) level
n, and En the edges (downward directed) connecting the vertices at level n−1
with those at level n. Also, if |Vn−1| = tn−1 and |Vn| = tn, then En determines
a tn × tn−1 incidence matrix. (See Figure 1 for an example.)

Figure 1”
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Observe that clearly

Proposition 1. Every rooted plane tree (of the type studied in [13]) is a
Bratteli diagram.

Thus, indeed, the study of Bratteli diagrams is a natural continuation
and extension of the papers [12] and [13].

On the other hand, the reverse of this statement is not true; the Bratteli
diagrams are much more general than the rooted plane trees. The most
significant differences are that, unlike in rooted plane trees, it may occur in
Bratteli diagrams that two vertices are joined by two different edges:

there are e, e′ ∈ E, e 6= e′ with s(e) = s(e′), r(e) = r(e′),(1.1)

and two different vertices have the same “child”:

there are e, e′ ∈ E, e 6= e′ with s(e) 6= s(e′), r(e) = r(e′).(1.2)

A survey of the papers written on Bratteli diagrams is presented in [7]. How-
ever, in order to adjust the definition of Bratteli diagrams to our goals we
will modify it slightly. First, note that finite Bratteli diagrams also occur
in the applications (the first papers of this type are [20] and [9]), besides
the study of pseudorandomness of infinite Bratteli diagrams can be reduced
to the study of finite ones by truncating them; thus we will consider here
only finite Bratteli diagrams. Next, the situation described in (1.1) might
make the study of pseudorandomness quite complicated, besides in many
applications this case cannot occur, thus we will exclude this situation in the
definition. So that throughout the rest of this paper we will use the following
modified definition:

Definition 1’. A Bratteli diagram is a finite directed graph (V,E) such that
the vertex set V and the edge set E can be partitioned into (finitely many)
finite sets

(1.3) V = V0 ∪ V1 ∪ . . . ∪ Vh and E = E1 ∪ E2 ∪ . . . ∪ Eh

so that both properties i) and ii) in Definition 1 hold, moreover,
iii) if e, e′ ∈ E and they join the same vertices, then we have e = e′.

The binary functions on Bratteli diagrams can be defined by extending
the definition of binary functions on trees presented in [12] and [13]:

Definition 2. If B = (V,E) is a Bratteli diagram, then a function f of the
type f : V → {−1,+1} is called a binary function on B.
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First in Section 2 we will present further notations and definitions related
to Bratteli diagrams. Next in Section 3 we will introduce the measures
of pseudorandomness of binary functions on Bratteli diagrams. Then in
Section 4 we will present the construction of a binary function with strong
pseudorandom properties on “smooth” Bratteli diagrams. In Section 5 we
will study the connection between the different types of measures introduced
in Section 3. In Section 6 we will study the measures of pseudorandomness
of binary functions on general Bratteli diagrams. Section 7 will contain a
few further remarks.

2 Notations and definitions related to Brat-

teli diagrams

We will use the words vertex (=node), root, successor (= child), leaf, path,
distance, height in the same sense as we did for trees in [12] and [13] (see also
[6], [19] for the same terminology). If the vertex P ′ is a successor (or child) of
the vertex P , then P is said to be a parent of P ′. The number of successors of
the vertex P is called the outdegree of P and it is denoted by d+(P ), while the
number of parents of P is called the indegree of P and it is denoted by d−(P ).
If B = (V,E) is a Bratteli diagram where V is of form (1.3), then we say that
the vertices P ∈ Vn are at level n, and we also say that these vertices form the
n+1-st row of B. Now consider again this Bratteli diagram B = (V,E) with
V,E of form (1.3), and for any integers m,n with 0 ≤ m ≤ n ≤ h, let Bm,n

denote the diagram formed by the vertices belonging to Vm, Vm+1, . . . , Vn,
and the edges belonging to Em+1, Em+2, . . . , En (in other words, we keep the
vertices in the m + 1-st, m + 2-nd, . . . , n + 1-st row and the edges running
between these vertices). Such a diagram Bm,n will be called a subdiagram
of B. (Note that in general Bm,n is not a Bratteli diagram since for m > 0
it is not rooted.)

We will also use the following notations:
The number of the vertices of the Bratteli diagram B = (V,E) will be

denoted by N = N(B): N = N(B) = |V |. The height of the Bratteli diagram
B will be denoted by h = h(B). We will denote the number of vertices in
the i-th row Vi−1 (i.e., at level i− 1) by yi = yi(B) (= ti−1 according to the
notation quoted in Definition 1), and we will denote these vertices (moving
from left to right) by PB(i, 1), PB(i, 2), . . . , PB(i, yi); if B is fixed, then we
will drop the subscript B. Clearly we have

N = N(B) = y1 + y2 + · · ·+ yh+1.
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We will also use the following alternative notation for the vertices. The
root is denoted by R1: R1 = P (1, 1), the vertices in the second row V1 by
R2, R3, . . . , Ry2+1: R2 = P (2, 1), R3 = P (2, 2), . . . , Ry2+1 = P (2, y2), the
vertices in the third row V2 by Ry2+2, Ry2+3, . . . , Ry2+y3+1 : Ry2+2 = P (3, 1),
Ry2+3 = P (3, 2), . . . , Ry2+y3+1 = P (3, y3) and so on, finally RN denotes the
last vertex in the last row Vh : RN = P (h+ 1, yh+1).

To the binary function f : V → {−1,+1} defined on the Bratteli diagram
B we will assign the binary sequence

(2.1) EN = EN (f,B) = (e1, e2, . . . , eN) ∈ {−1,+1}N

defined by

(2.2) en = f(Rn) for n = 1, 2, . . . , N.

Consider a path with endpoints Ri, Rj with i < j (so that Qi is the
endpoint closer to the root). This path will be denoted by P(Ri, Rj). A path
P(Qi, Qj) consists of edges joining vertices Ri = P (x, kx), P (x + 1, kx+1),
P (x + 2, kx+2), . . . , Rj = P (y, ky) taken from consecutive rows, the distance
between these vertices Ri = P (x, kx) and Rj = P (y, ky) is y − x, and the
height of a subdiagram with first row at level x and last row at level y is
y − x.

If we want to introduce measures of pseudorandomness for binary func-
tions on Bratteli diagrams, then clearly we need some restrictions on the
structure of the diagram since it seems to be hopeless to give a definition
which can be used for any Bratteli diagram. Thus we will define certain
special types of Bratteli diagrams which occur most frequently in the appli-
cations, and here we will focus on Bratteli diagrams of this type.

Definition 3. If K ∈ N, B = (V,E) is a Bratteli diagram with V,E of form
(1.3), and we have

|Vi| ≤ K for all i ∈ {0, 1, . . . , h},

then we say that B is K-bounded.

Definition 4. If k ∈ N, B = (V,E) is a Bratteli diagram with V,E of form
(1.3), and we have

|Vi| = K for all i ∈ {1, 2, . . . , h},

then we say that B is K-uniform.
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The stationary Bratteli diagrams form an important special class of the
K-uniform Bratteli diagrams. We adapt the definition presented in [8] to our
notation:

Definition 5. “A Bratteli diagram B = (V,E) (with V,E of form (1.3))
is stationary if K = |V1| = |V2| = · · · = |Vh| and if (by an appropriate
labelling of the vertices) the incidence matrix between levels n and n + 1 is
the same K×K matrix C for all n = 1, 2, . . . , h− 1. In other words, beyond
level 1 the diagram repeats. (Clearly we may label the vertices P (n + 1, 1),
P (n + 1, 2), . . . , P (n + 1, K) in Vn as V (n, a1), . . . , V (n, aK), where A =
{a1, . . . , aK} is a set of K distinct symbols.)”

(Roughly, a K-uniform Bratteli diagram is stationary if by changing the
order of the vertices in every row it can be achieved that beyond level 1 the
diagram repeats.)

An even more special class of K-uniform Bratteli diagrams is formed by
the K-regular Bratteli diagrams:

Definition 6. A K-uniform Bratteli diagram is said to be K-regular if every
element of the incidence matrices between level n and n + 1 is 1 for all
n = 1, 2, . . . , h−1. (In other words, every vertex in the n+1-st row is joined
with every vertex in the n + 2-nd row.)

Definition 7. The Bratteli diagram B = (V,E) (with V,E of form (1.3)) is
said to be (a, q)-periodic if a, q are positive integers such that a ≡ h(mod q),
for a ≤ n ≤ h − q we have |Vn| (= yn+1) = |Vn+q| (= yn+q+1), and for
a ≤ n < h−q, 1 ≤ u ≤ yn+1, 1 ≤ v ≤ yn+2 the vertices P (n+1, u), P (n+2, v)
are joined if and only if the vertices P (n+ q+1, u), P (n+ q+2, v) are joined
(so that the incidence matrix between levels n and n + 1 is the same as the
incidence matrix between levels n+ q and n+ q+1, moreover, for m,n ∈ N,
X ∈ N ∪ {0}, a ≤ m < n ≤ h− x, m ≡ n (mod q) the subdiagrams Bm,m+x

and Bn,n+x are isomorphic). A (1, q)-periodic Bratteli diagram is said to be
purely periodic with period q.

Note that a K-regular Bratteli diagram is purely periodic with period 1.
If a Bratteli diagram B is (x, y)-periodic for some pair x, y, then there is

a unique pair (a, q) such that B is (a, q)-periodic but it is not (a′, q′)-periodic
for any pair a′, q′ with q′ < q, or q = q′ and a′ < a; we will say that B is
a primitive (a, q)-periodic Bratteli diagram. From now on we will restrict
ourselves to periodic Bratteli diagrams which are primitive (a, q)-periodic;
clearly this can be done without the loss of generality.

Throughout the rest of this paper we will consider K-bounded (a, q)-
periodic Bratteli diagrams with K, a, q fixed and h → +∞ (apart from the
last two sections).
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3 The measures of pseudorandomness for bi-

nary functions on “smooth” Bratteli dia-

grams

If we want to introduce the measures of pseudorandomness for binary func-
tions on Bratteli diagrams, then we may consider the following basic require-
ments:

R1) For a fixed Bratteli diagram we have to be able to give a good upper
boundM for the maximum of the value of the measure to be introduced over
all binary functions on the given Bratteli diagram.

R2) For a fixed Bratteli diagram we have to be able to show that for
almost all binary functions defined on the given Bratteli diagram the value
of the measure to be introduced is “much smaller” than M defined in R1);
in particular, it must be o(M). (If this requirement holds and the value
of the measure is small on a certain binary function, then this fact can be
considered as a good pseudorandom property of the given binary function.)

R3) We have to be able to show that the value of the measure to be
introduced is small in terms of M (defined in R1)) for at least on certain
special binary functions defined on any given Bratteli diagram. (We will

usually apply the Legendre symbol
(

n
p

)

to present constructions of this type.

Note that we do not define the value of
(

n
p

)

for p | n.)
R4) The measures to be introduced must be pairwise independent, i.e.,

for any pair of them either one of them can be large while the other one is
small.

R5) Since by Proposition 1 the Bratteli diagrams include the rooted plane
trees, thus the measures of pseudorandomness of binary functions defined on
Bratteli diagrams must be extensions (or at least variants) of the measures
defined on rooted plane trees in [13].

Starting out from requirement R5) here we will introduce two groups of
pseudorandom measures in the same way as in [13]: horizontal measures
and vertical measures. In order to avoid lengthy repetitions, here we will
not recall the definitions given in [13] for trees, we will present only their
adaptations to the case of Bratteli diagrams. However, these measures to be
introduced will function well only under the same assumption that we also
had in [13]: we have to assume that every vertex not in the last row has
non-zero outdegree.

Definition 8. If every vertex not in the last row has non-zero outdegree (i.e.,
all the leafs are in the last row), then the Bratteli diagram is called complete.
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Adding the assumption of completeness to our earlier assumptions on the
Bratteli diagrams to consider we may say that we will restrict ourselves to
studying Bratteli diagrams of the following type:

Definition 9. If a Bratteli diagram is K-bounded, primitive (a, q)-periodic
and complete, then it is said to be a smooth (a, q) Bratteli diagram.

The family of the smooth (a, q) Bratteli diagrams with K, a, q, h given
will be denoted by B(K, a, q, h). We will study B(K, a, q, h) for K, a, q fixed
and h→ +∞.

First we will define the horizontal measures. As in case of trees, we may
define the horizontal well-distribution, correlation and normality measures of
a binary function f defined on a Bratteli diagram B considering the corre-
sponding measures of the binary sequence EN = EN (f,B) assigned to f and
B by (2.1) and (2.2):

Definition 10. The horizontal well-distribution measure, the correlation
measure of order k and normality measure of order k of the binary function
f defined on the Bratteli diagram B are defined as

WH(f,B) = W
(

EN (f,B)
)

,

CH
k (f,B) = Ck

(

EN (f,B)
)

and
NH

k (f,B) = Nk

(

EN (f,B)
)

,

respectively.

The case of the vertical measures is more difficult. In order to introduce
the vertical well-distribution and correlation measures for trees, in [13] we
considered all the path P starting from the root and ending in the last (h+1-
st) row:

(3.1) P
(

P (1, 1), P (2, i2), . . . , P (h+ 1, iH+1)
)

,

and to each of these paths we assigned the binary sequence

G(P) =
(

g1(P), g2(P), . . . , gh+1(P)
)

(3.2)

=
(

f(P (1, 1)), f(P (2, i2)), . . . , f(P (h+ 1, ih+1))
)

.

Then we used the well-distribution measures and correlation measures of
these sequences to define the corresponding vertical measures. However, here
we ran into a serious difficulty: there are “too many” paths P of the form
(3.1). Indeed, the number of these paths is equal to the number of vertices
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in the last row which is usually of order of magnitude N (in case of trees). A
further difficulty is that the length of the paths of this form is h which is very
small, much smaller than N . In order to get around these difficulties, we had
to introduce “weak” and “strong” measures, and even so these measures are
not quite satisfactory, we have to combine them with other measures.

Here the situation is very much different. Namely, the length of the paths
of form (3.1) is much longer: h + 1 which is ≫ N

K
for a K-bounded Bratteli

diagram but, on the other hand, their number is even greater: e.g., for the
especially important K-regular Bratteli diagrams the number of paths of
form (3.1) is

Kh = K(N−1)/K

which, since K is fixed, is exponentially large in terms of N , and thus one
would need to control the measures of so many sequences which would be a
hopeless task. Thus we have to restrict the number of sequences considered
significantly. In case of smooth Bratteli diagrams the most natural way of
doing this is to switch to the study of k-symbol sequences as described below.

Let B be a smooth Bratteli diagram with B = (V,E) ∈ B(K, a, q, h) and
V,E of form (1.3). Let a0 denote the smallest integer with

(3.3) a0 > a and a0 − 1 ≡ h (q);

then we have

(3.4) a < a0 ≤ a+ q.

Write

(3.5) M =
h− a0 + 1

q

(note that M ∈ N by (3.3), (3.4) and h → ∞) so that for fixed K, a, q and
h→ +∞ we have

(3.6) M =
h

q
+O(1) >

N

Kq
+O(1).

Consider the subdiagrams

B
(i) = Ba0+(i−1)q,a0+iq−1 for i = 1, 2, . . . ,M

(by (3.4) and (3.5) here we have 0 < a0+(i−1)q ≤ a0+iq−1 ≤ a0+Mq−1 ≤
h). Then

B
(i) ∼= B

(i′) for 1 ≤ i, i′ ≤M.
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It follows that the total number of vertices belonging to B(i) is the same for
every i; denote this number of vertices by Y . For every i ∈ {1, 2, . . . ,M}, let
RXi

be the first vertex in the first row of B(i) so that the last vertex in the
last row is RXi+Y−1. Assign the Y -tuple

(3.7) Ei

(

f(RXi
), f(RXi+1), . . . , f(RXi+Y−1)

)

∈ {−1,+1}Y

to each i ∈ {1, 2, . . . ,M}, and define the sequence E ′
M by

(3.8) E ′
M = (E1,E2, . . . ,EM).

Write A = {−1,+1}Y and k = |A| = 2Y . Then clearly we have

E ′
M ∈ A

M ,

and the elements of the sequence E ′
M belong to the “k-letter alphabet” A.

Thus we may reduce the study of the pseudorandomness of the function
f : B → {−1,+1} to the study of the “k-symbol sequence” E ′

M :

Definition 11. Using the notations above, we define the vertical frequency
measures of the binary function f defined on the Bratteli diagram B ⊂
B(K, a, q, h) in the following way: the vertical F -well-distribution (“F” for
“frequency”, “V ” for vertical) measure of f is defined as

W FV (f,B) = δ(E ′
M),

while the vertical F -correlation measure of order ℓ of f is defined as

CFV
ℓ (f,B) = γℓ(E

′
M).

(We remark that the values of f assumed at the vertices belonging to
the first a rows are not included in these definitions. These values can be
omitted since the number of these vertices is bounded.)

It remains to show that the horizontal and vertical measures introduced
by us satisfy requirements R1)–R5) formulated above. This is trivial in case
of requirement R1): clearly, the value of each of the measures introduced
is at most N (= the number of vertices of the Bratteli diagram). It also
follows easily from the analogous results on binary sequences [5], [2], [15] and
k symbol sequences [3] that for any fixed smooth (a, q) Bratteli diagram and
for a random binary function defined on it the measures above are small. It
is more difficult to show that the requirements R3) and R4) also hold; this we
will show in the next two sections. Finally, we have seen that the horizontal
measures are the extensions of the analogous measures introduced for trees in
[13] but this can not be achieved in case of the vertical measures. However, in
the last Section 6 we will also introduce further vertical measures which are
closer to the ones used for trees, besides they also can be used in the aperiodic
case but, on the other hand, they have some significant disadvantages.
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4 A “good” construction on smooth Bratteli

diagrams

We will show that by using the Legendre symbol one can define a binary func-
tion with strong pseudorandom properties on any smooth Bratteli diagram.
We will use the same notation as in Section 3.

Theorem 1. If B = (V,E) ⊂ B(K, a, q, h), p is the smallest prime with
p > N (= |V |) and the binary function f : B → {−1,+1} is defined by

(4.1) f(Rn) =

(

n

p

)

for n = 1, 2, . . . , N,

and ℓ ∈ N, ℓ < N , then we have

WH(f,B) < 26N1/2 logN,(4.2)

CH
ℓ (f,B) < 26ℓN1/2 logN,(4.3)

NH
ℓ (f,B) < 26ℓN1/2 logN,(4.4)

W FV (f,B) < 26KqN1/2 logN(4.5)

and

(4.6) CFV
ℓ (f,B) < 26ℓKqN1/2 logN.

Proof. We apply Definition 10 with the sequence

EN(f,B) =

((

1

p

)

,

(

2

p

)

, . . . ,

(

N

p

))

,

and we use N < p ≤ 2N , and the upper bound

Qk(Ep−1) = Qk

((

1

p

)

,

(

2

p

)

, . . .

(

p− 1

p

))

< 9p1/2 log p

given in Theorem 1 in [16]. Then we get

WH(f,B) = W (EN(f,B))=Q1(EN )≤Q1(Ep−1)<9p1/2 log p<26N1/2 logN

and

CH
ℓ (f,B) = Cℓ

(

EN (f,B)
)

≤ Qℓ(EN )(4.7)

≤ Qℓ(Ep−1) < 9ℓp1/2 log p < 26ℓN1/2 logN

13



which proves (4.2) and (4.3), while (4.4) follows from (4.7) and the inequality

Nℓ(EN) ≤ max
1≤t≤ℓ

Cℓ(EN)

presented as Proposition 1 in [16].
Next we will prove (4.5). By the definitions of xi, Y,Ei in (3.7) and f in

(4.1) we have

(4.8) Ei =

((

xi

p

)

,

(

xi + 1

p

)

, . . . ,

(

xi + Y − 1

p

))

with

(4.9) xi = x1 + (i− 1)Y for i = 1, 2, . . . ,M.

In order to prove the upper bound (4.5) for W FV (f,B) = δ(E ′
M) (see Defi-

nition 11) we have to estimate σ(E ′
M , a, Z, u, v) for the sequence E

′
M in (3.8)

with the E′
is defined by (4.8), and for a = (r0, r1, . . . , rY−1) ∈ {−1,+1}Y and

positive integers Z, u, v such that

(4.10) u+ (Z − 1)v ≤M.

If

(4.11) 1 ≤ i ≤M,

then clearly we have

1

2Y

Y−1
∏

t=0

(

rt

(

xi + t

p

)

+ 1

)

(4.12)

=

{

1 if Ei =
((

xi

p

)

, . . . ,
(

xi+Y−1
p

))

= (r0, . . . , rY−1) = a,

0 if Ei 6= a;

note that it follows from (4.11) and 0 ≤ t < Y that

(4.13) 0 < xi + t ≤ N < p.

Thus for every a = (r0, r1, . . . , rt) and u, v, Z satisfying (4.10) we have

σ(E ′
M , a, Z, u, v) =

∣

∣{j : 0 ≤ j ≤ Z − 1,Eu+jv = a}
∣

∣

=

Z−1
∑

j=0

1

2Y

Y−1
∏

t=0

(

rt

(

xu+jv + t

p

)

+ 1

)

14



=
1

2Y

Z−1
∑

j=0

Y−1
∏

t=0

(

rt

(

xu+jv + t

p

)

+ 1

)

=
1

2Y

Z−1
∑

j=0

(

1 +
∑

T⊂{0,1,...,Y−1}

∏

t∈T

rt

(

xu+jv + t

p

))

=
Z

2Y
+

1

2Y

∑

T⊂{0,1,...,Y−1}

(

∏

t∈T

rt

) Z−1
∑

j=0





∏

t∈T

(xu+jv + t)

p





whence

(4.14)

∣

∣

∣

∣

σ(E ′
M , a, Z, u, v)−

Z

2Y

∣

∣

∣

∣

≤ 1

2Y

∑

T⊂{0,1,...,Y−1}

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0





∏

t∈T

(xu+jv + t)

p





∣

∣

∣

∣

∣

∣

.

By (4.9) the absolute value of the last sum can be rewritten in the following
way:

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0





∏

t∈T

(xu+jv + t)

p





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0







∏

t∈T

(

(x1 + (u+ jv − 1)Y ) + t
)

p







∣

∣

∣

∣

∣

∣

∣

(4.15)

=

∣

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0







∏

t∈T

(

(x1 + (u− 1)Y + t) + jvY
)

p







∣

∣

∣

∣

∣

∣

∣

.

If

(4.16) Z > 1,

then it follows from (4.10), u > 0 and M ≤ N < p that (0 <) v < M < p,
thus

(4.17) (v, p) = 1.

Moreover, for any a0 ≤ n < h+ 1− q clearly we have

(4.18) 0 < Y = |Vn|+ |Vn+1|+ · · ·+ |Vn+q−1| ≤ Kq = O(1) < h ≤ N < p

(for h large enough) so that we also have

(4.19) (Y, p) = 1.
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By (4.17) and (4.19) the modulo p multiplicative inverse of vY exists, thus
it follows from (4.15) that

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0





∏

t∈T

(xu+jv + t)

p





∣

∣

∣

∣

∣

∣

(4.20)

=

∣

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0







∏

t∈T

(

x1(vY )
−1 + (u− 1)v−1 + t(vY )−1 + j

)

p







∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Z−1
∑

j=0

(

gT(j)

p

)

∣

∣

∣

∣

∣

where gT(x) ∈ Fp[x] is a polynomial of degree

(4.21) 1 ≤ deg gT(x) = |T| ≤ Y

such that it has no multiple zero (since the elements of T ⊂ {0, 1, . . . , Y − 1}
are incongruent modulo p). Moreover, by (4.10) we have

(4.22) 0 < x1 ≤ xu+jv + t ≤ xu+(Z−1)v + Y − 1 ≤ xM + Y − 1 ≤ N < p,

thus

(4.23) gT(j) 6= 0 for 0 ≤ j ≤ Z − 1.

Now we need the following lemma:

Lemma 1. If p is a prime, g(x) ∈ Fp[x] is of degree k and such that it has
no multiple zero, and α, β are real numbers with 0 < α < β < p and g(n) 6= 0
for α ≤ n ≤ β, then we have

∣

∣

∣

∣

∑

α≤n≤β

(

g(n)

p

)∣

∣

∣

∣

< 9kp1/2 log p.

Proof. This is a special case of Corollary 1 in [16] (which was derived there
from Weil’s theorem [21]).

By using this lemma, we get from (4.18), (4.20), (4.21) and (4.23) that
for Z satisfying (4.16) we have

∣

∣

∣

∣

∣

∣

Z−1
∑

j=0





∏

t∈T

(xu+jv + t)

p





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

Z−1
∑

j=0

(

gT(j)

p

)∣

∣

∣

∣

(4.24)
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< 9Y p1/2 log p ≤ 9Kqp1/2 log p < 26KqN1/2 logN,

and this inequality also holds trivially when Z = 1 since then the sum to be
estimated consists of a single term of absolute value 1.

By (4.14) and (4.24) we have
∣

∣

∣

∣

σ(E ′
M , a, Z, u, v)−

Z

2Y

∣

∣

∣

∣

<
1

2Y

∑

T⊂{0,1,...,Y−1}

26KqN1/2 logN

=
26

2Y
KqN1/2 logN

∑

T⊂{0,1,...,Y−1}

1 < 26KqN1/2 logN

for every a ∈ {−1,+1}Y and u, Z, v satisfying (4.10), which proves

δ(E ′
M ) < 26KqN1/2 logN.

By Definition 11, (4.5) follows from this.
Finally, in order to prove (4.6) we have to estimate τ(E ′

M ,W, Z,D) (see
the definitions of τ and γℓ in Section 1 and Definition 11) for the sequence
E ′

M in (3.8) with the E′
is defined by (4.8), and for w = (ai1 , ai2 , . . . , aiℓ) ∈ Aℓ

with aij =
(

r
(j)
0 , r

(j)
1 , . . . , r

(j)
Y−1

)

∈ {−1,+1}Y (for j = 1, 2, . . . , ℓ), Z ∈ N and

D = (d1, d2, . . . , dℓ) with non-negative integers d1 < d2 < · · · < dℓ such that

(4.25) Z + dℓ ≤M.

Again we use (4.12) to compute τ(E ′
M , w, Z,D):

τ(E ′
M , w, Z,D) =

∣

∣

∣

{

n : 1 ≤ n ≤ Z, (En+d1, . . . ,En+dℓ) = (ai1 , . . . , aiℓ)
}

∣

∣

∣

=

Z
∑

n=1

ℓ
∏

j=1

1

2Y

Y−1
∏

t=0

(

r
(j)
t

(

xn+dj + t

p

)

+ 1

)

=
1

2ℓY

Z
∑

n=1

ℓ
∏

j=1

Y−1
∏

t=0

(

r
(j)
t

(

xn+dj + t

p

)

+ 1

)

so that writing S =
{

(j, t) : j ∈ {1, . . . , ℓ}, t ∈ {0, . . . , Y − 1}
}

we have

τ(E ′
M , w, Z,D) =

1

2ℓY

Z
∑

n=1



1 +
∑

S′⊂S

∏

(j,t)∈S′

r
(j)
t

(

xn+dj + t

p

)





=
Z

2ℓY
+

1

2ℓY

Z
∑

n=1

∑

S′⊂S

(

∏

(j,t)∈S′

r
(j)
t

)







∏

(j,t)∈S′
(xn+dj + t)

p
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=
Z

2ℓY
+

1

2ℓY

∑

S′⊂S

(

∏

(j,t)∈S′

r
(j)
t

) Z
∑

n=1







∏

(j,t)∈S′
(xn+dj + t)

p







whence, using (4.9)

∣

∣

∣

∣

τ(E ′
M , w, Z,D)− Z

2ℓY

∣

∣

∣

∣

≤ 1

2ℓY

∑

S′⊂S

∣

∣

∣

∣

∣

∣

∣

Z
∑

n=1







∏

(j,t)∈S′
(xn+dj + t)

p







∣

∣

∣

∣

∣

∣

∣

(4.26)

=
1

2ℓY

∑

S′⊂S

∣

∣

∣

∣

∣

∣

∣

Z
∑

n=1







∏

(j,t)∈S′
(x1 + (n+ dj − 1)Y + t)

p







∣

∣

∣

∣

∣

∣

∣

.

Now we will prove that the factors in the last product are incongruent mod-
ulo p:

x1 + (n + dj − 1)Y + t 6≡ x1 + (n+ dj′ − 1)Y + t′ (mod p)(4.27)

for (t, j), (t′, j′) ∈ S
′, (t, j) 6= (t′, j′).

It suffices to show that

(4.28) djY + t 6≡ dj′Y + t′ for (t, j), (t′, j′) ∈ S
′, (t, j) 6= (t′, j′).

If j = j′, then this is trivial since 0 ≤ t, t′ < Y < p and t 6= t′. If, say, j < j′,
then by (4.25) we have

0 < Y − t ≤ (dj′ − dj)Y + t′ − t = (dj′Y + t′)− (djY + t)

≤ dj′Y + t′ ≤ dℓY + Y − 1 ≤ (M − 1)Y + Y − 1 < MY ≤ N < p

whence (4.28) follows, which proves (4.27). By (4.19) the modulo p multi-
plicative inverse of Y exists, thus in the last sum in (4.26) we have

∣

∣

∣

∣

∣

∣

∣

Z
∑

n=1







∏

(j,t)∈S′
(x1 + (n + dj − 1)Y + t)

p







∣

∣

∣

∣

∣

∣

∣

(4.29)

=

∣

∣

∣

∣

∣

∣

∣

Z
∑

n=1







∏

(j,t)∈S′

(

((x1 + t)Y −1 + dj − 1) + n
)

p







∣

∣

∣

∣

∣

∣

∣

,
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and denoting the polynomial in the numerator by GS′(n):

(4.30) GS′(n) =
∏

(j,t)∈S′

(

((x1 + t)Y −1 + dj − 1) + n
)

,

the factors in this product are also incongruent modulo p, thus it has no
multiple zero. Moreover, arguing as in (4.22), by using (4.25) one can show
that the factors of the product in (4.26) are nonzero, so that

(4.31) GS′(n) 6= 0 for 1 ≤ n ≤ Z.

Thus the polynomial GS′(n) of degree

(4.32) 1 ≤ degGS′(n) = |S′| ≤ |S| ≤ ℓY

satisfies the assumptions in Lemma 1 with GS′, 1 and Z in place of g, α and
β respectively. By using Lemma 1 we get from (4.18), (4.26), (4.29), (4.30),
(4.31) and (4.32) that

∣

∣

∣

∣

τ(E ′
M , w, Z,D)− Z

2ℓV

∣

∣

∣

∣

≤ 1

2ℓY

∑

S′⊂S

∣

∣

∣

∣

Z
∑

n=1

(

GS′(n)

p

)∣

∣

∣

∣

≤ 1

2ℓY

∑

S′⊂S

9ℓY p1/2 log p

=
9ℓY

2ℓY
p1/2 log p

∑

S′⊂S

1 <
9ℓY

2ℓY
p1/2 log p 2|S|

≤ 9ℓY p1/2 log p < 26ℓKqN1/2 logN

for every w,Z,D satisfying (4.25) which proves

γℓ(E
′
M) < 26ℓKqN1/2 logN.

By Definition 11, (4.6) follows from this which completes the proof of the
theorem.

We remark that the vertical E normality measure could be defined (and
also handled for the construction presented in Theorem 1) analogously to the
horizontal normality measure, we leave the details to the reader.

5 The connection between the horizontal mea-

sures and the vertical frequency measures

Ideally, one might like to show that requirement R4) (presented in Section 4)
holds, in other words:

19



R4a) There exists a smooth Bratteli diagram and a binary function de-
fined on it such that its horizontal measures are small but one of the corre-
sponding vertical frequency measures is large;

R4b) There exists a smooth Bratteli diagram and a binary function de-
fined on it such that its vertical frequency measures are small but one of the
corresponding horizontal measures is large.

However, there are significant difficulties in trying to prove these facts.
First, as already the proofs in Section 4 show, it is rather difficult to esti-
mate the vertical frequency measures, and it is even more difficult to find
constructions where both the horizontal measures and the vertical frequency
measures can be handled. Secondly, it could be shown that the horizontal
and vertical frequency measures are not quite independent: there is a certain
weak connection between them. Due to these difficulties we have achieved
only a partial success in studying the requirements above. We can prove a
slightly weaker form of requirement R4a):

Theorem 2. For any fixed k ∈ N and infinitely many N ∈ N there is a
k-regular Bratteli diagram B = (V,E) with |V | = N and a binary function
f : V → {−1,+1} defined on it such that WH(f,B), CH

2 (f,B), CH
3 (f,B),

. . . , CH
2k(f,B) are small:

(5.1) max
{

WH(f,B), CH
2 (f,B), CH

3 (f,B), . . . , CH
2k(f,B)

}

≪ N1/2 logN,

but W FV (f,B) is large (it is “midway” between the optimal upper bound
N1/2(logN)c (see [2]) and the trivial bound N):

(5.2) W FV (f,B) ≫
(

N max
2≤i≤2k

CH
i (f,B)

)1/2

.

(Here ≫ is Vinogradov’s notation: we write ϕ(n) ≫ ψ(n) if there is a
c > 0 such that |ψ(n)| < cϕ(n) for all n, and if c may depend on a parameter
k, then we write ϕ(n) ≫k ψ(n).) Note that it was proved in [1] that

min
EN∈{−1,+1}N

C2(EN) >
1√
6
N1/2,

thus it follows from (5.2) that

(5.3) W FV (f,B) ≫ N3/4

(while if k is fixed, then for a random k symbol sequence EM of lengthM ∼ N
k

with large probability we have

δ(EM) ≪k M
1/2(logM)1/2 ≪k N

1/2(logN)1/2
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as it was shown in [3].
We remark that we think that (5.2) in Theorem 2 is sharp in the sense

that it follows from an assumption of type (5.1) that

W FV (f,B) ≪ N3/4(logN)c

(compare this with (5.3)); certain heuristic arguments support this state-
ment. Moreover, we can show that requirement R4b) fails, and the hori-
zontal measures must be greater than the corresponding vertical frequency
measures multiplied by a constant small enough (in terms of ℓ in case of the
correlation of order ℓ).

Although we prove only a weak form of requirement R4a), still we think
that the use of the vertical frequency measure is justified. Namely, Theorem 2
shows that it may occur that a binary function defined on a smooth Bratteli
diagram passes the tests based on the use of the horizontal measures, however,
it has certain atypical vertical structure which can be detected by using the
vertical frequency measures.

However, because of the difficulties described above, it would need a very
lengthy and complicate argument to give a rigorous and detailed proof of
Theorem 2 and to provide a detailed study of the facts stated in our two
remarks above. Thus here we will restrict ourselves to present only a sketch
of the proof of Theorem 2, and we omit the computations.

Sketch of the proof of Theorem 2. We will give a constructive proof based on
a combination of ideas used in [14] and [18] (but the principle adapted from
[18] could be replaced by some other principles appearing in papers surveyed
in [11]).

Let k be a fixed positive integer, p a large prime, and let B = (V,E) be
a k-regular Bratteli diagram with |V | = N = k

[

p
k

]

+ 1 vertices. Now we
will define a binary function f : V → {−1,+1}. First we define a binary
sequence

G[p/k] = (g1, g2, . . . , g[p/k]) ∈ {−1,+1}[p/k]

by

gi =

{

+1 if rp(h(i)) ≤ (1− c)p
2

−1 if rp(h(i)) > (1− c)p
2

for i = 1, 2, . . . ,
[

p
k

]

where h(x) ∈ Fp[x] is a polynomial of degree, say, d =

2k+1 with no multiple zero in Fp (= the algebraic closure of Fp), c is defined
as c = p−1/4(log p)1/2 and rp(s) denotes the integer of smallest absolute value
congruent to s modulo p. By using the incomplete version of Weil’s theorem
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[21], it can be shown by a little computation that

W (G[p/k]) = c
p

k
+O

(√
p log p

)

=
p3/4

k
(log p)1/2 +O

(√
p log p

)

,(5.4)

C2(G[p/k]) = c2
p

k
+O

(√
p log p

)

= O
(√

p log p
)

(5.5)

and for 3 ≤ i,

(5.6) Ci(G[p/k]) = O
(√

p log p
)

.

Next we define a binary sequence (e1, e2, . . . , eN) by

ei =

{

+1 if rp(h(i)) <
p
2
and i 6≡ 1 (mod k)

−1 if rp(h(i)) >
p
2
and i 6≡ 1 (mod k)

and
ei = ei−k+1ei−k+2 . . . ei−1g(i−1)/k if i ≡ 1 (mod k)

(for 1 ≤ i ≤ N). Then define the binary function f : V → {−1,+1} by

f(Ri) = ei (for i = 1, 2, . . . , N)

where R1, R2, . . . , RN are the vertices of B labelled as described in Section 3.
It can be shown by some computation that

W FV (f,B) ≫k W (G[p/k]) ≫k p
3/4(log p)1/2=(1+o(1))N3/4(logN)1/2,(5.7)

max
2≤i≤2k

CH
i (f,B) ≪k max

{

max
2≤i≤2k

Ci(G[p/k]),
√
p log p

}

,

and by (5.5) and (5.6),

max
2≤i≤2k

CH
i (f,B) ≪k

√
p log p = (1 + o(1))N1/2(logN).

Similarly, it can be deduced easily that

WH(f,B) ≪k
√
p log p = (1 + o(1))

√
N logN,

and this completes the proof of (5.1).
(5.2) follows trivially from (5.1) and (5.7).

On the other hand, we think that Theorem 2 is sharp and the following
inequality always holds for k-smooth Bratteli diagrams:

W FV (f,B) ≪k

(

N max
2≤i≤2k

CH
i (f,B)

)1/2

.
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6 The measures of pseudorandomness for bi-

nary functions on general Bratteli diagrams

So far we have studied the most important special case when the Bratteli di-
agram considered is “smooth”, i.e., it is K-bounded, complete and primitive,
(a, q)-periodic. The case when the Bratteli diagram is aperiodic occurs less
frequently, besides it is more difficult to handle, thus we will discuss this case
only briefly and we omit the details. We will still assume that the Bratteli
diagram is K-bounded and complete, but we will drop the assumption on
periodicity.

The horizontal measures introduced in Section 3 for smooth Bratteli dia-
grams can be defined and used in this general case in exactly the same way.
On the other hand, the vertical frequency measures also introduced in Sec-
tion 3 are defined by using the periodicity of the given diagram strongly, thus
we have to replace these measures by other measures of “vertical nature”.
These new measures will be the vertical analogues of the horizontal measures
introduced in Section 3. In order to define them first we have to introduce
some new notations.

First we define a reordering S1, S2, . . . , SN of the vertices of the Bratteli
diagram B. Let us take the first vertex from each row starting with the first
row (consisting of the root) and ending with the last row; these vertices will
be S1, S2, . . . , Sh+1 so that (using the notations introduced in Section 2) we
have S1 = R1 = P (1, 1), S2 = R2 = P (2, 1), . . . , Sh+1 + P (h + 1, 1). Now
consider every row containing at least 2 vertices; suppose the i1-st, i2-nd, . . . ,
ik-th row (with i1 < i2 < · · · < ik) are these rows. Then from each of these
rows we take the second vertex, and these vertices will be Sh+2, . . . , Sh+k+1:
Sh+2 = P (i1, 2), Sh+3 = P (i2, 2), . . . , Sh+k+1 = P (ik, 2). Next we take every
row, say, the j1-st, j2-nd, . . . , jℓ-th row (with j1 < j2 < · · · < jℓ) which
contains at least 3 vertices, and taking the third vertex from each of these
rows we get Sh+k+2, Sh+k+3, . . . , Sh+k+ℓ+1: Sh+k+2 = P (j1, 3), . . . , Sh+k+ℓ+1 =
P (jℓ, 3). We continue the labelling of the vertices in this way, finally, SN will
be the last vertex in the last of the rows containing the maximal number
of vertices. We present an example for this relabelling of the vertices in
Figure 2.

Let B = (V,E) be a Bratteli diagram and f : V → {−1,+1} a binary
function on it. Write

(6.1) E ′
N = E ′

N (f,B) = (e′1, e
′
2, . . . , e

′
N) =

(

f(S1), f(S2), . . . , f(SN)
)

.

Then the linear vertical measures of f can be defined as the corresponding
measures of this binary sequence E ′

N :
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Figure 2

Definition 12. The linear vertical well-distribution measure, correlation
measure of order k and normality measure of order k of the binary func-
tion f defined on the Bratteli diagram B are defined as

WLV (f,B) = W
(

E ′
N (f,B)

)

,

CLV
k (f,B) = Ck

(

E ′
N(f,B)

)

and
NLV

k (f,B) = Nk

(

E ′
N (f,B)

)

,

respectively.

Clearly, these measures can be used in both the periodic and aperiodic
case. Unfortunately, comparing these new measures with the vertical fre-
quency measures they have two great disadvantages: first, for a general ape-
riodic Bratteli diagram it seems to be very difficult to construct a binary
function on it for which both the horizontal measures and these new lin-
ear vertical measures are small, and secondly, it could be shown with some
work that in the most important periodic case the horizontal measures and
the new measures are not quite independent. On the other hand, we can
prove that in general the horizontal measures and the new vertical measures
are independent in the sense that a binary function can be “good” for the
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horizontal measures and “bad” for the horizontal measures and vice versa.
Unfortunately, we have not been able to find relatively simple proofs for these
results. Our constructions (using again the Legendre symbol) and proofs (us-
ing Weil’s theorem) are quite complicated and lengthy, thus we do not include
them here. It might be an interesting (but not easy) task to look for simpler
proofs.

7 Remarks

In order to study pseudorandomness of binary functions defined on Bratteli
diagrams we have introduced certain measures. In Section 4 we illustrated the
applicability of our measures by presenting a construction which is “good”
in terms of our measures. For this purpose we used the Legendre symbol
construction described in (4.1). This construction is the adaptation of the
construction given in [16] for binary functions defined on binary sequences
with strong pseudorandom properties. In the applications it is usually not
enough to have just one “good” function, one may need large families of
them. In case of Bratteli diagrams the simplest way to construct such a

family is to adapt the construction given in [10], and to replace
(

n
p

)

in (4.1)

by
(

f(n)
p

)

where f(x) ∈ Fp[x] is a polynomial satisfying certain conditions.

Since that many further constructions have been given for “good” binary
functions defined on binary sequences and also for large families of them (see
the survey paper [11]); most of these constructions can be adapted to binary
functions defined on Bratteli diagrams.

Observe that the values of the pseudorandom measures introduced by us
depend only on the configuration of the vertices and the values −1 or +1
assigned them, but they are independent of the position of the edges con-
necting them. Thus the values of these measures do not change if we delete
or add edges (so that the prescribed properties of the edge set should still
hold). One also might like to study the pseudorandomness of the distribution
of the values assigned to the endpoints of the edges. However, this problem
seems to be even more difficult than the one considered in this paper, thus
another paper should be devoted to it.
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