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1 Introdu
tion

In the last hundred years some important appli
ations su
h as Monte

Carlo methods, wireless 
ommuni
ations or famous en
rypting algorithms

(e.g. Vernam 
ipher) inspired intensive study of pseudorandomness of dif-

ferent obje
ts. Initially, random and pseudorandom obje
ts were generated

by physi
al methods, but these methods have several disadvantages: they

are slow, expensive, it is di�
ult to store the data and their pseudorandom

properties 
annot be proved mathemati
ally. In order to avoid these di�
ul-

ties, pseudorandom obje
ts are generated nowdays from a small se
ret key

by mathemati
al algorithms, with the intent that they appear random to a


omputationally bounded adversary.

Di�erent approa
hes and de�nitions of pseudorandomness exist. Menezes,

Oors
hot and Vanstone [81℄ wrote an ex
ellent monograph about these ap-

proa
hes. The most frequently used interpretation of pseudorandomness is

based on 
omplexity theory; Goldwasser [30℄ wrote a survey paper about this

approa
h. In this approa
h usually sequen
es of length tending to in�nity

are tested while in the appli
ations only �nite sequen
es are used. Unfortu-

nately, most of the results are based on 
ertain unproved hypotheses (su
h

as the di�
ulty of fa
torization of integers or the di�
ulty of the dis
rete

logarithm problem). Finite pseudorandom [0, 1) sequen
es have been stud-

ied by Niederreiter (see for example [86℄, [87℄, [88℄, [89℄). Niederreiter [90℄

also studied random number generation and quasi-Monte Carlo methods and

their 
onne
tions.

In the se
ond half of the 1990s, Christian Mauduit and András Sárközy

[77℄ introdu
ed a new 
onstru
tive quantitative approa
h, in whi
h the pseu-

dorandomness of �nite binary sequen
es is well 
hara
terized. Sin
e then

it is a fast developping area, several authors work in this �eld and several


onstru
tions, results and generalizations are presented in numerous papers.

In [46℄ I gave a survey of the most important results.

In the present dissertation I will summarize my main results in the theory

of pseudorandomness. Some of my results (see the papers [39℄, [41℄, [45℄,

[49℄, [61℄, [62℄) will be presented in details, but to keep the extent of the

dissertation below a reasonable limit my other works (see the papers [37℄,

[40℄, [42℄, [43℄, [44℄, [46℄, [47℄, [48℄, [50℄, [51℄, [52℄, [53℄, [54℄, [55℄, [56℄, [57℄,

[58℄, [59℄) will be just brie�y mentioned. Throughout the dissertation I will

always name the authors of the theorems ex
ept for the ones proved by me

without any 
oauthors.

In [77℄ Mauduit and Sárközy introdu
ed the following pseudorandommea-

sures:

3



De�nition 1.1 (Mauduit, Sárközy) For a binary sequen
e EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , write

U(EN , t, a, b) =
t
∑

j=0

ea+jb.

Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t su
h that a, b, t ∈ N and 1 ≤ a ≤
a + tb ≤ N .

The well-distribution measure studies how 
lose are the frequen
ies of

the +1's and −1's in arithmeti
 progressions (for a binary sequen
e with

strong pseudorandom properties these two quantities are expe
ted to be very


lose.) But often it is also ne
essary to study the 
onne
tions between 
ertain

elements of the sequen
e. For example, if the subsequen
e (+1,+1) o

urs
mu
h more frequently then the subsequen
e (−1,−1), then it may 
ause

problems in the appli
ations, and we 
annot say that our sequen
e has strong

pseudorandom properties. In order to study 
onne
tions of this type Mauduit

and Sárközy [77℄ introdu
ed the 
orrelation and normality measures:

De�nition 1.2 (Mauduit, Sárközy) For a binary sequen
e EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for D = (d1, . . . , dℓ) with non-

negative integers 0 ≤ d1 < · · · < dℓ, write

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ .

Then the 
orrelation measure of order ℓ of EN is de�ned as

Cℓ(EN) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dℓ) and M su
h that

0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N .

De�nition 1.3 (Mauduit, Sárközy) For a binary sequen
e EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ,
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write

T (EN ,M,X) = |{n : 0 ≤ n < M, (en+1, en+2, . . . , en+ℓ) = X}| .

Then the normality measure of order ℓ of EN is de�ned as

Nℓ(EN) = max
M,X

∣

∣T (EN ,M,X)−M/2ℓ
∣

∣ ,

where the maximum is taken over all X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ, and M
su
h that 0 < M ≤ N − ℓ+ 1.

We remark that in�nite analogues of the fun
tions U, V and T had been

studied before (see, for example, [15℄, [68℄ and [91℄), but the quantitative

analysis of pseudorandom properties of �nite sequen
es has started by the

work of Mauduit and Sárközy [77℄.

The 
ombined (well-distribution-
orrelation) pseudorandom measure [77℄

is a 
ommon generalization of the well-distribution and the 
orrelation mea-

sures. This measure has an important role in the multidimensional extension

of the theory of pseudorandomness (see Se
tions 5, 6, 7 and 8).

De�nition 1.4 (Mauduit, Sárközy) For a binary sequen
e EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for a, b, t ∈ N, D = (d1, . . . , dℓ)
with non-negative integers 0 ≤ d1 < · · · < dℓ, write

Z(EN , a, b, t, D) =

t
∑

j=0

ea+jb+d1 . . . ea+jb+dℓ .

Then the 
ombined (well-distribution-
orrelation) measure of order ℓ of EN

is de�ned as

Qℓ(EN) = max
a,b,t,D

|Z(EN , a, b, t, D)| = max
a,b,t,D

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1 . . . ea+jb+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t and D = (d1, . . . , dℓ) su
h that

all the subs
ripts a+ jb+ di belong to {1, 2, . . . , N}.

When Mauduit and Sárközy introdu
ed quantitative pseudorandom mea-

sures, their starting point was to balan
e the requirements possibly optimally.

They de
ided to introdu
e fun
tions whi
h are real-valued and positive and

the pseudorandom properties of the sequen
e are 
hara
terized by the sizes

of the values of these fun
tions. It was also an important requirement that
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one should be able to present 
onstru
tions for whi
h these measures 
an be

estimated well. It turned out that the measuresW and Cℓ do not only satisfy

these 
riteria, but later Rivat and Sárközy [95℄ showed that if the values ofW
and Cℓ are �small�, then the out
ome of many (previously used a posteriori)

statisti
al tests is guaranteed to be (nearly) positive.

Although by W , Cℓ, Nℓ and Qℓ many pseudorandom properties of the

sequen
e 
an be 
hara
terized, but obviously not all. For example, in [34℄

I introdu
ed the symmetry measure in order to study symmetry properties

of �nite binary sequen
es (later the symmetry measure was generalized by

Sziklai [102℄). In [108℄ Winterhof gave an ex
ellent survey on di�erent pseudo-

random measures and 
ertain 
onstru
tions. However it was also important

to determine a not too large set of 
ertain basi
 pseudorandom measures,

whi
h 
an guarantee the adequate se
urity in the appli
ations. The mea-

sures introdu
ed by Mauduit and Sárközy seem to satisfy these 
riteria. In

the 
ase of binary sequen
es the most studied measures are W and Cℓ, and

many papers use only these measures, while in multidimensional extensions,

the most important measure is Qℓ.

In [13℄ Cassaigne, Feren
zi, Mauduit, Rivat and Sárközy formulated the

following prin
iple: �The sequen
e EN is 
onsidered a �good� pseudorandom

sequen
e if these measures W (EN) and Cℓ(EN ) (at least for �small� ℓ) are
�small�.�

Sin
e 1997 many 
onstru
tions with strong pseudorandom properties have

been given by di�erent authors. In 2007 Sárközy [97℄ presented a survey

paper about the most important 
onstru
tions.

One of the most intensively studied pseudorandom generator is the Blum-

Blum-Shub generator, 
alled this way after the name of its 
reators: Leonore

Blum, Manuel Blum and Mi
hael Shub. The unpredi
tability of this gen-

erator has been proved 
onditionally assuming the di�
ulty of integer fa
-

torization. In Se
tion 2 I prove quantitative results by estimating the pseu-

dorandom properties of the generated sequen
es. The power generator (an

extended version of the Blum-Blum-Shub generator) will be de�ned in (2.1).

If p, ϑ, t, k, T, n0 and the sequen
e un and EN are de�ned as in Notation 2.1

and Constru
tion 2.1, then my main result in Se
tion 2 
an be summarized

as it follows.

Theorem 1.1

W (ET ) ≪ p7/8 log p,

Nℓ(ET ) ≪ p7/8 log p.
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If T (the multipli
ative order of k modulo t) is large in terms of p, then these

bounds give a strong estimate for the well-distribution and normality mea-

sure. We remark that for the 
orrelation measures we have slightly weaker

estimates and only for shorter sequen
es.

Theorem 1.2 For every δ > 0, there exists a 
onstant ε depending on ℓ and
δ su
h that if N (< T ) satis�es 
ertain 
onditions depending on k and δ (see
Theorem 2.3 in Se
tion 2), then for the sequen
e EN de�ned in Constru
tion

2.1 we have

Cℓ(EN) < p1−ε.

We remark that these results were proved only in the prime moduli 
ase in

[39℄, but they 
an be generalized to the 
omposite moduli 
ase at the pri
e

that the 
omputations will be more 
ompli
ated and (probably) the estimates

for the pseudorandom measures will be slightly weaker. (We also note that

while for publi
 key 
ryptography 
omposite moduli are used, in the 
ase

of pseudorandom generation usually we have better estimates in the prime

moduli 
ase.)

In [14℄ Cassaigne, Mauduit and Sárközy proved that for the majority of

the sequen
es EN ∈ {−1,+1}N the measuresW (EN) and Cℓ(EN) are around
N1/2

(up to some logarithmi
 fa
tors). Later Alon, Kohayakawa, Mauduit,

Moreira and Rödl [4℄ improved on these bounds:

Theorem 1.A (Alon, Kohayakawa, Mauduit, Moreira, Rödl) Suppose

that we 
hoose ea
h EN ∈ {−1,+1}N with probability

1
2N
. For all ε > 0 there

exist N0 = N0(ε) and δ = δ(ε) > 0 su
h that for N > N0 we have

P

(

δ
√
N < W (EN) <

1

δ

√
N

)

> 1− ε.

Theorem 1.B (Alon, Kohayakawa, Mauduit, Moreira, Rödl) Suppose

that we 
hoose ea
h EN ∈ {−1,+1}N with probability

1
2N
. Then for all

0 < ε < 1/16 there is a 
onstant N0 = N0(ε) su
h that for N > N0 we have

P

(

2

5

√

N log

(

N

ℓ

)

< Cℓ(EN ) <
7

4

√

N log

(

N

ℓ

)

)

> 1− ε.

We remark that while it is important that for a binary sequen
e with

strong pseudorandom properties these measures should be �small�, lower

bounds are not required based on the following observations.
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Write

m(N) = min
EN∈{−1,+1}N

W (EN), Mℓ(N) = min
EN∈{−1,+1}N

Cℓ(EN ).

The estimate of m(N) is a 
lassi
al problem. In 1964 Roth [96℄ proved that

m(N) ≫ N1/4
. Upper bounds for m(N) were given by Sárközy [21℄ and Be
k

[6℄. Finally Matou²ek and Spen
er [74℄ showed that m(N) ≪ N1/4
.

The value of Mℓ(N) depends on the value of the order ℓ. Cassaigne,

Mauduit and Sárközy [14℄ proved that Mℓ(EN ) ≪ (ℓN logN)1/2. The re-

sults of [4℄ improved the implied 
onstant fa
tor (see Theorem 1.B). On

the other hand, �rst Cassaigne, Mauduit and Sárközy [14℄ proved that

Mℓ(N) ≫ log(N/ℓ) for even ℓ. This was improved 
onsiderably by Alon,

Kohayakawa, Mauduit, Moreira and Rödl in [3℄ and [69℄, where the best

lower bound is the following:

Theorem 1.C (Alon, Kohayakawa, Mauduit, Moreira, Rödl) If ℓ is
even then

Mℓ(N) ≥
√

1

2

[

N

ℓ+ 1

]

.

The proof of the theorem used deep linear algebrai
 tools. Later Anan-

tharam [5℄ simpli�ed the proof, but he obtained a slightly (by a 
onstant

fa
tor) weaker result.

Cassaigne, Mauduit and Sárközy [14℄ noti
ed that the minimum values

of 
orrelation of odd order 
an be very small. Namely, for the sequen
e

EN = (−1,+1,−1,+1, . . . ) ∈ {−1,+1}N we have Cℓ(EN) = 1 for odd ℓ,
sin
e

en+1+d1 · · · en+1+dℓ = (−en+d1) · · · (−en+dℓ) = (−1)ℓen+d1 · · · en+dℓ .

Thus

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 · · · en+dℓ

∣

∣

∣

∣

∣

= |1− 1 + 1− 1 + . . .| =
{

1 if M is odd,

0 if M is even.

So Cℓ(EN) = 1 and thus Mℓ(N) = 1 for odd ℓ. Cassaigne, Mauduit

and Sárközy [14℄ also observed that although for the sequen
e EN =
(−1,+1,−1,+1, . . . ), C3(EN) is 1, the 
orrelation measure of order 2 is large:

C2(EN) = ⌈N
2
⌉. By solving problems of Cassaigne, Mauduit and Sárközy [14℄

and Mauduit [75℄, in [36℄ I proved that

C2(EN )C3(EN) ≫ N2/3
(1.1)
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always holds. More generally, in [36℄ I proved an inequality involving 
or-

relation measures C2k+1 and C2ℓ where 2k + 1 > 2ℓ. Later Anantharam [5℄

sharpened (1.1). By extending the previous results, in [49℄ with Mauduit we

were be able to 
ompare 
orrelation measures of C2k+1 and C2ℓ (without the

assumption 2k + 1 > 2ℓ). Our main result was the following:

Theorem 1.3 (Gyarmati, Mauduit) There is a 
onstant ck,ℓ depending

only on k and ℓ su
h that if

C2k+1(EN) < ck,ℓN
1/2,

then

C2k+1(EN )
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1,

where the implied 
onstant fa
tor depends only on k and ℓ.

This theorem has the following 
onsequen
es:

Corollary 1.1 (Gyarmati, Mauduit) If C2k+1(EN) = O(1), then

C2ℓ(EN ) ≫ N , where the implied 
onstant fa
tor depends on k and ℓ.

Corollary 1.2 (Gyarmati, Mauduit)

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)

where the implied 
onstant fa
tor depends only on k and ℓ and where

c(k, ℓ) =

{

1 if k ≥ ℓ,
1
2
+ 2k+1

4ℓ
if k < ℓ.

In Se
tion 3 I will prove Theorem 1.3 and its 
onsequen
es.

First Goubin, Mauduit and Sárközy [31℄ su

eeded in 
onstru
ting large

families of pseudorandom binary sequen
es. They also studied the pseudo-

random properties of the generated sequen
es. Their 
onstru
tion was the

following:

Constru
tion 1.1 (Goubin, Mauduit, Sárközy) Suppose that p is a

prime number, and f(x) ∈ Fp[x] is a polynomial with degree k > 0 and

no multiple zero in Fp. De�ne the binary sequen
e Ep = (e1, . . . , ep) by

en =

{ (

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(1.2)

9



Indeed, �rst Ho�stein and Lieman [64℄ proposed the use of polynomials f(n)
in (1.2) su
h that they are squarefree and neither even, nor odd, but they

did not prove anything on the pseudorandom properties of the 
orresponding

sequen
e Ep = (e1, . . . , ep).
Ahlswede, Kha
hatrian, Mauduit and Sárközy [1℄ introdu
ed the notion

of family-
omplexity of families of binary sequen
es (in order to 
hara
terize

the 
ryptographi
 appli
ability of the family). They proposed to use the

following measure to study whether a family has �ri
h�, �
omplex� stru
ture

or not:

De�nition 1.5 (Ahlswede, Kha
hatrian, Mauduit, Sárközy)

The family 
omplexity C(F) of a family F of binary sequen
es

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any

1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj ∈ {−1,+1}j, we have at

least one EN = (e1, . . . , eN) ∈ F for whi
h

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

In [1℄ in Se
tion 3 it is proved that

Proposition 1.1 (Ahlswede, Kha
hatrian, Mauduit, Sárközy)

C(F) ≤ log |F|
log 2

.

Ahlswede, Kha
hatrian, Mauduit and Sárközy [1℄ proved the following:

Theorem 1.D (Ahlswede, Kha
hatrian, Mauduit, Sárközy) Let p be

a prime. Consider all the polynomials f(x) su
h that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For ea
h of these polynomials f(x), 
onsider the binary sequen
e

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1,+1}p de�ned by (1.2), and let F1 denote

the family of all the binary sequen
es obtained in this way. Then

C(F1) ≥ K. (1.3)

By Proposition 1.1 it is 
lear that

|C(F1)| ≤
log |F1|
log 2

≤ K + 1

log 2
log p. (1.4)

In [41℄ I improved on (1.3) and proved the following:
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Theorem 1.4

C(F1) ≫ K log p.

By (1.4) this lower bound is sharp apart from the 
onstant fa
tor.

In this dissertation I will study the family 
omplexity in Se
tion 4 and I

will prove Theorem 1.4 there.

For a truly random binary sequen
e the well-distribution measure and

the 
orrelation measures are small (≪ N1/2(logN)c for a sequen
e of length

N). Several 
onstru
tions have been given for whi
h these measures are

small (≪ N1/2(logN)c), thus the sequen
e EN has strong pseudorandom

properties. But in 
ertain appli
ations, e.g. in 
ryptography, it is not

enough to know that the sequen
e has strong pseudorandom properties,

it is also important that the subsequen
es EM (where EM is of the form

(ex, ex+1, . . . , ex+M−1)) also have strong pseudorandom properties for values

M possibly small in terms of N . In Se
tion 5 I will deal with this problem

in 
ase of values M ≫ N1/4+ε
. Clearly, almost all sequen
es of length N


onsist a subsequen
e (1, 1, . . . , 1) 
ontaining c logN of 1's, thus then for the


orrelation of subsequen
es of length M = O(logN) we 
annot expe
t any

non-trivial bound. It is an interesting open question for whi
h sequen
es

EN ∈ {−1,+1}N with strong pseudorandom properties and for whi
h val-

ues of M one 
an estimate max
EM=(ex,ex+1,...,ex+M−1)⊂EN

Cℓ(EM) by a non-trivial

upper bound. Note that this problem is related to the estimate of the least

quadrati
 nonresidue ϑp modulo p. Burgess [12℄ proved that ϑp < p
1

4
√

e
+ε
,

and it is 
onje
tured that ϑp is O(log p log log p). The di�
ulty of Burgess's

proof and the gap between the 
onje
ture and Burgess's result are point-

ing in that dire
tion that probably one 
annot prove a non-trivial bound

for max
EM=(ex,ex+1,...,ex+M−1)⊂EN

Cℓ(EM) when M ≪ N c
if c is a 
onstant small

enough.

This problem has important appli
ations, for example, it may o

ur that,

say, we want to en
rypt a message of estimated length slightly less than N ,

thus we use an N bit sequen
e possessing strong pseudorandom properties.

However, it may turn out that the text to be en
rypted is of length less

than, say,

√
N . In this 
ase we use only a short part (of length

√
N) of the

sequen
e, so we will need 
ontrol over the pseudorandom properties of the

short subsequen
es. In Se
tion 5, I will 
onstru
t a sequen
e for whi
h the

following holds:

Theorem 1.5 There exists a sequen
e EN ∈ {−1,+1}N for whi
h we have

Cℓ(EM ) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN

11



for every M ≤ N and EM ⊆ EN (where EM is of the form

(ex, ex+1, . . . , ex+M−1)). Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2

and

W (EN) ≪ N3/4 logN

holds.

This result was published in [45℄, here I will deal with these problems and

prove Theorem 1.5 in Se
tion 5. In order to prove this result we will need

the multidimensional theory of pseudorandomness, and in Se
tions 6, 7 and

8 we will also need this theory.

The multidimensional theory of pseudorandomness was developed by Hu-

bert, Mauduit and Sárközy [65℄. They introdu
ed the following de�nitions:

Denote by InN the set of n-dimensional ve
tors whose 
oordinates are

integers between 0 and N − 1:

InN = {x = (x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is 
alled an n-dimensional N-latti
e or brie�y an N-latti
e. In [61℄

this de�nition was extended to more general latti
es in the following way: Let

u1,u2, . . . ,un be n linearly independent ve
tors, where the i-th 
oordinate of

ui is a positive integer and the other 
oordinates of ui are 0, so that, writing

zi = |ui|, ui is of the form (0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers

with 0 ≤ t1, t2, . . . , tn < N . Then we 
all the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

n-dimensional box N-latti
e or brie�y a box N-latti
e.

In [65℄ the de�nition of binary sequen
es was extended to more dimensions

by 
onsidering fun
tions of type

ex = η(x) : InN → {−1,+1}. (1.5)

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).
Su
h a fun
tion 
an be visualized as the latti
e points of the N-latti
e

repla
ed by the two symbols + and −, thus they are 
alled binary N -latti
es.

Binary 2 or 3 dimensional pseudorandom latti
es 
an be used in en
ryption

of digital images and in medi
al diagnosti
s.

12



Hubert, Mauduit and Sárközy [65℄ introdu
ed the following measure of

pseudorandomness of binary latti
es (here we will present the de�nition in

the same slightly modi�ed but equivalent form as in [61℄):

De�nition 1.6 (Hubert, Mauduit, Sárközy) Let

η : InN → {−1,+1}.

be a binary latti
e. De�ne the pseudorandom measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) . . . η(x+ dℓ)

∣

∣

∣

∣

∣

, (1.6)

where the maximum is taken over all distin
t d1, . . . ,dℓ ∈ InN and all box

N-latti
es B su
h that B + d1, . . . , B + dℓ ⊆ InN .

Then η is said to have strong pseudorandom properties, or brie�y, it is


onsidered a �good� pseudorandom latti
e if for �xed n and ℓ and �large� N
the measure Qℓ(η) is �small� (mu
h smaller, then the trivial upper bound

Nn
). This terminology is justi�ed by the fa
t that, as was proved in [65℄,

for a truly random binary latti
e de�ned on InN and for �xed ℓ the measure

Qℓ(η) is �small�; in parti
ular, it is less than Nn/2
multiplied by a logarithmi


fa
tor.

In their �rst paper [65℄ on the multidimensional theory of pseudorandom-

ness Hubert, Mauduit and Sárközy gave 
onstru
tions for binary latti
es with

strong pseudorandom properties. They gave nearly optimal upper bounds

for the pseudorandom measures of the latti
es 
onstru
ted. However, these

early 
onstru
tions also have disadvantages: they are rather arti�
ial, and

their implementation is 
ompli
ated. Thus in [61℄ and [62℄ with my 
oauthors

A. Sárközy and C. L. Stewart we de�ned a new 
onstru
tion whi
h is based

on the use of the Legendre symbol. This 
onstru
tion is mu
h more natural

and �exible than the earlier ones, and it 
an be implemented more easily. In

Se
tions 6 and 7 I will present results from [61℄ and [62℄. We will study the

properties of the following:

Constru
tion 1.2 (Gyarmati, Sárközy, Stewart) Let p be an odd

prime, f(x1, x2) ∈ Fp[x1, x2] be a polynomial in two variables. De�ne

η : I2p → {−1,+1} by

η(x1, x2) =

{ (

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p | f(x1, x2).
(1.7)

13



In Se
tion 6.1 negative examples are presented: we will show that for


ertain polynomials f(x1, x2) the asso
iated binary latti
e η(x1, x2) has weak
pseudorandom properties. It turns out that depending on the form of the

polynomial we have to distinguish two di�erent 
ases. More pre
isely, we say

the following:

De�nition 1.7 (Gyarmati, Sárközy, Stewart) The polynomial f(x1, x2)
is 
alled degenerate if it is of the form

f(x1, x2) =

(

r
∏

j=1

fj(αjx1 + βjx2)

)

g(x1, x2)
2, (1.8)

where αj, βj ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].
A polynomial f ∈ Fp[x1, x2] whi
h 
an be expressed in the form (1.8) is

said to be degenerate and otherwise it is said to be non-degenerate.

In Se
tion 6 we analyze the non-degenerate 
ase, while in Se
tion 7 the

degenerate 
ase. These se
tions are based on the papers [61℄ and [62℄. Next

I present the main results from these two se
tions:

Theorem 1.6 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a polynomial of degree k. Suppose that f(x1, x2) 
annot be expressed in

the form (1.8) and one of the following 5 
onditions holds:

a) f(x1, x2) is irredu
ible in Fp[x1, x2],
b) ℓ = 2,

) 2 is a primitive root modulo p,
d) 4k+ℓ < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary p-latti
e η de�ned in (1.7) we have

Qℓ(η) < 11kℓp3/2 log p. (1.9)

In the 
ase of degenerate polynomial we will de�ne the rank of the poly-

nomial as the smallest positive integer r for whi
h f(x1, x2) 
an be written

in the form (1.8).

Theorem 1.7 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a non-
onstant degenerate polynomial of rank r with degree k. Suppose

that ℓ, the order of the pseudorandom measure is not greater than the rank r
of f(x1, x2), and one of the following 5 
onditions holds:

a) f(x1, x2) is irredu
ible in Fp[x1, x2],
b) ℓ = 2,

14




) 2 is a primitive root modulo p,
d) (4k)ℓ < p or (4ℓ)k < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary latti
e η de�ned in (1.7) we have

Qℓ(η) < 11kℓp3/2 log p. (1.10)

In Se
tion 7.3 I also show that in 
ase of degenerate polynomials, there

is a pseudorandom measure of large order whi
h is large:

Theorem 1.8 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a de-

generate polynomial with rank r and degree m and n in x1 and x2, respe
-
tively. Then there exists a positive integer ℓ with ℓ ≤ 2r for whi
h

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p.

Our upper bounds (1.9) and (1.10) are not optimal sin
e they are signi�-


antly larger than the optimal p(log p)c. In Se
tion 7.5 we will show that for

a 
ertain (rather spe
ial) family of polynomials the �nite �eld 
onstru
tion

presented in [79℄ is equivalent to a Legendre symbol 
onstru
tion of type

(1.7). Thus in this 
ase we obtain a family of binary latti
es whi
h 
ombines

the advantages of the two 
onstru
tions: as in [79℄ we have optimal bounds,

and as a Legendre symbol 
onstru
tion it 
an be implemented fast and easily.

Some authors gave further 
onstru
tions of binary sequen
es and lat-

ti
es with strong pseudorandom properties (see my survey paper [46℄). The


onstru
tions based on ellipti
 
urves are espe
ially important, see e.g. the

papers of Mérai [82℄, [83℄, [84℄, [85℄, Chen [16℄, Chen, Li and Xiao [17℄ and

Liu, Zhan and Wang [72℄.

In Se
tions 2, 3, 4, 5, 6 I present results from my papers [39℄, [49℄, [41℄,

[45℄, [61℄, [62℄ (three of them is written jointly with my 
oauthors).

In Se
tion 8 I present a short summary of 18 papers whi
h I have been

written on the theory of pseudorandomness sin
e my PhD.
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2 Pseudorandom sequen
es 
onstru
ted by the

power generator

One of the most studied pseudorandom generator is Blum-Blum-Shub,


alled this way after the name of its 
reators: Leonore Blum, Manuel Blum

and Mi
hael Shub [8℄. The unpredi
tability of this generator has been proved

assuming the di�
ulty of integer fa
torization. In this se
tion I prove quan-

titative results by estimating the pseudorandom properties of the generated

sequen
es.

Leonore Blum, Manuel Blum and Mi
hael Shub [8℄ de�ned the power

generator by the following:

Let k ≥ 2, m ≥ 1 and ϑ be integers su
h that (ϑ,m) = 1. De�ne the

sequen
e {un} by the re
urren
e relation

un ≡ ukn−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . (2.1)

with the initial value u0 = ϑ.
The power generator has many appli
ations in 
ryptography, see [8℄, [19℄,

[70℄, [101℄. In the two spe
ial 
ases (k, ϕ(m)) = 1 (where ϕ(m) is the Euler

fun
tion) and k = 2 this sequen
e is known as the RSA generator and as the

Blum-Blum-Shub generator, respe
tively.

Although various properties of the power generator have been studied in

a number of papers, see [8℄, [11℄, [18℄, [19℄, [23℄, [32℄, [63℄, [70℄, [81℄, [101℄, few

un
onditional results are known: Clearly, the sequen
e (2.1) be
omes peri-

odi
, possible values of the period are studied in [27℄. Cusi
k [18℄ proved that

the rightmost bit of the Blum-Blum-Shub generator assumes values 0 and 1

almost equally often, provided that the period is large enough. Friedlander,

Lieman and Shparlinski [26℄, proved that if the period of the RSA generator

is large enough, then the elements of the sequen
e is uniformly distributed

modulo m and a positive proportion of the rightmost and leftmost bits is

uniformly distributed. Lower bounds on the linear 
omplexity of the power

generator have been given in [32℄, [100℄. The results of this se
tion will be

also un
onditional.

Notation 2.1 Let p be a prime, ϑ ∈ F∗
p be an element. De�ne the sequen
e

un by (2.1) with a prime modulus p in pla
e of m (then the value of un is

�xed in the interval [0, p − 1]). Clearly the multipli
ative order of un ≡ ϑk
n

(mod p) is non-in
reasing as n → ∞. Let n0 denote the smallest positive

integer su
h that for n ≥ n0 the multipli
ative order of

un ≡ ϑk
n

(mod p)
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is the same number: t. Then

(k, t) = 1. (2.2)

Denote by T the multipli
ative order of k modulo t.

Throughout the se
tion we will use these notations: p, ϑ, t, k, T, n0 and the

sequen
e {un} will be as it des
ribed here. Clearly the sequen
e

un0, un0+1, un0+2, . . .

is purely periodi
 with the period T .
We 
onvert the sequen
e {un} to a binary sequen
e by the parity of its

last bit:

Constru
tion 2.1 (Blum, Blum, Shub) De�ne the sequen
e EN =
(e1, . . . , eN) by

en =

{

+1 if un is even,

−1 if un is odd.

(2.3)

In this se
tion we will study the pseudorandom properties of the sequen
e

EN . First we will give upper bounds for the well-distribution measure and

the normality measure of order ℓ. In Theorems 2.1 and 2.2 the length of

the sequen
e is T (de�ned in Notation 2.1), whi
h is the period of the power

generator.

Theorem 2.1

W (ET ) ≪ p7/8(log p)2.

For the normality measure we have

Theorem 2.2 For all ε > 1/4 we have

Nℓ(ET ) ≪ kε(ℓ−1)p7/8(log p)ℓ+1,

where the implied 
onstant depends only on ε.

The proof of Theorems 2.1 and 2.2 will be based on extensions of theorems

of Friedlander, Hansen and Shparlinski in [25℄ and [28℄.

Until very re
ently only the short-range 
orrelation

(

∑

n en+d1en+d2 . . . en+dℓ for small di's) 
ould be handled. By using Bourgain

[9℄ new result, we will be able to handle the long-range 
orrelation as well,

whi
h was out of rea
h until now. Thus here all the three pseudorandom
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measures of the power generator are studied, and this un
onditionally proves

that the pseudorandom generator has strong pseudorandom properties.

We will estimate the 
orrelation measure EN de�ned by (2.3) for some

N < T , so the length of the sequen
e will be smaller than the period of the

power generator following from 
ertain te
hni
al 
onditions in Bourgain [9℄

theorem. The exa
t value of the length N is de�ned in Theorem 2.3.

Theorem 2.3 Suppose that ℓ2 < p. Denote by N = N(ϑ, k, δ) the largest

positive integer su
h that for all 1 ≤ i < j ≤ 2N we have

(kj − ki, t) ≤ tp−δ. (2.4)

Then there exists a 
onstant ε(ℓ, δ) = ε > 0 depending on ℓ and δ su
h that

for the sequen
e EN of length N de�ned by (2.3) we have

Cℓ(EN ) ≤ p1−ε. (2.5)

The proof will be based on a re
ent result of Bourgain [9℄. The upper

bound (2.5) for the 
orrelation measure is non-trivial if N , the length of the

sequen
e (de�ned by (2.4)) is large. The following 
orollary studies a simple


ase when N is indeed large.

Corollary 2.1 Let p−1 = 2q, where p and q are odd primes, ϑ be primitive

root modulo p, and k be primitive root modulo q. Then for the sequen
e

E(p−3)/4 of length (p− 3)/4 de�ned by (2.3) we have

Cℓ(E(p−3)/4) ≤ p1−ε,

where the 
onstant ε > 0 depends only on ℓ.

We remark that (2.3) is not the only way to de�ne a binary sequen
e {en}
from the sequen
e {un}. For example, Theorems 2.1, 2.2, 2.3 also hold for

the sequen
e EN = (e1, . . . , eN) de�ned by

en =

{

+1 if 0 ≤ un < p/2,
−1 if p/2 ≤ un < p.

In Se
tion 2.1 we will estimate 
ertain related exponential sums and the

proofs of Theorems 2.1, 2.2 and 2.3 will be 
ompleted in Se
tion 2.2.

In this se
tion we study the prime modulus 
ase, i.e., un ≡ ukn−1 (mod p),
where p is a prime. These results 
ould be extended to the 
omposite modulus


ase by using exponential sum estimates from [28℄. Here I do not 
arry out

the proof, sin
e the 
omputations would be similar but more 
ompli
ated.
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However, it may happen that the power generator has stronger pseudorandom

properties in the prime modulus 
ase than in the 
omposite modulus 
ase.

This situation indeed happens for the Ja
obi symbol sequen
e

Em =

((

f(1)

m

)

,

(

f(2)

m

)

, . . . ,

(

f(m)

m

))

, f(x) ∈ Zm[x].

Goubin, Mauduit and Sárközy [31℄ proved that under 
ertain 
onditions on

the polynomial f(x), this sequen
e has strong pseudorandom properties if m
is a prime: W (Em), Cℓ(Em) ≪ m1/2 logm. If m is a produ
t of two di�erent

odd primes, then Rivat and Sárközy [94℄ proved that for all polynomial f(x) ∈
Zm[x] we have C4(Em) ≫ m. The situation is very similar in 
ase of some

other 
onstru
tions, see e.g. the paper of Liu, Zhan and Wang [73℄.

Throughout the se
tion we write ep(a) = exp(2πia
p
).

2.1 Exponential sums

J. Friedlander, J. Hansen and I. Shparlinski gave an upper bound for

the sum

∑T
x=1 ep(aϑ

kx). Later Friedlander and Shparlinski [28℄ extended this

result to the sum

∑T
x=1 ep(a1ϑ

kx+a2ϑ
kx+1 · · ·+arϑkx+r−1

). Here we will study
the extension this result to general powers and in
omplete sums. First we

will study the in
omplete sum analog of the result in [28℄.

Lemma 2.1 Let t, T be as in Notation 2.1. Let ε1 > 1/4 and suppose that

t > p1/2+δ
for a 
onstant δ > 0. Let ai ∈ Fp, L,M ∈ N with L ≤ T . Then

∣

∣

∣

∣

∣

M+L
∑

x=M+1

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8 log p,

where the implied 
onstant depends only on δ and ε1. In the spe
ial 
ase

r = 1 we obtain

∣

∣

∣

∣

∣

M+L
∑

x=M+1

ep(a1ϑ
kx)

∣

∣

∣

∣

∣

≪ T 1/4t1/2p1/8 log p,

where the implied 
onstant depends only on δ.

Using J. Bourgain's result [9℄, we will prove:

Lemma 2.2 For 1 ≤ i ≤ r let hi ∈ Zp−1, ϑi = ϑhi
and ai ∈ F∗

p where

(h1, . . . , hr, p− 1) = 1 also holds. Then the sequen
e

{a1ϑk
x

1 + · · ·+ arϑ
kx

r }
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be
omes periodi
 with period T (where T is de�ned in Notation 2.1). Denote

by

N(ϑ1, . . . , ϑr, k, δ) = N

the largest positive integer N su
h that N ≤ T , for all 0 ≤ i ≤ N , 1 ≤ j ≤ r

(kihj , t) ≤ tp−δ, (2.6)

and for all pairs {i1, j1}, {i2, j2} with 1 ≤ i1, i2 ≤ N , 1 ≤ j1 ≤ j2 ≤ r we

have

(ki1hj1 − ki2hj2, t) ≤ tp−δ
or (ki1hj1 − ki2hj2, t) = t. (2.7)

If there is no su
h N de�ne N(ϑ1, . . . , ϑr, k, δ) = N by 1.

Let L,M ∈ N with L ≤ T . Then there exists a 
onstant ε(r, δ) = ε2 ≥ 0
depending on only r (the number of ϑi's) and δ su
h that:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)r/2

N1/2

)

log p.

Moreover, in the spe
ial 
ase (h1, t) = 1 we may repla
e the term (r + 1)r/2

by (r + 1)1/2:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

log p,

where the implied 
onstant fa
tors are absolute.

Proof of Lemma 2.1 and Lemma 2.2

We will use the following deep theorem of Bourgain [9℄:

Lemma 2.3 (Bourgain) Let p be a prime. Given r ∈ Z+
and δ > 0, there

is an ε = ε(r, δ) > 0 satisfying the following property: If

f(x) = a1x
k1 + · · ·+ arx

kr ∈ Z[x] and (ai, p) = 1

where the exponents 1 ≤ ki ≤ p− 1 satisfy

(ki, p− 1) < p1−δ
for all 1 ≤ i ≤ r

(ki − kj, p− 1) < p1−δ
for all 1 ≤ i 6= j ≤ r

(2.8)

then

∣

∣

∣

∣

∣

p−1
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

< p1−ε.
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Proof of Lemma 2.3

See in [9℄.

In order to prove Lemma 2.1 and Lemma 2.2 �rst we need estimates for


omplete sums.

First we give an upper bound for n0 de�ned in Notation 2.1. Let ord ϑ
denote the multipli
ative order of ϑ modulo p. n0 is the smallest integer for

whi
h (kn0 , ord ϑ) is maximal. From this

n0 ≤
log ord ϑ

log 2
< 1.45 log p. (2.9)

We will dedu
e the �rst two statements of Lemma 2.4 from Bourgain's

theorem (Lemma 2.3), while the third part will be proved by extending an

argument of Friedlander and Shparlinski [28℄.

Lemma 2.4 Let ϑ1, . . . , ϑr ∈ Fp and N(ϑ1, . . . , ϑr, k, δ) = N as in Lemma

2.2, j ∈ ZT . Then there exists a 
onstant ε(r, δ) = ε2 ≥ 0 depending on only

r and δ su
h that:

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)r/2

N1/2

)

.

(2.10)

If (h1, t) = 1 (where h1 is de�ned by ϑ1 ≡ ϑh1 (mod p)), then we may repla
e

the term (r + 1)r/2 by (r + 1)1/2:

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

,

(2.11)

where the implied 
onstants are absolute.

If ϑi = ϑk
i
for 1 ≤ i ≤ r then there exists an upper bound, where the

exponent of p is given: Suppose that ε1 > 1/4 and t > p1/2+δ
for a 
onstant

δ > 0, then

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)eT (jx)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8,

(2.12)

where the implied 
onstant depends only on ε1 and δ.
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Proof of Lemma 2.4

The proof is similar to the proof of Theorem 8 in [25℄ in the spe
ial 
ase

ν = 1, but in order to prove (2.10) and (2.11) we use Bourgain's theorem in

pla
e of Weil's theorem.

Let S =
∣

∣

∣

∑n0−1+T
x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)
∣

∣

∣
and K ⊆ {k1, . . . , kT}.

For y = kv ∈ K denote v by indky. Clearly,

S =
1

|K|

∣

∣

∣

∣

∣

∑

y∈K

n0−1+T
∑

x=n0

ep(a1ϑ
ykx

1 + · · ·+ arϑ
ykx

r )eT (j(x+ indky))

∣

∣

∣

∣

∣

.

By the Cau
hy-S
hwartz inequality we have

S ≤ T 1/2

|K|





n0−1+T
∑

x=n0

∣

∣

∣

∣

∣

∑

y∈K

ep(a1ϑ
ykx

1 + · · ·+ arϑ
ykx

r )eT (jindky)

∣

∣

∣

∣

∣

2




1/2

.

We re
all that ϑi ≡ ϑhi (mod p), where (h1, . . . , hr, p − 1) = 1. Let d =
(p− 1)/t. Sin
e the order of ϑk

x
is t for n0 ≤ x, for ea
h of these powers ϑk

x
,

there exist pre
isely d values of z ∈ F∗
p su
h that ϑk

x ≡ zd (mod p). Thus

S ≤ T 1/2

|K| d1/2





p−1
∑

z=1

∣

∣

∣

∣

∣

∑

y∈K

ep(a1z
yh1d + · · ·+ arz

yhrd)eT (jindky)

∣

∣

∣

∣

∣

2




1/2

≤ T 1/2

|K| d1/2

(

∑

y∈K

∑

x∈K

∣

∣

∣

p−1
∑

z=1

ep(a1z
yh1d + · · ·+ arz

yhrd−

− a1z
xh1d − · · · − arz

xhrd)
∣

∣

∣

)1/2

.

For given y, x ∈ K de�ne the polynomial gy,x(z) ∈ Fp[z] by

gy,x(z)
def

= a1z
yh1d + · · ·+ arz

yhrd − a1z
xh1d − · · · − arz

xhrd.

Denote by gy,x(z) ≡ c that the polynomial gy,x(z) ∈ Fp[z] is identi
ally


onstant. Then

S ≤ T 1/2

|K| d1/2

(

∑

x∈K

∑

y∈K

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

)1/2

,
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S ≤ T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+
∑

x,y∈K
gy,x(z)≡c

p









1/2

. (2.13)

Next we estimate the number of the pairs y, x ∈ K with gy,x(z) ≡ c.
Clearly, then apart from the multipli
ity, the set {yh1d, . . . , yhrd} \ {0},

ontains the same residue 
lasses modulo p− 1 as the set {xh1d, . . . , xhrd} \
{0}. So the set {yh1, . . . , yhr}\{0} 
ontains the same residue 
lasses modulo

t as the set {xh1, . . . , xhr} \ {0}. We will use the following lemma.

Lemma 2.5 For given x ∈ K at most (r+1)r pie
es of y ∈ K exist su
h that

the sets {xh1, . . . , xhr} \ {0}, {yh1, . . . , yhr} \ {0} 
ontain the same residue


lasses modulo t apart from the multipli
ity. If (h1, t) = 1 then at most r+1
pie
es of y ∈ K exist with this property.

Proof of Lemma 2.5 De�ne hr+1 by 0. Then for every 1 ≤ i ≤ r there

exists a 1 ≤ j(i) ≤ r + 1 su
h that

yhi ≡ xhj(i) (mod t). (2.14)

This 
ongruen
e determines y uniquely modulo

t
(t,hi)

. As i runs through the

numbers 1, 2, . . . , r, by the Chinese Remainder Theorem we get that y is

uniquely determined modulo

t
(t,h1,...,hr)

= t (sin
e (h1, . . . , hr, p − 1) = 1).

In the spe
ial 
ase (h1, t) = 1 the �rst 
ongruen
e yh1 ≡ xhj(1) (mod t)
determines y uniquely. The elements of K are distin
t modulo t, thus if the

ongruen
es in (2.14) are given, then at most one y ∈ K exists with the

desired property. Sin
e ea
h j(i) may take r + 1 di�erent values, from this

follows the lemma.

We return to the proof of Lemma 2.4. De�ne the 
onstant c(r) by

c(r) =

{

r + 1 if (h1, t) = 1,
(r + 1)r otherwise.

(2.15)

By Lemma 2.5, for �xed x ∈ K at most c(r) pie
es of y exist with gy,x(z) ≡ c.
x ∈ K may take |K| di�erent values, thus at most c(r) |K| pairs (y, x) exists
su
h that gy,x(z) ≡ c. By this and (2.13) we get

S ≤ T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+ c(r) |K| p









1/2

.
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Let Q

Q
def

= max
x,y∈K

gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

.

Then

S ≤ T 1/2

|K| d1/2
(

|K|2Q+ c(r) |K| p
)1/2 ≤

(

TQ

d

)1/2

+

(

c(r)
Tp

|K| d

)1/2

. (2.16)

In order to prove (2.10) and (2.11) we 
hoose K = {k1, . . . , kN} with

N = N(ϑ1, . . . , ϑr, k, δ). Then |K| = N . For x, y ∈ K and

p−1
t

= d by (2.6)

we have

(dxhj , p− 1) = d(xhj , t) ≤ dtp−δ < p1−δ. (2.17)

Clearly (2.17) also holds with y in pla
e of x. Similarly, by (2.7)

(dxhj1 − dyhj2, p− 1) = d(xhj1 − yhj2, t)

{

≤ dtp−δ < p1−δ
or

= dt = p− 1.

Thus (2.8) holds for the polynomial gy,x(z) ∈ Fp[z] and we may use Lemma

2.3 sin
e gy,x(z) 6≡ c. Then
Q ≤ p1−ε2.

By this, (2.15), (2.16), t = p−1
d

and |K| = N we get:

S ≪
(

Tp1−ε2

d

)1/2

+

(

c(r)
Tp

Nd

)1/2

≪ (T t)1/2(p−ε2 + c(r)1/2N−1/2)

whi
h proves (2.10) and (2.11) in Lemma 2.4.

In order to get (2.12) we re
all the proof of Friedlander and Shparlinski

[28℄. Consider the spe
ial 
ase hi = ki−1
for 1 ≤ i ≤ r. In order to estimate

Q in this spe
ial 
ase we need Weil's theorem for 
hara
ter sums, whi
h we

present in the following form:

Lemma 2.6 (Weil) For any prime p, and any polynomial f(x) ∈ Fp[x] of
degree D ≥ 1 whi
h is not identi
ally 
onstant, the bound

∣

∣

∣

∣

∣

p
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

≤ Dp1/2.

holds.
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Proof of Lemma 2.6

This lemma 
an be dedu
ed fromWeil's theorem. See [106℄, an elementary

proof 
an be found in [99℄.

We will also need the following lemma of Friedlander, Hansen and Shpar-

linski [25℄:

Lemma 2.7 (Friedlander, Hansen, Shparlinski) For any set W ⊆ Z∗
t

of 
ardinality |W| = W , any �xed δ > 0 and any integer h ≥ tδ, there exists

an integer a ∈ Z∗
t , su
h that the 
ongruen
e

ak ≡ b (mod t), k ∈ W, 0 ≤ b ≤ h− 1 (2.18)

has

La(h) ≫
Wh

t

solutions.

Proof of Lemma 2.7

This is Lemma 2 in [25℄.

We return to the proof of (2.12) in Lemma 2.4. Let ε1 > 1/4. If kε1(r−1) >
T 3/4

t1/2p1/8
, then using the trivial estimate we obtain S ≤ T ≤ kε1(r−1)t1/2T 1/4p1/8

whi
h was to be proved. Thus we may suppose

k(r−1)/2 ≤ T 3/(8ε1)

t1/(4ε1)p1/(16ε1)
. (2.19)

Set

h =

[

(r + 1)1/2t

T 1/2k(r−1)/2p1/4

]

. (2.20)

Then by (2.19), T ≤ t and t > p1/2+δ
we have

h≫ t

T 1/2 T 3/(8ε1)

t1/(4ε1)p1/(16ε1)
p1/4

=
t1+1/(4ε1)

T 1/2+3/(8ε1)p1/4−1/(16ε1)
≫ t1/2−1/(8ε1)

p1/4−1/(16ε1)

=

(

t

p1/2

)1/2−1/(8ε1)

≫ t
2δ

1+2δ
(1/2−1/(8ε1)),

thus we may use Lemma 2.7. LetW = {k1, . . . , kT}. We sele
t a as in Lemma

2.2. Let now K denote the subset of W whi
h satis�es the 
orresponding


ongruen
e (2.18). Then the degree of the polynomial gy,x(z
a) is less than
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hkr−1d. By this and Lemma 2.6 we have

Q = max
x,y∈K

gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z))

∣

∣

∣

∣

∣

= max
x,y∈K

gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z
a))

∣

∣

∣

∣

∣

≤ hkr−1dp1/2.

(2.21)

By Lemma 2.7

|K| ≫ Th

t
. (2.22)

By (2.2) and (2.15) we have c(r) = r + 1. By this, (2.16), (2.20), (2.21),

(2.22) and t = p−1
d

we get

S ≤
(

Thkr−1dp1/2

d

)1/2

+

(

c(r)Tp

|K| d

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)T t

|K|

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)t2

h

)1/2

≪
(

(r + 1)kr−1T t2p1/2
)1/4

,

whi
h was to be proved.

We return to the proof of Lemma 2.1 and Lemma 2.2. Let

S =

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

.

We will suppose M ≥ n0, sin
e by (2.9) the 
ontribution of the terms of

M ≤ x ≤ n0 in S is small, at most n0 ≤ 1.45 log p. Using

T
∑

j=1

eT (nj) =

{

T if T | n,
0 otherwise,
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we get

S =
1

T

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )
M+L
∑

x=M

T
∑

j=1

eT ((y − x)j)

∣

∣

∣

∣

∣

=
1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

. (2.23)

Let

Q = max
j

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

.

By (2.23) we have

S ≤ 1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)
∣

∣

∣

∣

∣

Q. (2.24)

By Lemma 2.4 there exists a 
onstant ε2 > 0 depending only on r and δ su
h
that

Q≪ (tT )1/2(p−ε2 + (c(r))1/2N−1/2), (2.25)

where the 
onstant c(r) is de�ned by (2.15). Moreover in the spe
ial 
ase

ϑi = ϑk
i−1

for 1 ≤ i ≤ r we get that for every ε1 > 1/4

Q≪ kε1(r−1)t1/2T 1/4p1/8 (2.26)

also holds.

By the sum of geometri
 progression, the triangle-inequality and

|1− e(x)| ≥ 4 ‖ x ‖ we have

T
∑

j=1

∣

∣

∣

∣

∣

L
∑

x=0

eT (−jx)
∣

∣

∣

∣

∣

≤
T
∑

j=1

2

|1− e(j/T )| ≤
1

2

T
∑

j=1

1

‖ j/T ‖ ≤
[(T+1)/2]
∑

j=1

1

‖ j/T ‖

=

[(T+1)/2]
∑

j=1

j

T
≪ T log T. (2.27)

By (2.24), (2.25), (2.26) and (2.27) we get the statements of Lemma 2.1 and

Lemma 2.2.

Remark 2.1 In fa
t, using the results of Friedlander, Hansen and Shpar-

linski [25℄, the following 
an be proved: if t > p1/2+δ
for all integer ν ≥ 1 we
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have:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)

∣

∣

∣

∣

∣

≪ T
1− 2ν+1

2ν(ν+1) t
1
2ν p

1
4(ν+1) log T.

Here, we presented the proof only in the spe
ial 
ase ν = 1.

2.2 Proofs of Theorems 2.1-2.3

In order to express the terms of the sequen
e EN we will use additive


hara
ters as in [76℄. We will use the following representation:

Lemma 2.8 (Mauduit, Rivat, Sárközy) For n ∈ N rp(n) denotes the

unique r ∈ {0, . . . , p− 1} for whi
h n ≡ r (mod p). Then for odd integer p,
there exists a fun
tion νp(a, x) : Z× Z → C su
h that

1

p

∑

|a|<p/2

νp(a, x)ep(an) =

{

+1 if rp(n) ≡ x (mod 2),
0 if rp(n) 6≡ x (mod 2),

and the fun
tion νp(a, x) satis�es

νp(0, x) =

{

p+1
2

if x ≡ 0 (mod 2),
p−1
2

if x ≡ 1 (mod 2).
(2.28)

Furthermore, for 1 ≤ |a| < p/2 we have

|νp(a, x)| ≪
p

min{a, p− 2a} . (2.29)

Proof of Lemma 2.8

Sin
e for r ∈ Z, we have

1

p

∑

|a|<p/2

ep(a(n− r)) =

{

1 if n ≡ r (mod p),
0 otherwise,

for 0 ≤ n ≤ p− 1 we have

1

p

∑

|a|<p/2









∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar)









ep(an) =

{

1 if n ≡ x (mod 2),
0 otherwise.
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Thus we may de�ne νp(a, x) by

νp(a, x)
def

=
∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar).

From this immediately follows (2.28). By 
omputing the geometri
 sum

above, using the triangle inequality and |1− e(x)| ≥ 4 ‖ x ‖ we get (2.29).

Writing ν(a) = ν(a, 0)− ν(a, 1) from Lemma 2.8 we get immediately:

Lemma 2.9 (Mauduit, Rivat, Sárközy) For 0 ≤ n ≤ p − 1 and an odd

integer p, we have

1

p

∑

|a|<p/2

νp(a)ep(an) =

{

+1 if rp(n) ≡ 0 (mod 2),
−1 if rp(n) ≡ 1 (mod 2),

where the fun
tion νp(a) satis�es

νp(0) = 1, |νp(a)| ≪
p

min{a, p− 2a} (1 ≤ |a| < p/2).

Proof of Theorem 2.1

If t ≤ p7/8 Theorem 2.1 and 2.2 are trivial, sin
e all pseudorandom mea-

sures of ET are less or equal than T ≤ t ≤ p7/8. Thus we may suppose

that

t > p7/8. (2.30)

We have to prove that for any 0 ≤ b < p, 0 ≤ c < b, 1 ≤M < T , we have
the estimate

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

≪ p7/8(log p)2.

By Lemma 2.9 we have

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

=
1

p

∑

|a|<p/2

νp(a)
∑

j
c+jb≤M

ep(auc+jb)
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Sin
e uc+jb ≡
(

ϑ(k
c)
)(kb)j

(mod p), the multipli
ative order of kb modulo t is
larger or equal than T/b and by (2.30) we may use Lemma 2.1 and obtain

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb

ep(auc+jb)

∣

∣

∣

∣

∣

∣

∣

∣

≪ T 1/4t1/2p1/8 ≪ p7/8 log p.

Thus

∣

∣

∣

∣

∣

∣

∣

∑

x
r+xm≤M

er+xm

∣

∣

∣

∣

∣

∣

∣

≪ 1

p





∑

1≤|a|<p/2

|νa(p)|



 p7/8 log p+ |νp(0)| , (2.31)

By Lemma 2.9 νp(0) = 1 and

∑

1≤|a|<p/2 |νa(p)| ≪
∑

1≤|a|<p/4+1
p
a
≪ p log p,

so the theorem follows from this and (2.31).

Proof of Theorem 2.2

By Lemma 2.8 for M ≤ T − ℓ+ 1 we have

Z(ET ,M,X) =
1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ). (2.32)

If (a1, . . . , aℓ) = (0, . . . , 0) then trivially

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

=M − 1. (2.33)

By Lemma 2.8 we have

(p− 1)ℓ

2ℓ
≤ |νp(0, un+1) · · · νp(0, un+ℓ)| ≤

(p+ 1)ℓ

2ℓ
. (2.34)

By (2.30) we may use Lemma 2.1 and for all ε1 > 1/4 we have that if

(a1, . . . , aℓ) 6= (0, . . . , 0) then

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1ϑ
kn+1

+ · · ·+ aℓϑ
kn+ℓ

)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8 log p ≪ kε1(r−1)p7/8 log p, (2.35)
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where the implied 
onstant depends only on ε1. By (2.32), (2.33), (2.35) and

the triangle inequality we have

∣

∣Z(ET ,M,X)−M/2ℓ
∣

∣ ≤ 1

pℓ

∣

∣

∣

∣

∣

∑

(a1,...,aℓ)6=(0,...,0),
|ai|<p/2 (1≤i≤ℓ)

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

+
1

pℓ

∣

∣

∣

∣

(p+ 1)ℓ

2ℓ
(M − 1)− M

2ℓ

∣

∣

∣

∣

.

Sin
e ℓ < p we have

1

pℓ

∣

∣

∣

∣

(p+ 1)ℓ

2ℓ
(M − 1)− M

2ℓ

∣

∣

∣

∣

≤
(

(p+ 1)ℓ

pℓ
− 1

)

M

2ℓ
≤ eℓM

p2ℓ
≤ eℓ

2ℓ
< 1.5.

If (a, p) = 1 let µp(a) =
p

min{a,p−2a}
and let µp(0) =

p+1
2
. Then by Lemma 2.8

νp(a, un+i) ≤ µ(a). By this and (2.34) we have

∣

∣Z(ET ,M,X)−M/2ℓ
∣

∣≪ 1

pℓ







∣

∣

∣

∣

∣

∣

∑

|a|<p/2

µp(a)

∣

∣

∣

∣

∣

∣

ℓ

kε1(r−1)p7/8 log p






+ 1.5.

Using

∣

∣

∣

∑

|a|<p/2 µp(a)
∣

∣

∣≪
∑

1≤|a|≤p/4+1
p
a
≪ log p, we get the theorem.

Proof of Theorem 2.3

Theorem 2.3 is trivial if N ≤ p1/2. Thus we may suppose that

N > p1/2. (2.36)

By Lemma 2.9 for M < p and 0 ≤ d1 < · · · < dℓ ≤ p−M we have

∑

n≤M

en+d1 . . . en+dℓ =
1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1) · · ·νp(aℓ)
∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)
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If (a1, . . . , aℓ) 6= (0, . . . , 0) we may use Lemma 2.2 with h1 = kd1 , . . . , hℓ = kdℓ .
By (2.2) (hi, t) = (k, t) = 1, thus we obtain

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1

(

ϑk
d1
)kn

+ · · ·+ aℓ

(

ϑk
dℓ

)kn

)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

log p.

By (2.36) and r2 < p we have

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)

∣

∣

∣

∣

∣

≪ p1−ε2/2,

where the implied 
onstant depends only on ε2. Thus

∣

∣

∣

∣

∣

∑

n≤M

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

=
1

pℓ











∑

|a|<p/2

|νp(a)|





ℓ

p1−ε2/2 +M






.

Using

∣

∣

∣

∑

|a|<p/2 νp(a)
∣

∣

∣
≪
∣

∣

∣

∑

|a|<p/4+1
p
a

∣

∣

∣
≪ p log p, we get

Cℓ(EN) ≤ c1p
1−ε2/4,

where the 
onstant c1 depends only on ε2. From this for large p > p0 follows
the theorem, while for small p ≤ p0 the theorem is trivial with an ε > 0 for

whi
h N < p1−ε
if p < p0. Su
h ε > 0 exists, sin
e N < p.

Proof of Corollary 2.1

Sin
e q is a prime, t = q or t = 2q. k is a primitive root modulo q, thus
for 1 ≤ i < j ≤ q − 1 we have

(kj − ki, t) = 1 or (kj − ki, t) = 2

whi
h is less than tp−δ
for δ < 1/2. Thus (2.4) holds with N = (p−3)/4 and

using Theorem 3 we get the 
orollary.
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3 On the 
orrelation of binary sequen
es

Sin
e 1997 numerous papers have been written on the theory of pseu-

dorandomness. In the majority of these papers spe
ial sequen
es are 
on-

stru
ted and/or tested for pseudorandomness (see [52℄ and [97℄ for refer-

en
es), while, for example in [3℄, [4℄, [14℄, [33℄, [34℄, [36℄, [69℄, [78℄ and [102℄

the measures of pseudorandomness are studied. In [46℄ I gave a survey paper

on the most important results related to these measures.

In [14℄ Cassaigne, Mauduit and Sárközy 
ompared 
orrelations of di�erent

order. They proved the following

Theorem 3.A (Cassaigne, Mauduit, Sárközy) a) For k, ℓ, N ∈ N, k | ℓ,
EN ∈ {−1,+1}N we have

Ck(EN) ≤ N

(

(ℓ!)k/ℓ

k!

(

Cℓ(EN )

N

)k/ℓ

+

(

ℓ2

N

)k/ℓ
)

.

b) If k,N ∈ N and k ≤ N , then there is a sequen
e EN ∈ {−1,+1}N su
h

that if ℓ ≤ N/2, then

Cℓ(EN ) > (N − ℓ)/k − 54k2N1/2 logN if k | ℓ
Cℓ(EN ) < 27k2ℓN1/2 logN if k ∤ ℓ

This result shows some kind of independen
e between Ck and Cℓ when k ∤ ℓ
and ℓ ∤ k. In this se
tion we will show a link between Ck and Cℓ when k and

ℓ have di�erent parity.
Cassaigne, Mauduit and Sárközy [14℄ asked the following related question:

Problem 3.1. (Cassaigne, Mauduit, Sárközy) For N → ∞, are

there sequen
es EN su
h that C2(EN) = O(
√
N) and C3(EN ) = O(1) simul-

taneously?

In [75℄ Mauduit also asked another 
losely related question

Problem 3.2. (Mauduit) Let k, ℓ ≥ 2 be integers. Is it true that for

every EN ∈ {−1,+1}N we have

C2k+1(EN )C2ℓ(EN) ≫ N

where the implied 
onstant fa
tor depends only on k and ℓ? Or at least

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)
(3.1)

where the implied 
onstant fa
tor and the 
onstant

1
2
< c(k, ℓ) ≤ 1 depend

only on k and ℓ?
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In [36℄ I solved both Problem 3.1 and Problem 3.2 in the weaker form

(3.1) when k ≥ ℓ. The answer follows from the main result of [36℄:

Theorem 3.B If k, ℓ ∈ N, 2k + 1 > 2ℓ, N ∈ N and N > 67k4 + 400, then
for all En ∈ { − 1,+1}N we have

(

17
√

k(2ℓ+ 1) C2ℓ

)2k+1

+

(

17
2k + 1

2ℓ

)ℓ

N2k−ℓC2
2k+1 ≥

1

9
N2k−ℓ+1

It follows trivially that

Corollary 3.A If k, ℓ ∈ N, logN ≥ 2k+1 > 2ℓ, N ∈ N and N > 67k4+400,
En ∈ { − 1,+1}N and

C2ℓ(EN ) <
1

20
√

k(2ℓ+ 1)
N1−ℓ/(2k+1)

then we have

C2k+1(EN) >
1

8

(

2ℓ

17(2k + 1)

)ℓ/2

N1/2.

Corollary 3.B If k, ℓ ∈ N, 2k + 1 > 2ℓ then

C2k+1(EN)C2ℓ(EN) ≫ N1−ℓ/(2k+1)

where the implied 
onstant fa
tor depends only on k and ℓ. (This is the 
ase
c(k, ℓ) = 1− ℓ

2k+1
> 1

2
in Problem 3.2.)

Later Anantharam [5℄ sharpened Theorem 3.A and he proved the follow-

ing:

Theorem 3.C (Anantharam)

C3(EN)C2(EN ) ≥
2

25
N.

Theorem 3.C solves Problem 3.2 in the stronger form in the spe
ial 
ase

(2k + 1, 2ℓ) = (3, 2), so (3.1) holds with c = 1.

3.1 Results

In this se
tion we will generalize the earlier results. Theorem 3.B studies

only the 
ase 2k + 1 > 2ℓ while Theorem 3.C involves only C2 and C3. Here
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we study the general 
ase, when there is no restri
tion of the order of the


orrelation measures. The proof uses methods from [5℄ and [36℄. We will

prove the following:

Theorem 3.1 (Gyarmati, Mauduit) There is a 
onstant ck,ℓ depending

only on k and ℓ su
h that if

C2k+1(EN) < ck,ℓN
1/2, (3.2)

then

C2k+1(EN )
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1, (3.3)

where the implied 
onstant fa
tor depends only on k and ℓ.

Remark 3.1 Theorem 3.1 is optimal: For EN = (+1,−1,+1,−1,+1 . . . ) we
have C2k+1(EN ) = 1 and C2ℓ(EN) = N − 2ℓ+ 1.

Remark 3.2 It is an important question whether 
ondition (3.2) is ne
essary

in Theorem 3.1. Cassaigne, Mauduit and Sárközy [14℄ proved that for every

ε and N > N0(ε)

C2k+1(EN), C2ℓ(EN) ≪ N1/2(logN)1/2 (3.4)

holds with probability 1− ε. Fix a sequen
e EN for whi
h (3.4) indeed holds

and N is large enough. From (3.3) and (3.4)

N ℓ+k+1/2(logN)ℓ+k+1/2 ≫ N2k+1
(3.5)

follows. Sin
e (3.5) is true for an N large enough we get from (3.5):

ℓ+ k + 1/2 ≥ 2k + 1

and thus

2ℓ ≥ 2k + 1.

But in Theorem 3.1 2ℓ 
an be less than 2k + 1 so we need an additional

assumption on the size of C2k+1(EN ) and C2ℓ(EN).

Let us see some 
orollaries of Theorem 3.1.

Corollary 3.1 (Gyarmati, Mauduit) Suppose that C2ℓ(EN) ≪
N1/2(logN)1/2, then

C2k+1(EN ) ≫ min

{

N1/2,
N (2k+1)/(4ℓ)

(logN)(2k+1)/(4ℓ)

}
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where the implied 
onstant fa
tor depends on k and ℓ.

Corollary 3.2 (Gyarmati, Mauduit) If C2k+1(EN ) = O(1), then

C2ℓ(EN) ≫ N,

where the implied 
onstant fa
tor depends on k and ℓ.

Corollary 3.3 (Gyarmati, Mauduit)

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)

where the implied 
onstant fa
tor depends only on k and ℓ and where

c(k, ℓ) =

{

1 if k ≥ ℓ,
1
2
+ 2k+1

4ℓ
if k < ℓ.

Remark 3.3 Corollary 3.3 solves Problem 3.2 in the stronger form when

k ≥ ℓ and in the weaker form (3.1) when k < ℓ.
These results 
an be extended to the multidimensional 
ase, for the details

see the paper [49℄.

3.2 Proof of Theorem 3.1

Let L = [N/2] and 1 ≤ M ≤ N/2 be integers, where the value of M will

be �xed later. Consider the following equation

A def

=
∑

1≤n1<n2<···<n2k+1≤L

∑

1≤d1<d2<···<d2ℓ≤M

2ℓ
∏

j=1

2k+1
∏

i=1

eni+dj

=
∑

1≤d1<d2<···<d2ℓ≤M

∑

1≤n1<n2<···<n2k+1≤L

2k+1
∏

i=1

2ℓ
∏

j=1

eni+dj
def

= B.

We will use the following lemmas proved by me in [36℄.

Lemma 3.1 For all t, A ∈ N, t ≤ A there is a polynomial pt,A(x) ∈ Q[x]
with the degree t su
h that if x1, x2, . . . , xA ∈ {−1,+1} then

pt,A(x1 + · · ·+ xA) =
∑

1≤i1<i2<···<it≤A

xi1xi2 . . . xit .
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Denote the 
oe�
ients of pt,A by ar,t,A:

pt,A(x) = at,t,Ax
t + at−1,t,Ax

t−1 + · · ·+ a0,t,A.

Then ar,t,A = 0 if r 6≡ t (mod 2), and (−1)(t−r)/2ar,t,A ≥ 0 if r ≡ t (mod 2).
If t is even we also have:

a0,t,A = (−1)t/2
(

A/2

t/2

)

.

Proof of Lemma 3.1 This is Lemma 2 in [36℄.

Lemma 3.2

|ar,t,A| ≤ A(t−r)/2.

Proof of Lemma 3.2 This follows from Lemma 3 and Lemma 5 in [36℄.

(Indeed in [36℄ by Lemma 3 we get |ar,t,A| ≤ di,jA
(t−r)/2

. In [36℄ ωj is de�ned

by d0,j+d1,j+ · · ·+dj,j in Lemma 4 and in Lemma 5 di,j ≤ ωj ≤ 1 is proved.)
Next we return to the proof of Theorem 3.1.

First we rearrange A. For a moment we �x the value of n1, n2, . . . , n2k+1

in the �rst sum. Next we use Lemma 3.1 with t = 2ℓ, A = M and xu =
∏2k+1

i=1 eni+u for 1 ≤ u ≤M . We get

A =
∑

1≤n1<n2<···<n2k+1≤L

∑

1≤d1<d2<···<d2ℓ≤M

2ℓ
∏

j=1

2k+1
∏

i=1

eni+dj

=
∑

1≤n1<n2<···<n2k+1≤L

p2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)

.

Similarly we rearrange B. For a moment we �x the value of d1, d2, . . . , d2ℓ
in the �rst sum. Next we use Lemma 3.1 with t = 2k + 1, A = L and

xu =
∏2ℓ

j=1 eu+dj for 1 ≤ u ≤M . We get

B =
∑

1≤d1<d2<···<d2ℓ≤M

∑

1≤n1<n2<···<n2k+1≤L

2k+1
∏

i=1

2ℓ
∏

j=1

eni+dj

=
∑

1≤d1<d2<···<d2ℓ≤M

p2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)

.

We denoted the 
oe�
ients of pt,A(x) by ar,t,A in Lemma 3.1. Using these
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notations we get

∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a0,2ℓ,M

)

=
∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a0,2k+1,L

)

. (3.6)

By Lemma 3.1 a0,2k+1,L = 0. From this and (3.6) we get

∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

))

−
∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

))

=
∑

1≤n1<n2<···<n2k+1≤L

a0,2ℓ,M .

Again by Lemma 3.1 there is a 
onstant c1 depending only on k and ℓ su
h

38



that

∣

∣

∣

∣

∣

∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

))

−
∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

))∣

∣

∣

∣

∣

≥ c1L
2k+1M ℓ. (3.7)

By Lemma 3.1 ar,t,A = 0 if r 6≡ t (mod 2). Using this and the triangle-

inequality we get from (3.7)

∑

1≤d1<d2<···<d2ℓ≤M

2k+1
∑

r=1
r≡1 (mod 2)

|ar,2k+1,L|
∣

∣

∣

∣

∣

L
∑

u=1

2ℓ
∏

j=1

eu+dj

∣

∣

∣

∣

∣

r

+
∑

1≤n1<n2<···<n2k+1≤L

2ℓ
∑

r=2
r≡0 (mod 2)

|ar,2ℓ,M |
∣

∣

∣

∣

∣

M
∑

u=1

2k+1
∏

i=1

eni+u

∣

∣

∣

∣

∣

r

≥ c1L
2k+1M ℓ.

(3.8)

By the de�nition of the 
orrelation measures we have

∣

∣

∣

∣

∣

L
∑

u=1

2ℓ
∏

j=1

eu+dj

∣

∣

∣

∣

∣

≤ C2ℓ(EN ),

∣

∣

∣

∣

∣

M
∑

u=1

2k+1
∏

i=1

eni+u

∣

∣

∣

∣

∣

≤ C2k+1(EN ).
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By this and (3.8) we get

∑

1≤d1<d2<···<d2ℓ≤M

2k+1
∑

r=1
r≡1 (mod 2)

|ar,2k+1,L|C2ℓ(EN)
r

+
∑

1≤n1<n2<···<n2k+1≤L

2ℓ
∑

r=2
r≡0 (mod 2)

|ar,2ℓ,M |C2k+1(EN)
r ≥ c1L

2k+1M ℓ.

By this and Lemma 3.2

M2ℓ

2k+1
∑

r=1
r≡1 (mod 2)

L(2k+1−r)/2C2ℓ(EN)
r + L2k+1

2ℓ
∑

r=2
r≡0 (mod 2)

M (2ℓ−r)/2C2k+1(EN)
r

≥ c1L
2k+1M ℓ. (3.9)

In order to prove Theorem 3.1 we will use Theorem 1.C as a lemma.

Lemma 3.3 (Alon, Kohayakawa, Mauduit, Moreira, Rödl)

C2ℓ(EN) ≫ N1/2

where the implied 
onstant fa
tor depends only on ℓ.

Proof of Lemma 3.3 See in [3℄ and [69℄.

By this for 1 ≤ r ≤ 2k + 1 we have

L(2k+1−r)/2C2ℓ(EN )
r ≪ C2ℓ(EN)

2k+1.

Using this and (3.9) we get there is a 
onstant c2 depending only on k and ℓ
su
h that

c2M
2ℓC2ℓ(EN)

2k+1 + L2k+1
2ℓ
∑

r=2
r≡0 (mod 2)

M (2ℓ−r)/2C2k+1(EN)
r

≥ c1L
2k+1M ℓ. (3.10)

Now we �x the value of M . Let M = c3C2k+1(EN)
2
, where the value of the


onstant c3 will depend only on k and ℓ. We 
hoose the value of c3 su
h that

⌈

max
2≤r≤2ℓ

(

ℓ+ 1

c1

)2/r
⌉

≤ c3.
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Then

M (2ℓ−r)/2C2k+1(EN)
r ≤ c1

ℓ+ 1
M ℓ

(3.11)

holds. Now we �x the 
onstant ck,ℓ in Theorem 3.1, we put ck,ℓ =
1
2c3

. Then

2c3C2k+1(EN )
2 ≤ N , so M ≤ N/2 indeed. By (3.10) and (3.11) we get

c2M
2ℓC2ℓ(EN)

2k+1 + L2k+1 c1ℓ

ℓ+ 1
M ℓ ≥ c1L

2k+1M ℓ

c2M
2ℓC2ℓ(EN )

2k+1 ≥ c1
ℓ+ 1

L2k+1M ℓ

M2ℓC2ℓ(EN )
2k+1 ≥ c1

c2(ℓ+ 1)
L2k+1M ℓ.

Writing L = [N/2] and M = c3C2k+1(EN )
2
we get

c2ℓ3 C2k+1(EN)
4ℓC2ℓ(EN)

2k+1 ≥ c1
c2(ℓ+ 1)

[

N

2

]2k+1

cℓ3C2k+1(EN )
2ℓ

C2k+1(EN)
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1

whi
h was to be proved.

The proofs of Corollaries 3.1 and 3.2 are immediate from Theorem 3.1.

3.3 Proof of Corollary 3.3

If C2k+1(EN ) ≫ N1/2
then Corollary 3.3 is trivial sin
e by Lemma 3.3

C2ℓ(EN ) ≫ N1/2
also holds and then C2k+1(EN)C2ℓ(EN ) ≫ N . Thus we

may assume that C2k+1(EN) ≪ N1/2

If k < ℓ by Theorem 3.1 and Lemma 3.3:

(C2k+1(EN)C2ℓ(EN ))
2ℓ = C2k+1(EN)

2ℓC2ℓ(EN)
2k+1C2ℓ(EN )

2ℓ−(2k+1)

≫ N2k+1C2ℓ(EN)
2ℓ−(2k+1)

≫ N2k+1N ℓ−k−1/2 = N ℓ+k+1/2,

so that

C2k+1(EN)C2ℓ(EN) ≫ N1/2+(2k+1)/(4ℓ).

41



If k ≥ ℓ then by Theorem 3.1

(C2k+1(EN)C2ℓ(EN))
2k+1 = C2k+1(EN )

2ℓC2ℓ(EN)
2k+1C2k+1(EN )

2k−2ℓ+1

≫ N2k+1C2k+1(EN)
2k−2ℓ+1

≫ N2k+1,

so that

C2k+1(EN )C2ℓ(EN) ≫ N.
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4 On the 
omplexity of a family related to the

Legendre symbol

In this se
tion we study large families of �nite, binary sequen
es

EN = (e1, e2, . . . , eN) ∈ {−1,+1}N .

In many appli
ations it is not enough to know that the family 
ontains many

binary sequen
es with strong pseudorandom properties; it is also important

that the family has a �ri
h�, �
omplex� stru
ture, there are many �indepen-

dent� sequen
es in it. Ahlswede, Kha
hatrian, Mauduit and Sárközy [1℄

introdu
ed the notion of f -
omplexity (�f � for family):

De�nition 4.1 (Ahlswede, Kha
hatrian, Mauduit, Sárközy)

The family 
omplexity C(F) of a family F of binary sequen
es

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any

1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj ∈ {−1,+1}j, we have at

least one EN = (e1, . . . , eN) ∈ F for whi
h

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

In [1℄ in Se
tion 3 the following is proved: In order to get an upper bound

for C(F), we take all spe
i�
ations of the form

e1 = ε1, e2 = ε2, . . . , eC(F) = εC(F). (4.1)

By the de�nition of f -
omplexity, for su
h a spe
i�
ation, there is a sequen
e

E ∈ F for whi
h (4.1) holds. ε1, ε2, . . . , εC(F) may take 2C(F)
di�erent values,

thus,

2C(F) ≤ |F| .

So:

Proposition 4.1 (Ahlswede, Kha
hatrian, Mauduit, Sárközy)

C(F) ≤ log |F|
log 2

.

Numerous binary sequen
es have been tested for pseudorandomness by

J. Cassaigne, Z. Chen, X. Du, L. Goubin, K. Gyarmati, S. Feren
zi, S. Li, H.

Liu, C. Mauduit, L. Mérai, J. Rivat and A. Sárközy. However, the �rst 
on-

stru
tions produ
ed only �few� pseudorandom sequen
es, usually for a �xed
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integer N , the 
onstru
tion provided only one pseudorandom sequen
e EN of

length N . L. Goubin, C. Mauduit, A. Sárközy [31℄ su

eeded in 
onstru
ting

large families of pseudorandom binary sequen
es. Their 
onstru
tion was the

following:

Constru
tion 4.1 (Goubin, Mauduit, Sárközy) Suppose that p is a

prime number, and f(x) ∈ Fp[x] is a polynomial with degree k > 0 and

no multiple zero in Fp. De�ne the binary sequen
e Ep = (e1, . . . , ep) by

en =

{ (

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(4.2)

Ahlswede, Kha
hatrian, Mauduit and Sárközy [1℄ proved the following:

Theorem 4.A (Ahlswede, Kha
hatrian, Mauduit, Sárközy) Let p be

a prime. Consider all the polynomials f(x) su
h that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For ea
h of these polynomials f(x), 
onsider the binary sequen
e

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1,+1}p de�ned by (4.2), and let F1 denote

the family of all the binary sequen
es obtained in this way. Then

C(F1) ≥ K. (4.3)

By Proposition 4.1 it is 
lear that

|C(F1)| ≤
log |F1|
log 2

≤ K + 1

log 2
log p.

We will improve on (4.3) and we will prove the following:

Theorem 4.1 For the family de�ned in Theorem 4.1 we have

C(F1) ≥
K − 1

2 log 2
log p−O(K log(K log p)). (4.4)

4.1 Proof of Theorem 4.1

In this proof c1, c2 will denote absolute 
onstants. For K ≥ p1/2/ log p the
right-hand side of (4.4) is negative, so the theorem is trivial. Thus we may

suppose that

K < p1/2/ log p. (4.5)
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Let k be the greatest odd integer with k ≤ K. Let

j ≤ k

2 log 2
log p− c1k

log 2
log(k log p), (4.6)

where we will �x the value of the absolute 
onstant c1 later. Suppose that

we have the spe
i�
ation

en1 = ε1, en2 = ε2, . . . , enj
= εj. (4.7)

Let I = {n1, n2, . . . , nj}. We will 
onsider all polynomials f(x) of the form

fa1,a2,...,ak(x) = (x− a1)(x− a2) · · · (x− ak) (4.8)

with ai 6∈ I, and we will prove by a 
ounting argument that there is at

least one k-tuple a1, a2, . . . , ak (where ai 6∈ I) for whi
h the sequen
e Ep

de�ned by (4.2) with fa1,a2,...,ak(x) in pla
e of f(x) satis�es (4.7). Suppose

that β1, β2, . . . , βt are the roots of f(x) whi
h have odd multipli
ity in the

fa
torization of f(x). Sin
e the degree of f(x) is odd, t the number of these

roots are also odd, so t ≥ 1. Let f1(x) = (x− β1)(x− β2) . . . (x− βt). Then
f1(x) has no multiple zero and the sequen
e E ′

p de�ned by (4.2) with f1(x)
in pla
e of f(x) satis�es (4.7).

Sin
e this will be true for every j ≤ k
2 log 2

log p− c1k
log 2

log(k log p) from this

C(F) ≥
[

k

2 log 2
log p− c1k

log 2
log(k log p)

]

≥ K − 1

2 log 2
log p− c2K log(K log p)

follows.

Now 
onsider a k-tuple a1, a2, . . . , ak with ai 6∈ I, and 
onsider the 
orre-

sponding polynomial

fa1,a2,...,ak(x) = (x− a1)(x− a2) · · · (x− ak).

De�ne the sequen
e Ep = (e1, e2, . . . , ep) by

en =

{ (

fa1,a2,...,ak (n)

p

)

if (fa1,...,ak(n), p) = 1, so n 6= ai for 1 ≤ i ≤ k,

1 if p | fa1,...,ak(n), so n = ai for some 1 ≤ i ≤ k.
(4.9)

Clearly,

1

2
(1 + εieni

) =

{

1 if eni
= εi,

0 if eni
= −εi.
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If ni 6= as for 1 ≤ s ≤ l then

1

2

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

=

{

1 if eni
= εi,

0 if eni
= −εi.

Let N be the number of polynomials fa1,a2,...,ak(x) ∈ Fp[x] with

a1, a2, . . . , ak ∈ Fp \ I su
h that for the sequen
e (4.9) spe
i�
ation (4.7)

holds. Then

N =

p−1
∑

a1=0
a1 6∈I

p−1
∑

a2=0
a2 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

1

2j

j
∏

i=1

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

.

(4.10)

Here

A(a1, . . . , ak)
def

=

j
∏

i=1

(

1 + εi

(

(ni − a1) · · · (ni − ak)

p

))

= 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ
(

(ni1 − a1) · · · (ni1 − ak)

p

)

(

(ni2 − a1) · · · (ni2 − ak)

p

)

· · ·
(

(niℓ − a1) · · · (niℓ − ak)

p

)

.

The Legendre symbol is multipli
ative, thus

A(a1, . . . , ak) = 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ

k
∏

j=1

(

(ni1 − aj)(ni2 − aj) . . . (niℓ − aj)

p

)

.

Writing this in (4.10) we get

N =

p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

1

2j

(

1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

)

,
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N =
(p− |I|)k

2j
+

1

2j

p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p− j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ
p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p− j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ






p−1
∑

a=0
a6∈I

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p







k

. (4.11)

Lemma 4.1 (Weil) Suppose that p is a prime, χ is a non-prin
ipal 
har-

a
ter modulo p of order d, f ∈ Fp[x] has s distin
t roots in Fp, and it is not

a 
onstant multiple of the d-th power of a polynomial over Fp. Then:

∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

< sp1/2.

Poof of Lemma 4.1

This is Weil's theorem, see [106℄.

By the triangle-inequality and by Lemma 4.1:

∣

∣

∣

∣

∣

∣

∣

p−1
∑

a=0
a6∈I

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

p−1
∑

a=0

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

+ j ≤ ℓp1/2 + j ≤ jp1/2 + |I| .
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Thus by (4.11) and the triangle-inequality

N ≥ (p− j)k

2j
− 1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

(jp1/2 + j)k =
(p− j)k

2j
− (jp1/2 + j)k.

Thus N > 0 follows from

p− j

2j/k
> jp1/2 + j

p > 2j/k(jp1/2 + j) + j. (4.12)

Thus it remains to prove (4.12). By (4.6)

2j/k(jp1/2 + j) + j ≤ 2(
1

2 log 2
log p−

c1
log 2

log(k log p))
(

k

2 log 2
p1/2 log p+

k

2 log 2
log p

)

+
k

2 log 2
log p ≤ p1/2

(k log p)c1

(

k log p

2 log 2
p1/2 +

kp1/2 log p

2 · 31/2 log 2

)

+
k

2 log 2
log p ≤ p1/2

(k log p)c1
1.138(k log p)p1/2 +

k

2 log 2
log p.

By this and (4.5)

2j/k(jp1/2 + j) + j ≤ 1.138
p

(k log p)c1−1
+

p1/2

2 log 2

≤ 1.138
p

(k log p)c1−1
+

p

2 · 31/2 log 2
≤ 1.138

p

(k log p)c1−1
+ 0.414p.

For c1 = 9 we have

2j/k(jp1/2 + j) + j ≤ 1.138
p

(log 3)8
+ 0.414p < p

whi
h proves (4.12). Thus for j ≤ k
2 log 2

log p− 9k
log 2

log(k log p) we have that

(4.12) holds. Then N > 0. So there is a sequen
e Ep for whi
h spe
i�
ation

(4.7) holds. Thus we proved

C(F1) ≥
[

k

2 log 2
log p− 9k

log 2
log(k log p)

]

≥ K − 1

2 log 2
log p−O(K log(K log p)).
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5 On the 
orrelation of subsequen
es

A sequen
e EN is 
onsidered a �good� pseudorandom sequen
e if ea
h of

these measures W (EN), Cℓ(EN ) (at least for small ℓ) is �small� in terms of

N (in parti
ular all are o(N) as N −→ ∞). Indeed, it was proved in [14℄

that for a truly random sequen
e EN ⊆ {−1,+1}N ea
h of these measures

is ≪ √
N logN and ≫

√
N . Later these bounds were sharpened by Alon,

Kohayakawa, Mauduit, Moreira and Rödl [4℄ (see Theorems 1.A and 1.B).

Numerous binary sequen
es have been tested for pseudorandomness by

several authors. In the best 
onstru
tions we have W (EN) ≪
√
N(logN)c1

and Cℓ(EN ) ≪
√
N(logN)cℓ with positive 
onstants c1 and cℓ. From this it

follows that

|U(EN , t, a, b)| ≪ N1/2(logN)c1 (5.1)

and

|V (EN ,M,D)| ≪ N1/2(logN)cℓ (5.2)

(for all t, a, b,M,D). For every M and t, we trivially have

max
EN∈{−1,+1}N

|U(EN , t, a, b)| = t,

max
EN∈{−1,+1}N

|V (EN ,M,D)| =M.

If |U(EN , t, a, b)| is large 
ompared with t or |V (EN ,M,D)| is large 
ompared

with M , then it may o

ur that our sequen
e EN has a �part� with weak

pseudorandom properties. Indeed, if t or M is smaller than

√
N then the

estimates (5.1) and (5.2) are trivial. Thus it may o

ur that, say, we want to

en
rypt a message of estimated length slightly less than N , thus we use an

N bit sequen
e possessing strong pseudorandom properties. However, it may

turn out that the text to be en
rypted is of length less than, say,

√
N . In

this 
ase we use only a short part (of length

√
N) of the sequen
e although

we do not have any 
ontrol over the pseudorandom properties of the short

subsequen
es. In this se
tion we would like to present 
onstru
tions with

non-trivial estimates for V (EN ,M,D) in 
ase of small M 's.

Theorem 5.1 For every N there is a binary sequen
e EN ∈ {−1,+1}N su
h

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2
are su
h that 0 ≤ d1 < d2 < · · · <

dℓ < M + dℓ ≤ N , then we have

|V (EN ,M,D)| ≪ ℓ2N1/4 logN. (5.3)
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From this follows that for 1 ≤M ≤ N we have

|V (EN ,M,D)| ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN.

Corollary 5.1 For the binary sequen
e EN ∈ {−1,+1}N 
onstru
ted in the

proof of Theorem 5.1 we have

Cℓ(EM ) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN (5.4)

for every M ≤ N and EM ⊆ EN (so EM is of the form (ex, ex+1, . . . , eM)).

It is an interesting question whether similar results hold for U(EN , t, a, b)?
Theorem 5.1 is not optimal in the sense that it follows from (5.4) for the

sequen
e EN whi
h satis�es the 
onditions of Theorem 5.1 that

Cℓ(EN ) ≪ ℓ2N3/4 logN,

while in the best 
onstru
tions we have Cℓ(EN ) ≪ N1/2(logN)cℓ . Next we

will show the existen
e of su
h a sequen
e.

Theorem 5.2 For every N there is a binary sequen
e EN ∈ {−1,+1}N su
h

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2
satisfy 0 ≤ d1 < d2 < · · · < dℓ <

M + dℓ ≤ N , then we have

|V (EN ,M,D)| ≪ ℓ2N1/4 logN. (5.5)

Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2 (5.6)

and

W (EN) ≪ N3/4 logN (5.7)

holds.

From (5.5) follows that for 1 ≤M ≤ N we have

|V (EN ,M,D)| ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN.

Corollary 5.2 For the binary sequen
e EN ∈ {−1,+1} 
onstru
ted in the

50



proof of Theorem 5.2 we have

Cℓ(EM) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN, (5.8)

W (EM) ≪
⌈

M

N1/2

⌉1/2

M1/2N1/8(logN)1/2, (5.9)

for every M ≤ N and EM ⊆ EN (where EM is of the form

(ex, ex+1, . . . , ex+M−1)). Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2

and

W (EN) ≪ N3/4 logN

holds.

The proofs of Theorems 5.1 and 5.2 are 
onstru
tive. The 
on-

stru
tion in Theorem 5.2 uses two-dimensional binary latti
es (see Se
tion

1). In [50℄ we redu
ed the two dimensional 
ase to the one dimensional one

by the following way: To any 2-dimensional binary N-latti
e

η(x) : I2N → {−1,+1} (5.10)

we may assign a unique binary sequen
e EN2 = EN2(η) = (e1, e2, . . . , eN2) ∈
{−1,+1}N by taking the �rst (from the bottom) row of the latti
e (5.10) then

we 
ontinue the binary sequen
e by taking the se
ond row of the latti
e, then

the third row follows, et
.; in general, we set

eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N − 1, j = 1, 2, . . . , N. (5.11)

In [50℄ we asked if it is true that if EN2(η) is a �good� pseudorandom binary

sequen
e then η is a �good� pseudorandom 2-dimensional latti
e? The answer

to this question is negative; we showed that it may o

ur that the pseudoran-

dom measures of the sequen
e EN2(η) are small, however, the 
orresponding

pseudorandom measures of the latti
e η are large. Here we study the oppo-

site. We will prove that if the latti
e η has small 
orrelation measure, then

the 
orresponding E2
N(η) sequen
e has small 
orrelation measures as well.

Theorem 5.3 Let η be an arbitrary binary latti
e. Then

Cℓ(EN2(η)) ≤ (ℓ+ 2)Cℓ(η).

By Cℓ(η) ≤ Qℓ(η) it follows that
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Corollary 5.3 Let η be an arbitrary binary latti
e. Then

Cℓ(EN2(η)) ≤ (ℓ+ 2)Qℓ(η).

In the proof of Theorem 5.2 we will use Theorem 5.3. But Theorem 5.3

is of independent interest: by using Theorem 5.3 we 
an 
onstru
t pseudo-

random binary sequen
es by using pseudorandom binary latti
es.

We remark that one may obtain similar results for shorter intervals in

Theorem 5.2: If t is an integer then for M ≤ N1/t
we have

|V (EN ,M,D)| ≪ N1/(2t) logN

in pla
e of (5.5) while Cℓ(EN ) ≪ N1/2(logN)cℓ andW (EN) ≪ N3/4(logN)c1

also holds. However the proof of this result would be lengthy (we would need

more sophisti
ated sums as the ones in Lemma 5.4 and the relation between

the pseudorandom measures of the binary latti
es and the asso
iated binary

sequen
es is more 
ompli
ated) thus we omit here the details, but one might

like to return to this problem in a subsequent paper.

Throughout the se
tion [a, b] will denote the set {a, a+ 1, . . . , b}.

5.1 Proofs

Proof of Theorem 5.1

For N = 2 the theorem is trivial. For N ≥ 3 by Chebysev's theorem

there exists an odd prime p su
h that

N1/2 < p < 2N1/2. (5.12)

For an irredu
ible polynomial f(x) ∈ Fp[x] of degree k ≥ 2, we de�ne a

binary sequen
e Ep(f) = (e1, e2, . . . , ep) by the following way:

en =

(

f(n)

p

)

.

(We remark that sin
e f is irredu
ible, for an integer n, f(n) is never divisible

by p thus
(

f(n)
p

)

always assumes±1.) Next we will 
onstru
t a pseudorandom

binary sequen
e for whi
h (5.3) holds. Let f1(x), f2(x), . . . , fp(x) be di�erent
irredu
ible polynomials of degree k ≥ 2 and for 1 ≤ i ≤ p let fi(x) be of the
form

fi(x) = xk + ai,k−2x
k−2 + ai,k−3x

k−3 + · · ·+ ai,0 (5.13)

with ai,j ∈ Fp. (so the 
oe�
ient of xk−1
is 0 in fi(x)). We remark that the
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number of moni
 irredu
ible polynomials of degree k < p over the �nite �eld
Fq is

Lq(k) =
1

k

∑

d|k

µ

(

k

d

)

qd

see [29, pp. 602-629℄. For k ≥ 4

Lq(k) ≥
1

k
qk − 1

k

[k/2]
∑

d=1

qd ≥ 1

k
qk − 1

k
q
qk/2 − 1

q − 1
≥ 1

k

(

qk − q(k+2)/2
)

≥ 1

2k
qk.

For every j ∈ Fq 
onsider f(x + j). Between these q di�erent irredu
ible

polynomials there is exa
tly one whi
h is of the form

f(x+ j) = xk + ak−2x
k−2 + · · ·+ a0

(so the 
oe�
ient of xk−1
is 0 in f(x + j)). Thus for k ≥ 4 and p ≥ 3 the

number of irredu
ible polynomials whi
h are of the form xk + ak−2x
k−2 +

· · ·+ a0 is

Nq(k)
def

=
1

q
Lq(k) ≥

1

2k
qk−1. (5.14)

For k ≥ 4, p ≥ 3 we have Np(k) ≥ p, thus there exist p di�erent irredu
ible

polynomials f1(x), f2(x), . . . , fp(x) whi
h are of the form (5.13). Let

Ep2
def

= (Ep(f1), Ep(f2), . . . , Ep(fp)) (5.15)

where Ep2 is a binary sequen
e of length p2 obtained by writing the ele-

ments of Ep(f1), Ep(f2), . . . , Ep(fp) su

essively. Let Ep2 = (e1, e2, . . . , ep2)
and sin
e by (5.12) we have

N < p2 < 4N,

we may de�ne EN by the sequen
e of the �rst N elements of Ep2:

EN = (e1, e2, . . . , eN).

If M < p, D = (d1, . . . , dℓ)

V (EN ,M,D) = V (Ep2,M,D)

= e1+d1e1+d2 . . . e1+dℓ + e2+d1e2+d2 . . . e2+dℓ + · · ·+ eM+d1eM+d2 . . . eM+dℓ .

Next we will prove that for ea
h 1 ≤ i ≤ ℓ and 1 ≤ n < M , there exist
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integers ai, bi and intervals Ii = {1, 2, . . . , bi} and Ji = {bi+1, bi+2, . . . ,M}
su
h that

en+di =







(

fai(n+di)

p

)

if n ∈ Ii,
(

fai+1(n+di)

p

)

if n ∈ Ji,
(5.16)

(if bi = M then Ji = ∅). Indeed, let mp(x) denote the least nonnegative

integer with

x ≡ mp(x) (mod p),

so 0 ≤ mp(x) ≤ p− 1. Then

n + di =

[

n + di − 1

p

]

p+mp(n + di − 1) + 1.

Thus

en+di = f[n+di−1

p ]+1
(mp(n+ di − 1) + 1) = f[n+di−1

p ]+1
(n+ di). (5.17)

In (5.16) 0 ≤ n ≤M < p. Let di = qip+ si where 0 ≤ si ≤ p− 1. Then

[

n+ di − 1

p

]

=

[

qip+ si + n− 1

p

]

= qi +

[

si + n− 1

p

]

=

{

qi if n ≤ p− si,
qi + 1 if n > p− si,

(5.18)

whi
h proves (5.16) with ai = qi + 1 and bi = max{p− si,M}, so Ii = [1, bi],
Ji = [bi+1,M ] (if bi =M then Ji = ∅). Then {1, b1+1, b2+1, . . . , bℓ+1,M+1}
is a multiset whi
h 
ontains integers 1 = c1 < c2 < · · · < cm =M + 1 where

m ≤ ℓ+ 2. (5.19)

Then [0,M ] = ∪m−1
j=1 [cj , cj+1 − 1]. By the de�nition of the cj's, cj < bi + 1 <

cj+1 is not possible, thus cj+1 − 1 ≤ bi or bi ≤ cj − 1, so [cj, cj+1 − 1] ⊆ [0, bi]
or [cj, cj+1 − 1] ⊆ [bi + 1,M ]. Hen
e

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ =
m−1
∑

j=1

∑

n∈[cj ,cj+1−1]

en+d1 . . . en+dℓ . (5.20)

Now ea
h interval [cj , cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ.
Thus for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exists

�xed numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) su
h that
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for n ∈ [cj , cj+1 − 1]

en+d1en+d2 . . . en+dℓ =

(

fh1(n+ d1)

p

)(

fh2(n+ d2)

p

)

. . .

(

fhℓ
(n+ dℓ)

p

)

=

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

Next we estimate

∑

n∈[cj,cj+1−1]

en+d1en+d2 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

Here fh1(x+ d1), . . . , fhℓ
(x+ dℓ) are di�erent polynomials. Indeed if

fhr(x+ dr) = fht(x+ dt),

then substituting x+ dr by x we get

fhr(x) = fht(x+ dt − dr). (5.21)

It is easy to see that there is exa
tly one among the polynomials

fht(x), fht(x + 1), . . . , fht(x + p − 1) for whi
h the 
oe�
ient of xk−1
is 0,

and this one is fht(x). From this and (5.21) follows that

dr ≡ dt (mod p). (5.22)

Thus from (5.21) we get

fhr(x) = fht(x).

Sin
e the polynomials f1, f2, . . . , fℓ are di�erent, from this

hr = ht (5.23)

follows. Now we 
ompute the value hr = ht. By (5.17) for n ∈ [cj , cj+1 − 1]
en+dr = fhr(n+ dr), en+dt = fht(n+ dt) where

hr =

[

n + dr − 1

p

]

+ 1,

ht =

[

n + dt − 1

p

]

+ 1. (5.24)
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By (5.23) and (5.24)

[

n+ dr − 1

p

]

=

[

n+ dt − 1

p

]

. (5.25)

Now

n + dr = qrp+ sr, n+ dt = qtp+ st (5.26)

where 0 ≤ sr, st ≤ p− 1. By (5.22)

sr = st. (5.27)

Now

[

n+ dr − 1

p

]

+ 1 =

[

qrp+ sr − 1

p

]

+ 1 = qr + 1 +

[

sr − 1

p

]

.

Similarly

[

n+ dt − 1

p

]

= qt + 1 +

[

st − 1

p

]

.

By this, (5.25) and (5.27) we have

qr = qt.

By this, (5.26) and (5.27)

dr = dt,

whi
h is a 
ontradi
tion. So indeed, the irredu
ible polynomials fh1(x +
d1), . . . , fhℓ

(x + dℓ) are di�erent. Thus the produ
t fh1(x + d1)fh2(x +
d2) . . . fhℓ

(x+ dℓ) is not of the form cg2(x). We will use the following lemma:

Lemma 5.1 (Winterhof) Suppose that p is a prime, χ is a non-prin
ipal


hara
ter modulo p of order d, f ∈ Fp[x] has s distin
t roots in Fp, and it is

not a 
onstant multiple of the d-th power of a polynomial over Fp. Let y be

a real number with 0 < y ≤ p. Then for any x ∈ R:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< p1/2 log p. (5.28)

Poof of Lemma 5.1

This lemma is the one-dimensional 
ase of Lemma 5.10 due to Winterhof

[107℄, who derived it from Weil theorem [106℄. We mention that a slightly

weaker version of the lemma 
an be found in Lemma 1 in [2℄ where 9sp1/2 log p
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is proved in pla
e of the right hand side of (5.28). (In the 
ase f(x) = x
the best 
onstant fa
tor is a
hieved by Bourgain, Co
hrane, Paulhus and C.

Pinner in [10℄, and their method also works for higher degree polynomials.)

Sin
e later in the proof we will also use Weil's theorem, we state it here

as a lemma (see in [71℄ and [106℄):

Lemma 5.2 (Weil) Suppose that p is a prime, χ is a non-prin
ipal 
har-

a
ter modulo p of order d, f ∈ Fp[x] has s distin
t roots in Fp, and it is not

a 
onstant multiple of the d-th power of a polynomial over Fp. Then:

∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

< sp1/2.

By Lemma 5.1 we get

∑

n∈[cj,cj+1−1]

en+d1en+d2 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

< ℓkp1/2 log p.

By (5.19) and (5.20) we get

|V (EN ,M,D)| ≪ ℓ2kp1/2 log p≪ ℓ2kN1/4 logN. (5.29)

Sin
e k, the degree of the polynomials f1(x), f2(x), . . . , fp(x) 
an be 
hosen

as k = 4, from (5.29) we get (5.3), whi
h was to be proved.

Proof of Theorem 5.2 First we will need some te
hni
al preparation in

order to be able to estimate 
hara
ter sums of the type whi
h appear later

in the proof of our theorem. First Katz [67℄ and Perelmuter-Shparlinski

[92℄ studied 
hara
ter sums over sub�elds of a �nite �eld. Their result was

generalized by Wan [105℄ who proved the following very general theorem:

Lemma 5.3 (Wan) Let the fi(T ) with 1 ≤ i ≤ n be pairwise 
oprime poly-

nomials. Let D be the degree of the largest squarefree divisor of

∏n
i=1 fi(T ).

Let χi be a multipli
ative 
hara
ter of the �eld Fqm for 1 ≤ i ≤ n. Suppose

that for some 1 ≤ i ≤ n, there is a root ξi of multipli
ity mi of fi(T ) su
h
that the 
hara
ter χmi

is non-trivial on the set NormFqm [ξi]/Fqm
(Fq[ξ]). Then

we have

∣

∣

∣

∣

∣

∣

∑

a∈Fq

χ1(f1(a)) . . . χn(fn(a))

∣

∣

∣

∣

∣

∣

≤ (mD − 1)q1/2.
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Part a) of the following lemma is a 
onsequen
e of Lemma 5.3, while the

estimate in part b) - the in
omplete 
ase - is new and I will derive it dire
tly

from Weil's theorem. (At the same time I will also give an alternative proof

for part a), sin
e in order to do so I just need to add one more senten
e to

the proof of part b).)

Lemma 5.4 Let p be an odd prime, q = p2 and denote the quadrati
 
har-

a
ter of Fq by γ. Clearly Fp ⊆ Fq. Let I = [a, a + 1, a + 2, . . . , b] ⊆ Fp and

f(x) ∈ Fq[x] be a polynomial whi
h is not of the form cg(x)h2(x) with c ∈ Fq,

g(x) ∈ Fp[x] and h(x) ∈ Fq[x]. Suppose that f(x) has m distin
t zeros in its

splitting �eld over Fp. Then

a)

∣

∣

∣

∣

∣

∣

∑

x∈Fp

γ(f(x))

∣

∣

∣

∣

∣

∣

≤ 2mp1/2, (5.30)

b)

∣

∣

∣

∣

∣

∑

x∈I

γ(f(x))

∣

∣

∣

∣

∣

≤ 2mp1/2(1 + log p). (5.31)

Proof of Lemma 5.4 Let n ∈ Fp be a quadrati
 non-residue modulo p, so

(

n

p

)

= −1. (5.32)

The polynomial x2 − n ∈ Fq[x] = Fp2[x] is redu
ible in Fq[x], let θ ∈ Fq be

an element for whi
h

θ2 = n (5.33)

in Fq. Sin
e n is quadrati
 non-residue modulo p, θ 6∈ Fp. Then {1, θ} is a

basis of Fq over Fp, so every element of Fq 
an be written uniquely in the

form x+ θy with x, y ∈ Fp. Then de�ne the 
onjugate of x+ θy by

x+ θy
def

= x− θy.

Then for a, b ∈ Fq we have

ab = a · b,
a + b = a + b,

and

aa ∈ Fp. (5.34)

It is easy to 
he
k that

x+ θy = (x+ θy)p, (5.35)
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sin
e by using the Euler lemma for x, y ∈ Fp we have

(x+ θy)p = xp + θpyp = xp +
(

θ2
)p−1/2

θyp = x+
(

θ2
)p−1/2

θy

= x+ n(p−1)/2θy = x+

(

n

p

)

θy = x− θy.

Thus the 
onjugation is an automorphism of Fq whi
h 
an be extended to an

automorphism of Fq by

Fq → Fq,

ε→ εp.

This is the Froebenius automorphism.

Lemma 5.5 For x, y ∈ Fp

γ(x+ θy) =

(

(x+ θy)(x+ θy)

p

)

=

(

x2 − ny2

p

)

.

Proof of Lemma 5.5 Using (5.35) and the Euler lemma we get

γ(x+ θy) = (x+ θy)(q−1)/2 = (x+ θy)(p
2−1)/2

= (x+ θy)(p
2−p)/2(x+ θy)(p−1)/2

= ((x+ θy)p)(p−1)/2 (x+ θy)(p−1)/2

=
(

x+ θy
)(p−1)/2

(x+ θy)(p−1)/2

= (x− θy)(p−1)/2(x+ θy)(p−1)/2

=
(

x2 − θ2y2
)(p−1)/2

=
(

x2 − ny2
)(p−1)/2

,

whi
h proves Lemma 5.5.

By Lemma 5.5

∑

x∈I

γ(f(x)) =
∑

x∈I

(

f(x)f(x)

p

)

.
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Sin
e I ⊆ Fp, if f(x) = akx
k + · · ·+ ao, then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

)

(akxk + · · ·+ ao)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

p

)

.

Here the 
oe�
ients of

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

are in Fp, sin
e

f(x) 
an be written in the form p(x)+θr(x) with p(x), r(x) ∈ Fp[x] and then

f(x) = akx
k + · · ·+ ao = p(x) − θr(x) so f(x)f(x) = (p(x) + θr(x))(p(x) −

θr(x)) = p2(x)− nq2(x) ∈ Fp[x].
Let b(x) =

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

. Then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

b(x)

p

)

.

Here we need Weil's theorem. If the 
onditions of Lemma 5.1 and Lemma

5.2 hold, then using these lemmas we get (5.30) and (5.31) whi
h was to be

proved. So indeed, we need to prove that the 
onditions of Lemma 5.1 and

Lemma 5.2 hold for b(x), so b(x) is not of the form ch2(x), with c ∈ Fp,

h(x) ∈ Fp[x].
Let

f(x) = ak(x− ε1)(x− ε2) . . . (x− εk)

where ak ∈ Fq, ε1, . . . , εk ∈ Fp. Then for x ∈ Fp

f(x) = ak (x− ε1) · · · (x− εk)

= ak (x− εp1) · · · (x− εpk) .

Then b(x) = f(x)f(x) = akak(x− ε1) · · · (x− εk)(x− εp1) · · · (x− εpk). Clearly
by (5.34) we have akak ∈ Fp. The next question is that when is a produ
t

(x− ε1) · · · (x− εk) (x− εp1) · · · (x− εpk) of the form n2(x) with n(x) ∈ Fp[x].
Let α1, α2, . . . , αt be the di�erent elements among ε1, . . . , εk whi
h have odd

multipli
ity in the fa
torization of f(x) = ak(x − ε1) . . . (x − εk). Writing

g(x) = (x−α1) . . . (x−αt) we get that f(x) is of the form akg(x)h
2(x) where

g(x) has no multiple roots and g(x), h(x) ∈ Fp[x]. Then

b(x) = akak(x− α1) . . . (x− αt)(x− αp
1) . . . (x− αp

t )s
2(x)

with s(x) ∈ Fp[x]. Here (x−α1) . . . (x−αt)(x−αp
1) . . . (x−αp

t ) is of the form
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u2(x) with u(x) ∈ Fp[x] if and only if {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t}.

If {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t} then for every symmetri
 polynomial

v ∈ Fp[x1, x2, . . . , xt] we have

v(α1, . . . , αt) = v(αp
1, . . . , α

p
t ) = vp(α1, . . . , αt).

Thus v(α1, . . . , αt) ∈ Fp. So the 
oe�
ients of g(x) = (x − α1) . . . (x − αt)

are the elements of Fp. Thus the 
oe�
ients of h2(x) = f(x)
akg(x)

are in Fq.

Let h(x) = xf+bf−1x
f−1+· · ·+b0. We will prove by indu
tion that bf−i ∈

Fq. Indeed the 
oe�
ient of x2f−1
in h2(x) is 2bf−1, thus bf−1 ∈ Fq. Suppose

that bf−1, bf−2, . . . , bf−v ∈ Fp. We will prove that bf−v−1 ∈ Fp also holds.

Indeed the 
oe�
ient of x2f−v−1
is of the form 2bf−v−1+j(bf−1, bf−2, . . . , bf−v)

with j ∈ Fp[x1, x2, . . . , xv]. Thus 2bf−v−1 + j(bf−1, bf−2, . . . , bf−v) is in Fq,

and by the indu
tive hypothesis j(bf−1, bf−2, . . . , bf−v) is in Fq, thus bf−v−1

is in Fq. So we proved that h(x) ∈ Fq[x]. Thus b(x) = akak(x − ε1) . . . (x −
εk)(x− ε1) . . . (x− εk) is of the form cn2(x) with c ∈ Fq, n(x) ∈ Fq[x] if and
only if f(x) is of the form cg(x)h2(x) with c ∈ Fq, g(x) ∈ Fp[x], h(x) ∈ Fq[x],
whi
h was to be proved.

In order to prove Theorem 5.2 we need one more lemma. Namely:

Lemma 5.6 Let f(x) ∈ Fp2[x] be an irredu
ible polynomial in Fp2[x] of de-
gree k, whi
h is of the form

f(x) = xk + ak−1x
k−1 + · · ·+ a0,

where ak−1 ∈ Fp but f(x) 6∈ Fp[x], so there is an 1 ≤ i ≤ k − 2 su
h that

ai 6∈ Fp. Then for d1, d2, . . . , dℓ ∈ Fp2 we have

f(x+ d1)f(x+ d2) . . . f(x+ dℓ) 6∈ Fp[x].

Proof of Lemma 5.6 Every f(x) ∈ Fp2 [x] 
an be uniquely written in the

form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

with ai ∈ Fp2. Then de�ne

τ(f(x))
def

= akx
k + ak−1x

k−1 + · · ·+ a0.

Clearly,

τ(τ(f(x))) = f(x)

τ(f(x) + g(x)) = τ(f(x)) + τ(g(x))

τ(f(x)g(x)) = τ(f(x))τ(g(x)).
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Lemma 5.7 If f(x) ∈ Fp2[x] is irredu
ible in Fp2[x], then τ(f(x)) ∈ Fp2 [x]
is also irredu
ible in Fp2[x] .

Proof of Lemma 5.7 Whenever

τ(f(x)) = g(x)h(x) with g(x), h(x) ∈ Fp2[x],

then

f(x) = τ(τ(f(x))) = τ(g(x))τ(h(x)).

Sin
e f(x) is irredu
ible it follows that τ(f(x)) or τ(g(x)) is 
onstant. From
this follows that f(x) or g(x) is 
onstant. But then τ(f(x)) is irredu
ible.

Lemma 5.8 If f(x) ∈ Fp2 [x] is an irredu
ible polynomial in Fp2[x] with

leading 
oe�
ient 1, but f(x) 6∈ Fp[x] then g(x)
def

= f(x)τ(f(x)) is in Fp[x]
and g(x) is irredu
ible in Fp[x].

Proof of Lemma 5.8 De�ne n and θ as in (5.32) and (5.33). Then every

f(x) ∈ Fp2[x] 
an be uniquely written in the form

f(x) = a(x) + θb(x)

with a(x), b(x) ∈ Fp[x]. Then

τ(f(x)) = a(x)− θb(x).

Thus

f(x)τ(f(x)) = (a(x) + θb(x))(a(x)− θb(x)) = a2(x)− nb2(x) ∈ Fp[x].

Suppose that f(x)τ(f(x)) is not irredu
ible in Fp[x], so

f(x)τ(f(x)) = g(x)h(x) (5.36)

with g(x), h(x) ∈ Fp[x], where the leading 
oe�
ients of g(x) and h(x) are
1 and deg g(x), deg h(x) ≥ 1. Then (5.36) also holds in Fp2[x] sin
e Fp ⊆
Fp2 . But there is a unique fa
torization in Fp2[x], and f(x) and τ(f(x)) are
irredu
ible polynomials in Fp2[x] with leading 
oe�
ients 1, thus

f(x) = g(x), τ(f(x)) = h(x)

or

f(x) = h(x), τ(f(x)) = g(x).
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In both 
ases we get f(x) ∈ Fp[x], whi
h is a 
ontradi
tion.

Now we are ready to prove Lemma 5.6. Suppose that

f(x+ d1) . . . f(x+ dℓ) ∈ Fp[x].

Let α ∈ Fp be a root of f(x+ d1), then f(α + d1) = 0, thus

f(α+ d1) . . . f(α+ dℓ) = 0.

But then the minimal polynomial of α in Fp[x] divides f(x+d1) . . . f(x+dℓ) ∈
Fp[x]. Next we determine the minimal polynomial of α in Fp[x]. α is a root

of f(x + d1)τ(f(x + d1)) and by Lemma 5.8 this polynomial is irredu
ible

in Fp[x]. So the minimal polynomial of α is f(x + d1)τ(f(x + d1)) in Fp[x].
Thus

f(x+ d1)τ(f(x+ d1)) | f(x+ d1) . . . f(x+ dℓ) in Fp[x].

But Fp[x] ⊆ Fp2[x], so

f(x+ d1)τ(f(x+ d1)) | f(x+ d1) . . . f(x+ dℓ) in Fp2[x].

Thus

τ(f(x+ d1)) | f(x+ d2) . . . f(x+ dℓ) in Fp2[x].

By Lemma 5.7, τ(f(x+d1)) is irredu
ible in Fp2[x] and its leading 
oe�
ient

is 1, thus by the unique fa
torization in Fp2[x], there is an 2 ≤ i ≤ ℓ su
h
that

τ(f(x+ d1)) = f(x+ di).

Without the loss of generality we may assume

τ(f(x+ d1)) = f(x+ d2). (5.37)

By the de�nition of f(x) it is of the form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

where ak = 1, ak−1 ∈ Fp[x]. Then

f(x+ d1) =
k
∑

i=0

(

(

k

i

)

akd
k−i
1 +

(

k − 1

i

)

ak−1d
k−1−i
1

+

(

k − 2

i

)

ak−2d
k−2−i
1 + · · ·+

(

i

i

)

ai

)

xi
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and

f(x+ d2) =
k
∑

i=0

(

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2

+

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai

)

xi

By the de�nition of τ

τ(f(x+ d1)) =
k
∑

i=0

(

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · ·+
(

i

i

)

ai

)

xi.

By (5.37) we get that for 0 ≤ i ≤ k

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · ·+
(

i

i

)

ai

=

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2 +

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai.

(5.38)

For i = k − 1 this gives

(

k

k − 1

)

akd1 +

(

k − 1

k − 1

)

ak−1 =

(

k

k − 1

)

akd2 +

(

k − 1

k − 1

)

ak−1. (5.39)

By the 
onditions of Lemma 5.6 we have ak = 1 and ak−1 ∈ Fp, thus ak = ak
and ak−1 = ak−1, so from (5.39)

d1 = d2 (5.40)

follows.

Next we prove by indu
tion that ai ∈ Fp. Indeed, by the 
onditions of

Lemma 5.6, ak and ak−1 ∈ Fp. Next suppose that ak, ak−1, . . . , ai+1 ∈ Fp.

We will prove that ai ∈ Fp. Indeed by ak, ak−1, . . . , ai+1 ∈ Fp then

ak = ak, ak−1 = ak−1, . . . , ai+1 = ai+1
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By this, (5.38) and (5.40) we get

ai = ai,

so ai ∈ Fp whi
h was to be proved. Thus ak, ak−1, . . . , a0 ∈ Fp. But then

f(x) ∈ Fp[x], whi
h is 
ontradi
tion. Thus we proved Lemma 5.6.

Next we return to the proof of Theorem 5.2. For N = 2 the theorem is

trivial. For N ≥ 3 let p be an odd prime for whi
h

N1/2 < p < 2N1/2. (5.41)

(By Chebysev's theorem su
h a prime p exists.) Let q = p2 and let n be a

quadrati
 non-residue modulo p, so
(

n
p

)

= −1. Let θ ∈ Fp2 be a number for

whi
h

θ2 = n

in Fq. Then {1, θ} is a basis of Fq over Fp.

Let f(x) be an irredu
ible polynomial of degree k ≥ 2 whi
h is of the

form

f(x) = xk + ak−2x
k−2 + · · ·+ a0

(so the 
oe�
ient of the term xk−1
is 0) but

f(x) 6∈ Fp[x].

By (5.14) the number of su
h polynomials is

R
def

= Np2(k)−Np(k) ≥
1

2k
p2k−1 − 1

k
pk−1 > 0,

thus su
h a polynomial exists, indeed.

De�ne the binary latti
e η : I2p → {−1,+1} by

η(x) = η((x1, x2)) = γ(f(x1 + θx2)).

Lemma 5.9

Qℓ(η) ≤ kℓ
(

p(1 + log p)2
)

≪ kℓN1/2(logN)2. (5.42)

Proof of Lemma 5.9 We remark that this 
onstru
tion is a shifted version

of the 
onstru
tion in Theorem 1 in [79℄. We 
annot use Theorem 1 in

[79℄ be
ause none of the 
onditions a), b) and 
) holds in Theorem in [79℄.

However, similarly to the proof of Theorem 1 in [79℄, it is easy to prove that
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(5.42) holds:

Write di = (d
(i)
1 , d

(i)
2 ) (for i = 1, . . . , ℓ), and 
onsider the general term of

the n-fold sum in (1.6):

∑

x∈B

η(x+ d1) . . . η(x+ dℓ)

=

[t1/b1]
∑

j1=0

[t2/b2]
∑

j2=0

η
(

(j1b1 + d
(1)
1 , j2b2 + d

(1)
2 )
)

. . . η
(

(j1b1 + d
(ℓ)
1 , j2b2 + d

(ℓ)
2 )
)

,

(5.43)

where B is a box-latti
e of form

B = {x = (j1b1, j2b2) : 0 ≤ j1b1 ≤ t1(< p), 0 ≤ j2b2 ≤ t2(< p), j1, j2 ∈ N}.

Now write

z = j1b1 + j2b2θ (5.44)

so that z belongs to the box

B′ = {j1b1 + j2b2θ : 0 ≤ j1b1 ≤ t1, 0 ≤ j2b2 ≤ t2, j1, j2 ∈ N}, (5.45)

and set

zi = d
(i)
1 + d

(i)
2 θ. (5.46)

If z ∈ B′
then f(z + z1) . . . f(z + zk) 6= 0, and by the de�nition of η and

the multipli
ativity of γ, the produ
t in (5.43) is

γ
(

f(z + z1)
)

. . . γ
(

f(z + zk)
)

= γ
(

f(z + z1) . . . f(z + zk)
)

.

Then from (5.43) we get

∑

x∈B

η(x+ d1) . . . η(x+ dℓ) =
∑

z∈B′

γ (f(z + z1) . . . f(z + zℓ)) (5.47)

Now we need the following result of Winterhof:

Lemma 5.10 (Winterhof) Let p be a prime, n ≥ 1 be an integer, q = pn

and let v1, v2, . . . , vn be a basis of the ve
tor spa
e Fpn over Fp. Let χ be a

multipli
ative 
hara
ter of Fq of order d > 1, f ∈ Fq[x] be a non
onstant

polynomial whi
h is not a d-th power of a polynomial of Fp[x] and whi
h has

m distin
t zeros in its splitting �eld over Fq, and k1, . . . , kn are non-negative

integers with k1 ≤ p, . . . , kn ≤ p, then, writing B =
{ n
∑

i=1

xivi : 0 ≤ ji < ki

}

,
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we have

∣

∣

∣

∣

∑

z∈B

χ(f(z))

∣

∣

∣

∣

< mq1/2(1 + log p)n.

Proof of Lemma 5.10 This is a part of Theorem 2 in [107℄ (where its proof

was based on A. Weil's theorem [106℄).

Write h(z) = f(z + z1) . . . f(z + zk). Then in order to prove (5.42), it

su�
es to show:

Lemma 5.11 h(x) has at least one zero in Fp whose multipli
ity is odd.

Proof of Lemma 5.11 Sin
e z1, z2, . . . , zℓ are di�erent the irredu
ible poly-
nomials f(z+z1), . . . , f(z+zℓ) are di�erent. (Indeed, the 
oe�
ients of xk−1

are di�erent.) So h(x) has a zero in Fq whose multipli
ity is odd. Thus h(x)

annot be the 
onstant multiple of a square. Applying Lemma 5.10 we obtain

from (5.47)

∑

x∈B

η(x+ d1) . . . η(x+ dℓ) ≪ kℓp(1 + log p)2 ≪ kℓN1/2(logN)2,

whi
h was to be proved.

In [50℄ we redu
ed the two dimensional 
ase to the one dimensional one

by the following way: To any 2-dimensional binary p-latti
e

η(x) : I2p → {−1,+1} (5.48)

we may assign a unique binary sequen
e Ep2 = Ep2(η) = (e1, e2, . . . , ep2) ∈
{−1,+1}p2 by taking the �rst (from the bottom) row of the latti
e (5.48) then

we 
ontinue the binary sequen
e by taking the se
ond row of the latti
e, then

the third row follows, et
.; in general, we set

eip+j = η((j − 1, i)) = γ(f((j − 1) + iθ))

for i = 0, 1, . . . , p− 1, j = 1, 2, . . . , p.

Thus we obtain a sequen
e of length p2

Ep2
def

= (e1, e2, . . . , ep2).

Now N < p2 < 4N . Consider the �rst N elements of Ep2, they form a

sequen
e of length N:

EN
def

= (e1, e2, . . . , eN).

We state that EN satis�es the 
onditions of the lemma.
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First we estimate |V (EN ,M,D)|. Let mp(x) denote the unique integer x
for whi
h

mp(x) ≡ x (mod p), 0 ≤ mp(x) < p.

Then

en+di = e[n+di−1

p ]p+mp(n+di−1)+1

and so

en+di = η

(

mp(n+ di − 1),

[

n+ di − 1

p

])

= γ

(

f

(

n+ di − 1 +

[

n+ di − 1

p

]

θ

))

. (5.49)

If 1 ≤ n ≤ M < p then

[

n+di−1
p

]

may take two di�erent values, namely qi

and qi + 1. Indeed, de�ne qi and si by di = qip + si where 0 ≤ si ≤ p − 1.
Then

[

n+ di − 1

p

]

=

[

qip+ si + n− 1

p

]

= qi +

[

si + n− 1

p

]

=

{

qi if n ≤ p− si,
qi + 1 if n > p− si.

Moreover there exists a number bi = min{M, p−si} su
h that for n ≤ bi ≤M
[

n+di−1
p

]

= qi and for bi < n ≤M we have

[

n+di−1
p

]

= qi +1. Let Ii = [0, bi],

Ji = [bi + 1,M ] (if bi =M then Ji = ∅).
Then {1, b1 + 1, b2 + 1, . . . , bℓ + 1,M + 1} is a multiset whi
h 
ontains

integers 1 = c1 < c2 < · · · < cm = M + 1 with m ≤ ℓ + 2. Then [0,M ] =
∪m−1
j=1 [cj, cj+1 − 1].

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ =
m−1
∑

j=1

∑

n∈[cj,cj+1−1]

en+d1 . . . en+dℓ (5.50)

By the de�nition of the cj 's, cj < bi+1 < cj+1 is not possible, thus cj+1−1 ≤ bi
or bi ≤ cj − 1, so [cj , cj+1 − 1] ⊆ [0, bi] or [cj, cj+1 − 1] ⊆ [bi + 1,M ]. Ea
h

interval [cj, cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ. Thus

for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exist �xed

numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) su
h that for
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n ∈ [cj , cj+1 − 1]

en+d1en+d2 . . . en+dℓ = γ (f(n+ d1 − 1 + h1θ)) γ (f(n+ d2 − 1 + h2θ)) . . .

γ (f(n+ dℓ − 1 + hℓθ))

= γ
(

f(n+ d1 − 1 + (h1 + 1)θ)f(n+ d2 − 1 + (h2 + 1)θ)

. . . f(n+ dℓ − 1 + (hℓ + 1)θ)
)

.

Hen
e

∑

n∈[cj ,cj+1−1]

en+d1 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

γ (f(n+ d1 − 1 + h1θ) · · ·f(n+ dℓ − 1 + hℓθ)) . (5.51)

Next we prove that the irredu
ible polynomials f(x + d1 − 1 +
h1θ), · · · , f(x+ dℓ − 1 + hℓθ) are di�erent. Sin
e if i 6= j and

f(x+ di − 1 + hiθ) = f(x+ dj − 1 + hjθ),

then

hi ≡ hj (mod p) and di ≡ dj (mod p). (5.52)

This 
an be proved by 
onsidering the 
oe�
ient xk−1
in the polynomials

f(x+ di − 1+ hiθ) and f(x+ dj − 1+ hjθ). By (5.49) we have hi =
[

n+di−1
p

]

and hj =
[

n+dj−1

p

]

for n ∈ [cj , cj+1 − 1]. hi ≡ hj (mod p), by 0 ≤ hi =
[

n+di−1
p

]

, hj =
[

n+dj−1

p

]

< p then hi = hj. So for n ∈ [cj , cj+1 − 1]

[

n + di − 1

p

]

=

[

n + dj − 1

p

]

(5.53)

By (5.52),

n+ di − 1 ≡ n+ dj − 1 (mod p). (5.54)

We get from (5.53) and (5.54) that

n+ di − 1 = n+ dj − 1

So

di = dj

69



whi
h is a 
ontradi
tion. Thus

qj(x)
def

= f(x+ d1− 1+h1θ)f(x+ d2− 1+h2θ) · · ·f(x+ dℓ− 1+hℓθ) (5.55)

has no multiple root. Here by de�nition f(x) 6∈ Fp[x], by using Lemma 5.6

qj(x) 6∈ Fp[x] and it has no multiple root. Thus it is not of the form cg(x)h2(x)
with c ∈ Fp, g(x) ∈ Fp[x], h(x) ∈ Fq[x]. By the triangle inequality, Lemma

5.4, (5.50), (5.51) and (5.55) we get

|V (EN ,M,D)| ≤
m−1
∑

j=1

∣

∣

∣

∣

∣

∣

∑

n∈[cj ,cj+1−1]

γ(qj(n))

∣

∣

∣

∣

∣

∣

≪
m−1
∑

j=1

(deg qj)p
1/2 log p

≪ ℓ(deg qj)p
1/2 log p≪ ℓ2kp1/2 log p

≪ ℓ2kN1/4 logN

whi
h proves (5.5), sin
e we may 
hoose degf = k as k = 4.
Next we prove (5.6). By Lemma 5.9 we have Qℓ(η) ≪ kℓN1/2(logN)2.

By Theorem 5.3 (whi
h we will prove later) Cℓ(EN) ≪ Cℓ(Ep2) ≪
kℓ2N1/2(logN)2 ≪ kℓN1/2(logN)2, sin
e k 
an be 
hosen as k = 4 this

proves (5.6).

Next we prove (5.7). We split EN into

[

N−1
p

]

+ 1 di�erent subse-

quen
es: E(1) = (e1, e2, . . . , ep), E
(2) = (ep+1, ep+2, . . . , e2p),. . . , E

([N−1
p ]+1) =

(e([N−1
p ]p+1), . . . , eN). By the triangle-inequality

W (EN) ≤
[N−1

p ]+1
∑

j=1

W (Ej). (5.56)

Here Ej = (e(j−1)p+1, . . . , ejp) = (f1, f2, . . . , fp) for 1 ≤ j ≤
[

N−1
p

]

and

Ej = (e(j−1)p+1, . . . , eN) = (f1, f2, . . . , fN−(j−1)p) for j =
[

N−1
p

]

+ 1.

In [78℄ Mauduit and Sárközy proved thatW (EN) ≤
√

NC2(EN). By this

and using (5.6) for ℓ = 2 we get (5.7), whi
h 
ompletes the proof of Theorem

5.2. We also remark that by using the same argument and (5.8) we get (5.9)

in Corollary 5.2.

Proof of Theorem 5.3 For x ∈ Z let

x = rN(x)N +mN (x)

where mN (x) ≡ x (mod N), 0 ≤ mN (x) ≤ N − 1 and rN(x) =
[

x
N

]

.
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By de�nition

exN+y+1 = η(y, x) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1

and thus

en = η(mN(n− 1), rN(n− 1)).

Then for 1 ≤ i ≤ ℓ

en+di = η(mN(n + di − 1), rN(n+ di − 1)). (5.57)

Here

n+ di − 1 = (rN(n− 1) + rN(di))N +mN (n− 1) +mN(di).

Thus if 0 ≤ mN (n− 1) +mN(di) ≤ N − 1 then

rN(n+ di − 1) = rN(n− 1) + rN(di)

mN (n+ di − 1) = mN(n− 1) +mN (di)

and if N ≤ mN(n− 1) +mN (di) then

rN(n+ di − 1) = rN(n− 1) + rN(di) + 1

mN (n+ di − 1) = mN(n− 1) +mN (di)−N.

Thus we get that there exists an ai
def

= N − 1−mN(di) su
h that for mN (n−
1) ≤ ai

rN(n+ di − 1) = rN(n− 1) + rN(di)

mN (n+ di − 1) = mN(n− 1) +mN (di) (5.58)

and for ai + 1 ≤ mN (n− 1)

rN(n+ di − 1) = rN(n− 1) + rN(di) + 1

mN (n+ di − 1) = mN(n− 1) +mN (di)−N. (5.59)

Then {1, a1 + 1, a2 + 1, . . . , aℓ + 1, mN(M − 1) + 1, N} is a multiset whi
h


ontains integers 1 = c1 < c2 < · · · < cm ≤ N where m ≤ ℓ + 3. By (5.58)

and (5.59) we get that for cj ≤ n ≤ cj+1 − 1 there exist numbers bi,j and fi,j
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su
h that

rN(n+ di − 1) = rN(n) + rN(di − 1) + bi,j

mN (n+ di − 1) = mN(n) +mN(di − 1)− fi,j (5.60)

where bi,j ∈ {0, 1} and fi,j ∈ {0, N}. Moreover, if bi,j = 0 then fi,j = 0 and

if bi,j = 1 then fi,j = N . Now

[0,M ] =

= {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

, x = 0, 1, . . . , mN(M − 1)}

∪ {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

− 1, x = mN (M − 1) + 1,

. . . , N − 1}

Thus

[0,M ] = ∪m−1
j=1 {n : n = rN (N − 1)N +mN (n− 1) + 1,

cj ≤ mN(n− 1) ≤ cj+1 − 1, rN (n− 1) ∈ {0, 1, 2, . . . , Tj}} (5.61)

where Tj =
[

M−1
N

]

if cj+1 ≤ mN (M − 1) + 1 and Tj =
[

M−1
N

]

− 1 if mN(M −
1) + 1 ≤ cj. (Sin
e mN (M − 1) + 1 ∈ {c1, c2, . . . , cm} and c1 < c2 < · · · < cm
thus cj < mN(M − 1) + 1 < cj+1 is not possible.) By this, (5.57) and (5.58)

V (EN ,M,D) =

M
∑

n=1

en+d1 . . . en+dℓ =

m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

en+d1 . . . en+dℓ

=

m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

ℓ
∏

i=1

η(mN(n− 1) +mN(di)− fi,j, rN(n− 1) + rN(di) + bi,j)

By (5.61)

{(mN(n− 1), rN(n− 1)) : 1 ≤ n ≤M and cj ≤ mN (n− 1) ≤ cj+1 − 1} =

{(x, y) : 0 ≤ x ≤ Tj and cj ≤ y ≤ cj+1 − 1}.
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Using this and (5.60) we get

V (EN ,M,D) =

m−1
∑

j=1

Tj
∑

x=0

cj+1−1
∑

y=cj

ℓ
∏

i=1

η(x+mN (di)− fi,j, y + rN (di) + bi,j) ≤ (m− 1)Qℓ(η)

≤ (ℓ+ 2)Qℓ(η)

whi
h was to be proved. Here we used the fa
t that the pairs (mN (di)− fi,j,
rN (di) + bi,j) are di�erent for �xed j as i runs over 1, 2, . . . , ℓ. Indeed if

(mN(di1)− fi1,j, rN (di1) + bi1,j) = (mN (di2)− fi2,j, rN(di2) + bi2,j),

then

N(rN (di1) + bi1,j) +mN(di1)− fi1,j = N(rN (di2) + bi2,j) +mN(di2)− fi2,j.

Sin
e if bi,j = 0 then fi,j = 0 and if bi,j = 1 then fi,j = N , from this we get

NrN(di1) +mN(di1) = NrN (di2) +mN (di2)

di1 = di2

whi
h is a 
ontradi
tion.
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6 On Legendre symbol latti
es (the non-

degenerate 
ase)

Pseudorandom binary sequen
es have many important appli
ations. In

parti
ular, they are used as a key stream in the 
lassi
al stream 
ipher 
alled

the Vernam 
ipher.

In one dimension, hen
e in the 
ase of binary sequen
es, many good 
on-

stru
tions have been given. Typi
ally, the really good 
onstru
tions involve

Fp, additive or multipli
ative 
hara
ters and polynomials, and the 
ru
ial

tool in the estimation of the pseudorandom measures is Weil's theorem. Un-

fortunately, this approa
h in its original form does not readily apply in higher

dimensions. The di�
ulty is that in n dimensions 
onstru
tions involving Fp,


hara
ters and polynomials f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn], lead natu-

rally to the n-dimensional analogues of Weil's theorem. In parti
ular they

lead to the theorem of Deligne. While Fouvry and Katz [24℄ have simpli�ed

the requirements for applying Deligne's theorem the in
onvenient assumption

of nonsingularity is still required in order to obtain sharp bounds.

In spite of these di�
ulties, in [65℄ and [80℄ good n-dimensional 
on-

stru
tions were presented. In these papers the authors got around the dif-

�
ulty des
ribed above in the following way. Finite �elds Fq with q = pn

and polynomials G(x) ∈ Fq[x] are 
onsidered. Chara
ter sums involving

G(x) and 
hara
ters of Fq 
an be estimated by Weil's theorem so that no

nonsingularity assumption is needed. On the other hand, if e1, e2, . . . , en
is a basis in Fq, then every x ∈ Fq has a unique representation in the form

x = x1e1+x2e2+· · ·+xnen with x1, x2, . . . , xn ∈ Fp. Then g(x1, x2, . . . , xn) =
G(x1e1 + x2e2 + · · ·+ xnen) ∈ Fq[x1, x2, . . . , xn] is a well-de�ned polynomial,

and the estimate of n-fold 
hara
ter sums involving g(x1, x2, . . . , xn) 
an be

redu
ed to the estimate of 
hara
ter sums over Fq involving G, so that Weil's

theorem 
an be used. (This prin
iple goes ba
k to Davenport and Lewis

[20℄.)

This detour enables one to give sharp upper bounds, but it also has 
on-

siderable disadvantages. In parti
ular, in this way we get rather arti�
ial 
on-

stru
tions. More natural 
onstru
tions 
annot be tested with this approa
h.

Se
ondly, the implementation of these arti�
ial 
onstru
tions is more 
om-

pli
ated. Thus one might like to look for a trade-o� between appli
ability of

the method and sharpness of the result, in other words, for a method whi
h

is mu
h more �exible and appli
able at the expense of providing weaker but

still nontrivial upper bounds. We will show that in the 
ase when n = 2,
there is su
h a method, based on the te
hniques introdu
ed by Gyarmati and

Sárközy [60℄ to estimate 
ertain related 
hara
ter sums. This method allows
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us to give a simple des
ription of the ex
eptional polynomials, see Se
tion

6.1. But the pri
e paid for the �exibility of this method is that the upper

bounds are not optimal usually. For a two dimensional p-latti
e they are,

up to logarithmi
 fa
tors, p3/2 instead of the optimal bound of p. On the

other hand, they improve on the trivial bound of p2 
onsiderably. Here we

mention that in Se
tion 7 we will be able to show that for a 
ertain (rather

spe
ial) family of polynomials the �nite �eld 
onstru
tion presented in [79℄

is equivalent to a Legendre symbol 
onstru
tion of type (6.2). Thus in this


ase we obtain a family of binary latti
es whi
h 
ombines the advantages of

the two 
onstru
tions: as in [79℄ we have optimal bounds, and as a Legendre

symbol 
onstru
tion it 
an be implemented fast and easily.

In Se
tions 6 and 7 I present results from [61℄ and [62℄, where with my


oauthors Cameron L. Stewart and András Sárközy we studied a 
onstru
tion

based on the Legendre symbol:

In one dimension the best and most intensively studied 
onstru
tion is

based on the use of the Legendre symbol, see [31℄, [64℄, [77℄, [98℄. Let p
be a prime, f(x) ∈ Fp[x] be a polynomial, and de�ne the sequen
e Ep =
(e1, . . . , ep) by

en =

{ (

f(n)
p

)

if (f(n), p) = 1,

+1 if p | f(n).
(6.1)

We will identify the elements of Fp with the residue 
lasses modulo p, and
we will not distinguish between the residue 
lasses and their representing

elements. The natural two dimensional extension of this 
onstru
tion is the

following.

Constru
tion 6.1 (Gyarmati, Sárközy, Stewart) Let p be an odd

prime, f(x1, x2) ∈ Fp[x1, x2] be a polynomial in two variables. De�ne

η : I2p → {−1,+1} by

η(x1, x2) =

{ (

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p | f(x1, x2).
(6.2)

First, in Se
tion 6.1, we will show that in two dimensions there are new

di�
ulties arising, and there are many "bad" polynomials f(x1, x2). Then,

in Se
tion 6.2, we will formulate Theorem 6.1, our main result. We will also

present several su�
ient 
riteria for a polynomial f(x1, x2) for whi
h the 
or-

responding binary p-latti
e (6.2) possesses strong pseudorandom properties.

The rest of this se
tion will be devoted to the proof of this main result.

In Se
tion 7 we will study (6.2) in the 
ase when f(x1, x2) is one of the

degenerate polynomials des
ribed in Se
tion 6.1. Moreover, we will also study
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implementation problems related to some 
onstru
tions based on Theorem

6.1.

6.1 Negative examples

In this se
tion we will present examples of polynomials f(x1, x2) ∈
Fp[x1, x2] for whi
h the binary p-latti
e de�ned in (6.2) has weak pseudo-

random properties.

Example 6.1 (Gyarmati, Sárközy, Stewart) If

f(x1, x2) = c (g(x1, x2))
2

with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2], then every element of the latti
e de�ned

in (6.2) is

(

c
p

)

ex
ept the zeros of f(x1, x2). It follows that if the degree of

f(x1, x2) is not very large, then Q1(η) is large.

Example 6.2 (Gyarmati, Sárközy, Stewart) If f(x1, x2) = g(x1) with a

polynomial g(x) ∈ Fp[x] of one variable, then we have

η(x1, x2)η(x1, x2 + 1) =

(

g(x1)

p

)(

g(x1)

p

)

= +1

(ex
ept the zeros of g(x1)) from whi
h it follows that Q2(η) is large.

Example 6.3 (Gyarmati, Sárközy, Stewart) If f(x1, x2) = g(x1)h(x2)
with polynomials g(x), h(x) ∈ Fp[x], then it 
an be shown by a little 
ompu-

tation that Q4(η) is large.

The polynomials f(x1, x2) o

urring in Examples 6.1-6.3 are spe
ial 
ases

of the following:

De�nition 6.1 (Gyarmati, Sárközy, Stewart) The polynomial f(x1, x2)
is 
alled degenerate if it is of the form

f(x1, x2) =

(

r
∏

j=1

fj(αjx1 + βjx2)

)

g(x1, x2)
2, (6.3)

where αj, βj ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].

A polynomial f ∈ Fp[x1, x2] whi
h 
an be expressed in the form (6.3) is

said to be degenerate and otherwise it is said to be non-degenerate.
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As Examples 6.1, 6.2 and 6.3 show, if f is degenerate then it may be that

the asso
iated binary p-latti
e (6.2) has weak pseudorandom properties. We

shall analyse the situation when f is degenerate in more details in Se
tion

7. In the balan
e of this se
tion we shall restri
t our attention to binary

p-latti
es (6.2) for whi
h f is non-degenerate.

6.2 Su�
ient 
onditions

In one dimension Goubin, Mauduit and Sárközy [31℄ gave su�
ient 
on-

ditions on the polynomial f(x) to guarantee small pseudorandom measures.

Let Fp denote an algebrai
 
losure of Fp.

Theorem 6.A (Goubin, Mauduit, Sárközy) Let f(x) ∈ Fp[x] be a poly-

nomial of degree k(> 0) whi
h has no multiple zero in Fp. De�ne the sequen
e

Ep ∈ {−1,+1}p by (6.1). Then W (Ep), the �well-distribution measure� of

Ep, satis�es
W (Ep) < 10kp1/2 log p.

Moreover assume that one of the following 3 
onditions holds:

a) ℓ = 2,
b) 2 is a primitive root modulo p,

) (4k)ℓ < p or (4ℓ)k < p,
Then Cℓ(Ep), "the 
orrelation measure of order ℓ," satis�es

Cℓ(Ep) ≤ 10kℓp1/2 log p.

(See [77℄ for the de�nition of well-distribution measure and 
orrelation mea-

sure.)

We extend their result to the 2 dimensional 
ase:

Theorem 6.1 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a polynomial of degree k. Suppose that f(x1, x2) 
annot be expressed in

the form (6.3) and one of the following 5 
onditions holds:

a) f(x1, x2) is irredu
ible in Fp[x1, x2],
b) ℓ = 2,

) 2 is a primitive root modulo p,
d) 4k+ℓ < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary p-latti
e η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p.

The rest of this se
tion is devoted to the proof of this theorem.
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6.3 Proof of Theorem 6.1

For k > p1/2/10 the theorem is trivial. Thus we may suppose that

k ≤ p1/2/10. (6.4)

Similarly, we may suppose that

k2 + ℓ2 < p, (6.5)

otherwise the theorem is trivial sin
e

4k2ℓ2 > k2 + ℓ2 ≥ p,

and so

10kℓp3/2 log p > p2.

Lemma 6.1 If F is a �eld, then in F[x1, x2, . . . , xn] every polynomial has a

fa
torization into irredu
ible polynomials whi
h is unique apart from 
onstant

fa
tors and reordering.

Proof of Lemma 6.1 See, for example [93, Theorem 207℄.

If f(x1, x2) ∈ Fp[x1, x2], then we will also write f(x1, x2) = f(x) with

x = (x1, x2).

Lemma 6.2 (Gyarmati, Sárközy, Stewart) Let p ≥ 5 be a prime and χ
be a multipli
ative 
hara
ter of order d. Suppose that h(x1, x2) ∈ Fp[x1, x2]
is not of the form cg(x1, x2)

d
with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2]. Let k be the

degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-latti
e B ⊆ I2p .

We remark that the upper bound in the lemma is nearly sharp: it is easy

to see that there are polynomials h(x1, x2) of the form h(x1, x2) = f(x1) (so
that h(x1, x2) depends only one of the two variables) for whi
h the left hand

side of the inequality in the lemma with F2
p in pla
e of B is > c(k)p3/2.

Proof of Lemma 6.2

It follows easily from Lemma 6.1 that h(x1, x2) 
annot be of form both

g1(x1)p1(x1, x2)
d
and g2(x2)p2(x1, x2)

d
simultaneously with g1(x), g2(x) ∈

Fp[x] and p1(x1, x2), p2(x1, x2) ∈ Fp[x1, x2]. Thus by symmetry reasons we

may suppose that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d
.
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Sin
e B is a box p-latti
e, write it in the form

B = {x = (v1b1, v2b2) : v1, v2 ∈ N, 0 ≤ v1b1 ≤ t1, 0 ≤ v2b2 ≤ t2} (6.6)

with b1, b2 ∈ N and 0 ≤ t1, t2 < p. Then by the triangle inequality

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

≤
∑

0≤v2≤[t2/b2]

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For �xed v2, b1 and b2, the polynomial h(v1b1, v2b2) is a polynomial of one

variable in v2. We will use the following 
onsequen
e of Weil's theorem [106℄:

Lemma 6.3 (Weil) Suppose that p is a prime, χ is a non-prin
ipal 
har-

a
ter modulo p of order d, f(x) ∈ Fp[x] has s distin
t roots in Fp, and it is

not the 
onstant multiple of the d-th power of a polynomial over Fp. Let y be

a real number with 0 < y ≤ p. Then for any x ∈ Fp:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.

Proof of Lemma 6.3

This is an immediate 
onsequen
e of Lemma 1 in [2℄.

If, for �xed v2, b1, b2, the polynomial h(xb1, v2b2) ∈ Fp[x] of one variable

is not of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x], then by Lemma 6.3

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ 9kp1/2 log p.

We will show that for �xed b1 and b2 there are only few values of v2 for whi
h
the polynomial h(xb1, v2b2) ∈ Fp[x] is of the form cg(x)d. For this we need

Lemma 6.4 (Gyarmati, Sárközy, Stewart) Let h(x, y) ∈ Fp[x, y] be a

polynomial of two variables, whi
h is not of the form q(y)p(x, y)d with q(y) ∈
Fp[y], p(x, y) ∈ Fp[x, y]. Denote by n and m the degree of the polynomial

h(x, y) in x and y, respe
tively. Then there are at most nm + m values

y0 ∈ Fp su
h that

h(x, y0) ∈ Fp[x]

is of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x].

Proof of Lemma 6.4 This is Lemma 4 in [60℄.
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Let n and m be the degree of h(x1, x2) in x1 and x2 respe
tively. We have

assumed that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d
, thus by Lemma

6.4, there are at most nm + m values of v2 su
h that h(xb1, v2b2) is of the
form cg(x)d for some c ∈ Fp, g(x) ∈ Fp[x]. Let V denote the set of these v2's.
Then

|V| ≤ mn+m ≤ k2 + k. (6.7)

By (6.6)

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

≤
∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

+
∑

v2∈Fp\V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For v2 ∈ V we use the trivial estimate p for the inner sum. By Lemma 6.4

and (6.7)

∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ (k2 + k)p.

For v2 ∈ Fp \ V we use Lemma 6.3 to dedu
e that

∑

v2∈Fp\V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

< 9kp3/2 log p.

Thus by (6.4)

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

< (k2 + k)p+ 9kp3/2 log p < 10kp3/2 log p

whi
h 
ompletes the proof of Lemma 6.2.

Lemma 6.5 (Gyarmati, Sárközy, Stewart) Suppose that f ∈ Fp[x1, x2]
is a polynomial su
h that there are no distin
t d1, . . . ,dℓ ∈ F2

p with the

property that f(x + d1) . . . f(x + dℓ) is of the form cg(x)2 with c ∈ Fp,

g ∈ Fp[x1, x2]. Let k be the degree of the polynomial f(x1, x2). Then for the

binary p-latti
e η de�ned in (6.3) we have

|Qℓ(η)| < 11kℓp3/2 log p.
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Proof of Lemma 6.5 We have

Qℓ(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) · · ·η(x+ dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distin
t d1, . . . ,dℓ ∈ I2p and box p-
latti
es B su
h that B + d1, . . . , B + dℓ ⊆ I2p . Let B be the box p-latti
e,
d1, . . . ,dℓ ∈ I2p be the ve
tors for whi
h this maximum is attained so that

Qℓ(η) =

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) · · ·η(x+ dℓ)

∣

∣

∣

∣

∣

.

Write h(x) = f(x+ d1) · · ·f(x+ dℓ), then

Qℓ(η) ≤
∣

∣

∣

∣

∣

∑

x∈B

(

h(x)

p

)

∣

∣

∣

∣

∣

+
∑

x∈B
h(x)=0

1.

h(x) is a polynomial of degree kℓ. Estimating the number of zeros of h(x)
we �nd that

∑

x∈B
h(x)=0

1 ≤ kℓp. (6.8)

By assumption h(x) is not of the form cg(x)2 and its degree is ℓk. Thus
by Lemma 6.2 and (6.8) we have

Qℓ(η) ≤ 10ℓkp3/2 log p+ ℓkp,

whi
h was to be proved.

Suppose that one of the 5 
onditions in Theorem 6.1 holds. We will prove

that the produ
t

h(x) = f(x+ d1) . . . f(x+ dℓ)


annot be the 
onstant multiple of a perfe
t square. Then by Lemma 6.5 we

get Theorem 6.1.

Next we will introdu
e three de�nitions (they are very similar to the ones

introdu
ed by Goubin, Mauduit and Sárközy in [31℄).

De�nition 6.2 (Gyarmati, Sárközy, Stewart) Let G be a group with re-

spe
t to addition. Let A and B be subsets of G and suppose that for all c in
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G the number of solutions of

a+ b = c,

with a in A and b in B is even. Then (A,B) is said to have property P.

De�nition 6.3 (Gyarmati, Sárközy, Stewart) Let r, ℓ, and m be posi-

tive integers with r, ℓ ≤ m. The triple (r, ℓ,m) is said to be admissible if

there are no A,B ⊆ Zm su
h that |A| = r, |B| = ℓ, and (A,B) possesses

property P.

We shall also introdu
e an equivalen
e relation on Fp[x1, x2] as in the

proof of Theorem 6.A in [31℄.

De�nition 6.4 (Gyarmati, Sárközy, Stewart) Two polynomials

ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are equivalent if there are a1, a2 ∈ Fp

su
h that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Write the polynomial f(x1, x2) in the theorem as a produ
t of irredu
ible

polynomials in Fp[x1, x2]. (Re
all that the latti
e η is determined by this

polynomial f(x1, x2), the de�nition of η is presented in (6.2).) Let us group

these fa
tors so that in ea
h group the equivalent irredu
ible fa
tors are


olle
ted. Consider a typi
al group ϕ(x1 + a1,1, x2 + a2,1), ϕ(x1 + a1,2, x2 +
a2,2), . . . , ϕ(x1 + a1,s, x2 + a2,s). Then f(x1, x2) is of the form

f(x1, x2) = ϕ(x1 + a1,1, x2 + a2,1) · · ·ϕ(x1 + a1,s, x2 + a2,s)g(x1, x2),

where g(x1, x2) has no irredu
ible fa
tor equivalent with any ϕ(x1+a1,i, x2+
a2,i) (1 ≤ i ≤ s).

We will use the following lemma:

Lemma 6.6 (Gyarmati, Sárközy, Stewart) Let ϕ(x1, x2) ∈ Fp[x1, x2] be
nonzero and let c, a1, a2 ∈ Fp with (a1, a2) 6= (0, 0) be su
h that

ϕ(x1, x2) = cϕ(x1 + a1, x2 + a2), (6.9)

for all (x1, x2) in F2
p. Suppose that the degree of ϕ(x1, x2) is less than p. Then

there is a polynomial g ∈ Fp[x] su
h that

ϕ(x1, x2) = g(a2x1 − a1x2). (6.10)
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Proof of Lemma 6.6 We will use repeatedly the fa
t that if two poly-

nomials of degree less than p in ea
h variable de�ne the same polynomial

fun
tion, then they must also be identi
al polynomials.

By 
onsidering the highest degree terms in (6.9), we get c = 1 so that

ϕ(x1, x2) = ϕ(x1 + a1, x2 + a2).

It follows from this that for every t ∈ Fp

ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2). (6.11)

One of a1 and a2 is nonzero and, without loss of generality, we may suppose

that a2 6= 0. Then write ϕ(x1, x2) in the form

ϕ(x1, x2) = ϕ(a−1
2 ((a2x1 − a1x2) + a1x2), x2)

= qn(a2x1 − a1x2)x
n
2 + qn−1(a2x1 − a1x2)x

n−1
2 + . . .

+ q0(a2x1 − a1x2), (6.12)

where qi(x) ∈ Fp[x] are polynomials of one variable. For �xed x1, x2 write

A = ϕ(x1, x2) and Qi = qi(a2x1 − a1x2) = qi(a2(x1 + ta1) − a1(x2 + ta2)).
Then by (6.11) and (6.12) for every t ∈ Fp:

A = ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2) = Qn(x2 + ta2)
n + · · ·+Q0.

Both A and the expression on the right above are polynomials in t of degree
at most p. These polynomials de�ne the same fun
tion and so they are the

same polynomials, whi
h is possible only if n = 0. It follows that

q0(a2x1 − a1x2)− ϕ(x1, x2) = Q0 −A = 0,

for every x1, x2 ∈ Fp. Sin
e both q0 and ϕ have degree less than p in x1 and
x2, thus

q0(a2x1 − a1x2) = ϕ(x1, x2)

as formal polynomials, whi
h proves (6.10).

First we study the 
ase when 
ondition a) holds in Theorem 6.1, so when

f(x1, x2) is irredu
ible in Fp[x1, x2]. As before let d1, . . . ,dℓ be distin
t ele-

ments of I2p and put h(x) = f(x+d1) · · · f(x+dℓ). Then by Lemma 6.6 the

irredu
ible polynomials f(x + dj) are di�erent sin
e f(x1, x2) is not of the
form (6.3). By Lemma 6.1, there is unique fa
torization in Fp[x1, x2], thus
h(x) 
annot be the 
onstant multiple of a perfe
t square. By using Lemma

6.5 we get the statement.
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Next we prove parts b), 
) and d) in Theorem 6.1. Write f(x1, x2) in the

form u(x1, x2)(v(x1, x2))
2
where u(x1, x2) is squarefree, so, in other words,

there is no non-
onstant irredu
ible polynomial h(x1, x2) with (h(x1, x2))
2
a

divisor of u(x1, x2). Sin
e f(x1, x2) is not of the form (6.3), in the fa
tor-

ization of u(x1, x2) there is an irredu
ible fa
tor u(x1, x2) whi
h 
annot be

written in the form

u(x1, x2) = u(αx1 + βx2). (6.13)

Consider the polynomials u(x + ai) for i = 1, 2, . . . , r whi
h are equivalent

with u(x) and appear in the fa
torization of u(x).
We shall prove that h(x) = f(x + d1) · · ·f(x + dℓ) is not a 
onstant

multiple of a perfe
t square. We shall suppose that h(x) is the 
onstant

multiple of a perfe
t square. Then h1(x) = u(x + d1) · · ·u(x + dℓ) is also a


onstant multiple of a perfe
t square.

Write h1(x) as a produ
t of irredu
ible polynomials in Fp[x1, x2]. Then

all polynomials u(x + ai + dj) (1 ≤ i ≤ s, 1 ≤ j ≤ ℓ) o

ur amongst the

fa
tors. These polynomials u(x+ai+dj) are equivalent, and no other fa
tors

belonging to this equivalen
e 
lass will o

ur amongst the irredu
ible fa
tors

of h1(x). By Lemma 6.6 all polynomials u(x+c) for c ∈ F2
p are distin
t sin
e

u is not of the form (6.13). Thus in the 
olle
tion, formed by the equivalent

fa
tors u(x+ai+dj), every polynomial must o

ur an even number of times.

As a 
onsequen
e every c ∈ F2
p o

urs an even number of times in the form

ai + dj with 1 ≤ i ≤ r and 1 ≤ j ≤ ℓ.

Lemma 6.7 (Gyarmati, Sárközy, Stewart) Let s(s− 1)/2 < p and

di = (d′i, d
′′
i ) ∈ F2

p (1 ≤ i ≤ s)

be di�erent ve
tors. Then there exists a λ ∈ F∗
p su
h that

d′i + λd′′i ∈ Fp (1 ≤ i ≤ s)

are di�erent.

Proof of Lemma 6.7 Suppose that for some pair (i, j) with 1 ≤ i < j ≤
ℓ we have

d′i + λd′′i = d′j + λd′′j .

Then d′′i 6= d′′j , otherwise we obtain (d′i, d
′′
i ) = (d′j, d

′′
j ). Thus for every i 6= j

at most one λ exists su
h that

d′i + λd′′i = d′j + λd′′j .
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The number of pairs (i, j) with 1 ≤ i < j ≤ ℓ is ℓ(ℓ − 1)/2. Thus at most

ℓ(ℓ− 1)/2 values of λ exist su
h that

d′i + λd′′i = d′j + λd′′j

for some i 6= j. Sin
e ℓ(ℓ− 1)/2 < p the lemma follows.

We have A = {a1, . . . , ar} and D = {d1, . . . ,dℓ} ⊆ F2
p, where r ≤ k. By

Lemma 6.7 we may 
hoose λ ∈ Fp su
h that both sets

A′ = {a′ + λa′′ : (a′, a′′) ∈ A}

and

D′ = {d′ + λd′′ : (d′, d′′) ∈ D}


ontain di�erent elements.

Lemma 6.8 (Gyarmati, Sárközy, Stewart) (A′,D′) possesses property

P.

Proof of Lemma 6.8 In order to verify the lemma we need to prove that

for any c ∈ Fp the number of solutions

a + d = c, a ∈ A′, d ∈ D′
(6.14)

is even. Indeed, it is 
lear that the number of solutions of (6.14) is the same

as the number of solutions of

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D
c′ + λc′′ = c. (6.15)

Sin
e (A,D) possesses property P, for ea
h (c′, c′′) ∈ F2
p the number of solu-

tions of the equation

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

is even. Thus the number of solutions of the system (6.15) is also even,

and equivalently, the number of solutions of (6.14) is also even. This proves

Lemma 6.8.

By Lemma 6.8 (A′,D′) possesses property P. Thus (r, ℓ, p) is not an ad-

missible triple. By 
ontrast we have the following lemma.

Lemma 6.9 (Goubin, Mauduit, Sárközy) (i) For every prime p and r ∈
N the triple (r, 2, p) is admissible.
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(ii) If p is prime, r, ℓ ∈ N and

4ℓ+r < p,

then (r, ℓ, p) is admissible.

(iii) If p is a prime su
h that 2 is a primitive root modulo p, then for

every pair (r, ℓ) ∈ N with r < p, ℓ < p the triple (r, ℓ, p) is admissible.

Proof of Lemma 6.9 Parts (i) and (iii) are Theorem 2 in [31℄ while part

(ii) is Theorem 2 in [79℄.

Sin
e (r, ℓ, p) is not admissible parts b), 
) and d) of Theorem 6.1 follow

from Lemma 6.9. In the proofs of b) and d) we 
ould have repla
ed Lemma

6.8 by Lemma 4 in [79℄, however the lemma there does not su�
e to prove

part 
) in Theorem 6.1, thus we have preferred to prove Lemma 6.8 here.

In order to prove part e) in Theorem 6.1 we note that the degree of the

polynomial h(x1, x2) in x1 is odd, thus it 
annot be the 
onstant multiple of

a perfe
t square. Using Lemma 6.5 again part e) follows.
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7 On Legendre symbol latti
es (the degenerate


ase and a related 
onstru
tion)

In this se
tion our goal is to 
ontinue the study of Constru
tion 6.1.

First we will analyze the degenerate 
ase. In Se
tion 7.1 we will analyze

the stru
ture of the degenerate polynomials f(x1, x2), and we will introdu
e

the notion of the normal form and rank r = r(f) of su
h a polynomial. In

Se
tion 7.2 we will prove that if f is degenerate, ℓ ≤ r = r(f), η is de�ned by

(6.2) and one of four spe
i�ed 
onditions holds, then Qℓ(η) is small. We will

also present an algorithm for de
iding whether a given polynomial f(x1, x2) is
degenerate and, if it is, for determining its normal form. In Se
tion 7.3 we will

show that here the upper bound r 
annot be repla
ed by 2r. In Se
tion 7.4 we

will study the implementation of Constru
tion 6.1 and, in parti
ular, we will


onstru
t a large family of polynomials f(x1, x2) whi
h are non-degenerate

and satisfy the �rst su�
ient 
ondition in Theorem 6.1 so that the binary

latti
e η in (6.2) possesses strong pseudorandom properties. In parti
ular

its pseudorandom measures Qℓ(η) are small for ℓ not very large. Finally, in

Se
tion 7.5, we 
onstru
t families of polynomials for whi
h the bounds for

the pseudorandom measures are essentially optimal.

7.1 Stru
ture of degenerate polynomials

In this se
tion our goal is to transform the representation (6.3) of a degen-

erate polynomial into another more useful one. We will need several lemmas.

Lemma 7.1 If F is a �eld, then in F[x1, x2, . . . , xn] every polynomial has a

fa
torization into irredu
ible polynomials whi
h is unique apart from 
onstant

fa
tors and reordering.

Proof of Lemma 7.1 See, for example [93, Theorem 207℄. �

Lemma 7.2 (Gyarmati, Sárközy, Stewart) Let g1, g2 ∈ Fp[x, y] and f ∈
Fp[x] be non-zero polynomials. Suppose that for some (α, β) ∈ Fp × Fp

g1(x, y)g2(x, y) = f(αx+ βy). (7.1)

Then there exist f1, f2 ∈ Fp[x] su
h that

gi(x, y) = fi(αx+ βy)

for i = 1, 2.
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Proof of Lemma 7.2 If (α, β) = (0, 0) the result is immediate. Thus we

may suppose that (α, β) 6= (0, 0) and, without loss of generality, we may

assume that α 6= 0. Put
z = αx+ βy

so that x = α−1z − α−1βy. We may now de�ne h1, h2 in Fp[y, z] by putting

hi(y, z) = gi(α
−1z − α−1βy, y) for i = 1, 2.

From (7.1) we �nd that

h1(y, z)h2(y, z) = f(z). (7.2)

Write

h1(y, z) = ua(z)y
a + ua−1(z)y

a−1 + · · ·+ u0(z),

h2(y, z) = vb(z)y
b + vb−1(z)y

b−1 + · · ·+ v0(z)

and

h1(y, z)h2(y, z) = wa+b(z)y
a+b + wa+b−1(z)y

a+b−1 + · · ·+ w0(z)

where ua(z), vb(z) are not the zero polynomial. Clearly we have

wa+b(z) = ua(z)vb(z). (7.3)

But by (7.2), h1(y, z)h2(y, z) is a one variable polynomial in z, thus we have

wa+b(z) = wa+b−1(z) = · · · = w1(z) = 0 if a+ b > 0. (7.4)

It follows from (7.3) and ua(z) 6= 0, vb(z) 6= 0 that wa+b(z) 6= 0. Thus by (7.4)
we have a+ b = 0 when
e a = b = 0. Then h1(y, z) = u0(z), h2(y, z) = v0(z)
whi
h 
ompletes the proof of the lemma. �

We shall identify the elements of Fp with the p 
ongruen
e 
lasses modulo

p and shall denote the elements of Fp × Fp by (a, b) with a and b integers

representing the 
ongruen
e 
lass of a and of b modulo p. De�ne the subset

T of Fp × Fp by

T = {(0, 1), (1, 0), (1, 1), (2, 1), . . . , (p− 1, 1)}.

Lemma 7.3 (Gyarmati, Sárközy, Stewart) Let f be a non-
onstant de-

generate polynomial in Fp[x1, x2] of degree less than p in x1 and in x2. Then
there exist a non-zero λ in Fp, a non-negative integer r, distin
t elements
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(γ1, δ1), . . . , (γr, δr) from T, ψ in Fp[x1, x2] and squarefree non-
onstant poly-

nomials ϕ1, . . . , ϕr in Fp[x] for whi
h

f(x1, x2) = λ

(

r
∏

j=1

ϕj(γjx1 + δjx2)

)

ψ2(x1, x2). (7.5)

Further r is uniquely determined and the polynomials ϕj(γjx1 + δjx2) and

ψ(x1, x2) are unique up to 
onstant fa
tors and reordering of ϕ1(γ1x1 +
δ1x2), . . . , ϕr(γrx1 + δrx2).

We shall refer to a de
omposition of f as in (7.5) as a normal form of f
and to r as the rank of f. Noti
e that sin
e (γ1, δ1), . . . , (γr, δr) are distin
t

elements of T we have

γjδi − δjγi 6= 0 for i 6= j. (7.6)

Proof of Lemma 7.3 Let ψ be a polynomial of largest degree for whi
h

ψ2
divides f in Fp[x1, x2]. Then sin
e f is degenerate we may write f in the

form (6.3) with ψ as above and with (γi, δi) 6= (0, 0) for i = 1, . . . , s. Further
we may suppose that ϕ1, . . . , ϕs are squarefree polynomials in Fp[x] and that

ϕ1 · · ·ϕs is also squarefree.

Suppose that ϕ is in Fp[x] and (γ, δ) are in Fp × Fp\{(0, 0)} and de�ne

ϕ∗
in Fp[x] by

ϕ∗(x) =

{

ϕ(γx) when γ 6= 0,

ϕ(δx) when γ = 0.

Then

ϕ(γx1 + δx2) =

{

ϕ∗(x1 + δγ−1x2) if γ 6= 0,

ϕ∗(x2) if γ = 0.

Therefore we may write

ϕ1(γ1x1 + δ1x2) · · ·ϕs(γsx1 + δsx2)

as

ϕ∗
1(γ1x1 + δ1x2) · · ·ϕ∗

s(γsx1 + δsx2)

where now (γi, δi) is in T for i = 1, . . . , s. We now 
olle
t and multiply

together the polynomials ϕ∗
i for whi
h (γi, δi) are the same to get a represen-

tation for f of the form (7.5).
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Suppose that, in addition to (7.5),

f(x1, x2) = λ1

(

s
∏

j=1

ρj(θjx1 + βjx2)

)

ψ2
1(x1, x2)

with (θ1, β1), . . . , (θs, βs) distin
t elements of T, λ1 a non-zero element of

Fp, ψ1 in Fp[x1, x2] and squarefree non-
onstant polynomials ρ1, . . . , ρs in

Fp[x]. By Lemma 7.1 ψ(x) is a 
onstant times ψ1(x) sin
e ψ
2(x) and ψ2

1(x)

orrespond to the greatest square fa
tor of f in Fp[x1, x2]. Next note that for
ea
h j from 1 to s we may de
ompose ρj(θjx1 + βjx2) into irredu
ibles and

by Lemma 7.2

ρj(θjx1 + βjx2) = ρj,1(θjx1 + βjx2) · · · ρj,t(θjx1 + βjx2)

where ρj,1, . . . , ρj,t are irredu
ible polynomials in Fp[x]. Thus ea
h irredu
ible

ρj,k(θjx1+βjx2) o

urs in the essentially unique de
omposition of ϕm(γmx1+
δmx2) into irredu
ibles for some m. Noti
e that if a polynomial g(x, y) =
f1(γ1x + β1y) = f2(γ2x + β2y) with f1, f2 ∈ F[x] and γ1β2 − γ2β1 6= 0 then

g(x, y) is a 
onstant. (Indeed, �x a, b, c, d ∈ Fp and we will prove that

g(a, b) = g(c, d). Sin
e γ1β2 − γ2β1 6= 0 the system of linear equations

γ1x+ β1y = γ1a+ β1b

γ2x+ β2y = γ2c+ β2d

has a unique solution in x, y ∈ Fp. Then

g(a, b) = f1(γ1a+ β1b) = f1(γ1x+ β1y) = g(x, y) = f2(γ2x+ β2y)

= f2(γ2c+ β2d) = g(c, d).)

Thus, by (7.6), (θj , βj) = (γm, δm). Repeating this argument with all the

irredu
ible fa
tors of ρj and all the irredu
ible fa
tors of ϕm(γmx1 + δmxz)
we �nd that ϕm(γmx1 + δmx2)/ρj(θjx1 + βjx2) is a 
onstant. From this it

readily follows that r = s and the result follows. �

We remark that we may determine if a polynomial f is degenerate by �rst

repla
ing it with a polynomial f ∗
of degree at most p − 1 in ea
h variable

by using the fa
t that xp = x for all x in Fp. We then fa
tor f ∗
and write

f ∗
as a produ
t of irredu
ibles multiplied by its largest square divisor. Ea
h

irredu
ible must be tested to see if it is of the form g(γx+βy) with g ∈ Fp[x]
and (γ, β) ∈ T. Given (γ, β) in T if su�
es to 
he
k that the irredu
ible is


onstant on the lines in Fp × Fp given by γx+ βy = c for c in Fp and this is

a �nite pro
ess. Furthermore T is a �nite set. Either there is an irredu
ible
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not of the form g(γx+ βy) for any g ∈ F[x] and (γ, β) in T in whi
h 
ase f ∗

is non-degenerate or f ∗
is degenerate and we may produ
e the normal form

as in the proof of Lemma 7.3.

7.2 The pseudorandom measures of small order in the

degenerate 
ase.

We will show that if f(x1, x2) is a degenerate polynomial and the order ℓ
of the pseudorandom measure Qℓ is not greater than the rank of f then, for

the binary latti
e η de�ned in (6.2), Qℓ(η) is small. In fa
t our estimates are

the same as in the non-degenerate 
ase studied in Theorem 6.1.

Theorem 7.1 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a non-
onstant degenerate polynomial of redu
ed normal form (7.5) with

degree k. Suppose that ℓ, the order of the pseudorandom measure is not

greater than the rank r of f(x1, x2), and one of the following 5 
onditions

holds:

a) f(x1, x2) is irredu
ible in Fp[x1, x2],
b) ℓ = 2,

) 2 is a primitive root modulo p,
d) (4k)ℓ < p or (4ℓ)k < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary latti
e η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p.

Proof of Theorem 7.1 The proof will be based on the following result.

Lemma 7.4 (Gyarmati, Sárközy, Stewart) Suppose that f ∈ Fp[x1, x2]
is a polynomial su
h that there are no distin
t d1, . . . ,dℓ ∈ F2

p with the

property that f(x + d1) . . . f(x + dℓ) is of the form cq(x)2 with c ∈ Fp,

q ∈ Fp[x1, x2]. Let k be the degree of the polynomial f(x1, x2). Then for the

binary p-latti
e η de�ned in (6.2) we have

|Qℓ(η)| < 11kℓp3/2 log p.

Proof of Lemma 7.4 This is Lemma 6.5 in Se
tion 6.

In order to ensure the appli
ability of this lemma, we have to show that

it follows from one of the 5 assumptions in Theorem 7.1 that there are not

distin
t d1, . . . ,dℓ ∈ F2
p su
h that the polynomial

h(x) = f(x+ d1) . . . f(x+ dℓ)
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is of the form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Indeed, if this is proved,

then the assumption in Lemma 7.4 holds in ea
h of these 5 
ases thus the

statement of Theorem 7.1 follows from Lemma 7.4 immediately.

We will prove this by 
ontradi
tion. Assume that

h(x) = f(x+ d1) · · ·f(x+ dℓ)

is the 
onstant multiple of a perfe
t square. Then we will prove

r + 1 ≤ ℓ,

where r denotes the rank of f , whi
h 
ontradi
ts our assumption.

Write

di = (d′i, d
′′
i )

for i = 1, . . . , l.
Suppose that f has the normal form

f(x1, x2) = λ

r
∏

j=1

fj(αjx1 + βjx2)ψ
2(x1, x2)

with λ ∈ Fp\{0}, (α1, β1), . . . , (αr, βr) distin
t elements of T, f1, . . . , fr
squarefree non-
onstant polynomials in Fp[x] and ψ ∈ Fp[x1, x2]. Then it

follows that

r
∏

j=1

fj(αjx1+βjx2 + αjd
′
1 + βjd

′′
1)fj(αjx1 + βjx2 + αjd

′
2 + βjd

′′
2) · · ·

fj(αjx1 + βjx2 + αjd
′
ℓ + βjd

′′
ℓ ). (7.7)

is a non-zero multiple of the square of a polynomial in Fp[x1, x2].
Now we will introdu
e an equivalen
e relation whi
h is similar to the one

used in the proof of Theorem 1 in [31℄.

De�nition 7.1 Two polynomials ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are t-
equivalent (t for translation) if there are a1, a2 ∈ Fp su
h that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Consider any two fa
tors fj1(αj1x1+βj1x2+αj1d
′
v1 +βj1d

′′
v1) = f ∗

j1(αj1x1+
βj1x2) and fj2(αj2x1+βj2x2+αj2d

′
v2
+βj2d

′′
v2
) = f ∗

j2
(αj2x1+βj2x2) with j1 6= j2

on the right hand side of (7.7), fa
tor them into irredu
ible polynomials, and


onsider an irredu
ible fa
tor ϕ1 of the former polynomial and ϕ2 of the latter
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polynomial. Then by Lemma 7.2, these irredu
ible fa
tors are of the form

ϕ1(αj1x1+βj1x2), and ϕ2(αj2x1+βj2x2). Assume that these two polynomials

are t-equivalent, so that there exist a, b ∈ Fp su
h that

ϕ1(αj1x1 + βj1x2) = ϕ2(αj2(x1 + a) + βj2(x2 + b))

= ϕ2((αj2x1 + βj2x2) + (αj2a+ βj2b)) = ϕ3(αj2x1 + βj2x2)
(7.8)

(where ϕ3(z) = ϕ2(z + (αj2a+ βj2b))). Both the �rst and last polynomial in

(7.8) are in normal form, and sin
e the normal form is unique, we must have

(αj1 , βj1) = (αj2, βj2) when
e j1 = j2.
Thus if two fa
tors fj1(αj1x1 + βj1x2 + αj1d

′
v1
+ βj1d

′′
v1
) and fj2(αj2x1 +

βj2x2 + αj2d
′
v2 + βj2d

′′
v2) on the right hand side of (7.7) have t-equivalent

irredu
ible fa
tors then j1 = j2. But then the expression (7.7) is of the form

cq(x1, x2)
2
if and only if

fj(αjx1 + βjx2 + αjd
′
1 + βjd

′′
1) · · ·fj(αjx1 + βjx2 + αjd

′
ℓ + βjd

′′
ℓ )

is the 
onstant multiple of a square for every 1 ≤ j ≤ r. Writing z =
αjx1 + βjx2 and d

∗
j(i) = αjd

′
i + βjd

′′
i ∈ F∗

p we obtain for 1 ≤ j ≤ r:

fj(z + d∗j(1))fj(z + d∗j(2)) · · · fj(z + d∗j(ℓ))

is of the form cq(z)2. Let Dj be the set of terms of the sequen
e

(d∗j(1), . . . , d
∗
j(ℓ)) whi
h o

ur with odd multipli
ity. If Dj is not empty,

then the one variable polynomial

∏

d∈Dj

fj(z + d)

is also the 
onstant multiple of a perfe
t square. By the proof of Lemma 7.2 in

[31℄ this is not possible (note that by Lemma 7.2, in 
ase a) the one-variable

polynomial f(z) is also irredu
ible) sin
e the polynomial fj(z) is squarefree.
It remains to 
onsider the 
ase when Dj is empty for j = 1, . . . , r. 


Then, for

1 ≤ j ≤ r, in the sequen
e

(αjd
′
1 + βjd

′′
1, αjd

′
2 + βjd

′′
2, . . . , αjd

′
ℓ + βjd

′′
ℓ )

every term o

urs with even multipli
ity, hen
e every term o

urs with mul-

tipli
ity at least 2. Then for every j, there is a number 2 ≤ i(j) ≤ ℓ su
h
that

αjd
′
1 + βjd

′′
1 = αjd

′
i(j) + βjd

′′
i(j).
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We will prove that 1, i(1), i(2), . . . , i(r) are di�erent numbers. It is 
lear that

none of i(1), i(2), . . . , i(r) is equal to 1. It remains to prove that

x = i(j1) = i(j2) (7.9)

is not possible. Suppose that (7.9) holds. Then

αj1d
′
1 + βj1d

′′
1 = αj1d

′
x + βj1d

′′
x,

αj2d
′
1 + βj2d

′′
1 = αj2d

′
x + βj2d

′′
x.

Thus

αj1(d
′
1 − d′x)− βj1(d

′′
1 − d′′x) = 0,

αj2(d
′
1 − d′x)− βj2(d

′′
1 − d′′x) = 0. (7.10)

Sin
e (d′1, d
′′
1) 6= (d′x, d

′′
x) from (7.10) we obtain

αj1βj2 − αj2βj1 = 0,

from whi
h j1 = j2 follows. Thus 1 < i(1), i(2), . . . , i(r) ≤ ℓ and

i(1), i(2), . . . , i(r) are di�erent numbers, so that

r + 1 ≤ ℓ

whi
h 
ontradi
ts the 
onditions of Theorem 7.1 and this 
ompletes the proof

of the theorem. �

7.3 The pseudorandom measures of large order in the

degenerate 
ase

In Se
tion 7.2 we showed that in the degenerate 
ase if ℓ ≤ r then Qℓ(η)
is small. Now we will prove that Qℓ(η) is large for some ℓ with ℓ ≤ 2r.

Theorem 7.2 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a de-

generate polynomial with rank r and degree m and n in x1 and x2, respe
-
tively. Then there exists a positive integer ℓ with ℓ ≤ 2r for whi
h

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p.

94



Proof of Theorem 7.2We may assume that r ≤ p1/2/4 sin
e otherwise the
theorem is immediate. Suppose that f(x1, x2) has the normal form

f(x1, x2) = λ
r
∏

j=1

fj(αjx1 + βjx2)ψ(x1, x2)
2

with (α1, β1), . . . , (αr, βr) distin
t elements from T.We distinguish two 
ases.

In the �rst 
ase all of the αi's are non-zero. In the se
ond 
ase one of the

αi's is zero and in that 
ase we may suppose, without loss of generality, that

(α1, β1) = (0, 1) (sin
e x1 and x2 play symmetri
 role and if α1 = 0, β1 6= 0, 1
then writing y = β1x2, x1, x2 
an be repla
ed by the variables x1,

y
β1
). There

exists an integer γi with 1 ≤ |γi| ≤ p1/2 + 1 su
h that γiαi is 
ongruent

modulo p to a positive integer of size at most p1/2 for i = 1, . . . , r in the

�rst 
ase and i = 2, . . . , r in the se
ond 
ase. To see this 
onsider the �rst

[p1/2]+2 multiples of αi in Fp. Two of them have representations whi
h di�er

by at most (p − 1)/([p1/2] + 1), so by at most p1/2, and the di�eren
e gives

the result. In the se
ond 
ase we may take γ1 = 1 so γ1β1 = 1.
Put

E = {ε = (ε1, . . . , εr) with εi ∈ {0, 1} for i = 1, . . . , r}

and for ea
h ε in E put

d(ε) = ε1(β1,−α1)γ1 + · · ·+ εr(βr,−αr)γr.

Noti
e that for ea
h ε in E, d(ε) has 
oordinates represented by integers

between −r(p1/2 + 1) and r(p1/2 + 1).

Lemma 7.5 (Gyarmati, Sárközy, Stewart)

∏

ε∈E

f(x+ d(ε))

is the square of a polynomial in Fp[x1, x2].

Proof of Lemma 7.5 Write

fj(x1, x2) = fj(αjx1 + βjx2),

for j = 1, . . . , r, so that

f(x) = λ

r
∏

j=1

fj(x1, x2)ψ
2(x1, x2). (7.11)
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For ea
h integer j with 1 ≤ j ≤ r we may split E into two disjoint sets

E0
j and E1

j where ε in E is in E0
j if εj = 0 and is in E1

j if εj = 1. For ε in

E0
j let ε

1
denote the element of E1

j with the same 
oordinates as ε ex
ept for

the j-th 
oordinate whi
h is 1. Then, for ε in E0
j ,

fj(x+ d(ε)) = fj(x+ d(ε1))

and so

∏

ε∈E

fj(x+ d(ε)) =
∏

ε∈E0
j

(fj(x+ d(ε))fj(x+ d(ε1)))

=





∏

ε∈E0
j

fj(x+ d(ε))





2

.

The result now follows from (7.11) sin
e |E| is even. �

Let D be the set of d = d(ε) whi
h o

ur with odd multipli
ity among

the terms d(ε) with ε in E. It follows from Lemma 7.5 that ifD is non-empty

then

∏

d∈D

f(x+ d) (7.12)

is the square of a polynomial in Fp[x1, x2].
We 
laim that (0, 0) is in D. Certainly d(0, . . . , 0) = (0, 0). Further if ε is

in E and d(ε) = (0, 0) then ε1α1γ1+ · · ·+εrαrγr = 0. Sin
e αiγi is 
ongruent
to a positive integer of size at most p1/2 and r is at most p1/2/4 we see that

ε1 = · · · = εr = 0 in the �rst 
ase and that ε2 = · · · = εr = 0 in the se
ond


ase. But in the se
ond 
ase we �nd that d(ε) = (ε1β1γ1, 0) = (ε1, 0) so

ε1 = 0. Therefore if ε is in E and d(ε) = (0, 0) we see that ε = (0, . . . , 0) and
this shows that (0, 0) is in D. Clearly, |D| ≡ |E| (mod 2) and sin
e |E| = 2r

we 
on
lude that

2 ≤ |D| ≤ |E| = 2r.

Let d = (d1, d2) in D. Then d1 and d2 are integers between −r(p1/2 + 1)
and r(p1/2 + 1). Put

d11 = min
d∈D

d1, d12 = min
d∈D

d2

and

d0 = (d11, d
1
2).
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Then d− d0 ∈ I2p for d ∈ D sin
e r ≤ p1/2/4. Next put

B = {(x1, x2) ∈ I2p | 0 ≤ xi < p− 2r(p1/2 + 1) for i = 1, 2}.

Noti
e that

|B| ≥ (p− 2r(p1/2 + 1))2 ≥ p2 − 4rp3/2. (7.13)

Put

F (x) =
∏

d∈D

f(x+ d− d0).

F (x) is the square of a polynomial in Fp[x1, x2] by (7.12). Let ℓ = |D|. With

η de�ned by (6.2) we �nd that

Qℓ(η) ≥
∣

∣

∣

∣

∣

∑

x∈B

∏

d∈D

η(x+ d− d0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈B
F (x)6=0

(

F (x)

p

)

+
∑

x∈B
F (x)=0

∏

d∈D

η(x+ d− d0)

∣

∣

∣

∣

∣

∣

∣

∣

≥
∑

x∈B
F (x)6=0

1−
∑

x∈B
F (x)=0

1 ≥ |B| − 2
∑

x∈F2
p

F (x)=0

1. (7.14)

It is easy to see that if a polynomial F ∈ Fp[x1, x2] is of degree u and v in x1
and x2, respe
tively, then the number of its zeros x ∈ F2

p is at most (u+ v)p.
Thus it follows from (7.13) and (7.14) that

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p

whi
h proves Theorem 7.2. �

7.4 Generating a large family of suitable polynomials

In this se
tion we 
onstru
t a large family of polynomials whi
h are non-

degenerate.

Theorem 7.3 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a

polynomial of the form

f(x1, x2) = xk1 + x1x2g(x1, x2) + x2h(x2) (7.15)
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with g ∈ Fp[x1, x2], deg g ≤ k − 3, h ∈ Fp[x2], deg h(x2) ≤ k − 2 and

x2 ∤ h(x2). Then for the binary latti
e η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p. (7.16)

Proof of Theorem 7.3 We will need the following generalization of the

S
hönemann-Eisenstein theorem.

Lemma 7.6 If f(x) = a0x
n+· · ·+an is a polynomial over an integral domain

R and a is a maximal ideal of R with

a0 6≡ 0 (mod a),

a1 ≡ · · · ≡ an ≡ 0 (mod a),

an 6≡ 0 (mod a
2)

then f(x) 
annot be de
omposed in R[x] into a produ
t of non-
onstant fa
-

tors.

Proof of Lemma 7.6 See, for example [93, Theorem 282℄. �

R = Fp[x2] is an integral domain and a =< x2 > is a maximal ideal in it.

Then the 
onditions of Lemma 7.6 hold for the polynomial f(x1, x2) ∈ R[x1]
in (7.15), thus f(x1, x2) is irredu
ible.

In order to use Theorem 7.1 we prove that f(x1, x2) is not of the form

(7.5). Sin
e f(x1, x2) is irredu
ible we have to prove that f(x1, x2) is not of
the form

f(x1, x2) = f1(α1x1 + β1x2). (7.17)

Let h be the degree of f1 and 
onsider the terms of degree h in f1, so

f1(α1x1 + β1x2) = c(α1x1 + β1x2)
h + f2(α1x1 + β1x2),

where the degree of f2(α1x1 + β1x2) is ≤ h − 1 and c 6= 0 ∈ Fp. Clearly,

c(α1x1 + β1x2)
h
equals the sum of the terms of degree k of f(x1, x2), thus by

the 
onditions of Theorem 7.2 we have

c(α1x1 + β1x2)
h = xk1.

We may suppose that k is less than p sin
e the result is immediate otherwise.

It then follows that h = k, c = α1 = 1 and β1 = 0, thus from (7.17)

f(x1, x2) = f1(x1). (7.18)
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On the other hand f(x1, x2) 
ontains a power of x2, and this 
ontradi
ts

(7.18). Thus f(x1, x2) is not of the form (7.5). We have also proved that

f(x1, x2) is irredu
ible, and by using Theorem 7.1 a) we obtain the result.�

7.5 A Legendre symbol 
onstru
tion with optimal

bounds

As we remarked already in [61℄, our upper bounds are not optimal; in

parti
ular, in (7.16) the optimal upper bound would be, up to logarithmi


fa
tors, p (with a fa
tor depending on k and ℓ). On the other hand this


onstru
tion is more natural than the ones using �nite �elds in [65℄, [79℄

or [80℄ (where the bounds are sharper), and it 
an be implemented faster.

However, we will show that for a 
ertain (rather spe
ial) family of polynomials

the �nite �eld 
onstru
tion presented in [79℄ is equivalent to a Legendre

symbol 
onstru
tion of type (6.2). Thus in this 
ase we obtain a family of

binary latti
es whi
h 
ombines the advantages of the two 
onstru
tions: as

in [79℄ we have optimal bounds, and as a Legendre symbol 
onstru
tion it


an be implemented fast and easily.

Indeed, 
ombining Theorems 7.1 and 7.2 of [79℄, we get the following

result:

Theorem 7.A (Mauduit, Sárközy) Let p be an odd prime, n ∈ N, q =
pn, and denote the quadrati
 
hara
ter of Fq by γ (setting also γ(0) = 0).
Consider the linear ve
tor spa
e formed by the elements of Fq over Fp, and

let v1, . . . , vn be a basis of this ve
tor spa
e. Let f(x) ∈ Fq[x] be a polynomial

of degree k with

0 < k < p (7.19)

whi
h has no multiple zero. De�ne the n-dimensional binary p-latti
e η(x) :
Inp → {−1,+1} by

η(x) = η((x1, . . . , xn))

=

{

γ(f(x1v1 + · · ·+ xnvn)) for f(x1v1 + · · ·+ xnvn) 6= 0
1 for f(x1v1 + · · ·+ xnvn) = 0.

(7.20)

Assume also that ℓ ∈ N with

4n(k+ℓ) < p. (7.21)

Then we have

Qℓ(η) < kℓ
(

q1/2(1 + log p)n + 2
)

. (7.22)

Our next result follows from Theorem 7.A in the 
ase that n = 2 and for
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a spe
ial 
hoi
e of v1, v2 and the polynomial f .

Theorem 7.4 (Gyarmati, Sárközy, Stewart) Let p be an odd prime and

let r be a quadrati
 non-residue modulo p. Then the polynomial x2 − r is

irredu
ible over Fp; denote one of its zeros by θ, and 
onsider the extension

of Fp by θ: Fp[θ](∼= Fp2). Let k and ℓ be integers whi
h satisfy (7.19) and

(7.21), and assume that a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Fp satisfy

ai + biθ 6= aj + bjθ and ai + biθ 6= aj − bjθ for 1 ≤ i < j ≤ k. (7.23)

Put

f̃(x1, x2) =

k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2
)

(7.24)

and

η̃(x) = η̃(x) = η̃((x1, x2)) =

{ (

f̃(x1,x2)
p

)

if (f̃(x1, x2), p) = 1

1 if p | f̃(x1, x2).
(7.25)

For ea
h positive integer ℓ with

42(ℓ+k) < p (7.26)

we have

Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

.

Proof of Theorem 7.4 By the de�nition of θ and Euler's lemma, we have

θp = (θ2)
p−1
2 θ = r

p−1
2 θ = −θ. (7.27)

We will use Theorem 7.A with n = 2, q = p2, v1 = 1, v2 = θ, so that now

the elements of Fq = Fp2 are represented in the form x1 + x2θ. Then by the

generalization of Euler's lemma to Fq and (7.27), for x1 + x2θ ∈ F∗
p2 , so with

(x1, x2) 6= (0, 0), we have

γ(x1 + x2θ) = (x1 + x2θ)
p2−1

2 = (x1 + x2θ)
p2−p

2 (x1 + x2θ)
p−1
2

= ((x1 + x2θ)
p)

p−1
2 (x1 + x2θ)

p−1
2 = (xp1 + xp2θ

p)
p−1
2 (x1 + x2θ)

p−1
2

= (x1 − x2θ)
p−1
2 (x1 + x2θ)

p−1
2 = (x21 − x22θ

2)
p−1
2 = (x21 − rx22)

p−1
2

=

(

x21 − rx22
p

)

.
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By the multipli
ativity of γ and the Legendre symbol, it follows that writing

f(x1 + x2θ) =

k
∏

i=1

((x1 + x2θ)− (ai + biθ)) (7.28)

and de�ning η(x) = η((x1, x2)) as in (7.20) we have

η(x) = γ(f(x1 + x2θ)) = γ

(

k
∏

i=1

((x1 + x2θ)− (ai + biθ))

)

=
k
∏

i=1

γ ((x1 + x2θ)− (ai + biθ)) =
k
∏

i=1

γ ((x1 − ai) + (x2 − bi)θ)

=
k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2

p

)

=

(

∏k
i=1((x1 − ai)

2 − r(x2 − bi)
2)

p

)

=

(

f̃(x1, x2)

p

)

= η̃(x) (for f(x1 + x2θ) 6= 0) (7.29)

with the polynomial f̃ and the latti
e η̃ de�ned by (7.24) and (7.25), respe
-

tively, and trivially we have

η(x) = η̃(x) for f(x1 + x2θ) = 0. (7.30)

By (7.23) and the de�nition of r, the polynomial f̃ has no multiple zero, and

now (7.21) holds by (7.26). Thus Theorem 7.A 
an be applied, and then we

obtain from (7.22), (7.29) and (7.30) that

Qℓ(η) = Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

whi
h 
ompletes the proof of Theorem 7.4.

We remark that the 
onstru
tion in Theorem 7.4 
ould be extended by

also 
onsidering higher degree fa
tors in (7.28). Even more generally, we

may 
onsider polynomials f whi
h are not given in a produ
t form. In either


ase, we may use the fa
t that if f(x1 + x2θ) = p(x1, x2) + θq(x1, x2) (with
f(z) ∈ Fp[z], p(x1, x2), q(x1, x2) ∈ Fp[x1, x2] and θ, r de�ned as above), then

we have

γ(f(x1 + θx2)) = γ(p(x1, x2) + θq(x1, x2)) =

(

p2(x1, x2)− rq2(x1, x2)

p

)

.

However this would make the polynomial f̃ in (7.24) in Theorem 7.4 mu
h

101



more 
ompli
ated.

Finally, we would like to dis
uss the implementation of the 
onstru
tion in

Theorem 7.4. The 
riti
al point of the implementation is to �nd a quadrati


non-residue r. If p is �xed, then it is known that the GRH implies that

the least quadrati
 non-residue modulo p is less than (log p)c (with some

positive 
onstant c), and sin
e the quadrati
 
hara
ter of a given residue 
an

be de
ided in polynomial time (by using Ja
obi symbols), r 
an be 
hosen

as the least quadrati
 non-residue modulo p whi
h 
an be determined in

polynomial time. On the other hand, no algorithm is known for �nding

the least quadrati
 non-residue in polynomial time without any unproved

hypothesis. However, in most 
ases one need not �x p, and this di�
ulty


an be avoided. Namely, we may start out from the fa
t that if p is a prime

of the form 4k − 1, then -1 is a quadrati
 non-residue modulo p. Thus it is

worthwhile to make �rst a long sequen
e of primes p1 = 3 < p2 < · · · < pt
of the form 4k − 1 with say, pi < pi+1 < 2pi, and if we need a prime p of

size about N with p ≡ −1 (mod 4), then we take the �rst prime from this

sequen
e greater than N , and we take r = −1. (If we want a large prime p
of the form 4k − 1, then we may use the fa
t that the Mersenne primes are

of the form 4k − 1.)
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8 Further results

In this se
tion, I will write a few senten
es about my further papers

(written partly with my 
oauthors) about pseudorandomness, whi
h I have

written sin
e my PhD:

With Attila Peth® and András Sárközy in [59℄ we studied a pseudorandom

generator based on linear re
ursions. This 
onstru
tion has several advan-

tages: easy implementation and we were able to prove optimal bounds for

the pseudorandom measures.

In [37℄ I sharpened some earlier estimates on the pseudorandom measures

of a 
onstru
tion based on the dis
rete logarithm. (This earlier 
onstru
tion

was de�ned in [38℄ and my PhD dissertation [35℄.) In [44℄ I extend this


onstru
tion. This generalization has the interesting property that in spe
ial


ases we get pseudorandom sequen
es based on ellipti
 
urves.

The 
onne
tion between the pseudorandomness of binary sequen
es and

binary latti
es is studied in [50℄. From a two-dimensional binaryN-latti
e one


an make a unique binary sequen
e of lengthN2
by taking �rst the �rst row of

the latti
e then 
ontinuing the sequen
e by the se
ond row of the matrix, et
.

In [50℄ we showed that the latti
e may have weak pseudorandom properties,

however, the asso
iated sequen
e has strong pseudorandom properties. In

Theorem 5.3 I proved a result pointing the opposite dire
tion, moreover if

the latti
e has strong pseudorandom properties, then the asso
iated sequen
e

also has (see Se
tion 5).

In the appli
ations it may o

ur that the initial pseudorandom sequen
e

turns out to be not long enough, thus we have to take the 
on
atenation or

merging of it with another pseudorandom sequen
es. I studied this problem

in [40℄ and [42℄.

Three di�erent 
onstru
tions of binary latti
es with strong pseudorandom

properties are given in [51℄. These 
onstru
tions are the two dimensional

extensions and modi�
ations of three of the most important one dimensional


onstru
tions.

In [52℄, [53℄, [54℄ we studied the pseudorandom measures of two-

dimensional binary latti
es with my 
oauthors. Thus in [52℄ we 
ompared the

di�erent pseudorandom measures and we estimated the normality measure

by the maximum of Qℓ measures. In [54℄ we studied the symmetry proper-

ties of binary latti
es. Finally, in [53℄ we introdu
ed the multidimensional

version of the 
orrelation measure Cℓ and we estimated the minimum of the

measures Cℓ and Qℓ.

In [43℄ I realized that the shape of the box-latti
es B in De�nition 1.6 is

of very spe
ial type. Sometimes we have to 
over more general situation, so

in [43℄ I introdu
ed further new measures. I introdu
ed the 
onvex and line
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measure and studied the 
onne
tions between the new and old measures. I

show that there exists a spe
ial 
ase of the Legendre symbol 
onstru
tion

(see Constru
tion 1.2) for whi
h a strong upper bound 
an be given for these

mu
h more general measures.

In [55℄, [56℄ with Christian Mauduit and András Sárközy we studied the

following problems: In 
ryptographi
 appli
ations sometimes is not enough

that the binary latti
es have strong pseudorandom properties, but it is also

important that their large family 
ontains "signi�
antly" di�erent latti
es.

The 
ollision and avalan
he e�e
t study this property. In the one-dimensional


ase these notions are studied for example in the papers [7℄, [22℄, [66℄, [81℄,

[103℄, [104℄. In [55℄ we generalized the 
ollision and avalan
he e�e
t for the

multidimensional 
ase, and we de�ne new measures. In [56℄ we presented a

further 
onstru
tion for whi
h these new measures are optimal.

The linear 
omplexity is an important and frequently used measure of

unpredi
tability and pseudorandomness of binary sequen
es. In [57℄ and [58℄

we extend this notion to two dimensions. We estimated the linear 
omplexity

of a truly random binary latti
e. We analyzed the 
onne
tion between the

linear 
omplexity and the 
orrelation measures, and we utilized the inequali-

ties obtained in this way for estimating the linear 
omplexity of an important

spe
ial binary latti
e. We studied 
onne
tion between the linear 
omplexity

of binary latti
es and of the asso
iated binary sequen
es. We extend the no-

tion of k-error linear 
omplexity to bit latti
es. Finally, we present another

alternative de�nition of linear 
omplexity of bit latti
es.

Pseudorandomness 
an be de�ned on various di�erent obje
ts. In [47℄

and [48℄ with Pas
al Hubert and András Sárközy we studied pseudorandom

binary fun
tions on trees.

In [46℄ I presented a survey of the most important results involving the

new quantitative pseudorandom measures of �nite binary sequen
es and lat-

ti
es.
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