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1 Introduction

In the last hundred years some important applications such as Monte
Carlo methods, wireless communications or famous encrypting algorithms
(e.g. Vernam cipher) inspired intensive study of pseudorandomness of dif-
ferent objects. Initially, random and pseudorandom objects were generated
by physical methods, but these methods have several disadvantages: they
are slow, expensive, it is difficult to store the data and their pseudorandom
properties cannot be proved mathematically. In order to avoid these difficul-
ties, pseudorandom objects are generated nowdays from a small secret key
by mathematical algorithms, with the intent that they appear random to a
computationally bounded adversary.

Different approaches and definitions of pseudorandomness exist. Menezes,
Oorschot and Vanstone [81] wrote an excellent monograph about these ap-
proaches. The most frequently used interpretation of pseudorandomness is
based on complexity theory; Goldwasser [30] wrote a survey paper about this
approach. In this approach usually sequences of length tending to infinity
are tested while in the applications only finite sequences are used. Unfortu-
nately, most of the results are based on certain unproved hypotheses (such
as the difficulty of factorization of integers or the difficulty of the discrete
logarithm problem). Finite pseudorandom [0, 1) sequences have been stud-
ied by Niederreiter (see for example [86], [87], [88], [89]). Niederreiter [90]
also studied random number generation and quasi-Monte Carlo methods and
their connections.

In the second half of the 1990s, Christian Mauduit and Andras Sarkozy
[77] introduced a new constructive quantitative approach, in which the pseu-
dorandomness of finite binary sequences is well characterized. Since then
it is a fast developping area, several authors work in this field and several
constructions, results and generalizations are presented in numerous papers.
In [46] I gave a survey of the most important results.

In the present dissertation I will summarize my main results in the theory
of pseudorandomness. Some of my results (see the papers [39], [41], [45],
[49], [61], [62]) will be presented in details, but to keep the extent of the
dissertation below a reasonable limit my other works (see the papers [37],
[40], [42], [43], [44], [46], [47], [48], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59]) will be just briefly mentioned. Throughout the dissertation I will
always name the authors of the theorems except for the ones proved by me
without any coauthors.

In [77] Mauduit and Sarkozy introduced the following pseudorandom mea-
sures:



Definition 1.1 (Mauduit, Sarkézy) For a binary sequence Ey =
(e1,...,ex) € {=1,+1}" of length N, write

t

U(ENa t,a, b) = Z €a+tjb-

5=0
Then the well-distribution measure of Ey is defined as

t

E €a+jb

=0

W(Ey) = maX|U(EN,t a,b)| = max

)
a,b,t

where the mazimum is taken over all a,b,t such that a,b,t € N and 1 < a <
a+thb < N.

The well-distribution measure studies how close are the frequencies of
the +1’s and —1’s in arithmetic progressions (for a binary sequence with
strong pseudorandom properties these two quantities are expected to be very
close.) But often it is also necessary to study the connections between certain
elements of the sequence. For example, if the subsequence (+1,+1) occurs
much more frequently then the subsequence (—1,—1), then it may cause
problems in the applications, and we cannot say that our sequence has strong
pseudorandom properties. In order to study connections of this type Mauduit
and Sarkozy [77] introduced the correlation and normality measures:

Definition 1.2 (Mauduit, Sarkézy) For a binary sequence Ey =
(e1,...,en) € {=1,+1}N of length N, and for D = (dy,...,ds) with non-
negative integers 0 < dy < --- < dy, write

M
V(En,M,D) =Y €nia, - nya,.

n=1

Then the correlation measure of order ¢ of Ey s defined as

E Cntdy - - - €n+de

where the mazimum is taken over all D = (dy,...,d;) and M such that
0<dy<---<dy<M+d;, <N.

Cy(Eyn) = maX\V(EN,M D)| = max

)

Definition 1.3 (Mauduit, Sarkézy) For a binary sequence Ey =
(e1,...,en) € {=1,+1}" of length N, and for X = (x1,...,2,) € {—1,+1}%,
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write
T(En, M, X)={n:0<n <M, (ent1,€ni2y---s€nie) = X}|.

Then the normality measure of order ¢ of FEy is defined as

NK(EN) - r]\l}a}}({ ’T(ENaM’X) - M/Qg )
where the mazimum is taken over all X = (z1,...,x¢) € {—1,+1}*, and M
such that 0 < M < N — ¢+ 1.

We remark that infinite analogues of the functions U,V and T had been
studied before (see, for example, [15], [68] and [91]), but the quantitative
analysis of pseudorandom properties of finite sequences has started by the
work of Mauduit and Sarkozy [77].

The combined (well-distribution-correlation) pseudorandom measure |77]
is a common generalization of the well-distribution and the correlation mea-
sures. This measure has an important role in the multidimensional extension
of the theory of pseudorandomness (see Sections 5, 6, 7 and 8).

Definition 1.4 (Mauduit, Sarkézy) For a binary sequence Ey =
(e1,...,en) € {=1,+1}" of length N, and for a,b;t € N, D = (dy,...,ds)
with non-negative integers 0 < dy < --- < dy, write

t

Z(EN, a, b, t, D) = E €a+jb+dy - - - Catjbtd,-
i=0

Then the combined (well-distribution-correlation) measure of order ¢ of Ey
is defined as

t

Qu(EN) = alrbl?% |Z(EN,a,b,t,D)| = ang??é Z% €a+jb+dy - - - Catjbtdy| s
]:
where the maximum is taken over all a,b,t and D = (dy,...,dy) such that
all the subscripts a + jb+ d; belong to {1,2,... N}.

When Mauduit and Sarkozy introduced quantitative pseudorandom mea-
sures, their starting point was to balance the requirements possibly optimally.
They decided to introduce functions which are real-valued and positive and
the pseudorandom properties of the sequence are characterized by the sizes
of the values of these functions. It was also an important requirement that



one should be able to present constructions for which these measures can be
estimated well. It turned out that the measures W and C) do not only satisfy
these criteria, but later Rivat and Sarkozy [95] showed that if the values of W
and C, are “small”, then the outcome of many (previously used a posteriori)
statistical tests is guaranteed to be (nearly) positive.

Although by W, Cy, N, and @), many pseudorandom properties of the
sequence can be characterized, but obviously not all. For example, in [34]
I introduced the symmetry measure in order to study symmetry properties
of finite binary sequences (later the symmetry measure was generalized by
Sziklai [102]). In [108] Winterhof gave an excellent survey on different pseudo-
random measures and certain constructions. However it was also important
to determine a not too large set of certain basic pseudorandom measures,
which can guarantee the adequate security in the applications. The mea-
sures introduced by Mauduit and Sarkozy seem to satisfy these criteria. In
the case of binary sequences the most studied measures are W and C, and
many papers use only these measures, while in multidimensional extensions,
the most important measure is Q).

In [13] Cassaigne, Ferenczi, Mauduit, Rivat and Sarkozy formulated the
following principle: “The sequence Ey is considered a “good” pseudorandom
sequence if these measures W (FEy) and Cy(Ey) (at least for “small” /) are
“small”.”

Since 1997 many constructions with strong pseudorandom properties have
been given by different authors. In 2007 Sarkozy [97]| presented a survey
paper about the most important constructions.

One of the most intensively studied pseudorandom generator is the Blum-
Blum-Shub generator, called this way after the name of its creators: Leonore
Blum, Manuel Blum and Michael Shub. The unpredictability of this gen-
erator has been proved conditionally assuming the difficulty of integer fac-
torization. In Section 2 I prove quantitative results by estimating the pseu-
dorandom properties of the generated sequences. The power generator (an
extended version of the Blum-Blum-Shub generator) will be defined in (2.1).
If p,v,t, k, T,ng and the sequence u,, and Ey are defined as in Notation 2.1
and Construction 2.1, then my main result in Section 2 can be summarized
as it follows.

Theorem 1.1

W(Er) < p"/®logp,
Ny(Er) < p"/*logp.



If T (the multiplicative order of k£ modulo t) is large in terms of p, then these
bounds give a strong estimate for the well-distribution and normality mea-
sure. We remark that for the correlation measures we have slightly weaker
estimates and only for shorter sequences.

Theorem 1.2 For every § > 0, there exists a constant € depending on £ and
0 such that if N (< T) satisfies certain conditions depending on k and § (see
Theorem 2.3 in Section 2), then for the sequence Ey defined in Construction
2.1 we have

Cg(EN) < pl_5

We remark that these results were proved only in the prime moduli case in
[39], but they can be generalized to the composite moduli case at the price
that the computations will be more complicated and (probably) the estimates
for the pseudorandom measures will be slightly weaker. (We also note that
while for public key cryptography composite moduli are used, in the case
of pseudorandom generation usually we have better estimates in the prime
moduli case.)

In [14] Cassaigne, Mauduit and Sarkoézy proved that for the majority of
the sequences Ey € {—1,+1}" the measures W(Ey) and Cy(Ey) are around
N'2 (up to some logarithmic factors). Later Alon, Kohayakawa, Mauduit,
Moreira and Rodl [4] improved on these bounds:

Theorem 1.A (Alon, Kohayakawa, Mauduit, Moreira, R6dl) Suppose
that we choose each Ex € {—1,+1}" with probability %N For all € > 0 there
exist No = No(e) and 6 = §(¢) > 0 such that for N > Ny we have

P(éx/ﬁ< W(Ey) < %\/N) >1—ce.

Theorem 1.B (Alon, Kohayakawa, Mauduit, Moreira, R6dl) Suppose
that we choose each Ey € {—1 +1}N wz’th probability z%v Then for all
0 <& < 1/16 there is a constant Ny = ) such that for N > Ny we have

( UNlog <CgEN ;/Nlog >>1—8

We remark that while it is important that for a binary sequence with
strong pseudorandom properties these measures should be “small”, lower
bounds are not required based on the following observations.



Write

N) = i W(Ey), M/(N)= i Ci(En).
) = ey VU M = i G

The estimate of m(N) is a classical problem. In 1964 Roth [96] proved that
m(N) > N4 Upper bounds for m(N) were given by Sarkozy [21] and Beck
[6]. Finally Matousek and Spencer [74] showed that m(N) < N4,

The value of My(N) depends on the value of the order ¢. Cassaigne,
Mauduit and Sarkdzy [14] proved that My(Ey) < ((Nlog N)?. The re-
sults of [4] improved the implied constant factor (see Theorem 1.B). On
the other hand, first Cassaigne, Mauduit and Séarkozy [14] proved that
My(N) > log(N/l) for even (. This was improved considerably by Alon,
Kohayakawa, Mauduit, Moreira and Rodl in [3| and [69], where the best
lower bound is the following:

Theorem 1.C (Alon, Kohayakawa, Mauduit, Moreira, R6dl) If ¢ is

even then
1[ N
My(N) > /= |——|.
() 25 {€+1}

The proof of the theorem used deep linear algebraic tools. Later Anan-
tharam [5| simplified the proof, but he obtained a slightly (by a constant
factor) weaker result.

Cassaigne, Mauduit and Sarkozy [14] noticed that the minimum values
of correlation of odd order can be very small. Namely, for the sequence
Ex = (=1,+1,-1,+1,...) € {=1,+1}¥ we have C;(Ey) = 1 for odd ¢,
since

€ntl+d; " Entltd, = (—€n+d1) ce (—€n+dg) = (—1)£€n+d1 C o €ngdy-

Thus
M
1 if M is odd,
Zen+d1"'6n+dz :|1_1+1_1+"'|:{ 0 if M is even.
n=1

So Cy(Ey) = 1 and thus My(N) = 1 for odd ¢. Cassaigne, Mauduit
and Sarkozy [14] also observed that although for the sequence Ey =
(=1,41,—1,+1,...), C3(Ey) is 1, the correlation measure of order 2 is large:
C5(Ey) = [4]. By solving problems of Cassaigne, Mauduit and Sarkdzy [14]
and Mauduit [75], in [36] T proved that

Cy(EN)Cs(Ey) > N3 (1.1)
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always holds. More generally, in [36] T proved an inequality involving cor-
relation measures Cyyq and Co where 2k + 1 > 2¢. Later Anantharam [5]
sharpened (1.1). By extending the previous results, in [49] with Mauduit we
were be able to compare correlation measures of Cyy 1 and Cyp (without the
assumption 2k + 1 > 2¢). Our main result was the following:

Theorem 1.3 (Gyarmati, Mauduit) There is a constant ¢, depending
only on k and ¢ such that if

C2k+1<EN) < Ck,£N1/2a

then
Cops1(En)* Cop(En) 1 > NP

where the implied constant factor depends only on k and (.
This theorem has the following consequences:

Corollary 1.1 (Gyarmati, Mauduit) If Cyui1(Exy) = O(1), then
Cou(EN) > N, where the implied constant factor depends on k and (.

Corollary 1.2 (Gyarmati, Mauduit)
Cor1(En)Coy(En) > NetkD
where the implied constant factor depends only on k and ¢ and where

[ ifk>,
CUM)—{ Ly 2l grp oy,

40

In Section 3 T will prove Theorem 1.3 and its consequences.

First Goubin, Mauduit and Sarkézy [31] succeeded in constructing large
families of pseudorandom binary sequences. They also studied the pseudo-
random properties of the generated sequences. Their construction was the
following:

Construction 1.1 (Goubin, Mauduit, Sarkézy) Suppose that p is a
prime number, and f(z) € Fy[x] is a polynomial with degree k > 0 and
no multiple zero in F,. Define the binary sequence E, = (e1,...,e,) by

. { (£22) for (f(n).p) =1 (12)
+1 for p | f(n).



Indeed, first Hoffstein and Lieman [64] proposed the use of polynomials f(n)
in (1.2) such that they are squarefree and neither even, nor odd, but they
did not prove anything on the pseudorandom properties of the corresponding
sequence E, = (e1,...,¢p).

Ahlswede, Khachatrian, Mauduit and Sarkézy [1] introduced the notion
of family-complexity of families of binary sequences (in order to characterize
the cryptographic applicability of the family). They proposed to use the
following measure to study whether a family has “rich”, “complex” structure
or not:

Definition 1.5 (Ahlswede, Khachatrian, Mauduit, Sarkézy)

The  family complexity C(F) of a family F of binary sequences
Enx € {—=1,+1} is defined as the greatest integer j so that for any
1< <ig<---<i; <N, and for ey, eq,...,e; € {—1,+1}, we have at
least one En = (e1,...,en) € F for which

eil = &1, 62‘2 252,...,6ij

= Ej.
In [1] in Section 3 it is proved that
Proposition 1.1 (Ahlswede, Khachatrian, Mauduit, Sarkozy)
log | 7|
log2

C(F) <

Ahlswede, Khachatrian, Mauduit and Sarkozy [1] proved the following:

Theorem 1.D (Ahlswede, Khachatrian, Mauduit, Sarkozy) Let p be
a prime. Consider all the polynomials f(x) such that

0<degf(zr) <K

(where deg f(z) denotes the degree of f(x)) and f(x) has no multiple zero
in F,. For each of these polynomials f(x), consider the binary sequence
E,=E,(f) = (e1,e2,...,e,) € {—1,+1}? defined by (1.2), and let F; denote
the family of all the binary sequences obtained in this way. Then

C(F) > K. (1.3)
By Proposition 1.1 it is clear that

log | F4| oK+

<
|C<}—1)| log2 = log2

log p. (1.4)
In [41] T improved on (1.3) and proved the following:

10



Theorem 1.4
C(F1) > Klogp.

By (1.4) this lower bound is sharp apart from the constant factor.
In this dissertation I will study the family complexity in Section 4 and I
will prove Theorem 1.4 there.

For a truly random binary sequence the well-distribution measure and
the correlation measures are small (< N'/2(log N)¢ for a sequence of length
N). Several constructions have been given for which these measures are
small (< N'Y2(log N)°), thus the sequence Ey has strong pseudorandom
properties. But in certain applications, e.g. in cryptography, it is not
enough to know that the sequence has strong pseudorandom properties,
it is also important that the subsequences Ej; (where FE); is of the form
(€xy€x41s---,€zi—1)) also have strong pseudorandom properties for values
M possibly small in terms of N. In Section 5 I will deal with this problem
in case of values M > NY4*¢  Clearly, almost all sequences of length N
consist a subsequence (1,1,...,1) containing clog N of 1’s, thus then for the
correlation of subsequences of length M = O(log N) we cannot expect any
non-trivial bound. It is an interesting open question for which sequences
Ex € {—1,+1}" with strong pseudorandom properties and for which val-

ues of M one can estimate max Cy(Eyr) by a non-trivial
En=(ex,ez+1,-neatm—1)CEN

upper bound. Note that this problem is related to the estimate of the least
quadratic nonresidue v, modulo p. Burgess [12] proved that 9, < prb@%,
and it is conjectured that v, is O(log ploglog p). The difficulty of Burgess’s
proof and the gap between the conjecture and Burgess’s result are point-
ing in that direction that probably one cannot prove a non-trivial bound
for max Co(Eyr) when M < N¢if ¢ is a constant small

Ex=(ex,ez+1,--eerMm—1)CEN
enough.

This problem has important applications, for example, it may occur that,
say, we want to encrypt a message of estimated length slightly less than N,
thus we use an N bit sequence possessing strong pseudorandom properties.
However, it may turn out that the text to be encrypted is of length less
than, say, v/N. In this case we use only a short part (of length v/N) of the
sequence, so we will need control over the pseudorandom properties of the
short subsequences. In Section 5, I will construct a sequence for which the
following holds:

Theorem 1.5 There ezists a sequence Ex € {—1,+1}" for which we have

Cg(EM)<<€2[ M —‘N1/4logN

N1/2

11



for every M < N and Ey C Ey (where Ey is of the form
(Exy€r41s--y€xiri—1)). Moreover

Co(Ex) < PNY2(log N)?

and
W(Ey) < N¥*log N

holds.

This result was published in [45], here T will deal with these problems and
prove Theorem 1.5 in Section 5. In order to prove this result we will need
the multidimensional theory of pseudorandomness, and in Sections 6, 7 and
8 we will also need this theory.

The multidimensional theory of pseudorandomness was developed by Hu-
bert, Mauduit and Sarkozy [65]. They introduced the following definitions:

Denote by Iy the set of n-dimensional vectors whose coordinates are
integers between 0 and N — 1:

Iy ={x=(z1,29,...,2,): ; €4{0,1,...,N —1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [61]
this definition was extended to more general lattices in the following way: Let
uj, Uz, ..., u, ben linearly independent vectors, where the i-th coordinate of
u; is a positive integer and the other coordinates of u; are 0, so that, writing
z; = |ui|, u; is of the form (0,...,0,2;,0,...,0). Let t1,¢s,..., 1, be integers
with 0 <ty,ts,...,t, < N. Then we call the set

By ={x=zu1+ - +zuy: 0<uz;|u| <t;,(<N)fori=1,...,n}

n-dimensional bor N-lattice or briefly a box N -lattice.
In [65] the definition of binary sequences was extended to more dimensions
by considering functions of type

ex =n(x): Iy — {-1,+1}. (1.5)

If x = (zq,...,2,) so that n(x) = n((xy,...,x,)) then we will slightly sim-
plify the notation by writing n(x) = n(z1, ..., x,).

Such a function can be visualized as the lattice points of the N-lattice
replaced by the two symbols + and —, thus they are called binary N-lattices.
Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption
of digital images and in medical diagnostics.

12



Hubert, Mauduit and Sarkozy [65] introduced the following measure of
pseudorandomness of binary lattices (here we will present the definition in
the same slightly modified but equivalent form as in [61]):

Definition 1.6 (Hubert, Mauduit, Sarkézy) Let
n: Iy — {—1,+1}.

be a binary lattice. Define the pseudorandom measure of order ¢ of n by

Qi) =, max ;n(x 1) (x4 do)] (1.6)
where the mazximum is taken over all distinct dq,...,dy € I} and all box

N-lattices B such that B+dy,...,B+d; C I}.

Then 7 is said to have strong pseudorandom properties, or briefly, it is
considered a “good” pseudorandom lattice if for fixed n and ¢ and “large” N
the measure Q,(n) is “small” (much smaller, then the trivial upper bound
N™). This terminology is justified by the fact that, as was proved in [65],
for a truly random binary lattice defined on I}, and for fixed ¢ the measure
Q¢(n) is “small”; in particular, it is less than N™/2 multiplied by a logarithmic
factor.

In their first paper [65] on the multidimensional theory of pseudorandom-
ness Hubert, Mauduit and Sarkozy gave constructions for binary lattices with
strong pseudorandom properties. They gave nearly optimal upper bounds
for the pseudorandom measures of the lattices constructed. However, these
early constructions also have disadvantages: they are rather artificial, and
their implementation is complicated. Thus in [61] and [62] with my coauthors
A. Sarkozy and C. L. Stewart we defined a new construction which is based
on the use of the Legendre symbol. This construction is much more natural
and flexible than the earlier ones, and it can be implemented more easily. In
Sections 6 and 7 I will present results from [61] and [62]. We will study the
properties of the following:

Construction 1.2 (Gyarmati, Sarkozy, Stewart) Let p be an odd
prime, f(xy,x2) € Fplry,xo] be a polynomial in two variables. Define
n: I2— {=1,+1} by

n(z1, z2) =

{ <%) if (f(x1,22),p) =1, (1.7)
+1 if p| f(x1,29).

13



In Section 6.1 negative examples are presented: we will show that for
certain polynomials f(z1, x2) the associated binary lattice n(z, x2) has weak
pseudorandom properties. It turns out that depending on the form of the
polynomial we have to distinguish two different cases. More precisely, we say
the following:

Definition 1.7 (Gyarmati, Sarkdzy, Stewart) The polynomial f(xq,x2)
is called degenerate if it is of the form

f(x1,29) = (H filojay + 5]%2)) g(z1, IEQ)Q, (1.8)

where a;, B; € By, fij(x) € Fplz] for j=1,...,r, and g(x1,x3) € Fplay, xo].
A polynomial f € F,lxy,xs] which can be expressed in the form (1.8) is
said to be degenerate and otherwise it is said to be non-degenerate.

In Section 6 we analyze the non-degenerate case, while in Section 7 the
degenerate case. These sections are based on the papers [61] and [62]. Next
I present the main results from these two sections:

Theorem 1.6 (Gyarmati, Sarkdzy, Stewart) Let f(z1,22) € Fplzy, xo]
be a polynomial of degree k. Suppose that f(z1,x2) cannot be expressed in
the form (1.8) and one of the following 5 conditions holds:

a) f(z1,22) is irreducible in Fplz, x4,

b) =2,

¢) 2is a primitive root modulo p,

d) Y/ Lax < p,

e) { and the degree of the polynomial f(xq1,x2) in x1 (or in x4) are odd.
Then for the binary p-lattice n defined in (1.7) we have

Qu(n) < 11klp*logp. (1.9)

In the case of degenerate polynomial we will define the rank of the poly-
nomial as the smallest positive integer r for which f(z1,x2) can be written
in the form (1.8).

Theorem 1.7 (Gyarmati, Sarkozy, Stewart) Let f(xy,x2) € Fplz1, 29]
be a non-constant degenerate polynomial of rank r with degree k. Suppose
that €, the order of the pseudorandom measure is not greater than the rank r
of f(z1,x2), and one of the following 5 conditions holds:

a) f(z1,2) is irreducible in Fplz, x4,

b) =2,

14



¢) 2 is a primitive root modulo p,

d) (4k)E < p or (40)F < p,

e) { and the degree of the polynomial f(xq1,x9) in x1 (or in x) are odd.
Then for the binary lattice n defined in (1.7) we have

Qu(n) < 11kLp* log p. (1.10)

In Section 7.3 T also show that in case of degenerate polynomials, there
is a pseudorandom measure of large order which is large:

Theorem 1.8 (Gyarmati, Sarkdzy, Stewart) Let f € F,[z1, z2] be a de-
generate polynomial with rank r and degree m and n in x1 and x5, respec-
tively. Then there exists a positive integer £ with £ < 2" for which

Qi(n) > p? — 4rp3/2 —20(m + n)p.

Our upper bounds (1.9) and (1.10) are not optimal since they are signifi-
cantly larger than the optimal p(logp)¢. In Section 7.5 we will show that for
a certain (rather special) family of polynomials the finite field construction
presented in [79] is equivalent to a Legendre symbol construction of type
(1.7). Thus in this case we obtain a family of binary lattices which combines
the advantages of the two constructions: as in [79] we have optimal bounds,
and as a Legendre symbol construction it can be implemented fast and easily.

Some authors gave further constructions of binary sequences and lat-
tices with strong pseudorandom properties (see my survey paper [46]). The
constructions based on elliptic curves are especially important, see e.g. the
papers of Mérai [82], [83], [84], [85], Chen [16], Chen, Li and Xiao [17]| and
Liu, Zhan and Wang [72].

In Sections 2, 3, 4, 5, 6 I present results from my papers [39], [49], [41],
[45], [61], [62] (three of them is written jointly with my coauthors).

In Section 8 I present a short summary of 18 papers which I have been
written on the theory of pseudorandomness since my PhD.
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2 Pseudorandom sequences constructed by the
power generator

One of the most studied pseudorandom generator is Blum-Blum-Shub,
called this way after the name of its creators: Leonore Blum, Manuel Blum
and Michael Shub [8]. The unpredictability of this generator has been proved
assuming the difficulty of integer factorization. In this section I prove quan-
titative results by estimating the pseudorandom properties of the generated
sequences.

Leonore Blum, Manuel Blum and Michael Shub [8] defined the power
generator by the following:

Let £ > 2,m > 1 and ¢ be integers such that (¢,m) = 1. Define the
sequence {u,} by the recurrence relation

u, =uf . (modm), 0<u,<m-1, n=12... (2.1)
with the initial value ug = 9.

The power generator has many applications in cryptography, see [8], [19],
[70], [101]. In the two special cases (k,¢(m)) =1 (where ¢(m) is the Euler
function) and k = 2 this sequence is known as the RSA generator and as the
Blum-Blum-Shub generator, respectively.

Although various properties of the power generator have been studied in
a number of papers, see [8|, [11], [18], [19], [23], [32], [63], [70], [81], [101], few
unconditional results are known: Clearly, the sequence (2.1) becomes peri-
odic, possible values of the period are studied in [27]. Cusick [18] proved that
the rightmost bit of the Blum-Blum-Shub generator assumes values 0 and 1
almost equally often, provided that the period is large enough. Friedlander,
Lieman and Shparlinski [26], proved that if the period of the RSA generator
is large enough, then the elements of the sequence is uniformly distributed
modulo m and a positive proportion of the rightmost and leftmost bits is
uniformly distributed. Lower bounds on the linear complexity of the power
generator have been given in [32], [100]. The results of this section will be
also unconditional.

Notation 2.1 Let p be a prime, O € F, be an element. Define the sequence
Uy, by (2.1) with a prime modulus p in place of m (then the value of u, is
fized in the interval [0,p — 1]). Clearly the multiplicative order of u, = 9*"
(mod p) is non-increasing as n — oo. Let ng denote the smallest positive
integer such that for n > ng the multiplicative order of

u, =9 (mod p)
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s the same number: t. Then
(k,t) = 1. (2.2)
Denote by T the multiplicative order of k modulo t.

Throughout the section we will use these notations: p,9,t,k, T, ng and the
sequence {u,} will be as it described here. Clearly the sequence

un07 U‘n0+17 un0+27 ce.

is purely periodic with the period 7'.
We convert the sequence {u,} to a binary sequence by the parity of its
last bit:

Construction 2.1 (Blum, Blum, Shub) Define the sequence Ey =
(e1,...,en) by
. _{ +1 if u, is even,

—1 if u, is odd. (2.3)

In this section we will study the pseudorandom properties of the sequence
Ey. First we will give upper bounds for the well-distribution measure and
the normality measure of order ¢. In Theorems 2.1 and 2.2 the length of
the sequence is T' (defined in Notation 2.1), which is the period of the power
generator.

Theorem 2.1
W(Er) < p*(logp)*.

For the normality measure we have

Theorem 2.2 For all ¢ > 1/4 we have
Ne(Er) < k= Dp™* (log p)*,
where the implied constant depends only on ¢.

The proof of Theorems 2.1 and 2.2 will be based on extensions of theorems
of Friedlander, Hansen and Shparlinski in [25] and [28].

Until very recently only the short-range correlation
(D=, €ntdiCntds - - - €nta, for small d;’s) could be handled. By using Bourgain
[9] new result, we will be able to handle the long-range correlation as well,
which was out of reach until now. Thus here all the three pseudorandom
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measures of the power generator are studied, and this unconditionally proves
that the pseudorandom generator has strong pseudorandom properties.

We will estimate the correlation measure Ey defined by (2.3) for some
N < T, so the length of the sequence will be smaller than the period of the
power generator following from certain technical conditions in Bourgain [9]
theorem. The exact value of the length NV is defined in Theorem 2.3.

Theorem 2.3 Suppose that (> < p. Denote by N = N (9, k,0) the largest
positive integer such that for all 1 <1 < j < 2N we have

(K — k' t) < tp°. (2.4)

Then there exists a constant €(,) = ¢ > 0 depending on ¢ and § such that
for the sequence Ey of length N defined by (2.3) we have

Cy(Ey) < p'=. (2.5)

The proof will be based on a recent result of Bourgain [9]. The upper
bound (2.5) for the correlation measure is non-trivial if N, the length of the
sequence (defined by (2.4)) is large. The following corollary studies a simple
case when N is indeed large.

Corollary 2.1 Let p—1 = 2q, where p and q are odd primes, ¥ be primitive
root modulo p, and k be primitive root modulo q. Then for the sequence
Ep—3)/a of length (p — 3)/4 defined by (2.3) we have

Co(Egp-s)/4) <p'%,
where the constant € > 0 depends only on (.

We remark that (2.3) is not the only way to define a binary sequence {e, }
from the sequence {u,}. For example, Theorems 2.1, 2.2, 2.3 also hold for
the sequence Ey = (eq,...,ey) defined by

+1 if 0 <w, <p/2,
en = :
-1 ifp/2 <w, <p.

In Section 2.1 we will estimate certain related exponential sums and the
proofs of Theorems 2.1, 2.2 and 2.3 will be completed in Section 2.2.

In this section we study the prime modulus case, i.e., u, = u* | (mod p),
where p is a prime. These results could be extended to the composite modulus
case by using exponential sum estimates from [28]. Here I do not carry out

the proof, since the computations would be similar but more complicated.
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However, it may happen that the power generator has stronger pseudorandom
properties in the prime modulus case than in the composite modulus case.
This situation indeed happens for the Jacobi symbol sequence

= (2. (22) . () s ez

Goubin, Mauduit and Sarkozy [31] proved that under certain conditions on

the polynomial f(x), this sequence has strong pseudorandom properties if m

is a prime: W (E.,,), Cy(E,,) < m'?logm. If m is a product of two different

odd primes, then Rivat and Sarkozy [94] proved that for all polynomial f(z) €

Z|x] we have Cy(E,,) > m. The situation is very similar in case of some

other constructions, see e.g. the paper of Liu, Zhan and Wang [73].
Throughout the section we write e,(a) = exp(27i?).

2.1 Exponential sums

J. Friedlander, J. Hansen and I. Shparlinski gave an upper bound for
the sum 3.7 e, (a0*"). Later Friedlander and Shparlinski [28] extended this
result to the sum 3.7 e, (a9 +ag0*"" - -4 a,95"""). Here we will study
the extension this result to general powers and incomplete sums. First we
will study the incomplete sum analog of the result in [28].

Lemma 2.1 Let t,T be as in Notation 2.1. Let e1 > 1/4 and suppose that
t > pt2*% for a constant § > 0. Let a; € F,, L, M € N with L < T. Then

M+L
5 et k)
r=M+1

< kel(rfl)T1/4t1/2p1/8 log p,

where the implied constant depends only on 6 and 1. In the special case
r =1 we obtain

M+L

Z ep(ar9*")

r=M+1

< T1/4t1/2p1/8 logp,

where the implied constant depends only on o.
Using J. Bourgain’s result [9], we will prove:

Lemma 2.2 For 1 < i < rlet h; € Zy4, V; = 9 and a; € [, where
(hi,...,h.,p—1) =1 also holds. Then the sequence

{a9}" + -+ a9}

19



becomes periodic with period T (where T is defined in Notation 2.1). Denote
by
N(,...,0.,k,0) =N

the largest positive integer N such that N <T, for all0 <i< N, 1<j<r
(klhﬁt) < tp757 (26)

and for all pairs {i1, 1}, {ia, o} with 1 < dy,ip < N, 1 < j; < jo < 1 we
have
(K'hy, — k™2hy,,t) <tp™® or (k'hj, —k™2h,,t) =t. (2.7)
If there is no such N define N(9,...,9,,k,6) = N by 1.
Let L, M € N with L <T. Then there exists a constant e(r,0) = ey > 0
depending on only r (the number of ¥;’s) and § such that:

M+L

. « _ r 4 1)/2
> epl@dy + -+ a0 < (7)Y (p =+ (Nil/l) log p.
=M

Moreover, in the special case (hy,t) = 1 we may replace the term (r + 1)7/?
by (r+1)42:

M+L 1/2
@ @ r+1
E ep(alﬁ‘lf +- arﬂf ) < (tT)1/2 (p@ + (]V71/2> logp,
x=M

where the implied constant factors are absolute.

Proof of Lemma 2.1 and Lemma 2.2
We will use the following deep theorem of Bourgain [9):

Lemma 2.3 (Bourgain) Let p be a prime. Given r € Z* and 6 > 0, there
is an € = &(r,0) > 0 satisfying the following property: If

f(z) =az™ + -+ a2 € Z[z] and (a;,p) =1
where the exponents 1 < k; < p — 1 satisfy

(ki,p—1) <p'™ foralll <i<r

s L (2.8)
(ki —kj,p—1)<p ™ foralll1 <i#j<r
then

<p'e

S e, (/)

20



Proof of Lemma 2.3

See in [9].

In order to prove Lemma 2.1 and Lemma 2.2 first we need estimates for
complete sums.

First we give an upper bound for ny defined in Notation 2.1. Let ord 9
denote the multiplicative order of ¥ modulo p. ng is the smallest integer for
which (£, ord ¢) is maximal. From this

log ord ¥

1.45log p. 2.
g2 < 5logp (2.9)

no >
We will deduce the first two statements of Lemma 2.4 from Bourgain’s
theorem (Lemma 2.3), while the third part will be proved by extending an

argument of Friedlander and Shparlinski [28].

Lemma 2.4 Let ¥y,...,9, € F, and N(¥4,...,9,,k,6) = N as in Lemma
2.2, j € ZLy. Then there exists a constant £(r,d) = e9 > 0 depending on only
r and d such that:

no—14+T r/2
, o ., (rr )
E:fﬂ%ﬁh~+%W)%0@<<wmm(p2+ N )
r=ng

(2.10)

If (hy,t) = 1 (where hy is defined by ¥, = 9" (mod p)), then we may replace
the term (r + 1)"/% by (r +1)Y/2:

no—14+71 1/2
T z . — r + 1
S eplanth oot erin) < (1) (5o + U
r=nQ

(2.11)

where the implied constants are absolute.

If 9; = 9% for 1 < i < r then there exists an upper bound, where the
exponent of p is given: Suppose that ¢, > 1/4 and t > p'/*>% for a constant
6 >0, then

no—1+T
S @t +at T o a e ()

r=ng

< k,z-:l(rfl)Tl/4t1/2p1/8’

(2.12)

where the implied constant depends only on £, and §.
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Proof of Lemma 2.4

The proof is similar to the proof of Theorem 8 in [25]| in the special case
v =1, but in order to prove (2.10) and (2.11) we use Bourgain’s theorem in
place of Weil’s theorem.

Let S = ’Z"O__HT ep(ar9 + -+ a9 Ver(jx)| and K C {kt,... kT}.

r=ng

For y = k¥ € IC denote v by indgy. Clearly,

no—1+T

T X et ~+awa'f“”>eT<j<x+indky>>|-

yekl x=ng

By the Cauchy-Schwartz inequality we have

T1/2 no—1+T o 2 2
o= K Z Z ep(a 99" + -+ a, 9% )er(jindyy)
T=ng yerx

We recall that ¥; = 9" (mod p), where (hy,...,hy,p—1) = 1. Let d =
(p—1)/t. Since the order of ¥*" is ¢ for ny < x, for each of these powers 9**,
there exist precisely d values of z € F; such that 9*" = 2% (mod p). Thus

T1/2 p—1 A 12
< (ST oo i
z=1 |yek
T2 -1
= W < alzyhld C4 arzyhrd_
yek zek  2z=1
1/2
_ alzrhld . arzmhrd)‘> .

For given y,z € KC define the polynomial g, .(z) € F,[z] by

def
Gyu(2) = ap2¥Md 4o qoqVrd g ptmd g pmhed

Denote by g,.(z) = c that the polynomial g, ,(z) € F,[2] is identically
constant. Then
>1/2

-1

Z (gy.a(2

z=

< (22

el yekl
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1/2

T1/2 p—1
S=< K[z S D elga)|+ DY p| - (2.13)
el |z=1 z,yek
gy,zz?z)‘fc gy,ﬁz)zc

Next we estimate the number of the pairs y,z € K with g¢,.(2) = c
Clearly, then apart from the multiplicity, the set {yhid, ..., yh,d} \ {0},
contains the same residue classes modulo p — 1 as the set {xhid, ..., zh,d}\
{0}. So the set {yhy,...,yh,.}\ {0} contains the same residue classes modulo
t as the set {zhy,...,zh,} \ {0}. We will use the following lemma.

Lemma 2.5 For given x € K at most (r+1)" pieces of y € K exist such that
the sets {xhy,...,xzh,.} \ {0}, {yh1,...,yh.} \ {0} contain the same residue
classes modulo t apart from the multiplicity. If (hq,t) =1 then at most r + 1
pieces of y € K exist with this property.

Proof of Lemma 2.5 Define h,.; by 0. Then for every 1 < ¢ < r there
exists a 1 < j(i) < r + 1 such that

yh; = xh;;)  (mod t). (2.14)

This congruence determines y uniquely modulo o h . As i runs through the
numbers 1,2,...,r, by the Chinese Remainder Theorem we get that y is
uniquely determlned modulo ﬁ =t (since (hy,...,h.,p—1) = 1).
In the special case (hi,t) = 1 the first congruence yh; = wh;q) (mod ?)
determines y uniquely. The elements of K are distinct modulo ¢, thus if the
congruences in (2.14) are given, then at most one y € K exists with the
desired property. Since each j(i) may take r + 1 different values, from this
follows the lemma.
We return to the proof of Lemma 2.4. Define the constant ¢(r) by

[t imn=1,
) = { (r+1)" otherwise. (2.15)

By Lemma 2.5, for fixed = € IC at most ¢(r) pieces of y exist with g, ,(2) = c.
x € K may take || different values, thus at most ¢(r) || pairs (y, z) exists
such that g, .(z) = c¢. By this and (2.13) we get

1/2
T1/2 p—1
z,yekl | z2=1
Gy, (2)Zc
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Let @

: max
z,yell
9y, «(2)Zc

p—1
E ep gyz .

z=1

Then

T1/2 T 1/2 T 1/2
S < rergm (K @+ () K] ) < (TQ) —i—(c(r)“qu) . (2.16)

In order to prove (2.10) and (2.11) we choose K = {k',... kN} with
N =N(y,...,0.,k0). Then |K| = L — d by (2.6)

we have

(dwhj,p —1) = d(whj, t) < dtp™® < p*~°. (2.17)
Clearly (2.17) also holds with y in place of z. Similarly, by (2.7)

< —0 1-6
(d:L’hjl — dyhjg,p - 1) = d(xhjl - yhj2’ t> { _ ?l:;p: p<—p1. "

Thus (2.8) holds for the polynomial g, ,(2) € F,[z] and we may use Lemma
2.3 since gy ,(2) # c. Then

Q<p"
By this, (2.15), (2.16), ¢ = &% and |K| = N we get:

Tpi==\"? Tp\"? 1/2(, —ea 1/2 nr—1/2
S<<< p ) +<()Nd) L (Tt) = (p~ 2+ c(r)/*N—%)

which proves (2.10) and (2.11) in Lemma 2.4.

In order to get (2.12) we recall the proof of Friedlander and Shparlinski
[28]. Consider the special case h; = k! for 1 <1 < r. In order to estimate
@ in this special case we need Weil’s theorem for character sums, which we
present in the following form:

Lemma 2.6 (Weil) For any prime p, and any polynomial f(z) € F,[z] of
degree D > 1 which is not identically constant, the bound

p

> elf@)

r=1

holds.
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Proof of Lemma 2.6

This lemma can be deduced from Weil’s theorem. See [106], an elementary
proof can be found in [99].

We will also need the following lemma of Friedlander, Hansen and Shpar-
linski [25]:

Lemma 2.7 (Friedlander, Hansen, Shparlinski) For any set W C Z;
of cardinality |W| =W, any fivred 6 > 0 and any integer h > t°, there exists
an integer a € Zi, such that the congruence

ak=b (modt), keW,0<b<h-1 (2.18)
has Wh
La(h) > -
solutions.

Proof of Lemma 2.7

This is Lemma 2 in [25].

We return to the proof of (2.12) in Lemma 2.4. Let e, > 1/4. If k50— >
%, then using the trivial estimate we obtain S < T < kS1(=D¢1/271/4p1/8

which was to be proved. Thus we may suppose

3/(8e1)
Er=D/2 < 751/04{1);.%' (2.19)
> (r+1)Y2¢
h = |:T1/2k(r1)/2p1/4:| : (2:20)
Then by (2.19), T < t and t > p*/?*% we have
; 11/ (de1) £1/2-1/(821)

h >

= >
T 3/(8e1) [ 1/243/(8. 1/4—1/(16.
V2 tl/(gl)pl/l(lésl)pl/4 /243/(8e1) p1/4-1/(16e1)

( AL 20 (1/2-1/(8¢1))
= — > e (1/2-1/(8e1))
pl/Q)

pl/4=1/(16e1)

thus we may use Lemma 2.7. Let W = {k',... kT}. Weselect a as in Lemma
2.2. Let now K denote the subset of YW which satisfies the corresponding
congruence (2.18). Then the degree of the polynomial g, .(z%) is less than
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hk™='d. By this and Lemma 2.6 we have

p—1 p—1
Q= max |3 e(gay(2)] = max |3 eplgy ()] < B dp'
z,yek ’ z,yeX ’
gy, (2)=0 | 7=1 gy,x(2)=012=1
(2.21)
By Lemma 2.7
Th
K[> —. (2.22)

By (2.2) and (2.15) we have ¢(r) = r + 1. By this, (2.16), (2.20), (2.21),
(2.22) and t = 21 we get

d
r—17,1/2\ /2 1/2
5 < (Thk: dp ) N (c(’r’)Tp)

d || d
DT V2
< (Tk,r—lhpuz)l/? n ((7’ W‘L]q) t)

/2
- 1/2 r+1)2\!
< (rity o ()

< ((r + 1)kr—1Tt2p1/z)1/4’
which was to be proved.
We return to the proof of Lemma 2.1 and Lemma 2.2. Let

M+L

Z ep(a 0" 4+ -+ a9

=M

S:

We will suppose M > ny, since by (2.9) the contribution of the terms of
M <2z <ngin § is small, at most ny < 1.45logp. Using

ZT: jy = T HTIn,
'1€T A W otherwise,
]:
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1 [Pod T M+L T
S = T Z ep(a119]fy + + arﬁfy) Z ZeT((y —1x)j)
Yy=no =M j=1
1 M+L no—1+T
- TZ > er(=ja)|| Y ep(adt -+ a9 )er(iy)| . (2.23)
jzl {L'ZM y=no
Let
no—1+T
() = max Z ep((hﬁ]fy + -t arﬁfy)eT(jy) .
j
y=no
By (2.23) we have
TERANEIER:
S= 5 ; ;JGT(—W) Q. (2.24)

By Lemma 2.4 there exists a constant 5 > 0 depending only on r and ¢ such
that

Q < (tT)!2(p==2 + (c(r)) /2N, (2.25)
where the constant c(r) is defined by (2.15). Moreover in the special case
Y, = 97 for 1 <1 < r we get that for every ¢; > 1/4

Q < k61(r71)t1/2T1/4p1/8 (226)

also holds.
By the sum of geometric progression, the triangle-inequality and
|1 —e(z)] >4 = | we have

T | L T 9 1 1 [(T+1)/2] 1
er(—ja)| <Y ————— < = . < .
; ; ;\1—6(9/T)\ Q;H 3T || ; 13/T |
(T+1)/2] .
= % < TlogT. (2.27)
j=1

By (2.24), (2.25), (2.26) and (2.27) we get the statements of Lemma 2.1 and
Lemma 2.2.

Remark 2.1 In fact, using the results of Friedlander, Hansen and Shpar-
linski [25], the following can be proved: if t > p'/**? for all integer v > 1 we
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have:

M+L

x x T4r— __2v+41 1
37 ep(ad™ + a4 a0 < T R e p e Jog T
=M

Here, we presented the proof only in the special case v = 1.

2.2 Proofs of Theorems 2.1-2.3

In order to express the terms of the sequence Ey we will use additive
characters as in [76]. We will use the following representation:

Lemma 2.8 (Mauduit, Rivat, Sarkézy) For n € N r,(n) denotes the
unique r € {0,...,p — 1} for which n = r (mod p). Then for odd integer p,
there ezists a function vy(a,x) : Z x Z — C such that

1 (4 Be(an) — +1 ifrp(n) =2 (mod 2),
P Z pla, z)ep(an) {O if rp,(n) 2« (mod 2),

la|<p/2

and the function v,(a,x) satisfies

e f =0 (mod 2)
_J 2 ’
%0, 7) { el ifz=1 (mod 2). (2.28)
Furthermore, for 1 < |a| < p/2 we have
v, (a, 7)| < L . (2.29)
P min{a,p — 2a}

Proof of Lemma 2.8
Since for r € 7Z, we have

1 o (aln — 7)) = 1 ifn=r (mod p),
LS afatn-m)={

o= 0 otherwise,
al<p/2

for 0 <n <p—1 we have

1
E Z 0 otherwise.
lal<p/2 \ r=x (mod 2),

0<r<p—1

Z ep(_ar) ep((m) — { 1 ifn==x (mod 2),
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Thus we may define v,(a, x) by

vp(a, x) o Z ep(—ar).
r=z (mod 2),
0<r<p-—1

From this immediately follows (2.28). By computing the geometric sum

above, using the triangle inequality and |1 — e(z)| >4 || z || we get (2.29).
Writing v(a) = v(a,0) — v(a, 1) from Lemma 2.8 we get immediately:

Lemma 2.9 (Mauduit, Rivat, Sarkézy) For 0 <n <p—1 and an odd
integer p, we have

1 | +1 dfry(n)=0 (mod 2),
P Z vpla)ey(an) = { -1 ifr,(n) =1 (mod 2),

la|<p/2
where the function v,(a) satisfies

b

g min{a, p — 2a}

p(0) =1, |(a)] <

(1< lal <p/2).

Proof of Theorem 2.1
If t < p/® Theorem 2.1 and 2.2 are trivial, since all pseudorandom mea-
sures of Er are less or equal than 7 < t < p™/®. Thus we may suppose
that
t>p8 (2.30)

We have to prove that forany 0 < b<p, 0<c<b 1< M <T, we have
the estimate

D eerin| < p*(logp)*.
c+j1]7§M

By Lemma 2.9 we have

Z €ctjb :Z% Z vp(a) Z ep(atierjp)

la|<p/2

J J
c+jb<M c+jb<M
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b
Since ey jp = (19(kc))(k 4 (mod p), the multiplicative order of k* modulo ¢ is
larger or equal than 7'/b and by (2.30) we may use Lemma 2.1 and obtain

> eplater )| < TP < pPlog p.

J
c+jb

Thus

1
D | <D bl | P ogp + )], (231)
e zm< M 1<]a|<p/2

By Lemma 2.9 14,(0) = 1 and 3,412 [Va(P)] < 30 1ciaj<prars & < plogp,
so the theorem follows from this and (2.31).
Proof of Theorem 2.2

By Lemma 2.8 for M < T — ¢+ 1 we have

1
Z(Er, M, X) = ~ Z T Z Vp(an, Upg1) - Vp(ar, Unr)
P lasl<prz  lad<ps2
Z ep(@1Upi1 + -+ 4 Qo). (2.32)
n<M

If (ay,...,as) = (0,...,0) then trivially

Z ep(1Upi1 + -+ + Qg ye)| = M — 1. (2.33)
n<M

By Lemma 2.8 we have

(p—1)f

1 14
S < (0 0,0 < LA

2£

(2.34)

By (2.30) we may use Lemma 2.1 and for all &; > 1/4 we have that if
(ay,...,a¢) # (0,...,0) then

Z ep(artng1 + -+ + Qpin o) | = Z (a4 atT)

n<M n<M
< ksl(rfl)T1/4t1/2p1/810gp < k€1(7“*1)p7/8 logp, (235)
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where the implied constant depends only on £;. By (2.32), (2.33), (2.35) and
the triangle inequality we have

| Z(Br, M, X) — M/2"| < lg

P Z Vp(ar, Un1) - - Vp(ap, tne)

(a’l 7777 ‘12)#(0 7777 0)7
lai|<p/2 (1<i<{)

1 + 1) M
+7M .
p

>~ ep(arttn + -+ aptin )
n<M

Since ¢ < p we have

(p+1)g(M_1)_M <((p+1)z_1)M elM el
2 20| — pk

1
2
If (a,p) = Llet pp(a) = grrtaay and let 11,(0) = 21 Then by Lemma 2.8
Vp(a, unsi) < p(a). By this and (2.34) we have

¢

1
|Z(BEr, M, X) — M/2"| < - Z pp(a)| kD Blogp | +1.5.

lal<p/2

Using ’Z|a|<p/2 ,up(a)’ K Y i<lal<p/ar & < logp, we get the theorem.
Proof of Theorem 2.3
Theorem 2.3 is trivial if N < p/2. Thus we may suppose that

N > p'/2, (2.36)

By Lemma 2.9 for M <pand 0 <d; <---<dp <p— M we have

> uta s = D0 e 3 wlan) e

n<M larl<p/2  lacl<p/2

E ep(alunerl +oee At awn+d4)
n<M
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If (a1,...,a;) # (0,...,0) we may use Lemma 2.2 with hy = k%, ... h, = k%,
By (2.2) (hi,t) = (k,t) = 1, thus we obtain

> " ep(artin g, + -+ aptinsa,)

n<M
k™ k™
= |3 eplon () 4 (94))
n<M
L, (P2
< (tT)1/2 (p 2 4 (]\/'71/2 1ng

By (2.36) and r* < p we have

Z ep(@rtinpay + -+ artinia,)| < p' =2,

n<M

where the implied constant depends only on 5. Thus

14

1 _
L5 o) e

la|<p/2

E €n+dy - - - €n+d¢

n<M

Using ’Z|a|<p/2 vp(a)| < ’Z|a|<p/4+1£ < plogp, we get

Co(En) < C1p17€2/47

where the constant ¢; depends only on e5. From this for large p > py follows
the theorem, while for small p < py the theorem is trivial with an € > 0 for
which N < p!'=¢ if p < py. Such £ > 0 exists, since N < p.
Proof of Corollary 2.1

Since ¢ is a prime, t = g or t = 2¢. k is a primitive root modulo ¢, thus
for 1 <i<j<g—1we have

(K —K'.t)=1 or (K — k' t)=2

which is less than tp~° for 6 < 1/2. Thus (2.4) holds with N = (p—3)/4 and
using Theorem 3 we get the corollary.
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3 On the correlation of binary sequences

Since 1997 numerous papers have been written on the theory of pseu-
dorandomness. In the majority of these papers special sequences are con-
structed and/or tested for pseudorandomness (see [52| and [97] for refer-
ences), while, for example in [3], [4], [14], [33], [34], [36], [69], [78] and [102]
the measures of pseudorandomness are studied. In [46] I gave a survey paper
on the most important results related to these measures.

In [14] Cassaigne, Mauduit and Sarkézy compared correlations of different
order. They proved the following
Theorem 3.A (Cassaigne, Mauduit, Sarkoézy) a) Fork,{,N € N, k| (,
Ex € {—1,+1} we have

CulBr) < N ((mk):!k/f (Cg(JifEN))k/er (%)w> |

b) If k, N € N and k < N, then there is a sequence Exy € {—1,+1}" such
that if ¢ < N/2, then

Co(Ey) > (N = 0)/k — 54k*NY?1og N if k| ¢
Co(Ey) < 2TK*(NY?log N if k1

This result shows some kind of independence between Cj and Cy when k1 ¢
and ¢ 1 k. In this section we will show a link between C}, and Cy when k and
¢ have different parity.

Cassaigne, Mauduit and Sarkozy [14] asked the following related question:

Problem 3.1. (Cassaigne, Mauduit, Sarkézy) For N — oo, are
there sequences Ey such that Cy(Ey) = O(v/'N) and Cs(Ey) = O(1) simul-
taneously?

In [75] Mauduit also asked another closely related question

Problem 3.2. (Mauduit) Let k, ¢ > 2 be integers. Is it true that for
every Ex € {—1,+1}" we have

Cokt1(EN)Cu(En) > N
where the implied constant factor depends only on k£ and ¢7 Or at least
Copr1(En)Cor(Ey) > NFO (3.1)
where the implied constant factor and the constant % < ¢(k,0) <1 depend

only on k and 07
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In [36] I solved both Problem 3.1 and Problem 3.2 in the weaker form
(3.1) when k > ¢. The answer follows from the main result of [36]:

Theorem 3.B Ifk,l € N, 2k+1 > 2(, N € N and N > 67k* + 400, then
for all E,, € { — 1, +1} we have

1

2h+1 2k +1\°
(17 k(204 1) C’M) + (17 2;; ) N2k_€022k+1 > §N2k—€+1

It follows trivially that

Corollary 3.A Ifk, ¢ € N, log N > 2k+1> 20, N € N and N > 67k*+400,
E,e{—1,+1} and

1
C E < Nl—f/(?k;-f—l)
ulBEw) < 5 k(20 +1)

then we have

1 20 Rap
Copir(Ex) > = [ ———) N2,
et (Ew) > g (17(2k+ 1))

Corollary 3.B If k, £ € N, 2k +1 > 2 then
Copt1(En)Cou(En) > N1/ (2k+1)

where the implied constant factor depends only on k and (. (This is the case
c(k,0) =1 — 555 > § in Problem 3.2.)

Later Anantharam [5] sharpened Theorem 3.A and he proved the follow-
ing:

Theorem 3.C (Anantharam)

2
Ca(En)Co(En) 2 5-N.

Theorem 3.C solves Problem 3.2 in the stronger form in the special case
(2k 4+ 1,20) = (3,2), so (3.1) holds with ¢ = 1.

3.1 Results

In this section we will generalize the earlier results. Theorem 3.B studies
only the case 2k + 1 > 2/ while Theorem 3.C involves only C; and C3. Here
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we study the general case, when there is no restriction of the order of the
correlation measures. The proof uses methods from [5] and [36]. We will
prove the following:

Theorem 3.1 (Gyarmati, Mauduit) There is a constant ¢y, depending
only on k and ¢ such that if

Cory1(En) < Ck,£N1/2a (3.2)

then
Copr1(En)* Cop( Ex) T > N2 (3.3)

where the implied constant factor depends only on k and (.

Remark 3.1 Theorem 3.1 is optimal: For Ey = (+1,—1,4+1, —1,+1...) we
have CQk+1(EN) =1 and CQ((EN) =N-2 + 1.

Remark 3.2 Tt is an important question whether condition (3.2) is necessary
in Theorem 3.1. Cassaigne, Mauduit and Sarkozy [14] proved that for every
e and N > Ny(e)

CQk—}—l(EN)a CQ[(EN) < N1/2 (log N)1/2 (34)

holds with probability 1 —e. Fix a sequence Ey for which (3.4) indeed holds
and N is large enough. From (3.3) and (3.4)

N2 (10g N)EHRF1/2 5 N2b+ (3.5)
follows. Since (3.5) is true for an N large enough we get from (3.5):
O+ k+1/2> 2k +1

and thus
20> 2k + 1.

But in Theorem 3.1 2¢ can be less than 2k + 1 so we need an additional
assumption on the size of Cor1(Fy) and Co(Ey).

Let us see some corollaries of Theorem 3.1.

Corollary 3.1 (Gyarmati, Mauduit) Suppose that Cq(Ey) <
N'2(log N)'/2, then

2%k+1)/ (4
Cop41(En) > min {Nl/z, Ak - }

(log N)(2k+1)/(4£)
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where the implied constant factor depends on k and £.
Corollary 3.2 (Gyarmati, Mauduit) If Co.i1(Exn) = O(1), then
Co(En) > N,
where the implied constant factor depends on k and £.
Corollary 3.3 (Gyarmati, Mauduit)
Copr1(En)Car(En) > N

where the implied constant factor depends only on k and ¢ and where

e ifk>¢,
C(H)_{ Ly 2l <o,

Remark 3.3 Corollary 3.3 solves Problem 3.2 in the stronger form when
k > ¢ and in the weaker form (3.1) when k < /.

These results can be extended to the multidimensional case, for the details
see the paper [49].

3.2 Proof of Theorem 3.1

Let L =[N/2] and 1 < M < N/2 be integers, where the value of M will
be fixed later. Consider the following equation

20 2k+1

Ay > e

1<n1<ne<-<ngk41<L 1<d1 <d2<--<dg,<M j=1 i=1
2k+1 2¢

> S I[Iews s

1<d1 <d2<-<dop <M 1<n1<na <--<ngp4+1 <L =1 j=1
We will use the following lemmas proved by me in [36].

Lemma 3.1 For all t,A € N, t < A there is a polynomial p; 4(z) € Q[z]
with the degree t such that if x1,29,..., x4 € {—1,4+1} then

pea(ri+ -+ x4) = Z Tiy Tiy - Ty -

1<y <ig <<y <A
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Denote the coefficients of pya by aria:
_ t t—1
Pea(T) = appat’ + a1 a2 + -+ aopa.

Then a,a =0 if r £t (mod 2), and (—=1)*/2a,, 4 > 0 if r =t (mod 2).

If t is even we also have:
A/2
= (—1)¥? .
alovth ( ) (t/Q)

Proof of Lemma 3.1 This is Lemma 2 in [36].

Lemma 3.2
|y a| < AU,

Proof of Lemma 3.2 This follows from Lemma 3 and Lemma 5 in [36].
(Indeed in [36] by Lemma 3 we get |a,; 4| < d; ;A /2. In [36] w; is defined
by doj+di j+---+d;; in Lemma 4 and in Lemma 5 d; ; < w; < 1 is proved.)
Next we return to the proof of Theorem 3.1.
First we rearrange A. For a moment we fix the value of ny,no, ... nog i1
in the first sum. Next we use Lemma 3.1 with ¢t = 2¢, A = M and z, =
Hfiirl en;4u for 1 <u < M. We get

20 2k+1

- ¥ > e

1<n1 <ng<--<ngpp1 <L 1<d) <dg<--<dpg<M j=1 i=1

M 2k+1
= Z P2e,m (Z H eni—l—u) .

1<ni<no<---<ngop+1<L u=1 =1

Similarly we rearrange B. For a moment we fix the value of dyi,ds, ..., dy
in the first sum. Next we use Lemma 3.1 with ¢t = 2k + 1, A = L and
Ty = Hjil uta, for 1 <u < M. We get

2k+1 20

DS S e

1<di1 <da<-+<doe<M 1<n1 <na<---<ngp41 <L i=1 j=1

L 2
= Z P2k+1,L (ZH&H@) .

1<d1 <da<--<doy <M u=1 j=1

We denoted the coefficients of p; 4(z) by a,; 4 in Lemma 3.1. Using these
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notations we get

M 2k+1 2t

E Q20,20 M E H Cnitu

1<ni<ng<---<ngp4+1<L u=1 =1
M 2k+1 26-1
+ a20—1,20,M E H Cn;itu + 4 ap2em

u=1 i=1
L 2 2k+1

= E A2k+1,2k+1,L E H€u+dj

1<d <da<<dpe<M u=1 j=1
L 2k
+ A2k 2k+1,L E H Cutd; + -+ ap,2k+1,L | - (36)

u=1 j=1

By Lemma 3.1 ag k11, = 0. From this and (3.6) we get

L o 2k-+1
E A2k +1,2k+1,L E H Cutd;
1<d1<da<-+-<doy <M u=1 j=1
L 2 2k L 20
+ A2k, 26+1,L E H Cutd; + a1 2k41,L E H Cutd,
u=1 j=1 u=1 j=1
M 2k+1 2t
- E 20,20, M E H €n;+u
1<ni<no<---<ngp41<L u=1 i=1
M 2k+1 26-1 M 2k+1
+ a20—1,20,M E H Cnitu + o F a0 m E H Cnidu
u=1 i=1 u=1 i=1

= E @0,2¢,M -

1<n; <na<---<ngp1<L

Again by Lemma 3.1 there is a constant ¢; depending only on k and ¢ such
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that

2

1<dy <da<---<dgg<M
L 2 2k
+ Qok,2k+1,L E H€u+dj
u=1 j=1

2.

1<ni<ng<-<ngk41<L
M 2k+1 21
+ a20—1,20, M1 E | | Eni+u
u=1 i=1

L 2 2k+1

A2k+41,2k41,L E H€u+dj

u=1 j=1

L 2

+ -+ a1 2k41,L E H€u+dj

u=1 j=1

M 2k+1 2t

A2¢.20, M E HeniJru

u=1 i=1

2k+1

Eni+u
1=1

M
+ ot ar20m Z

u=1

(3.7)

By Lemma 3.1 a,; 4 = 0 if » # t (mod 2). Using this and the triangle-

inequality we get from (3.7)

2k+1 L 2 r
> > laraeranl Y [T ewra,
1<di<da<-+<dgp<M r=1 u=1 j=1
= 2= r=1 (mod 2) J
20 M 2k+1 r
2k+1 7 0

+ > > laraenl | T eneu| > LM

1<ni<no<---<n <L r=2 u=1 i=1

= 1= r=0 (mod 2)

(3.8)

By the definition of the correlation measures we have

L 2/
§ H 6u+dj

u=1 j=1
M 2k+1

> 1L ene

u=1 i=1

< Cy(EN),

< Copy1(EN).
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By this and (3.8) we get

2k+1

Z Z |ar.2k41,0] Cor(En)"

1<di <do < <doy<M r=1
2 r=1 (mod 2)

20

r 2k+1 a 14
+ E E |ar2e | Corgr (En)" > et L7 M*.
1<ni<na2<---<n <L r=2
S =0 (mod 2)

By this and Lemma 3.2

2k+1 20
M2t Z L(2k+lfr)/2C2Z<EN>r + 2R+ Z M(2Zfr)/2cr2k+1<EN)r
r=1 r(:rrllod 2) r=0 T(:n%od 2)
> ¢ LMY (3.9)

In order to prove Theorem 3.1 we will use Theorem 1.C as a lemma.
Lemma 3.3 (Alon, Kohayakawa, Mauduit, Moreira, R6dl)
Co(En) > N2
where the implied constant factor depends only on (.

Proof of Lemma 3.3 See in [3] and [69].
By this for 1 <r <2k + 1 we have

L(2k+lfr)/202g<EN)r < CQg(EN)2k+1.

Using this and (3.9) we get there is a constant ¢ depending only on &k and ¢
such that

20
CZMZECM(EN)Zk-l—l + L2k+1 Z M(QK—T)/ZCQk_H (EN)T

r=0 r(mod 2)
> ¢ L2 (3.10)

Now we fix the value of M. Let M = c3Co,41(EN)?, where the value of the
constant ¢z will depend only on k and /. We choose the value of ¢3 such that

e 1 2/7’
{max ( + ) —‘ < c3.
2<r<20 1

40




Then

C
M(M_T)/ZC%_H(EN)T < H_llMﬁ (3.11)

holds. Now we fix the constant ¢;, in Theorem 3.1, we put ¢, = % Then
2¢3Co,41(En)? < N, so M < N/2 indeed. By (3.10) and (3.11) we get

CQM%C%(EN)%H X L%chjfl MY > o L2

M2 (B 2R > C1 I2k+1 ¢
C2 2@( N) = —€+1

M2C (B 2R > C1 2R+t
2(E) = o0+ 1)

Writing L = [N/2] and M = c3Cq,.1(En)* we get

2ZC E 4EC E 2k+1 >
C3 2k+1< N) 2@( N) _702(£+1)

C%H(EN)MC%(EN)%H s N2+

c N 2k+1
! [5] Cgczkﬂ(EN)%

which was to be proved.

The proofs of Corollaries 3.1 and 3.2 are immediate from Theorem 3.1.

3.3 Proof of Corollary 3.3

If Copp1(En) > NY2 then Corollary 3.3 is trivial since by Lemma 3.3
Coy(Ey) > N2 also holds and then Cyyi(En)Co(Ex) > N. Thus we
may assume that Cypyi(Ey) < N2

If £ < ¢ by Theorem 3.1 and Lemma 3.3:

(C2k+1(EN)C2Z<EN))% = C2k+1(EN)%C%(EN)%JrlC%(EN)%i(%Jrl)
> N2k+IC2Z<EN)2Zf(2k+1)
s N2EHLNER=1/2 _ \perke1/2

so that
Cops1(En)Cou(En) > N1/2+@2k+1)/(46)
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If £ > ¢ then by Theorem 3.1

(02k+1(EN)C%(EN))2k+1 = 02k+1(EN)%C%(EN)%HC%H(EN)%_%H
> N2k+102k+1(EN)2k—2£+1

so that
Copt1(EN)Cou(EN) > N.
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4 On the complexity of a family related to the
Legendre symbol

In this section we study large families of finite, binary sequences
Ey = (e1,€,...,ex) € {—1,+1}".

In many applications it is not enough to know that the family contains many
binary sequences with strong pseudorandom properties; it is also important
that the family has a “rich”, “complex” structure, there are many “indepen-
dent” sequences in it. Ahlswede, Khachatrian, Mauduit and Séarkozy [1]
introduced the notion of f-complezity (“f” for family):

Definition 4.1 (Ahlswede, Khachatrian, Mauduit, Sarkézy)

The family complexity C(F) of a family F of binary sequences
Enx € {—=1,+1} is defined as the greatest integer j so that for any
1<iy <ip<---<i; <N, and for ey,eq,...,6; € {—1,+1}, we have at
least one Ey = (ey,...,en) € F for which

€y, = &1, €y 2527---7€ij =£&j.

In [1] in Section 3 the following is proved: In order to get an upper bound
for C(F), we take all specifications of the form

€1 —¢&1, €3 = E9,.. L EoF) = 50(]:). (41)

By the definition of f-complexity, for such a specification, there is a sequence
E € F for which (4.1) holds. €1, €, ...,ec(r) may take 2¢(F) different values,
thus,

205) < | F].
So:
Proposition 4.1 (Ahlswede, Khachatrian, Mauduit, Sarkozy)

log | 7|
log2

C(F) <

Numerous binary sequences have been tested for pseudorandomness by
J. Cassaigne, Z. Chen, X. Du, L. Goubin, K. Gyarmati, S. Ferenczi, S. Li, H.
Liu, C. Mauduit, L. Mérai, J. Rivat and A. Sarkozy. However, the first con-
structions produced only “few” pseudorandom sequences, usually for a fixed
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integer N, the construction provided only one pseudorandom sequence Ey of
length N. L. Goubin, C. Mauduit, A. Sarkozy [31| succeeded in constructing
large families of pseudorandom binary sequences. Their construction was the
following:

Construction 4.1 (Goubin, Mauduit, Sarkézy) Suppose that p is a
prime number, and f(z) € Fy[x] is a polynomial with degree k > 0 and
no multiple zero in F,. Define the binary sequence E, = (e1,...,e,) by

. { (£22) for (f(n),p) =1 (42)
+1 for p | f(n).

Ahlswede, Khachatrian, Mauduit and Sarkozy [1] proved the following:

Theorem 4.A (Ahlswede, Khachatrian, Mauduit, Sarkozy) Let p be
a prime. Consider all the polynomials f(x) such that

0<degf(z) <K

(where deg f(z) denotes the degree of f(x)) and f(x) has no multiple zero

in F,. For each of these polynomials f(x), consider the binary sequence
E,=E,(f) = (e1,e2,...,e,) € {—1,+1}? defined by (4.2), and let F; denote
the family of all the binary sequences obtained in this way. Then

C(F) > K. (4.3)
By Proposition 4.1 it is clear that

log | F4| K+

<
Gl < log2 — log2

log p.

We will improve on (4.3) and we will prove the following:

Theorem 4.1 For the family defined in Theorem 4.1 we have

K—1
> — . .
C(F) > 21082 log p — O(K log(K logp)) (4.4)

4.1 Proof of Theorem 4.1

In this proof ¢, ¢, will denote absolute constants. For K > p'/?/log p the
right-hand side of (4.4) is negative, so the theorem is trivial. Thus we may
suppose that

K < p'?/logp. (4.5)
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Let k be the greatest odd integer with k£ < K. Let

Clk’
og?2

J< logp — 1 log(klogp), (4.6)

0
2log 2
where we will fix the value of the absolute constant ¢ later. Suppose that
we have the specification

=£&j. (47)

€ny = €15 Epy = EQ,...,an

Let I = {ny,ny,...,n;}. We will consider all polynomials f(z) of the form

Jar a0 (%) = (2 = ar)(z = ag) - - (z — ay) (4.8)

with a; € I, and we will prove by a counting argument that there is at
least one k-tuple ay,as,...,a; (where a; ¢ I) for which the sequence E,
defined by (4.2) with f,, 4,4, (2) in place of f(z) satisfies (4.7). Suppose
that (1, (s, ..., 5 are the roots of f(x) which have odd multiplicity in the
factorization of f(x). Since the degree of f(z) is odd, ¢ the number of these
roots are also odd, so t > 1. Let fi(z) = (z — B1)(x — Ba) ... (x — ;). Then
fi(z) has no multiple zero and the sequence E defined by (4.2) with f(z)
in place of f(x) satisfies (4.7).

Since this will be true for every j < ngg? log p — &k

log 2

log(klogp) from this

Clk’ K-—-1
log(k1 >
og 2 og(klogp)| = 2log?2

C(F) > logp — 1 logp — co K log(K log p)

— [2log?2 ©
follows.

Now consider a k-tuple aq,as,...,a, with a; ¢ I, and consider the corre-
sponding polynomial

Jar 4z, (¥) = (2 = ar)(x — ag) - (x = ag).

Define the sequence E, = (e, ea,...,¢€,) by

o = { (f‘”“?ff’“(")) if (fay..an(n),p) =1,80n #q; for 1 <i <k,
1 if p| far...ap(n), SO 0 =a; for some 1 <i < k.
(4.9)
Clearly,
1 if €n;, = iy

(1+eien) = { 0 ife, = —ci.

DO | —
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If n; # as for 1 < s <[ then

l(lJrgi ((ni_a1)<ni_a2)"'<ni_ak))) :{ 1 %feni =&,
2 P 0 ife, =—¢.

Let N be the number of polynomials f,, 4 o (x) € TF,lz] with
ap,as,...,ar € F,\ I such that for the sequence (4.9) specification (4.7)
holds. Then

N = p—1 p—1 p—1 1 J . (nl — al)(ni — a2) . (nz _ ak)
= o Z 5 H te : |

a1=0a2=0  a;=0"" =1

a1 €l as@l gl

(4.10)
Here
J

Aar, . a) = ] <1+6i <(m & P i a’“)))

N S SRR (CE I SHCETE)

(=1 1<iy <ig<--<ig<j

((”z‘z —ay) -+ (ngy —ak)) ((”u —a1) -+ - (n, —ak)) .

p

The Legendre symbol is multiplicative, thus

J
A(al,...,ak)zl—i—z Z EiyEiy """ €y

=1 1<i1 <ia<--<1p<j

ﬁ ((n — a;)(ng, —paj) (g, — aj>) |

j=1

Writing this in (4.10) we get

p—1 p—ll J
N "'Zg(”Z S s,

0 ar=0 I=1 1<i1<io<-<1y<jJ
I apél

tli ((n — a)(ns, —pat) (g, — at)> )
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- j
LAV SR 55 DI DI

a1=0 ap=0 (=1 1<i1 <iz<---<iy<j
a1 ¢l ap gl
k
H ((nu - at)<ni2 at) (nle — a’t))
t=1 p
—1 p—1
p—i)F  1¢ <
2 NI 3t »
(=1 1<iy <ig<-<iy<j a1=0  ap=0
a1 ¢l ap @l
k
H ((n“ —ag)(niy, —ag) ... (ng, — at))
t=1 p

|
—
S
||
<
<
S~—
x>
_l’_
2]~
M-
o
™
<

(=1 1<iy <ig<--<ig<j

Z (ny —a)(ni, —a)...(n;, —a)

(4.11)
a=0 p

Lemma 4.1 (Weil) Suppose that p is a prime, x is a non-principal char-
acter modulo p of order d, f € F,[x] has s distinct roots in F,, and it is not
a constant multiple of the d-th power of a polynomial over F,. Then:

D> x(f(n)| < sp'.

nelf,

Poof of Lemma 4.1
This is Weil’s theorem, see [106].
By the triangle-inequality and by Lemma 4.1:

— <<ml—a)(n@—a)...(m—a)) _
a=0 p -
ail
p—1
<(m1 —a)(ny, —a)...(n, —a)) b <V < pt? 1.
a=0 p
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Thus by (4.11) and the triangle-inequality

-4k 1 - . 1/2 -k_(P—')k 2 1/2 ok
N>y ), ) = - G )

97
I=1 1<i1<io<-<1y<J
Thus N > 0 follows from

p—J
2i/k
p > 21/%(ipt? + §) + 5. (4.12)

> jp/2 +j

Thus it remains to prove (4.12). By (4.6)

21/k(jpM/? + 5) + j < 2(omaz lorP—riz los(klox ) (m

2
p/?logp + T1o0g 2 logp)

1/2 1/2
P egp< P Flogp 5 kp'/*logp.
2log 2 (klogp)er \ 2log2 2-31/2]og2
k pl/? . k
—1 < ——1.138(k1 24— logp.
+ 2log 2 08P = (klogp) (Klogp)p™™ + 2log 2 o8P

By this and (4.5)
1/2
p —_— p
(klogp)er—t ~ 2log2

p 4 p
(klogp)er—t 2. 31/2]log?2

p
W —+ 0.414p.

21k (ip/? 4 §) + 5 < 1.138

< 1.138

< 1.138

For ¢; = 9 we have

2/l 1 )+ j < 1.138(10;'%@8 +0.414p < p

which proves (4.12). Thus for j < 21ng logp — 13§2 log(klogp) we have that
(4.12) holds. Then N > 0. So there is a sequence E, for which specification
(4.7) holds. Thus we proved

k k
> Y logp— log (k1 >
C(F1) 0gp og(klogp)| > 2Tog2

— [2log?2 log 2

logp — O(K log(K logp)).
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5 On the correlation of subsequences

A sequence Ey is considered a “good” pseudorandom sequence if each of
these measures W (Ey), Cy(Ey) (at least for small £) is “small” in terms of
N (in particular all are o(N) as N — o0). Indeed, it was proved in [14]
that for a truly random sequence Ey C {—1,+1}" each of these measures
is < /NlogN and > +/N. Later these bounds were sharpened by Alon,
Kohayakawa, Mauduit, Moreira and Rodl [4] (see Theorems 1.A and 1.B).

Numerous binary sequences have been tested for pseudorandomness by
several authors. In the best constructions we have W(Ey) < v/ N(log N)“
and Cy(Ex) < v/N(log N)* with positive constants ¢; and ¢;. From this it
follows that

\U(Ex,t,a,b)| < NY*(log N)* (5.1)
and

\V(En, M, D)| < NY*(log N)* (5.2)
(for all t,a,b, M, D). For every M and t, we trivially have

max  |U(En,t,a,b)| =t,
Bye{-1+1}N

max  |V(En,M,D)| = M.

Ene{—1,+1}N

If U(EN,t,a,b)|is large compared with ¢ or |V (Ey, M, D)| is large compared
with M, then it may occur that our sequence Fy has a “part” with weak
pseudorandom properties. Indeed, if ¢t or M is smaller than v/N then the
estimates (5.1) and (5.2) are trivial. Thus it may occur that, say, we want to
encrypt a message of estimated length slightly less than N, thus we use an
N bit sequence possessing strong pseudorandom properties. However, it may
turn out that the text to be encrypted is of length less than, say, v/N. In
this case we use only a short part (of length VN ) of the sequence although
we do not have any control over the pseudorandom properties of the short
subsequences. In this section we would like to present constructions with
non-trivial estimates for V(Ey, M, D) in case of small M’s.

Theorem 5.1 For every N there is a binary sequence Ey € {—1,+1}" such
that if D = (dy,dy, . ..,d;) and M < N2 are such that 0 < d; < dy < --- <
dy < M +dy <N, then we have

\V(Ey, M, D)| < (*N"*1og N. (5.3)
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From this follows that for 1 < M < N we have

M
\V(Exn, M, D)| < ¢* [WW NY*1og N.

Corollary 5.1 For the binary sequence Ex € {—1,+1}" constructed in the
proof of Theorem 5.1 we have

M
Co(En) < ° [WW N'Y*log N (5.4)

for every M < N and Ey; C Ex (so Ey is of the form (ey, epi1,...,€nm)).

[t is an interesting question whether similar results hold for U(Ey, t, a, b)?
Theorem 5.1 is not optimal in the sense that it follows from (5.4) for the
sequence Fy which satisfies the conditions of Theorem 5.1 that

Cg(EN) < €2N3/4 log N,

while in the best constructions we have Cy(Ey) < N'2(log N)*. Next we
will show the existence of such a sequence.

Theorem 5.2 For every N there is a binary sequence Exy € {—1,+1}" such
that if D = (dy,dy, ...,d;) and M < NY2 satisfy 0 < dy < dy < --- < dy <
M +d, < N, then we have

\V(En, M, D)| < (*N'*1log N. (5.5)
Moreover
Co(Ey) < (*NY?(log N)? (5.6)
and
W(Ey) < N¥*log N (5.7)
holds.

From (5.5) follows that for 1 < M < N we have
V(Ey, M. D)| < | | N/1og N
\V(En,M,D)| < ) og V.

Corollary 5.2 For the binary sequence En € {—1,+1} constructed in the
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proof of Theorem 5.2 we have

M

Cy(Ey) < 12 [WW NY*1log N, (5.8)
M 1/2

W(Ey) < [NUJ MY2NY8(log N)Y2, (5.9)

for every M < N and Ey; C Eyx (where Ey; is of the form
(€xy€x41s--y€xirr—1)). Moreover

Cg(EN) < £2N1/2<10g N)2

and
W (Ey) < N¥*log N

holds.

The proofs of Theorems 5.1 and 5.2 are constructive. The con-
struction in Theorem 5.2 uses two-dimensional binary lattices (see Section
1). In [50] we reduced the two dimensional case to the one dimensional one
by the following way: To any 2-dimensional binary N-lattice

n(z): Iy — {-1,+1} (5.10)

we may assign a unique binary sequence Enz = En2(n) = (e1,€2,...,6n2) €
{—1,+1}" by taking the first (from the bottom) row of the lattice (5.10) then
we continue the binary sequence by taking the second row of the lattice, then
the third row follows, etc.; in general, we set

eineg =n((j—1,4)) fori=0,1,... . N—1, j=1,2,...,N. (5.11)

In [50] we asked if it is true that if Ey2(n) is a “good” pseudorandom binary
sequence then 7 is a “good” pseudorandom 2-dimensional lattice? The answer
to this question is negative; we showed that it may occur that the pseudoran-
dom measures of the sequence Fy2(n) are small, however, the corresponding
pseudorandom measures of the lattice n are large. Here we study the oppo-
site. We will prove that if the lattice n has small correlation measure, then
the corresponding E%(n) sequence has small correlation measures as well.

Theorem 5.3 Let n be an arbitrary binary lattice. Then

Ce(Enz(n)) < (£+2)Ci(n).
By Cy(n) < Qe(n) it follows that



Corollary 5.3 Let n be an arbitrary binary lattice. Then

Ci(En2(n)) < (0 +2)Qe(n).

In the proof of Theorem 5.2 we will use Theorem 5.3. But Theorem 5.3
is of independent interest: by using Theorem 5.3 we can construct pseudo-
random binary sequences by using pseudorandom binary lattices.

We remark that one may obtain similar results for shorter intervals in
Theorem 5.2: If ¢t is an integer then for M < Nt we have

\V(Ey, M, D)| < NY®1og N

in place of (5.5) while Cy(Ey) < N'Y%(log N)* and W (Ey) < N**(log N)
also holds. However the proof of this result would be lengthy (we would need
more sophisticated sums as the ones in Lemma 5.4 and the relation between
the pseudorandom measures of the binary lattices and the associated binary
sequences is more complicated) thus we omit here the details, but one might
like to return to this problem in a subsequent paper.

Throughout the section [a, b] will denote the set {a,a + 1,...,b}.

5.1 Proofs

Proof of Theorem 5.1
For N = 2 the theorem is trivial. For N > 3 by Chebysev’s theorem
there exists an odd prime p such that

N2 < p < 2NV2, (5.12)

For an irreducible polynomial f(z) € F,[z] of degree k > 2, we define a
binary sequence E,(f) = (e1,ea,...,e,) by the following way:

()

(We remark that since f is irreducible, for an integer n, f(n) is never divisible
by p thus (@) always assumes +1.) Next we will construct a pseudorandom

binary sequence for which (5.3) holds. Let fi(z), fa(z), ..., f,(x) be different
irreducible polynomials of degree & > 2 and for 1 <i < plet f;(x) be of the
form

filz) = F + ai7k,2xk_2 + ai7k,3xk_3 + -+ ap (5.13)

with a; ; € F,. (so the coefficient of 2%~ is 0 in f;(z)). We remark that the
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number of monic irreducible polynomials of degree k < p over the finite field

Eh L] K\
0= u(5)a

d|k

see [29, pp. 602-629]. For k > 4

For every j € I, consider f(z + j). Between these ¢ different irreducible
polynomials there is exactly one which is of the form

1 qk/2_1

1
k q—1

(k+2)/2) > L g

Lq( = %q .

Loy
ZE(C] —4q

wlr—‘
wl»—k

flx+i)=a"+ap 2™+ +ag

(so the coefficient of 2*~!is 0 in f(x + j)). Thus for k > 4 and p > 3 the
number of irreducible polynomials which are of the form z* + a;_o2*=2 +
<-4 ag is

1
Ly(k) > — T A (5.14)

For k > 4, p > 3 we have N,(k) , thus there exist p different irreducible
polynomials fi(z), f2(z),. .., fo(2) Which are of the form (5.13). Let

fl
q
>p

Ep = (By(f1), Bplf2), > Epl(£)) (5.15)

where E,: is a binary sequence of length p? obtained by writing the ele-
ments of E,(f1), E,(f2), ..., Ep(f,) successively. Let E,2 = (e1,ea,...,€,)
and since by (5.12) we have

N < p? < 4N,
we may define Ey by the sequence of the first IV elements of E,.:
En = (e1,e9,...,en).
If M <p, D= (dy,...,dp)

V(Ey,M,D)=V(E,, M,D)

= €14d1Cl4dy - - - Cl4dy T €24+d1€2+dy - - - €24dy T * + €M +d1EM+dy - - - EM+dy-

Next we will prove that for each 1 < ¢ < f and 1 < n < M, there exist
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integers a;, b; and intervals I; = {1,2,...,b;} and J; = {b;+ 1,b;+2,..., M}
such that

fai(7;+di)> ifn e [z’7
Cnid; = fai_,_l(neri)) ifnel (516)
D i

(if b = M then J; = 0). Indeed, let m,(z) denote the least nonnegative
integer with
xr=my(z) (mod p),

so 0 <my,(x) <p—1. Then

e

n+d; = p+my(n+d; —1)+1.

Thus
Cntd; = f[n+ii_1]+1(mp(n +d; — 1) + 1) = f[n+¢:j—1]+1<n + dl) (517)
In (5.16) 0 <n < M < p. Let d; = ¢;p + s; where 0 < s; < p — 1. Then

[n+di—1} {qiersiJrn—l] [si+n—1}
p p

_ ) ifn<p-s,
_{qurl ifn>p-—s,, (5.18)

which proves (5.16) with a; = ¢; + 1 and b; = max{p — s;, M }, so I; = [1, b;],
J; = [b+1, M] (ifb; = M then J; = 0). Then {1,b,+1,by+1,...,by+1, M+1}
is a multiset which contains integers 1 =¢; < ¢y < --- < ¢, = M + 1 where

m<l+2. (5.19)
Then [0, M] = U7 [¢;, ¢j41 — 1]. By the definition of the ¢;’s, ¢; < b; +1 <

Cjt1 is not possible, thus Cjt1 — 1 S bz or bz S Cj — ]_, SO [Cj, Cjr1 — 1] Q [0, bz]
or [Cj,Cj+1 — 1] - [bz + 1, M] Hence

M m—1
V(EN, M, D) = Z En+dy -+ - Cntd, = Z Z Cn+dy -+ Entd,- (520)
n=1 J=1 nelejejr1-1]

Now each interval [c;, ¢;41 — 1] is either C I; or C J; for every 1 < i < /.
Thus for every d,ds,...,d, and for every interval [c;, c;41 — 1] there exists
fixed numbers hy, ho, ..., hy (depending only on dy, ds, . . ., d; and j) such that
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for n € [¢j, cj41 — 1]

fhl(n+d1)) (th(nerQ)) (fhz(nerg))

€ntdi€ntds - - - Entd, = (
p p p

_ (fhl(n+d1)fh2(n4]—9d2)...fhz(n+dg)) |

Next we estimate

E €n+tdi Cntds - - - Entd,
n€lc;,cip1—1]

_ Z (fhl(n+d1)fh2(n+d2)...fhz(n+dg)).

p

n€lcj,cj+1—1]
Here fy,(x + dy),. .., fn,(x + d;) are different polynomials. Indeed if
Jo (@4 dy) = fr,(x + dy),
then substituting x + d, by = we get
fn (@) = fr(z+ dp — d;). (5.21)

It is easy to see that there is exactly one among the polynomials
Tn (@), fr,(x +1),..., fa,(x +p — 1) for which the coefficient of z*~1 is 0,
and this one is fp,,(x). From this and (5.21) follows that

d, =d; (mod p). (5.22)

Thus from (5.21) we get
oo (@) = fn, ().

Since the polynomials f1, fo, ..., f; are different, from this

follows. Now we compute the value h, = h,. By (5.17) for n € [¢j, ¢j41 — 1]
Cn+d, = fhr (n + d?")a Entd, = fht (n + dt) where

hr: [w] _|_1’
p

d,—1
m:[ﬁii——]+L (5.24)
p
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By (5.23) and (5.24)

d. —1 d; — 1
l”* " }:[TH t ] (5.25)
p p
Now
n+d, =gp+ s, n+d =qp+s (5.26)
where 0 < s,, s, < p— 1. By (5.22)
Sy = St. (5.27)
Now
d, —1 —1 —1
{n+ . }Jrl: lqrp+sr ]+1:qr+1+lsr ]
p p p
Similarly

+d; — 1 —1
[n t }:qt—l-l-l—[& }
p p

By this, (5.25) and (5.27) we have

qr = qt-

By this, (5.26) and (5.27)
dr = dt7

which is a contradiction. So indeed, the irreducible polynomials f, (z +
dy),..., fn(x + d;) are different. Thus the product f,,(x + dy)fr,(x +
ds) ... fn,(x+d;) is not of the form cg?(z). We will use the following lemma:

Lemma 5.1 (Winterhof) Suppose that p is a prime, x is a non-principal
character modulo p of order d, f € F,|x] has s distinct roots in Fp, and it s
not a constant multiple of the d-th power of a polynomial over IF,. Let y be
a real number with 0 <y < p. Then for any x € R:

< p?logp. (5.28)

> x(fn)

rz<nlzr+y

Poof of Lemma 5.1

This lemma is the one-dimensional case of Lemma 5.10 due to Winterhof
[107], who derived it from Weil theorem [106]. We mention that a slightly
weaker version of the lemma can be found in Lemma 1 in [2] where 9sp*/2 log p
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is proved in place of the right hand side of (5.28). (In the case f(z) = z
the best constant factor is achieved by Bourgain, Cochrane, Paulhus and C.
Pinner in [10], and their method also works for higher degree polynomials.)

Since later in the proof we will also use Weil’s theorem, we state it here
as a lemma (see in [71] and [106]):

Lemma 5.2 (Weil) Suppose that p is a prime, x is a non-principal char-
acter modulo p of order d, f € F,[z| has s distinct roots in F,, and it is not
a constant multiple of the d-th power of a polynomial over F,. Then:

D O x(f(n)| < sp'.

nel,

By Lemma 5.1 we get

E €n+tdi Cntds - - - Entdy
n€lcj,cip1—1]

_ Z (fhl(n+d1)fh2(n+d2)...fhz(n+dg)).

p

n€lej,cj41—1]

< lkp*?logp.
By (5.19) and (5.20) we get
\V(Ex, M, D)| < kp'?logp < (*kNY*1log N. (5.29)

Since k, the degree of the polynomials fi(z), fao(z), ..., f,(x) can be chosen
as k =4, from (5.29) we get (5.3), which was to be proved.

Proof of Theorem 5.2 First we will need some technical preparation in
order to be able to estimate character sums of the type which appear later
in the proof of our theorem. First Katz [67] and Perelmuter-Shparlinski
[92] studied character sums over subfields of a finite field. Their result was
generalized by Wan [105] who proved the following very general theorem:

Lemma 5.3 (Wan) Let the f;(T) with 1 <i < n be pairwise coprime poly-
nomials. Let D be the degree of the largest squarefree divisor of [[;_, fi(T).
Let x; be a multiplicative character of the field Fym for 1 < i < n. Suppose
that for some 1 < i < n, there is a root & of multiplicity m; of fi(T) such
that the character X™ is non-trivial on the set Normg, (¢, /rm (Fql€]). Then
we have

Z x1(f1(a) .. xn(fala))| < (mD = 1)g"/2.

aclFy
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Part a) of the following lemma is a consequence of Lemma 5.3, while the
estimate in part b) - the incomplete case - is new and I will derive it directly
from Weil’s theorem. (At the same time I will also give an alternative proof
for part a), since in order to do so I just need to add one more sentence to
the proof of part b).)

Lemma 5.4 Let p be an odd prime, ¢ = p?> and denote the quadratic char-
acter of F, by v. Clearly F, CF,. Let I = [a,a+1,a+2,...,b] CF, and
f(x) € F,[z] be a polynomial which is not of the form cg(x)h?(x) with ¢ € F,
g(x) € F,lx] and h(zx) € F,[z]. Suppose that f(x) has m distinct zeros in its
splitting field over F,. Then

a) [ y(f(x)] < 2mp'?, (5.30)
b) D> (f(@))| < 2mp'>(1+logp). (5.31)

Proof of Lemma 5.4 Let n € F, be a quadratic non-residue modulo p, so

(%) =1 (5.32)

The polynomial 2 — n € F,[x] = Fj2[x] is reducible in Fy[z], let § € F, be
an element for which
0* =n (5.33)

in [F,. Since n is quadratic non-residue modulo p, § ¢ F,. Then {1,60} is a
basis of F, over IF,, so every element of F; can be written uniquely in the
form x + 0y with x,y € F,. Then define the conjugate of  + 0y by

x+9yd:efx—0y.

Then for a,b € F, we have

ab=a-b,
a+b=a+Db,
and
aa € F,,. (5.34)
It is easy to check that
x4+ 0y = (x + 0y)?, (5.35)
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since by using the Euler lemma for z,y € IF, we have
(z+ 0y)? =@ + 0yP = a” + (02)"" 2 oyr = =+ (62)" 0y

=24+ nPV20y =2 4 (ﬁ> Oy = — Oy.
p

Thus the conjugation is an automorphism of F, which can be extended to an
automorphism of F, by

F, —F,,

e — el.
This is the Froebenius automorphism.

Lemma 5.5 Forz,y €F,

Y(z + Oy) = <<x i Gy)m> = (M) :

p p

Proof of Lemma 5.5 Using (5.35) and the Euler lemma we get

1w+ 8y) = (a4 0y) 7 = (w4 0y) )2
= (z+ Qy)(plp)ﬁ(x + fy) P72

(o 09)) % (0 40y

- ) o

= (z — gy)(p—l)/Z(x + Qy)(l?—l)/z

which proves Lemma 5.5.
By Lemma 5.5

> ) =Y (W) .

zel zel
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Since I CF,, if f(z) = arz® + - - - + a,, then

z) f(x) apx® + -+ a,) (apzF + - -+ a,
Z<M>:Z<( ) ( ))

zel p zel p
_Z<(akxk+~-~+ao) (a_kxk+~-~+a_o)>
zel p

Here the coefficients of (ayz* + -+ +a,) (@pz” +--- +a,) are in F,, since
f(x) can be written in the form p(z)+6r(x) with p(z), r(z) € F,[z] and then

flo) =@z + -+ a5 = p(a) — Or(x) so f(z)f(x) = (p(x) + Or(x))(p(x) —
Or(x)) = p*(x) — ng*(x) € Fylz].
Let b(z) = (akxk + -+ ao) (a_kxk + -+ a_o). Then

S(5)200)

zel zel

Here we need Weil’s theorem. If the conditions of Lemma 5.1 and Lemma
5.2 hold, then using these lemmas we get (5.30) and (5.31) which was to be
proved. So indeed, we need to prove that the conditions of Lemma 5.1 and
Lemma 5.2 hold for b(z), so b(x) is not of the form ch?(z), with ¢ € F,,
h(z) € F,lx].
Let
f(z) =ar(z —e1)(x —e2) ... (v —ex)

where a, € Fy, e1,...,e, € Fp. Then for x € I,

Then b(z) = f(2)f(x) = ax@r(z —e1) - (x —ep)(x —¥) - - (x — 7). Clearly
by (5.34) we have aia; € F,. The next question is that when is a product
(x—e1) - (z—ep) (@ —¢l) - (x — &) of the form n?(x) with n(z) € F,[z].
Let aq, s, ..., a; be the different elements among &4, . .., e which have odd
multiplicity in the factorization of f(z) = ar(x —e1)...(x — €g). Writing
g(z) = (x—ay)...(x—0a;) we get that f(x) is of the form a,g(x)h?(x) where
g(x) has no multiple roots and g(x), h(z) € F,[x]. Then

b(x) = apap(c —ay) ... (x — o) (x — ) ... (z — of)s*(z)

with s(z) € Fo[z]. Here (z—a) ... (x—a)(x—af) ... (z—a}) is of the form
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u?(r) with u(z) € F,[z] if and only if {ay, a,...,a;} = {af,ab,... o).

If {ag,0,...,00} = {ad,ab, ... al'} then for every symmetric polynomial
veF,[xy,zo,..., ¢ we have
v(ag,... ) =v(ad, ..., ) =V (ag,. .., ).

Thus v(ay,...,a) € F,. So the coefficients of g(z) = (zr — 1) ... (x — ay)

are the elements of .. Thus the coefficients of h?(z) = % are in F,.

Let h(x) = a/ +b; 1271+ -+by. We will prove by induction that by_; €
F,. Indeed the coefficient of 2/ =1 in h?(z) is 2by_y, thus by, € F,. Suppose
that by_q1,b5_9,...,bs_, € F,. We will prove that b;_,_; € F, also holds.
Indeed the coefficient of 2%/ =~ is of the form 2b;_, 1 +j(bs—1,bf_2,...,bf_y)
with j € Fplxy, @a,...,2,]. Thus 2bp_, 1 + j(by_1,bp_o,...,bs_,) is in [,
and by the inductive hypothesis j(bs_1,bf_o,...,bs_,) is in [, thus by_,_;
is in F,. So we proved that h(z) € F,[z]. Thus b(z) = apag(x —e1)...(x —
ex)(x — 1) ... (2 — &) is of the form en?(x) with ¢ € Fy, n(x) € F,[z] if and
only if f(z) is of the form cg(z)h*(z) with ¢ € F,, g(x) € F,[z], h(z) € F,[z],
which was to be proved.

In order to prove Theorem 5.2 we need one more lemma. Namely:

Lemma 5.6 Let f(x) € Fj2[z] be an irreducible polynomial in F2[x| of de-
gree k, which is of the form
flx) =2+ ap12" "+ + ay,

where ap—; € F, but f(x) & F,[z], so there is an 1 < i < k — 2 such that
a; € Fp. Then for di,ds, ..., dy € Fy2 we have

flx+d)f(x+dy) ... flx+d) & Fylr]

Proof of Lemma 5.6 Every f(z) € F,2[z] can be uniquely written in the
form
f(z) = apa® + ap_ 12" + -+ ag

with a; € Fj2. Then define

7(f(x)) el + a4

Clearly,



Lemma 5.7 If f(z) € Fj2(z| is irreducible in F2(x], then 7(f(x)) € Fp2|z]
is also irreducible in F2[x] .

Proof of Lemma 5.7 Whenever

7(f(z)) = g(x)h(z) with g(x), h(z) € Fp2(x],

then

f(x) = 7(7(f(2))) = 7(g(x))7(h(z)).
Since f(x) is irreducible it follows that 7(f(z)) or 7(g(x)) is constant. From
this follows that f(x) or g(x) is constant. But then 7(f(z)) is irreducible.

Lemma 5.8 If f(z) € Fpelx] is an irreducible polynomial in F2(x] with
leading coefficient 1, but f(x) & F,lx] then g(x) 2 (x)7(f(x)) is in Fyz]

and g(x) is irreducible in F,|x].

Proof of Lemma 5.8 Define n and € as in (5.32) and (5.33). Then every
f(x) € Fp2[x] can be uniquely written in the form

f(x) = a(x) + 0b(x)

Thus

[(@)7(f(2)) = (alz) + b(z))(alz) — 9b(x)) = a*(x) — nb?(x) € F,fa].

Suppose that f(z)7(f(z)) is not irreducible in F,[x], so

f(@)r(f(x)) = g(x)h(x) (5.36)

with g(x), h(z) € F,[x], where the leading coefficients of g(x) and h(z) are
1 and degg(z),degh(xz) > 1. Then (5.36) also holds in F,2[z] since [, C
[F,2. But there is a unique factorization in F2[z], and f(z) and 7(f(x)) are
irreducible polynomials in F,2[z] with leading coefficients 1, thus

or



In both cases we get f(x) € F,[z], which is a contradiction.
Now we are ready to prove Lemma 5.6. Suppose that

flx+dy)... flx+do) € Fplz].
Let a € F, be a root of f(x + d;), then f(a +d;) =0, thus

fla+dy)... fla+dy) =0.

But then the minimal polynomial of v in F,[z] divides f(z+d;) ... f(z+d,) €
F,[x]. Next we determine the minimal polynomial of « in F,[z]. « is a root
of f(x +dy)7(f(x + dy)) and by Lemma 5.8 this polynomial is irreducible
in F,[z]. So the minimal polynomial of o is f(x + dy)7(f(z + dy)) in F,[x].
Thus

fla+d)r(flx+di)) | flx+di)... flz+de)inFpla].

But F,[z] C F2[z], so
flea+d)m(f(x+dv)) | flx+dy) ... f(x+d)in Fpelz].

Thus
T(flx+dv)) | fle+dy)... f(z+dp) in Fpelz].

By Lemma 5.7, 7(f(z+d,)) is irreducible in [F 2 [x] and its leading coefficient
is 1, thus by the unique factorization in F2[x], there is an 2 < ¢ < ¢ such
that

T(f(r +d1)) = f(z + dy).

Without the loss of generality we may assume
T(f(z+ dy)) = f(z + dy). (5.37)
By the definition of f(z) it is of the form
f(z) = apx® + ap_ 12"+ -+ ag
where a; = 1, ax—1 € Fp[z]. Then

k
fla+d)=>" ((':) ard" + (k ; 1) a1 d1

1=0
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and

k
flx+ds) = Z <<I;) akdlzc—i n (kz 1) ak_1d§_1_i

i—0

k—2 4 ) .
1 i
By the definition of 7

sy =3 <(’“)d— Ty (’“Zfl)ak T

=0
k—2 —k—2—i i\ .

By (5.37) we get that for 0 <i <k
—k—1 kf—]_ — —1 k—2 — 7 )
( )akaﬁk ( ; )ak 1d1k - +( . )ak 2d1k Ty (z)a_i
kE—1 . k—2 A 1
— (Z)akdk ) ( Z )ak—ldlg_l_z + ( Z )ak_leg—Q—l + -+ (z) a;.

(5.38)

~

_I_

For i = k — 1 this gives

k — k—1 k k—1
(k‘ B l)a_kdl + (k‘ B 1) ap_1 = (k‘ - 1) apds + (k‘ B 1) Ap_1. (539)

By the conditions of Lemma 5.6 we have a;, = 1 and a;_; € [F), thus a; = a;,
and ag_; = ax_1, so from (5.39)

dy = dy (5.40)

follows.
Next we prove by induction that a; € [F,. Indeed, by the conditions of
Lemma 5.6, a; and a;_; € F,. Next suppose that ay,ar_1,...,a;41 € F).

We will prove that a; € F,,. Indeed by ax, ax_1,...,a;1; € F, then

A = Qfg, Q1 = Qf—1,. .-, Qg1 = Qi1
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By this, (5.38) and (5.40) we get
a; = a;,

so a; € F, which was to be proved. Thus ay,ar_1,...,ay € F,. But then
f(x) € F,[z], which is contradiction. Thus we proved Lemma 5.6.

Next we return to the proof of Theorem 5.2. For N = 2 the theorem is
trivial. For N > 3 let p be an odd prime for which

N2 < p < 2NV2 (5.41)
(By Chebysev’s theorem such a prime p exists.) Let ¢ = p? and let n be a
quadratic non-residue modulo p, so <%) = —1. Let 6 € F)2 be a number for
which
0> =n

in F,. Then {1,6} is a basis of F, over F,.
Let f(z) be an irreducible polynomial of degree k > 2 which is of the
form
f(z) =2 + ap_o2™ 2 + -+ ag

(so the coefficient of the term xz*~! is 0) but

f(x) & Fpl].

By (5.14) the number of such polynomials is

thus such a polynomial exists, indeed.
Define the binary lattice 7 : I — {—1,+1} by

n(x) = n((z1,22)) = v(f (21 + Ox2)).
Lemma 5.9
Qu(n) <kl (p(1 +1ogp)®) < kONY2(log N)2. (5.42)

Proof of Lemma 5.9 We remark that this construction is a shifted version
of the construction in Theorem 1 in [79]. We cannot use Theorem 1 in
[79] because none of the conditions a), b) and c) holds in Theorem in [79].
However, similarly to the proof of Theorem 1 in [79], it is easy to prove that
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(5.42) holds:
Write d; = (d\”,d\") (for i = 1,...,¢), and consider the general term of
the n-fold sum in (1.6):

Zn(x+d1)...n(x+dg)

xEB
tl/bl] tg/bg]

Z Z 1b1 + dgl)ajébg + dgl))) .. .n((jlbl + dgg)’jsz + dg))),

J1=0 j2=0

(5.43)

where B is a box-lattice of form

B ={x= (jibi,j2b2) : 0 < jibi <ti(<p), 0<jiaby < ta(<p), jr,j2 € N}

Now write

so that z belongs to the box
B' = {jiby + jobaf : 0 < jiby < ty, 0 < joby < o, j1,J2 € N}, (5.45)

and set ' '
2 =d? +dVe. (5.46)
If z € B' then f(2+2)...f(2+ 2) # 0, and by the definition of  and
the multiplicativity of «, the product in (5.43) is

V(f+2) A+ a) =v(F+2) . fla+ ).
Then from (5.43) we get

D onlxdy). . nx+d) =D v (f(z+2) . fz+ ) (5.47)

xEB zeB’

Now we need the following result of Winterhof:

Lemma 5.10 (Winterhof) Let p be a prime, n > 1 be an integer, ¢ = p"
and let vy, va, ..., v, be a basis of the vector space Fpn over F,. Let x be a
multiplicative character of ¥, of order d > 1, f € F,[z] be a nonconstant
polynomial which is not a d-th power of a polynomial of Fp[x] and which has
m distinct zeros in its splitting field over F,, and ki, ..., k, are non-negative

integers with ki < p,..., k, <p, then, writing B = {Z riv; s 0< ;< k:i},
i=1
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we have

> X(f(z))‘ < mg'?(1 + logp)".

zeB

Proof of Lemma 5.10 This is a part of Theorem 2 in [107] (where its proof
was based on A. Weil’s theorem [106]).

Write h(z) = f(z+ z1)... f(2 4+ 2zx). Then in order to prove (5.42), it
suffices to show:

Lemma 5.11 h(z) has at least one zero in F,, whose multiplicity is odd.

Proof of Lemma 5.11 Since 21, 29, . . ., 2, are different the irreducible poly-
nomials f(z+21),..., f(z+2) are different. (Indeed, the coefficients of 2%~!
are different.) So h(x) has a zero in F, whose multiplicity is odd. Thus h(z)
cannot be the constant multiple of a square. Applying Lemma 5.10 we obtain
from (5.47)

Zn(x +dy)...n(x+dy) < klp(1 +logp)? < k(NY?(log N)?,

reB

which was to be proved.
In [50] we reduced the two dimensional case to the one dimensional one
by the following way: To any 2-dimensional binary p-lattice

n(z): I} — {-1,+1} (5.48)

we may assign a unique binary sequence E,2 = E2(n) = (e1,€2,...,€,2) €
{—1,+1}”" by taking the first (from the bottom) row of the lattice (5.48) then
we continue the binary sequence by taking the second row of the lattice, then
the third row follows, etc.; in general, we set

eipr; = (1 —1,4) =~2(f((F — 1) + b))
fort=0,1,....,p—1, 7=1,2,...,p.

Thus we obtain a sequence of length p?

def
Ep2 = (61,62, . .,€p2).

Now N < p* < 4N. Consider the first N elements of E,2, they form a

sequence of length N:

def
Ey = (e1,€2,...,en).

We state that Ey satisfies the conditions of the lemma.
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First we estimate |V (Ey, M, D)|. Let m,(x) denote the unique integer
for which
my(z) = (mod p), 0<my(z)<p.

Then

Cn+d;, = e[n+di—l

b ]p—l—mp(n—l—di—l)—l—l

and so

td—1
L e )

zy(f(n+@—1+[£i%:£L0)- (5.49)

If1 <n< M < p then [%] may take two different values, namely g;

and ¢; + 1. Indeed, define ¢; and s; by d; = ¢;p + s; where 0 < s; < p — 1.
Then

{n+di—1] {ql-p—l—sl-—i—n—l] {san—l}
p p
) o if n <p-—s,

Moreover there exists a number b; = min{ M, p—s;} such that forn < b, < M

[Wr_iﬁl] = ¢; and for b; < n < M we have [%} =¢;+1. Let [; = [0,b],

Then {1,b; + 1,bo + 1,...,b, + 1, M + 1} is a multiset which contains
integers 1 = ¢; < ¢y < -+ < ¢, = M+ 1 with m < £+ 2. Then [0, M] =
Ui ey ¢ — 1]

M m—1
V(EN, M, D) = Z En+dy -+ - Cntdy, = Z Z En+dy -+ - Entdy (550)
n=1 J=1 n€lejcjp1-1]

By the definition of the ¢;’s, ¢; < b;+1 < ¢;41 is not possible, thus ¢;;—1 < I,
or b < ¢; — 1,50 [¢;,¢41 — 1] € [0,b] or [¢j,¢cjp1 — 1] C [b; + 1, M]. Each
interval [c;,cj41 — 1] is either C I; or C J; for every 1 < ¢ < (. Thus
for every dy,ds,...,d, and for every interval [c;, c;41 — 1] there exist fixed
numbers hy, ha, ..., hy (depending only on dy, ds, ..., d, and j) such that for
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n e [Cjacj—f—l — ]_]

€ntdiEntdy - - - Entdy =7V (f(n+dy —14+h0))v(f(n+dy — 1+ hof)) ...
’y(f(n+dg -1+ hge))
=3 (Fn -t di = 14y + 1)) f (4 o — 1+ (s + 1)6)

...f(n+dg—1+(hg+1)0)>.

Hence

E €n+dy - - - €n+d¢

nG[C]',CJ;Flfl]
= Z 'y(f(n+d1 —1+h19)---f(n+dg— 1+hg9)). (551)

n€lej,cj41—1]

Next we prove that the irreducible polynomials f(x + d; — 1 +
hi0), -+, f(x 4+ dy — 1 + he0) are different. Since if i # j and

fle+di—1+h0) = f(xr+d; — 1+ h;0),
then

h; =h; (mod p) and d; =d; (mod p). (5.52)
This can be proved by considering the coefficient ! in the polynomials
flo+di—1+h0) and f(z+d; — 1+ hy6). By (5.49) we have h; = [%}

and h; = [%] for n € [¢j,cj41 — 1]. hi = h; (mod p), by 0 < h; =

[M] , h]’ = [%} <p then hz = hj. So for n € [Cjacj—f—l — ]_]

p
[n+di—1}_[n+dj—l] (5.53)
p p '
By (5.52),
n+d;—1=n+d;—1 (mod p). (5.54)

We get from (5.53) and (5.54) that
n+di—1l=n+d;—1

So
d; = d;
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which is a contradiction. Thus

G(1) L fotdi—1+h0)f(x+do—1+hof) - f(w+dy— 1+ he) (5.55)

has no multiple root. Here by definition f(x) ¢ F,[z]|, by using Lemma 5.6
q;j(x) € Fp[z] and it has no multiple root. Thus it is not of the form cg(x)h?(x)
with ¢ € F),, g(x) € F,[z], h(z) € F,[z]. By the triangle inequality, Lemma
5.4, (5.50), (5.51) and (5.55) we get

m—1 m—1
V(EN. M. D) <> | Y Ag(n)] < (deg ¢;)p'/*logp
J=1 |n€lej,cjy1—1] j=1

< l(deg qj)pl/2 logp < Ckp'/?logp
< LPkNY4log N

which proves (5.5), since we may choose degf = k as k = 4.

Next we prove (5.6). By Lemma 5.9 we have Qu(n) < k¢(N/2(log N)?2.
By Theorem 5.3 (which we will prove later) Cy(Ey) < Ci(Ep) <
k?N'%(log N)? < k(N'%(log N)?, since k can be chosen as k = 4 this
proves (5.6).

Next we prove (5.7). We split Ey into [N_l} + 1 different subse-

p

quences: EM = (e1,e9,...,¢,), E® = (e,11,€p10,- -1 €2), - -, 55+ =
(e([u]pH), ...,en). By the triangle-inequality
(45 ]+
W(Ey) < Y W(E)). (5.56)
j=1

Here E_] = (e(jfl)p+17"'7ejp> - (f17f27---7fp) fOI‘ 1 S j S [%] and

E; = (6(j71)p+1,---,6N) = (fl,fz, . --afo(jfl)p) for j = [%] + L.

In [78] Mauduit and Sarkézy proved that W (Ey) < «/NCy(Ey). By this
and using (5.6) for £ = 2 we get (5.7), which completes the proof of Theorem
5.2. We also remark that by using the same argument and (5.8) we get (5.9)
in Corollary 5.2.

Proof of Theorem 5.3 For x € Z let

x=ry(x)N +my(x)

where my(z) =2 (mod N), 0 < my(z) < N —1 and ry(z) = [£].
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By definition
exNtyr1 =Ny, x) for0 <z < N—-1, 0<y< N -1

and thus
n = n(my(n — 1), ry(n — 1)).
Then for 1 <</

enia, = nN(my(n+d; — 1), ry(n+d; — 1)). (5.57)
Here
n+d;i—1=(rn(n—1)4+ry(d;))N +my(n—1)+mpy(d;).
Thus if 0 < my(n—1) 4+ mpy(d;) < N —1 then

'r’N(ndei—1):7’N(n—1)+7’N(di)

and if N < mpy(n — 1)+ mpy(d;) then

TN(TL+CZZ—1):TN(’I’L—]_)*FTN(CZZ)*F:[
my(n+d; —1) =my(n—1) +mpy(d;) — N.

Thus we get that there exists an a; N1 my(d;) such that for my(n —
1) <a;

'r’N(n+di— 1) :TN<T7,— 1)+TN<dz>
my(n+d; —1) =my(n—1) +my(d;) (5.58)

and for a; + 1 < my(n—1)

rv(n+d; —1)=ry(n—1)+ry(d;) + 1
my(n+d; —1) =my(n—1) +mpy(d;) — N. (5.59)

Then {1,a; + 1,as + 1,...;ap + 1,my(M — 1) + 1, N} is a multiset which

contains integers 1 = ¢; < ¢a < -+ < ¢, < N where m < ¢+ 3. By (5.58)
and (5.59) we get that for ¢; <n < ¢;41 — 1 there exist numbers b; ; and f; ;
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such that

N(n + di —-1)= mN(n) +my(d;i — 1) — fi; (5.60)

where b; ; € {0,1} and f;; € {0, N}. Moreover, if b; ; = 0 then f;; = 0 and
if bi,j =1 then fi,j = N. Now

[OaM]:
M—1
={n=TN+x+1: T:O,l,...,{ N ],x:O,l,...,mN(M—l)}
M—1
U{n:TN+x+1:T:O,1,...,{ }—l,x:mN(M—l)Jrl,
N -1}
Thus

0, M]=U"n: n=ry(N—=1)N+my(n—1)+1,

ci <mnn—1)<cj1—1, ry(n—1)€{0,1,2,....,7T;}}  (5.61)
where T; = %] ifcjp1 <my(M—1)+1and 7T, = [%} —1lifmy(M —
1)+1<g¢j. (Since my(M —1)+1€{ci,c,...,cn}and g < ca <--- < c¢py
thus ¢; < my(M — 1) + 1 < ¢j41 is not possible.) By this, (5.57) and (5.58)

V EN; M D E En+dy -+ - Cntdy, = E E En+dy - - - En+d,

J=1 ¢;j<mpy(n—1)<cjy1—1
1<n<M

3
L

>

1 ¢j<my(n—1)<cjp1—1
1<n<M

l
HU(mN(n — 1) +mn(di) = fij,rv(n —1) +rn(di) + bi )

By (5.61)

{my(n—1),ry(n—1)): 1<n<Mandc; <my(n—1)<c¢j —1} =
{(z,y): 0< 2 <Tjand ¢; <y < c¢jpq — 1}
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Using this and (5.60) we get

m—1 Tj ¢jp1—1

V(Ey, M, D) = ZZ >

J4
[T n(z+ma(d) = fijoy+ra(di) +biy) < (m—1)Qe(n)

i=1

< (0 +2)Qe(n)

which was to be proved. Here we used the fact that the pairs (my(d;) — fi;,
rn(d;) + b; ;) are different for fixed j as ¢ runs over 1,2,...,¢. Indeed if

(mN( ) fn]v TN(dZI)_'_bll]) (mN< ) flz]v TN(d22>+b22]>
then
N<TN<dll>+b21])+mN< 11) fllj_N(TN(dZQ)_'_bm])—i_mN( ZQ) f22]
Since if b; ; = 0 then f; ; = 0 and if b, ; = 1 then f;; = N, from this we get

NTN<di1) + mN<di1) = NTN(diQ) + mN(diQ)
d;, = d;,

which is a contradiction.
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6 On Legendre symbol lattices (the non-
degenerate case)

Pseudorandom binary sequences have many important applications. In
particular, they are used as a key stream in the classical stream cipher called
the Vernam cipher.

In one dimension, hence in the case of binary sequences, many good con-
structions have been given. Typically, the really good constructions involve
F,, additive or multiplicative characters and polynomials, and the crucial
tool in the estimation of the pseudorandom measures is Weil’s theorem. Un-
fortunately, this approach in its original form does not readily apply in higher
dimensions. The difficulty is that in n dimensions constructions involving [,
characters and polynomials f(x1,xs,...,2,) € Fplz1, 22,...,2,), lead natu-
rally to the n-dimensional analogues of Weil’s theorem. In particular they
lead to the theorem of Deligne. While Fouvry and Katz [24] have simplified
the requirements for applying Deligne’s theorem the inconvenient assumption
of nonsingularity is still required in order to obtain sharp bounds.

In spite of these difficulties, in [65] and [80] good n-dimensional con-
structions were presented. In these papers the authors got around the dif-
ficulty described above in the following way. Finite fields F, with ¢ = p"
and polynomials G(z) € F,[x] are considered. Character sums involving
G(z) and characters of F, can be estimated by Weil’s theorem so that no
nonsingularity assumption is needed. On the other hand, if ey, es,..., €,
is a basis in I, then every € F, has a unique representation in the form
r = x1€1+Toe2+- - -+ ane, With 21, 29,..., 2, € F,. Then g(z1,22,...,2,) =
G(x1e1 + w269 + - -+ + xpey,) € Fylz1, 29, ..., 2,) is a well-defined polynomial,
and the estimate of n-fold character sums involving g(z1,xs,...,2,) can be
reduced to the estimate of character sums over I, involving G, so that Weil’s
theorem can be used. (This principle goes back to Davenport and Lewis
[20].)

This detour enables one to give sharp upper bounds, but it also has con-
siderable disadvantages. In particular, in this way we get rather artificial con-
structions. More natural constructions cannot be tested with this approach.
Secondly, the implementation of these artificial constructions is more com-
plicated. Thus one might like to look for a trade-off between applicability of
the method and sharpness of the result, in other words, for a method which
is much more flexible and applicable at the expense of providing weaker but
still nontrivial upper bounds. We will show that in the case when n = 2,
there is such a method, based on the techniques introduced by Gyarmati and
Sarkozy [60] to estimate certain related character sums. This method allows
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us to give a simple description of the exceptional polynomials, see Section
6.1. But the price paid for the flexibility of this method is that the upper
bounds are not optimal usually. For a two dimensional p-lattice they are,
up to logarithmic factors, p*/? instead of the optimal bound of p. On the
other hand, they improve on the trivial bound of p? considerably. Here we
mention that in Section 7 we will be able to show that for a certain (rather
special) family of polynomials the finite field construction presented in |79]
is equivalent to a Legendre symbol construction of type (6.2). Thus in this
case we obtain a family of binary lattices which combines the advantages of
the two constructions: as in [79] we have optimal bounds, and as a Legendre
symbol construction it can be implemented fast and easily.

In Sections 6 and 7 I present results from [61] and [62], where with my
coauthors Cameron L. Stewart and Andras Sarkézy we studied a construction
based on the Legendre symbol:

In one dimension the best and most intensively studied construction is
based on the use of the Legendre symbol, see [31], [64], [77], [98]. Let p
be a prime, f(z) € F,[z] be a polynomial, and define the sequence E, =

(e1,...,¢ep) by
)\ s —
oo [ (52) iU =1, o)
+1 if p| f(n).
We will identify the elements of F, with the residue classes modulo p, and
we will not distinguish between the residue classes and their representing

elements. The natural two dimensional extension of this construction is the
following.

Construction 6.1 (Gyarmati, Sarkozy, Stewart) Let p be an odd
prime, f(xy,x2) € Fplry,xo] be a polynomial in two wvariables. Define
n: I2— {=1,+1} by

ooy () A (f(arwe),p) = 1

First, in Section 6.1, we will show that in two dimensions there are new
difficulties arising, and there are many "bad" polynomials f(z1,x2). Then,
in Section 6.2, we will formulate Theorem 6.1, our main result. We will also
present several sufficient criteria for a polynomial f(xy, z5) for which the cor-
responding binary p-lattice (6.2) possesses strong pseudorandom properties.
The rest of this section will be devoted to the proof of this main result.

In Section 7 we will study (6.2) in the case when f(z1,x5) is one of the
degenerate polynomials described in Section 6.1. Moreover, we will also study
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implementation problems related to some constructions based on Theorem
6.1.

6.1 Negative examples

In this section we will present examples of polynomials f(z1,22) €
[F,[z1,25] for which the binary p-lattice defined in (6.2) has weak pseudo-
random properties.

Example 6.1 (Gyarmati, Sarkozy, Stewart) If

fz1,22) = ¢ (g(x1, 72))°

with ¢ € Fp, g(x1, x2) € Fy[z1, 22, then every element of the lattice defined

in (6.2) is (5) except the zeros of f(z1,x2). It follows that if the degree of
f(x1,22) is not very large, then @Q;(n) is large.

Example 6.2 (Gyarmati, Sarkozy, Stewart) If f(z1,z5) = g(x;) with a
polynomial g(x) € F,[z] of one variable, then we have

n(wy, zo)n(ry, 22 + 1) = (g(xl)) (g(xl)) =+1

p p

(except the zeros of g(x7)) from which it follows that Q2(n) is large.
Example 6.3 (Gyarmati, Sarkozy, Stewart) If f(xy,25) = g(z1)h(xs)
with polynomials g(x), h(z) € F,[z], then it can be shown by a little compu-
tation that Q4(n) is large.

The polynomials f(z1, xs) occurring in Examples 6.1-6.3 are special cases
of the following:

Definition 6.1 (Gyarmati, Sarkdzy, Stewart) The polynomial f(x1,x2)
is called degenerate if it is of the form

flar,20) = (H filogwy + @‘372)) g(z1, 562)2, (6.3)

where o, B; € By, fij(x) € Fplz] for j=1,...,r, and g(x1,x3) € Fplay, xo].

A polynomial f € F,[z1,z3] which can be expressed in the form (6.3) is
said to be degenerate and otherwise it is said to be non-degenerate.
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As Examples 6.1, 6.2 and 6.3 show, if f is degenerate then it may be that
the associated binary p-lattice (6.2) has weak pseudorandom properties. We
shall analyse the situation when f is degenerate in more details in Section
7. In the balance of this section we shall restrict our attention to binary
p-lattices (6.2) for which f is non-degenerate.

6.2 Sufficient conditions

In one dimension Goubin, Mauduit and Sarkézy [31] gave sufficient con-
ditions on the polynomial f(z) to guarantee small pseudorandom measures.
Let Fp denote an algebraic closure of F,,.

Theorem 6.A (Goubin, Mauduit, Sarkézy) Let f(z) € F,[x] be a poly-
nomial of degree k(> 0) which has no multiple zero in F,. Define the sequence
E, € {—1,4+1}? by (6.1). Then W(E,), the “well-distribution measure” of
E,, satisfies

W(E,) < 10kp"/*log p.

Moreover assume that one of the following 3 conditions holds:
a) l =2,

b) 2 is a primitive root modulo p,

c) (4k)E < p or (40)* < p,

Then Cy(E,), "the correlation measure of order {," satisfies

Cy(E,) < 10kfp*?log p.

(See [77] for the definition of well-distribution measure and correlation mea-
sure.)
We extend their result to the 2 dimensional case:

Theorem 6.1 (Gyarmati, Sarkozy, Stewart) Let f(xy,x2) € Fplz1, 29]
be a polynomial of degree k. Suppose that f(xq,x2) cannot be expressed in
the form (6.3) and one of the following 5 conditions holds:

a) f(x1,xs) is irreducible in Fylxy, s,

b) L =2,

¢) 2is a primitive root modulo p,

d) AR+L < p,

e) { and the degree of the polynomial f(xq1,x9) in x1 (or in x) are odd.
Then for the binary p-lattice n defined in (6.2) we have

Qe(n) < 11k€p3/2 log p.

The rest of this section is devoted to the proof of this theorem.

77



6.3 Proof of Theorem 6.1

For k > p'/2/10 the theorem is trivial. Thus we may suppose that
k < p'/?/10. (6.4)
Similarly, we may suppose that
k? + 02 < p, (6.5)
otherwise the theorem is trivial since
4207 > K2+ 02 > p,

and so
10kep®? log p > p*.

Lemma 6.1 IfF is a field, then in Flxy, 2, ..., x,] every polynomial has a
factorization into irreducible polynomials which is unique apart from constant
factors and reordering.

Proof of Lemma 6.1 See, for example [93, Theorem 207].
If f(z1,22) € Fy[zy, 23], then we will also write f(z1,22) = f(x) with
X = (.Tl, 1’2).

Lemma 6.2 (Gyarmati, Sarkdzy, Stewart) Let p > 5 be a prime and x
be a multiplicative character of order d. Suppose that h(xy,xs) € Fylxy, 2]
is not of the form cg(xy,x2)® with ¢ € Fp, g(x1,22) € Fplay, o). Let k be the
degree of h(xy,x2). Then we have

> x (h(x)) < 10kp**logp

xeEB
for every 2 dimensional box p-lattice B C [g.

We remark that the upper bound in the lemma is nearly sharp: it is easy
to see that there are polynomials h(xy, z5) of the form h(xy,z5) = f(x1) (so
that h(x1,z5) depends only one of the two variables) for which the left hand
side of the inequality in the lemma with F2 in place of B is > c(k)p*/>.

Proof of Lemma 6.2

It follows easily from Lemma 6.1 that h(zy,z2) cannot be of form both
gi(z1)pi(z1,22)" and gy(w2)pa(21, 22)? simultaneously with g (), go(z) €
F,x] and py(xy1,x2), pa(x1,22) € Fplxy, x2]. Thus by symmetry reasons we
may suppose that h(zy,x5) is not of the form gy(zo)p2 (1, 72)%.
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Since B is a box p-lattice, write it in the form
B = {X = (’Ulbl,vgbg) D U1,09 € N, 0<wvb < ty, 0 < Vgby < tQ} (66)
with by, € N and 0 < ty,t, < p. Then by the triangle inequality

< Z Z X (h(v1b1, v2bs))]

0<v2<[ta/b2] |0<wv1<[t1/b1]

> x(A(x))

xeB

For fixed vy, by and by, the polynomial h(vib1,v9by) is a polynomial of one
variable in vy. We will use the following consequence of Weil’s theorem [106]:

Lemma 6.3 (Weil) Suppose that p is a prime, x is a non-principal char-
acter modulo p of order d, f(x) € F,[x] has s distinct roots in F,, and it is
not the constant multiple of the d-th power of a polynomial over F,. Let y be
a real number with 0 <y <p. Then for any x € F,:

< 9sp*?log p.

> x(fn)

r<n<z+y

Proof of Lemma 6.3

This is an immediate consequence of Lemma 1 in [2].

If, for fixed vy, by, be, the polynomial h(xby, vaby) € F,[x] of one variable
is not of the form cg(z)? with ¢ € F,, g(x) € F,[z], then by Lemma 6.3

Z X (h(v1by, v2b9))| < 9%kp/?log p.

0<v1 <[t1/b1]

We will show that for fixed b; and by there are only few values of vy for which
the polynomial h(zby, vaby) € Fy[x] is of the form cg(z)?. For this we need

Lemma 6.4 (Gyarmati, Sarkézy, Stewart) Let h(z,y) € F,[z,y] be a
polynomial of two variables, which is not of the form q(y)p(x,y)? with q(y) €
F,lyl, p(z,y) € Fylx,y]. Denote by n and m the degree of the polynomial
h(z,y) in = and y, respectively. Then there are at most nm + m values
yo € ), such that

h({L‘,yQ) < Fp[x]

is of the form cg(x)* with c € F,, g(x) € F,[x].

Proof of Lemma 6.4 This is Lemma 4 in [60].
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Let n and m be the degree of h(xy,z3) in 1 and x4 respectively. We have
assumed that h(z1,zs) is not of the form gy(z2)pa(x1, 22)%, thus by Lemma
6.4, there are at most nm + m values of vy such that h(xzby,vabs) is of the
form cg(x)? for some ¢ € F,, g(x) € F,[z]. Let V denote the set of these vy’s.
Then

V| <mn+m<k*+k. (6.7)

By (6.6)

> x(h(x)

xeB

<Y T b))

v2€V [0<v1 <[t1/b1]

+ Z Z X (h(v1b1, v2b9))]| .

UQE]FP\V 0<v1 S[tl/bﬂ

For v, € V we use the trivial estimate p for the inner sum. By Lemma 6.4
and (6.7)

Dol D x(h(vbiveb))| < (K + k)p.

v €V Oﬁvlﬁ[tl/bl]

For vy € F, \ V we use Lemma 6.3 to deduce that

Z Z X (h(v1by, vaby))| < 9kp**1og p.

'UQG]FP\V 0<v1 S[tl/bl]

Thus by (6.4)

> x (h(x))

xeB

< (K24 k)p + 9kp*?log p < 10kp*?logp

which completes the proof of Lemma 6.2.

Lemma 6.5 (Gyarmati, Sarkozy, Stewart) Suppose that f € Fp[z1, z9]
1s a polynomial such that there are no distinct dq,...,dy, € Ff) with the
property that f(x + dyi)...f(x + d;) is of the form cg(x)? with ¢ € F,
g € Fplz1,x2]. Let k be the degree of the polynomial f(x1,22). Then for the
binary p-lattice n defined in (6.3) we have

1Qe(n)| < 11kep** log p.
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Proof of Lemma 6.5 We have

an+d1 n(x+dy)|,

where the maximum is taken over all distinct dq,...,d, € Ig and box p-
lattices B such that B +dy,...,B+d, C Ig. Let B be the box p-lattice,
d,....d, € I; be the vectors for which this maximum is attained so that

=) n(x+dy) x4 dy)|.

Write h(x) = f(x+d1)--- f(x+dy), then

Qi) < 2;9( )| Z L
5B

h(x) is a polynomial of degree k¢. Estimating the number of zeros of h(x)
we find that

> 1< kip. (6.8)
xeB
h(x)=0

By assumption h(x) is not of the form cg(x)? and its degree is ¢k. Thus
by Lemma 6.2 and (6.8) we have

Qu(n) < 10¢kp®*1log p + lkp,

which was to be proved.
Suppose that one of the 5 conditions in Theorem 6.1 holds. We will prove
that the product
h(x) = f(x+di)... f(x+d)

cannot be the constant multiple of a perfect square. Then by Lemma 6.5 we
get Theorem 6.1.

Next we will introduce three definitions (they are very similar to the ones
introduced by Goubin, Mauduit and Sarkozy in [31]).

Definition 6.2 (Gyarmati, Sarkdzy, Stewart) Let G be a group with re-
spect to addition. Let A and B be subsets of G and suppose that for all ¢ in
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G the number of solutions of
a+b=c,
with a in A and b in B is even. Then (A, B) is said to have property P.

Definition 6.3 (Gyarmati, Sarkdzy, Stewart) Let r, ¢, and m be posi-
tive integers with r,¢ < m. The triple (r,{,m) is said to be admissible if
there are no A,B C Z,, such that |A| = r, |B| = ¢, and (A, B) possesses
property P.

We shall also introduce an equivalence relation on F,[z;,zs] as in the
proof of Theorem 6.A in [31].

Definition 6.4 (Gyarmati, Sarkdzy, Stewart) Two polynomials
o(x1,x2), (21, 29) € Fylxy,x0] are equivalent if there are ay,a2 € T,
such that

W(xy,x2) = (21 + a1, 2 + ag).

Write the polynomial f(x,xs) in the theorem as a product of irreducible
polynomials in F,[x1, xs]. (Recall that the lattice n is determined by this
polynomial f(xy,z5), the definition of 1 is presented in (6.2).) Let us group
these factors so that in each group the equivalent irreducible factors are
collected. Consider a typical group ¢(x; + a1, 22 + a21), p(x1 + a1, T2 +
as2),-..,0(x1 + a5, xa + azs). Then f(x,x9) is of the form

flz1,22) = @(z1 +arp, 22+ azy) - - (21 + a1, 22 + a2,5)g(x1, T2),
where g(x1, x2) has no irreducible factor equivalent with any ¢(x1 4+ aq,, 2+
a,27i) (1 S ’L S 8).

We will use the following lemma:

Lemma 6.6 (Gyarmati, Sarkozy, Stewart) Let p(z1,22) € Fp[z1, 22 be
nonzero and let ¢,ay,ay € F, with (a1, as) # (0,0) be such that

o(z1,12) = co(x1 + ay, 2 + ag), (6.9)

for all (xq,x2) in Ff,. Suppose that the degree of p(x1,x9) is less than p. Then
there is a polynomial g € F,[z]| such that

p(x1,72) = glazry — arxs). (6.10)
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Proof of Lemma 6.6 We will use repeatedly the fact that if two poly-
nomials of degree less than p in each variable define the same polynomial
function, then they must also be identical polynomials.

By considering the highest degree terms in (6.9), we get ¢ = 1 so that

o(x1,22) = p(x1 + a1, x2 + as).
It follows from this that for every ¢ € I,
o(x1, ) = p(x1 + tay, x2 + tas). (6.11)

One of a; and ay is nonzero and, without loss of generality, we may suppose
that as # 0. Then write ¢(z1,x2) in the form

p(x1,12) = @(ay ' ((amy — ar22) 4 a122), 3)
= qn(a2x1 — a122) 25 + gn—1(azz1 — G1SL’2)$371 + ...
+ qo(azz1 — arxs), (6.12)

where ¢;(z) € F,[z] are polynomials of one variable. For fixed z1, zy write
A = @o(x1,22) and Q; = gi(ar1 — a122) = g;(az(z1 + tar) — a1(z2 + tas)).
Then by (6.11) and (6.12) for every t € F:

A = p(x1,19) = p(21 + tag, zo + tag) = Qn(xe + tazs)" + -+ - + Qo.

Both A and the expression on the right above are polynomials in ¢ of degree
at most p. These polynomials define the same function and so they are the
same polynomials, which is possible only if n = 0. It follows that

%(%901 - a19€2) - 90(5E1,$2) =Qo—A=0,

for every x, 2, € IF,. Since both gy and ¢ have degree less than p in x; and
To, thus

QO(CI2$1 - a19€2) = 90(5E1,$2)

as formal polynomials, which proves (6.10).

First we study the case when condition a) holds in Theorem 6.1, so when
f(z1,29) is irreducible in F,[z1, z5]. As before let dy, ..., d, be distinct ele-
ments of /7 and put h(x) = f(x+dy)--- f(x+d,). Then by Lemma 6.6 the
irreducible polynomials f(x + d;) are different since f(xy,22) is not of the
form (6.3). By Lemma 6.1, there is unique factorization in Fp[x;, x|, thus
h(x) cannot be the constant multiple of a perfect square. By using Lemma
6.5 we get the statement.

83



Next we prove parts b), ¢) and d) in Theorem 6.1. Write f(xy,22) in the
form wu(xy, x2)(v(xy, 22))% where u(zy, xo) is squarefree, so, in other words,
there is no non-constant irreducible polynomial h(xy, z5) with (h(x1,22))? a
divisor of u(zy,22). Since f(xy,x2) is not of the form (6.3), in the factor-
ization of u(z1,z2) there is an irreducible factor @(xy, z2) which cannot be
written in the form

u(xy, x9) = u(awy + Prs). (6.13)

Consider the polynomials @(x + a;) for ¢ = 1,2,...,r which are equivalent
with u(x) and appear in the factorization of u(x).

We shall prove that h(x) = f(x 4+ dy)--- f(x + dy) is not a constant
multiple of a perfect square. We shall suppose that h(x) is the constant
multiple of a perfect square. Then hi(x) = u(x+dy)---u(x+dy) is also a
constant multiple of a perfect square.

Write hy(x) as a product of irreducible polynomials in F,[z1,25]. Then
all polynomials w(x +a; +d;) (1 <i <s, 1 <j < /) occur amongst the
factors. These polynomials u(x +a; +d;) are equivalent, and no other factors
belonging to this equivalence class will occur amongst the irreducible factors
of hi(x). By Lemma 6.6 all polynomials %(x +c) for ¢ € F> are distinct since
@ is not of the form (6.13). Thus in the collection, formed by the equivalent
factors w(x+a; +dj), every polynomial must occur an even number of times.
As a consequence every c € IFIQ, occurs an even number of times in the form
a; +d; with1 <¢<rand1l<j<U/

Lemma 6.7 (Gyarmati, Sarkozy, Stewart) Let s(s —1)/2 < p and

2 .
di = (d,dj) € F; (1 <i<5s)

27 71

be different vectors. Then there exists a A € ), such that
d;+ M €F, (1<i<s)
are different.

Proof of Lemma 6.7 Suppose that for some pair (7, j) with 1 <7 < j <
¢ we have
di + \dj = d; + \dj.

Then dj # dj, ot'herwise we obtain (d}, d]) = (d},d}). Thus for every i # j
at most one A exists such that

d; + Al = d + Ad.

84



The number of pairs (i,j) with 1 < i < j < {is (¢ —1)/2. Thus at most
0(¢ —1)/2 values of X exist such that

d+ Ml = d + Ad!

for some i # j. Since ¢(¢ — 1)/2 < p the lemma follows.
We have A = {ay,...,a,} and D = {dy,...,d,} C F2, where r < k. By
Lemma 6.7 we may choose A € [F, such that both sets

A ={d+X\d": (d,d") € A}
and

D' ={d+Xd": (d,d") € D}
contain different elements.

Lemma 6.8 (Gyarmati, Sarkdzy, Stewart) (A, D) possesses property
P.

Proof of Lemma 6.8 In order to verify the lemma we need to prove that
for any ¢ € F, the number of solutions

a+d=c, ac€A, deD (6.14)

is even. Indeed, it is clear that the number of solutions of (6.14) is the same
as the number of solutions of

(a/’ a//) + (d/’ d//) — (C,’ CH)’ (a/’ a//) e A’ (d/’ d//) e D
d+ " =c (6.15)

Since (A, D) possesses property P, for each (¢/,¢”) € F; the number of solu-
tions of the equation

(a/’ a//) + (d/’d//) — (C,, CH), (a/’ a//) e A’ (d/’d//) e D

is even. Thus the number of solutions of the system (6.15) is also even,
and equivalently, the number of solutions of (6.14) is also even. This proves
Lemma 6.8.

By Lemma 6.8 (A’, D’) possesses property P. Thus (r, ¢, p) is not an ad-
missible triple. By contrast we have the following lemma.

Lemma 6.9 (Goubin, Mauduit, Sarkozy) (i) For every primep andr €
N the triple (r,2,p) is admissible.
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(ii) If p is prime, r,{ € N and
4[-‘,—7’ <p,

then (r,0,p) is admissible.
(15i) If p is a prime such that 2 is a primitive root modulo p, then for
every pair (r,0) € N with r < p, £ < p the triple (r,{,p) is admissible.

Proof of Lemma 6.9 Parts (i) and (iii) are Theorem 2 in [31] while part
(ii) is Theorem 2 in [79].

Since (r, ¢, p) is not admissible parts b), ¢) and d) of Theorem 6.1 follow
from Lemma 6.9. In the proofs of b) and d) we could have replaced Lemma
6.8 by Lemma 4 in [79], however the lemma there does not suffice to prove
part ¢) in Theorem 6.1, thus we have preferred to prove Lemma 6.8 here.

In order to prove part e) in Theorem 6.1 we note that the degree of the
polynomial h(xy,z5) in z7 is odd, thus it cannot be the constant multiple of
a perfect square. Using Lemma 6.5 again part e) follows.
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7 On Legendre symbol lattices (the degenerate
case and a related construction)

In this section our goal is to continue the study of Construction 6.1.
First we will analyze the degenerate case. In Section 7.1 we will analyze
the structure of the degenerate polynomials f(z1,x2), and we will introduce
the notion of the normal form and rank r» = r(f) of such a polynomial. In
Section 7.2 we will prove that if f is degenerate, ¢ < r = r(f), n is defined by
(6.2) and one of four specified conditions holds, then Q(n) is small. We will
also present an algorithm for deciding whether a given polynomial f(xy, z3) is
degenerate and, if it is, for determining its normal form. In Section 7.3 we will
show that here the upper bound r cannot be replaced by 2. In Section 7.4 we
will study the implementation of Construction 6.1 and, in particular, we will
construct a large family of polynomials f(z1,z2) which are non-degenerate
and satisfy the first sufficient condition in Theorem 6.1 so that the binary
lattice n in (6.2) possesses strong pseudorandom properties. In particular
its pseudorandom measures (Qy(n) are small for ¢ not very large. Finally, in
Section 7.5, we construct families of polynomials for which the bounds for
the pseudorandom measures are essentially optimal.

7.1 Structure of degenerate polynomials

In this section our goal is to transform the representation (6.3) of a degen-
erate polynomial into another more useful one. We will need several lemmas.

Lemma 7.1 IfF is a field, then in Flxy, za, ..., x,] every polynomial has a
factorization into irreducible polynomials which is unique apart from constant
factors and reordering.

Proof of Lemma 7.1 See, for example [93, Theorem 207]. O

Lemma 7.2 (Gyarmati, Sark6zy, Stewart) Let g1, s € Fp[z,y] and f €
F,[z] be non-zero polynomials. Suppose that for some (a, 5) € F, x F,

91(x,y)g2(w, y) = faz + By). (7.1)

Then there ezist fi, fo € Fp[z]| such that

gi(z,y) = filax + By)

fori=1,2.
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Proof of Lemma 7.2 If (o, ) = (0,0) the result is immediate. Thus we
may suppose that (a, ) # (0,0) and, without loss of generality, we may
assume that a # 0. Put

z=ax+ Py

so that z = a™'2 — a™!fy. We may now define hy, hy in F,[y, 2] by putting
hi(y, z) = gi(Oflz — Oflﬁy, y) fori=1,2.

From (7.1) we find that

ha(y, 2)ha(y, 2) = f(2). (7.2)
Write
hi(y, 2) = ua(2)y" + ta-1(2)y" " + -+ uo(2),
ha(y, z) = vy(2)y" + vp-1(2)y" " + -+ + vo(2)
and

hi(y, 2)ha(y, 2) = wass(2)y" ™" + wagp1 (2)y™" " + -+ wo(2)
where u,(2),v5(2) are not the zero polynomial. Clearly we have
Wa+(2) = Ua(2)vs(2). (7.3)
But by (7.2), hi(y, z)ha(y, z) is a one variable polynomial in z, thus we have
Waip(2) = Warp1(2) = =wi(z) =0ifa+b> 0. (7.4)

It follows from (7.3) and u,(2) # 0, vp(z) # 0 that wep(2) # 0. Thus by (7.4)
we have a + b = 0 whence a = b = 0. Then hy(y, z) = up(2), ha(y, z) = vo(2)
which completes the proof of the lemma. (]

We shall identify the elements of I, with the p congruence classes modulo
p and shall denote the elements of F, x F, by (a,b) with a and b integers
representing the congruence class of a and of b modulo p. Define the subset
T of F, x F, by

T = {(0,1),(1,0),(1,1),(2,1),....(p — 1,1)}.

Lemma 7.3 (Gyarmati, Sarkdzy, Stewart) Let f be a non-constant de-
generate polynomial in F,[xy, xs] of degree less than p in x1 and in x5. Then
there exist a non-zero A\ in [F,, a non-negative integer r, distinct elements
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(71,01)s -+, (9, 6) from T, o in F[x1, 25| and squarefree non-constant poly-
nomials @1, . .., in Fylx] for which

f(@1,2) = A <H i (7571 + 5]002)) (21, 22). (7.5)

Jj=1

Further r is uniquely determined and the polynomials y;(v;x1 + 6;22) and
W(xy, ) are unique up to constant factors and reordering of v1(y1x1 +
01T2), .y Or(Yrmy + Op2).

We shall refer to a decomposition of f as in (7.5) as a normal form of f
and to r as the rank of f. Notice that since (y1,d1),..., (7, 9,) are distinct
elements of T" we have

Proof of Lemma 7.3 Let ¥ be a polynomial of largest degree for which
¥? divides f in Fp[zy, 25). Then since f is degenerate we may write f in the
form (6.3) with ¢ as above and with (v;,6;) # (0,0) for i = 1,...,s. Further
we may suppose that ¢, ..., s are squarefree polynomials in F,[z] and that
1+ s s also squarefree.
Suppose that ¢ is in F,[z] and (v,0) are in F, x F,\{(0,0)} and define
©* in F,[x] by
; ¢(yz) when v # 0,
pi(r) =
w(6x) when v =0.
Then
(21 + 0y 12 if 0,
90(71‘1 +5fL‘2) _ 90*( 1 g 2) . Y 7é
©*(22) if y=0.

Therefore we may write

©1(nxy + 0122) - - - s(VsT1 + 0sT2)
as
o1 (mx1 + 0112) - - - 5 (YsT1 + 0s2)

where now (v;,0;) is in T for i = 1,...,s. We now collect and multiply
together the polynomials ¢} for which (;, d;) are the same to get a represen-
tation for f of the form (7.5).
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Suppose that, in addition to (7.5),

flay, x2) = M (H P01 + 5]'372)) Vi (@1, 22)

j=1
with (01, 51),...,(0s, Bs) distinct elements of 7, A; a non-zero element of
F,, ¢ in F,[z1,25] and squarefree non-constant polynomials py,...,ps in

F,[z]. By Lemma 7.1 ¢(x) is a constant times ¢, (z) since ¢*(z) and 3 (z)
correspond to the greatest square factor of f in F,[z1, 25]. Next note that for
each j from 1 to s we may decompose p;(0;z1 + ;z2) into irreducibles and
by Lemma 7.2

p;i (0521 + Bjwe) = pj1 (0501 + Bjaa) - - pji (021 + Bjw2)

where pj1, ..., p;+ are irreducible polynomials in F,[z]. Thus each irreducible
pj k(0214 B;x2) occurs in the essentially unique decomposition of ¢y, (V21 +
dmx2) into irreducibles for some m. Notice that if a polynomial g(z,y) =
filmz + Bry) = fa(ryer + Boy) with fi, fo € Fla] and 7182 — 7261 # 0 then
g(x,y) is a constant. (Indeed, fix a,b,c,d € F, and we will prove that
g(a,b) = g(c,d). Since v1082 — 7281 # 0 the system of linear equations

N+ By = na+ pib
Y2x + Boy = yac + Bad

has a unique solution in z,y € F,. Then

g(a,b) = fi(na+ Bib) = fi(nr + Biy) = g(x,y) = fo(720 + B2y)
= fa(rec+ Bad) = g(c, d).)

Thus, by (7.6), (6;,5;) = (Vm,0m). Repeating this argument with all the
irreducible factors of p; and all the irreducible factors of ¢,,(vm21 + 6mz>)
we find that ¢, (ymz1 + 0mx2)/p;(0;21 + Bja2) is a constant. From this it
readily follows that » = s and the result follows. O

We remark that we may determine if a polynomial f is degenerate by first
replacing it with a polynomial f* of degree at most p — 1 in each variable
by using the fact that 2” = x for all x in F,. We then factor f* and write
f* as a product of irreducibles multiplied by its largest square divisor. Each
irreducible must be tested to see if it is of the form g(yx + fy) with g € F,[z]
and (v,0) € T. Given (v, ) in T if suffices to check that the irreducible is
constant on the lines in F, x [F,, given by yx + fy = c for c in F,, and this is
a finite process. Furthermore T is a finite set. Either there is an irreducible
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not of the form g(vx + Sy) for any g € Flx] and (v, 8) in T in which case f*
is non-degenerate or f* is degenerate and we may produce the normal form
as in the proof of Lemma 7.3.

7.2 The pseudorandom measures of small order in the
degenerate case.

We will show that if f(x1,z9) is a degenerate polynomial and the order ¢
of the pseudorandom measure )y is not greater than the rank of f then, for
the binary lattice n defined in (6.2), Q¢(n) is small. In fact our estimates are
the same as in the non-degenerate case studied in Theorem 6.1.

Theorem 7.1 (Gyarmati, Sarkdzy, Stewart) Let f(z1,22) € Fplzy, xo]
be a non-constant degenerate polynomial of reduced normal form (7.5) with
degree k. Suppose that €, the order of the pseudorandom measure is not
greater than the rank r of f(xy,x5), and one of the following 5 conditions
holds:

a) f(x1,xs) is irreducible in Fylxy, s,

b) =2,

c¢) 2 is a primitive root modulo p,

d) (4k)* < p or (40)F < p,

e) € and the degree of the polynomial f(xq,xs) in x1 (or in x2) are odd.
Then for the binary lattice n defined in (6.2) we have

Qe(n) < 11klp**logp.

Proof of Theorem 7.1 The proof will be based on the following result.

Lemma 7.4 (Gyarmati, Sark6zy, Stewart) Suppose that f € F,[x;, xo]
1s a polynomial such that there are no distinct dq,...,d; € F; with the
property that f(x + dy)...f(x + dy) is of the form cq(x)? with ¢ € T,
q € Fplz1,22]. Let k be the degree of the polynomial f(x1,x2). Then for the
binary p-lattice n defined in (6.2) we have

1Qe(n)| < 11k(p*?log p.

Proof of Lemma 7.4 This is Lemma 6.5 in Section 6.

In order to ensure the applicability of this lemma, we have to show that
it follows from one of the 5 assumptions in Theorem 7.1 that there are not
distinct dy,...,d; € F? such that the polynomial

hx) = f(x+di)... f(x+d)
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is of the form cq(x)? with ¢ € F,, ¢ € F,[z1,x5]. Indeed, if this is proved,
then the assumption in Lemma 7.4 holds in each of these 5 cases thus the
statement of Theorem 7.1 follows from Lemma 7.4 immediately.

We will prove this by contradiction. Assume that

h(x) = f(x+d1) - f(x+dy)
is the constant multiple of a perfect square. Then we will prove
r+1</,

where r denotes the rank of f, which contradicts our assumption.
Write
d;, = (d,d])

1) 7

fori=1,...,1
Suppose that f has the normal form

fxr,25) = A] ] filagan + Bjaa)i? (a1, 2)

Jj=1

with A € F,\{0}, (a1,51),...,(a,, ;) distinct elements of T, fi,..., [,
squarefree non-constant polynomials in F,[z] and ¢ € F,[xy, x5]. Then it
follows that

[T filasmi+8im + aydy + Bidi) fi(eyas + Biwa + aydy + Bidy) - - -

J=1

fj (Oéjﬂ?l -+ le’g + Oéjd} + ﬁjdg) (77)

is a non-zero multiple of the square of a polynomial in F,[x;, xs).
Now we will introduce an equivalence relation which is similar to the one
used in the proof of Theorem 1 in [31].

Definition 7.1 Two polynomials ©(xy1,xs), ¥(x1,22) € Fylzy, x2] are t-
equivalent (t for translation) if there are ay,as € F,, such that

U(xy, ) = (a1 + ar, xe + az).

Consider any two factors fj, (aj, 21+ By, w2 + oy, d,, + B5,dy, ) = f7 (g, 21+
Bjwa) and fj, (aj,21+ Bj, 22+ ajydy, +Bjody,) = f7, (g1 +B),22) with ji # ja
on the right hand side of (7.7), factor them into irreducible polynomials, and

consider an irreducible factor ¢, of the former polynomial and ¢, of the latter
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polynomial. Then by Lemma 7.2, these irreducible factors are of the form
o1 (0,21 + B, 22), and po(vj,z1 4 B4,72). Assume that these two polynomials
are t-equivalent, so that there exist a,b € [, such that

1,21 + B w2) = pa(ay, (z1 + a) + B, (22 + b))

= pa((aj 21 + Bjy22) + (a0 + Bj,0)) = @3y, x1 + Bj,2)
(7.8)

(where @3(z) = pa(z + (aj,a + B,b))). Both the first and last polynomial in
(7.8) are in normal form, and since the normal form is unique, we must have
(aju 5j1) = (ajw ﬁjz) whence j; = jo.

ThllS lf two factors fjl (Ozjll‘l —+ ﬁjll‘g —+ O[jldg)l + ledgl) and ij(OijI‘l —+
Bj, w2 + ayyd,, + Bj,dy,) on the right hand side of (7.7) have t-equivalent
irreducible factors then j; = j,. But then the expression (7.7) is of the form
cq(z1,2)? if and only if

filamy + Bjra + ayd| + B;dY) - - - fi(ezy + Bijxe + aydy + Bidy)

is the constant multiple of a square for every 1 < 57 < r. Writing z =
a1y + By and di (i) = a;d; + B;d] € F, we obtain for 1 < j <r:

filz +d5 (1)) f;(2 + dj(2)) - - f3(2 + dj(0))

is of the form cq(z)?. Let D; be the set of terms of the sequence
(d5(1),...,d;5(f)) which occur with odd multiplicity. If D; is not empty,
then the one variable polynomial

II riz+4a)

dEDj

is also the constant multiple of a perfect square. By the proof of Lemma 7.2 in
[31] this is not possible (note that by Lemma 7.2, in case a) the one-variable
polynomial f(z) is also irreducible) since the polynomial f;(z) is squarefree.
It remains to consider the case when D; is empty for j =1,... 7. Then, for
1 < j <r, in the sequence

(ajdll + 5jd,1/, Ozjd; + 5jd,2/, ceey Ozjdé + 5]d2/)

every term occurs with even multiplicity, hence every term occurs with mul-
tiplicity at least 2. Then for every j, there is a number 2 < i(j) < ¢ such
that

Oéjd/l + ﬁjd/ll = Oéjdli(j) -+ Bjd/zl(])
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We will prove that 1,i(1),4(2),...,i(r) are different numbers. It is clear that
none of i(1),4(2),...,i(r) is equal to 1. It remains to prove that

z = i(j1) = i(j2) (7.9)
is not possible. Suppose that (7.9) holds. Then
ajdy + B, d] = oy, d, + B dy,
aj,dy + Bd{ = ay,d;, + B, d5.
Thus
aj, (dy — dy) — By, (df — dy)
aj, (dy — dy) — By, (df — dy)

Since (dy,d}) # (d.,,d]) from (7.10) we obtain

x)

9

0
0. (7.10)

ajlﬁj2 - an/le = 07

from which j; = jy follows. Thus 1 < 4(1),i(2),...,ir) < ¢ and
i(1),4(2),...,i(r) are different numbers, so that

r+1</¢

which contradicts the conditions of Theorem 7.1 and this completes the proof
of the theorem. 0J

7.3 The pseudorandom measures of large order in the
degenerate case

In Section 7.2 we showed that in the degenerate case if £ < r then Q,(n)
is small. Now we will prove that (Q,(n) is large for some ¢ with ¢ < 27.

Theorem 7.2 (Gyarmati, Sarkdzy, Stewart) Let f € F,[z1, z2] be a de-
generate polynomial with rank r and degree m and n in x1 and x4, respec-
tively. Then there exists a positive integer £ with £ < 2" for which

Qi(n) > p? — 4rp3/2 —20(m + n)p.
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Proof of Theorem 7.2 We may assume that r < p'/? /4 since otherwise the
theorem is immediate. Suppose that f(x,zs) has the normal form

f([L‘l, IL‘Q) = )\ H fj(ajxl + ﬁjl‘g)’@[)(l‘l, ZL‘2)2

J=1

with (v, 51), ..., (a., B,) distinct elements from 7. We distinguish two cases.
In the first case all of the «;’s are non-zero. In the second case one of the
«;’s is zero and in that case we may suppose, without loss of generality, that
(a1, 81) = (0,1) (since 1 and x5 play symmetric role and if a; = 0, 51 # 0,1
then writing y = S22, o1, x5 can be replaced by the variables xq, %) There
exists an integer v; with 1 < |v] < p/? + 1 such that ~a; is congruent
modulo p to a positive integer of size at most p'/? for i = 1,...,r in the
first case and ¢ = 2,...,7 in the second case. To see this consider the first
[p'/?] +2 multiples of ; in FF,,. Two of them have representations which differ
by at most (p — 1)/([p*/?] + 1), so by at most p'/2, and the difference gives
the result. In the second case we may take v; =1 so v 6, = 1.
Put

E={e=(e1,...,&) witheg; €{0,1} fori=1,...,r}
and for each € in F put

d(E) = gl(ﬁl, —Ozl)’h + -+ Er(ﬁra _ar)’%"

Notice that for each € in E, d(e) has coordinates represented by integers
between —r(p'/? + 1) and r(p'/? + 1).

Lemma 7.5 (Gyarmati, Sarkdzy, Stewart)

[ /Gx+ad(e)

eck
is the square of a polynomial in Fplz, x4

Proof of Lemma 7.5 Write

[i(xy,20) = filogay + Bjxs),

for j=1,...,r, so that
Fx) = A [ Fi(er, ) (21, ). (7.11)
j=1
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For each integer j with 1 < 7 < r we may split E into two disjoint sets
E? and E} where ¢ in E is in E if ; = 0 and is in E} if ¢; = 1. For € in
E? let €' denote the element of £} with the same coordinates as e except for
the j-th coordinate which is 1. Then, for e in EJ,

filx+d(e)) = filx+d(e"))

and so
[[7ix+de) = [] (Fi(x+d(e)fi(x +d(e")
eck ecE) .
= | II 7ix+d(e)
e€EY
The result now follows from (7.11) since |E| is even. O

Let D be the set of d = d(e) which occur with odd multiplicity among
the terms d(e) with € in E. It follows from Lemma 7.5 that if D is non-empty
then

I fx+aq) (7.12)

deD

is the square of a polynomial in F, [z, x].

We claim that (0,0) is in D. Certainly d(0,...,0) = (0,0). Further if € is
in £ and d(g) = (0,0) then e;aqy; + - - -+ .0,y = 0. Since «;7; is congruent
to a positive integer of size at most p'/? and r is at most p'/2/4 we see that
g1 =---=¢, = 0 in the first case and that eg = --- = ¢, = 0 in the second
case. But in the second case we find that d(e) = (£16171,0) = (1,0) so
£1 = 0. Therefore if € is in £ and d(e) = (0,0) we see that € = (0,...,0) and
this shows that (0,0) is in D. Clearly, |D| = |E| (mod 2) and since |E| = 2"
we conclude that

2<|D| < |E| =2

Let d = (dy,d5) in D. Then d; and d, are integers between —r(p'/? 4 1)
and r(p'/2 4 1). Put
d} =mind;, d; =mind,
deD deD

and
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Then d — dy € I2 for d € D since r < p'/?/4. Next put
B ={(x1,25) € I; |10 <a; <p—2r(p"? +1) fori=1,2}.

Notice that
Bl = (p— 2r(pM? + 1))? = p? — drp™. (7.13)

Put
Pix) = [ foc+d—do).
deD
F(x) is the square of a polynomial in F,[xy, x5] by (7.12). Let ¢ = |D|. With
n defined by (6.2) we find that

Qe(n) = Z H n(x+d —do)
xeB deD
Fx)
= Z — |+ Z Hn(x—i—d—do)
xeB p x€B deD
F(x)#0 F(x)=0
> > 1- > 1=|B-2 ) 1L (7.14)
xXEB xeb x€F?2
F(x)#£0 F(x)=0 P

F(x)=0

It is easy to see that if a polynomial F' € F,[x;, x5] is of degree u and v in x,
and 1z, respectively, then the number of its zeros x € IFIQ) is at most (u+v)p.
Thus it follows from (7.13) and (7.14) that

Qu(n) = p? — 4rp*2 = 20(m + n)p

which proves Theorem 7.2. O

7.4 Generating a large family of suitable polynomials

In this section we construct a large family of polynomials which are non-
degenerate.

Theorem 7.3 (Gyarmati, Sarkozy, Stewart) Let f € Fylxy, 0] be a
polynomial of the form

[y, 20) = 2% 4+ 2y0g(1, 29) + 22k (22) (7.15)
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with g € Fplr1,29], deg g < k — 3, h € Fplzs], deg h(zy) < k — 2 and
xo 1 h(z2). Then for the binary lattice n defined in (6.2) we have

Qu(n) < 11klp*logp. (7.16)

Proof of Theorem 7.3 We will need the following generalization of the
Schonemann-Eisenstein theorem.

Lemma 7.6 If f(x) = apx™+- - -+a, is a polynomial over an integral domain
R and a is a maximal ideal of R with

ag Z0 (mod a),
a=-=a,=0 (mod a),
a, Z0 (mod a*)

then f(x) cannot be decomposed in R[z| into a product of non-constant fac-
tors.

Proof of Lemma 7.6 See, for example [93, Theorem 282]. O

R = F,[z] is an integral domain and a =< x5 > is a maximal ideal in it.
Then the conditions of Lemma 7.6 hold for the polynomial f(x,z2) € R[z1]
in (7.15), thus f(z1, ) is irreducible.

In order to use Theorem 7.1 we prove that f(z1,22) is not of the form
(7.5). Since f(x1,z3) is irreducible we have to prove that f(x,z) is not of
the form

f(z1,m2) = filarzy + Bra). (7.17)
Let h be the degree of f; and consider the terms of degree h in fi, so

filonzy + Brxg) = claqxy + 51!E2)h + folarzy + i),

where the degree of fo(ayx; + Bi22) is < h — 1 and ¢ # 0 € F,. Clearly,
c(aywy + B1a9)" equals the sum of the terms of degree k of f(x1,x3), thus by
the conditions of Theorem 7.2 we have

clayzy + Brmg)" = 2.

We may suppose that k£ is less than p since the result is immediate otherwise.
It then follows that h =k, ¢ = a; = 1 and ; = 0, thus from (7.17)

f(z1,20) = fi(xy). (7.18)
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On the other hand f(x1,x5) contains a power of x, and this contradicts
(7.18). Thus f(z1,x5) is not of the form (7.5). We have also proved that
f(z1,x9) is irreducible, and by using Theorem 7.1 a) we obtain the result.[

7.5 A Legendre symbol construction with optimal
bounds

As we remarked already in [61], our upper bounds are not optimal; in
particular, in (7.16) the optimal upper bound would be, up to logarithmic
factors, p (with a factor depending on k and ¢). On the other hand this
construction is more natural than the ones using finite fields in [65], [79]
or [80] (where the bounds are sharper), and it can be implemented faster.
However, we will show that for a certain (rather special) family of polynomials
the finite field construction presented in [79] is equivalent to a Legendre
symbol construction of type (6.2). Thus in this case we obtain a family of
binary lattices which combines the advantages of the two constructions: as
in [79] we have optimal bounds, and as a Legendre symbol construction it
can be implemented fast and easily.

Indeed, combining Theorems 7.1 and 7.2 of [79], we get the following
result:

Theorem 7.A (Mauduit, Sarkozy) Let p be an odd prime, n € N, q =
p", and denote the quadratic character of F, by v (setting also v(0) = 0).
Consider the linear vector space formed by the elements of F, over F,, and
let vy, ..., v, be a basis of this vector space. Let f(x) € F,[x| be a polynomial
of degree k with

0<k<p (7.19)

which has no multiple zero. Define the n-dimensional binary p-lattice n(x) :
I — {—1,+1} by

n(x) =n((zy, ..., 2n))

_f (f@or+ -+ apv))  for f(mv e+ zpv,) #0 (7.20)
1 for f(xyvy + -+ + x,0,) = 0. :
Assume also that ¢ € N with
4rFO < gy, (7.21)
Then we have
Qi(n) < kL (¢"*(1 +logp)" +2). (7.22)

Our next result follows from Theorem 7.A in the case that n = 2 and for
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a special choice of vy, v, and the polynomial f.

Theorem 7.4 (Gyarmati, Sarkézy, Stewart) Let p be an odd prime and
let v be a quadratic non-residue modulo p. Then the polynomial x*> — r is
irreducible over F),; denote one of its zeros by 0, and consider the extension
of F, by 0: F,[0](= F,2). Let k and € be integers which satisfy (7.19) and
(7.21), and assume that a1, as, ..., ax, by, ba, ..., b, € F, satisfy

a; + b0 # a; +b;0 and a; + b;0 # a; — b0 for 1 <i < j <k. (7.23)

Put i
f(l‘l,l‘g) = H ((l‘l — (li)Q — ’I"(I‘Q — bl)Q) (724)
i=1
and
. " _ <f($1’x2)) if (f(x1,22),p) =1
n(x) = 7(x) = 7((z1, 22)) = P . (7.25)
1 if p| f(z1,22).
For each positive integer ¢ with
4AEER) < (7.26)

we have
Qu(7) <tk (p(1 +logp)® +2) .

Proof of Theorem 7.4 By the definition of # and Euler’s lemma, we have

p—1

O = (02)"T0=r"T0=—0. (7.27)

We will use Theorem 7.A with n = 2, ¢ = p?, v1 = 1, vy = 0, so that now
the elements of F, = F,» are represented in the form z; + x20. Then by the
generalization of Euler’s lemma to F, and (7.27), for x; + 290 € 2, so with
(x1,22) # (0,0), we have

’7(1’1 -+ x29) = (.Tl —+ 1’29)1727_1 = (.Tl —+ 1’29)%«51 -+ x29)p7_1
= ((z1 + :cgﬁ)p)p%l (x1 + x2¢9)p7_1 = (o} + xgep)’%l (x1 + x29)p7_1
(

Ty — $29)p7ﬂ($‘1 —+ xQQ)% = (l‘% _ x%eZ)% _ (l‘% _ ’I"l‘%)pTil
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By the multiplicativity of v and the Legendre symbol, it follows that writing
k
2:1

and defining n(x) = n((z1,z2)) as in (7.20) we have

k

n(x) =y(f(z1+220)) = (H((fb’l + z20) — (a; + bﬂ)))

i=1

=[] (@1 +220) = (@ + b)) = [ [ 7 (@1 = @) + (22 = b:)0)

i=1 i=1

= H( Ty — a;)” — (s —bi)2> _ (Hf (24 —a;)? — r(zy —b¢)2)>
p
_ <M

p

) =ij(x) (for f(z1 + x20) # 0) (7.29)

with the polynomial f and the lattice 7 defined by (7.24) and (7.25), respec-
tively, and trivially we have

n(x) = 7(x) for f(x1 + z20) = 0. (7.30)

By (7.23) and the definition of r, the polynomial f has no multiple zero, and
now (7.21) holds by (7.26). Thus Theorem 7.A can be applied, and then we
obtain from (7.22), (7.29) and (7.30) that

Qu(n) = Qu(7) <tk (p(1 + logp)® + 2)

which completes the proof of Theorem 7.4.

We remark that the construction in Theorem 7.4 could be extended by
also considering higher degree factors in (7.28). Even more generally, we
may consider polynomials f which are not given in a product form. In either
case, we may use the fact that if f(z; + 220) = p(x1, 22) + 0q(21, x5) (With
f(2) € F,lz], p(x1,x2), q(x1,72) € Fp[z1, 2] and 0, r defined as above), then
we have

Al +022)) = y(plar, 22) + g1, 22)) = (p e <xl’@)) |

However this would make the polynomial f in (7.24) in Theorem 7.4 much
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more complicated.

Finally, we would like to discuss the implementation of the construction in
Theorem 7.4. The critical point of the implementation is to find a quadratic
non-residue r. If p is fixed, then it is known that the GRH implies that
the least quadratic non-residue modulo p is less than (logp)® (with some
positive constant ¢), and since the quadratic character of a given residue can
be decided in polynomial time (by using Jacobi symbols), r can be chosen
as the least quadratic non-residue modulo p which can be determined in
polynomial time. On the other hand, no algorithm is known for finding
the least quadratic non-residue in polynomial time without any unproved
hypothesis. However, in most cases one need not fix p, and this difficulty
can be avoided. Namely, we may start out from the fact that if p is a prime
of the form 4k — 1, then -1 is a quadratic non-residue modulo p. Thus it is
worthwhile to make first a long sequence of primes p; =3 < py < --- < py
of the form 4k — 1 with say, p; < p;y1 < 2p;, and if we need a prime p of
size about N with p = —1 (mod 4), then we take the first prime from this
sequence greater than N, and we take r = —1. (If we want a large prime p
of the form 4k — 1, then we may use the fact that the Mersenne primes are
of the form 4k — 1.)
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8 Further results

In this section, I will write a few sentences about my further papers
(written partly with my coauthors) about pseudorandomness, which I have
written since my PhD:

With Attila Peths and Andras Sarkozy in [59] we studied a pseudorandom
generator based on linear recursions. This construction has several advan-
tages: easy implementation and we were able to prove optimal bounds for
the pseudorandom measures.

In [37] I sharpened some earlier estimates on the pseudorandom measures
of a construction based on the discrete logarithm. (This earlier construction
was defined in [38] and my PhD dissertation [35].) In [44] T extend this
construction. This generalization has the interesting property that in special
cases we get pseudorandom sequences based on elliptic curves.

The connection between the pseudorandomness of binary sequences and
binary lattices is studied in [50]. From a two-dimensional binary N-lattice one
can make a unique binary sequence of length N? by taking first the first row of
the lattice then continuing the sequence by the second row of the matrix, etc.
In [50] we showed that the lattice may have weak pseudorandom properties,
however, the associated sequence has strong pseudorandom properties. In
Theorem 5.3 I proved a result pointing the opposite direction, moreover if
the lattice has strong pseudorandom properties, then the associated sequence
also has (see Section 5).

In the applications it may occur that the initial pseudorandom sequence
turns out to be not long enough, thus we have to take the concatenation or
merging of it with another pseudorandom sequences. I studied this problem
in [40] and [42].

Three different constructions of binary lattices with strong pseudorandom
properties are given in [51]. These constructions are the two dimensional
extensions and modifications of three of the most important one dimensional
constructions.

In [52], [53], [54] we studied the pseudorandom measures of two-
dimensional binary lattices with my coauthors. Thus in [52] we compared the
different pseudorandom measures and we estimated the normality measure
by the maximum of @), measures. In [54| we studied the symmetry proper-
ties of binary lattices. Finally, in [53] we introduced the multidimensional
version of the correlation measure C;, and we estimated the minimum of the
measures Cy and Q).

In [43] I realized that the shape of the box-lattices B in Definition 1.6 is
of very special type. Sometimes we have to cover more general situation, so
in [43| T introduced further new measures. I introduced the convex and line
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measure and studied the connections between the new and old measures. [
show that there exists a special case of the Legendre symbol construction
(see Construction 1.2) for which a strong upper bound can be given for these
much more general measures.

In [55], [56] with Christian Mauduit and Andras Sarkozy we studied the
following problems: In cryptographic applications sometimes is not enough
that the binary lattices have strong pseudorandom properties, but it is also
important that their large family contains "significantly" different lattices.
The collision and avalanche effect study this property. In the one-dimensional
case these notions are studied for example in the papers [7], [22], [66], [81],
[103], [104]. In [55] we generalized the collision and avalanche effect for the
multidimensional case, and we define new measures. In [56] we presented a
further construction for which these new measures are optimal.

The linear complexity is an important and frequently used measure of
unpredictability and pseudorandomness of binary sequences. In [57] and [58]
we extend this notion to two dimensions. We estimated the linear complexity
of a truly random binary lattice. We analyzed the connection between the
linear complexity and the correlation measures, and we utilized the inequali-
ties obtained in this way for estimating the linear complexity of an important
special binary lattice. We studied connection between the linear complexity
of binary lattices and of the associated binary sequences. We extend the no-
tion of k-error linear complexity to bit lattices. Finally, we present another
alternative definition of linear complexity of bit lattices.

Pseudorandomness can be defined on various different objects. In [47]
and [48] with Pascal Hubert and Andras Sarkozy we studied pseudorandom
binary functions on trees.

In [46] T presented a survey of the most important results involving the
new quantitative pseudorandom measures of finite binary sequences and lat-
tices.
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