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1 Introdution

In the last hundred years some important appliations suh as Monte

Carlo methods, wireless ommuniations or famous enrypting algorithms

(e.g. Vernam ipher) inspired intensive study of pseudorandomness of dif-

ferent objets. Initially, random and pseudorandom objets were generated

by physial methods, but these methods have several disadvantages: they

are slow, expensive, it is di�ult to store the data and their pseudorandom

properties annot be proved mathematially. In order to avoid these di�ul-

ties, pseudorandom objets are generated nowdays from a small seret key

by mathematial algorithms, with the intent that they appear random to a

omputationally bounded adversary.

Di�erent approahes and de�nitions of pseudorandomness exist. Menezes,

Oorshot and Vanstone [81℄ wrote an exellent monograph about these ap-

proahes. The most frequently used interpretation of pseudorandomness is

based on omplexity theory; Goldwasser [30℄ wrote a survey paper about this

approah. In this approah usually sequenes of length tending to in�nity

are tested while in the appliations only �nite sequenes are used. Unfortu-

nately, most of the results are based on ertain unproved hypotheses (suh

as the di�ulty of fatorization of integers or the di�ulty of the disrete

logarithm problem). Finite pseudorandom [0, 1) sequenes have been stud-

ied by Niederreiter (see for example [86℄, [87℄, [88℄, [89℄). Niederreiter [90℄

also studied random number generation and quasi-Monte Carlo methods and

their onnetions.

In the seond half of the 1990s, Christian Mauduit and András Sárközy

[77℄ introdued a new onstrutive quantitative approah, in whih the pseu-

dorandomness of �nite binary sequenes is well haraterized. Sine then

it is a fast developping area, several authors work in this �eld and several

onstrutions, results and generalizations are presented in numerous papers.

In [46℄ I gave a survey of the most important results.

In the present dissertation I will summarize my main results in the theory

of pseudorandomness. Some of my results (see the papers [39℄, [41℄, [45℄,

[49℄, [61℄, [62℄) will be presented in details, but to keep the extent of the

dissertation below a reasonable limit my other works (see the papers [37℄,

[40℄, [42℄, [43℄, [44℄, [46℄, [47℄, [48℄, [50℄, [51℄, [52℄, [53℄, [54℄, [55℄, [56℄, [57℄,

[58℄, [59℄) will be just brie�y mentioned. Throughout the dissertation I will

always name the authors of the theorems exept for the ones proved by me

without any oauthors.

In [77℄ Mauduit and Sárközy introdued the following pseudorandommea-

sures:
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De�nition 1.1 (Mauduit, Sárközy) For a binary sequene EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , write

U(EN , t, a, b) =
t
∑

j=0

ea+jb.

Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t suh that a, b, t ∈ N and 1 ≤ a ≤
a + tb ≤ N .

The well-distribution measure studies how lose are the frequenies of

the +1's and −1's in arithmeti progressions (for a binary sequene with

strong pseudorandom properties these two quantities are expeted to be very

lose.) But often it is also neessary to study the onnetions between ertain

elements of the sequene. For example, if the subsequene (+1,+1) ours
muh more frequently then the subsequene (−1,−1), then it may ause

problems in the appliations, and we annot say that our sequene has strong

pseudorandom properties. In order to study onnetions of this type Mauduit

and Sárközy [77℄ introdued the orrelation and normality measures:

De�nition 1.2 (Mauduit, Sárközy) For a binary sequene EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for D = (d1, . . . , dℓ) with non-

negative integers 0 ≤ d1 < · · · < dℓ, write

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ .

Then the orrelation measure of order ℓ of EN is de�ned as

Cℓ(EN) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dℓ) and M suh that

0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N .

De�nition 1.3 (Mauduit, Sárközy) For a binary sequene EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ,
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write

T (EN ,M,X) = |{n : 0 ≤ n < M, (en+1, en+2, . . . , en+ℓ) = X}| .

Then the normality measure of order ℓ of EN is de�ned as

Nℓ(EN) = max
M,X

∣

∣T (EN ,M,X)−M/2ℓ
∣

∣ ,

where the maximum is taken over all X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ, and M
suh that 0 < M ≤ N − ℓ+ 1.

We remark that in�nite analogues of the funtions U, V and T had been

studied before (see, for example, [15℄, [68℄ and [91℄), but the quantitative

analysis of pseudorandom properties of �nite sequenes has started by the

work of Mauduit and Sárközy [77℄.

The ombined (well-distribution-orrelation) pseudorandom measure [77℄

is a ommon generalization of the well-distribution and the orrelation mea-

sures. This measure has an important role in the multidimensional extension

of the theory of pseudorandomness (see Setions 5, 6, 7 and 8).

De�nition 1.4 (Mauduit, Sárközy) For a binary sequene EN =
(e1, . . . , eN) ∈ {−1,+1}N of length N , and for a, b, t ∈ N, D = (d1, . . . , dℓ)
with non-negative integers 0 ≤ d1 < · · · < dℓ, write

Z(EN , a, b, t, D) =

t
∑

j=0

ea+jb+d1 . . . ea+jb+dℓ .

Then the ombined (well-distribution-orrelation) measure of order ℓ of EN

is de�ned as

Qℓ(EN) = max
a,b,t,D

|Z(EN , a, b, t, D)| = max
a,b,t,D

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1 . . . ea+jb+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t and D = (d1, . . . , dℓ) suh that

all the subsripts a+ jb+ di belong to {1, 2, . . . , N}.

When Mauduit and Sárközy introdued quantitative pseudorandom mea-

sures, their starting point was to balane the requirements possibly optimally.

They deided to introdue funtions whih are real-valued and positive and

the pseudorandom properties of the sequene are haraterized by the sizes

of the values of these funtions. It was also an important requirement that
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one should be able to present onstrutions for whih these measures an be

estimated well. It turned out that the measuresW and Cℓ do not only satisfy

these riteria, but later Rivat and Sárközy [95℄ showed that if the values ofW
and Cℓ are �small�, then the outome of many (previously used a posteriori)

statistial tests is guaranteed to be (nearly) positive.

Although by W , Cℓ, Nℓ and Qℓ many pseudorandom properties of the

sequene an be haraterized, but obviously not all. For example, in [34℄

I introdued the symmetry measure in order to study symmetry properties

of �nite binary sequenes (later the symmetry measure was generalized by

Sziklai [102℄). In [108℄ Winterhof gave an exellent survey on di�erent pseudo-

random measures and ertain onstrutions. However it was also important

to determine a not too large set of ertain basi pseudorandom measures,

whih an guarantee the adequate seurity in the appliations. The mea-

sures introdued by Mauduit and Sárközy seem to satisfy these riteria. In

the ase of binary sequenes the most studied measures are W and Cℓ, and

many papers use only these measures, while in multidimensional extensions,

the most important measure is Qℓ.

In [13℄ Cassaigne, Ferenzi, Mauduit, Rivat and Sárközy formulated the

following priniple: �The sequene EN is onsidered a �good� pseudorandom

sequene if these measures W (EN) and Cℓ(EN ) (at least for �small� ℓ) are
�small�.�

Sine 1997 many onstrutions with strong pseudorandom properties have

been given by di�erent authors. In 2007 Sárközy [97℄ presented a survey

paper about the most important onstrutions.

One of the most intensively studied pseudorandom generator is the Blum-

Blum-Shub generator, alled this way after the name of its reators: Leonore

Blum, Manuel Blum and Mihael Shub. The unpreditability of this gen-

erator has been proved onditionally assuming the di�ulty of integer fa-

torization. In Setion 2 I prove quantitative results by estimating the pseu-

dorandom properties of the generated sequenes. The power generator (an

extended version of the Blum-Blum-Shub generator) will be de�ned in (2.1).

If p, ϑ, t, k, T, n0 and the sequene un and EN are de�ned as in Notation 2.1

and Constrution 2.1, then my main result in Setion 2 an be summarized

as it follows.

Theorem 1.1

W (ET ) ≪ p7/8 log p,

Nℓ(ET ) ≪ p7/8 log p.
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If T (the multipliative order of k modulo t) is large in terms of p, then these

bounds give a strong estimate for the well-distribution and normality mea-

sure. We remark that for the orrelation measures we have slightly weaker

estimates and only for shorter sequenes.

Theorem 1.2 For every δ > 0, there exists a onstant ε depending on ℓ and
δ suh that if N (< T ) satis�es ertain onditions depending on k and δ (see
Theorem 2.3 in Setion 2), then for the sequene EN de�ned in Constrution

2.1 we have

Cℓ(EN) < p1−ε.

We remark that these results were proved only in the prime moduli ase in

[39℄, but they an be generalized to the omposite moduli ase at the prie

that the omputations will be more ompliated and (probably) the estimates

for the pseudorandom measures will be slightly weaker. (We also note that

while for publi key ryptography omposite moduli are used, in the ase

of pseudorandom generation usually we have better estimates in the prime

moduli ase.)

In [14℄ Cassaigne, Mauduit and Sárközy proved that for the majority of

the sequenes EN ∈ {−1,+1}N the measuresW (EN) and Cℓ(EN) are around
N1/2

(up to some logarithmi fators). Later Alon, Kohayakawa, Mauduit,

Moreira and Rödl [4℄ improved on these bounds:

Theorem 1.A (Alon, Kohayakawa, Mauduit, Moreira, Rödl) Suppose

that we hoose eah EN ∈ {−1,+1}N with probability

1
2N
. For all ε > 0 there

exist N0 = N0(ε) and δ = δ(ε) > 0 suh that for N > N0 we have

P

(

δ
√
N < W (EN) <

1

δ

√
N

)

> 1− ε.

Theorem 1.B (Alon, Kohayakawa, Mauduit, Moreira, Rödl) Suppose

that we hoose eah EN ∈ {−1,+1}N with probability

1
2N
. Then for all

0 < ε < 1/16 there is a onstant N0 = N0(ε) suh that for N > N0 we have

P

(

2

5

√

N log

(

N

ℓ

)

< Cℓ(EN ) <
7

4

√

N log

(

N

ℓ

)

)

> 1− ε.

We remark that while it is important that for a binary sequene with

strong pseudorandom properties these measures should be �small�, lower

bounds are not required based on the following observations.
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Write

m(N) = min
EN∈{−1,+1}N

W (EN), Mℓ(N) = min
EN∈{−1,+1}N

Cℓ(EN ).

The estimate of m(N) is a lassial problem. In 1964 Roth [96℄ proved that

m(N) ≫ N1/4
. Upper bounds for m(N) were given by Sárközy [21℄ and Bek

[6℄. Finally Matou²ek and Spener [74℄ showed that m(N) ≪ N1/4
.

The value of Mℓ(N) depends on the value of the order ℓ. Cassaigne,

Mauduit and Sárközy [14℄ proved that Mℓ(EN ) ≪ (ℓN logN)1/2. The re-

sults of [4℄ improved the implied onstant fator (see Theorem 1.B). On

the other hand, �rst Cassaigne, Mauduit and Sárközy [14℄ proved that

Mℓ(N) ≫ log(N/ℓ) for even ℓ. This was improved onsiderably by Alon,

Kohayakawa, Mauduit, Moreira and Rödl in [3℄ and [69℄, where the best

lower bound is the following:

Theorem 1.C (Alon, Kohayakawa, Mauduit, Moreira, Rödl) If ℓ is
even then

Mℓ(N) ≥
√

1

2

[

N

ℓ+ 1

]

.

The proof of the theorem used deep linear algebrai tools. Later Anan-

tharam [5℄ simpli�ed the proof, but he obtained a slightly (by a onstant

fator) weaker result.

Cassaigne, Mauduit and Sárközy [14℄ notied that the minimum values

of orrelation of odd order an be very small. Namely, for the sequene

EN = (−1,+1,−1,+1, . . . ) ∈ {−1,+1}N we have Cℓ(EN) = 1 for odd ℓ,
sine

en+1+d1 · · · en+1+dℓ = (−en+d1) · · · (−en+dℓ) = (−1)ℓen+d1 · · · en+dℓ .

Thus

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 · · · en+dℓ

∣

∣

∣

∣

∣

= |1− 1 + 1− 1 + . . .| =
{

1 if M is odd,

0 if M is even.

So Cℓ(EN) = 1 and thus Mℓ(N) = 1 for odd ℓ. Cassaigne, Mauduit

and Sárközy [14℄ also observed that although for the sequene EN =
(−1,+1,−1,+1, . . . ), C3(EN) is 1, the orrelation measure of order 2 is large:

C2(EN) = ⌈N
2
⌉. By solving problems of Cassaigne, Mauduit and Sárközy [14℄

and Mauduit [75℄, in [36℄ I proved that

C2(EN )C3(EN) ≫ N2/3
(1.1)
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always holds. More generally, in [36℄ I proved an inequality involving or-

relation measures C2k+1 and C2ℓ where 2k + 1 > 2ℓ. Later Anantharam [5℄

sharpened (1.1). By extending the previous results, in [49℄ with Mauduit we

were be able to ompare orrelation measures of C2k+1 and C2ℓ (without the

assumption 2k + 1 > 2ℓ). Our main result was the following:

Theorem 1.3 (Gyarmati, Mauduit) There is a onstant ck,ℓ depending

only on k and ℓ suh that if

C2k+1(EN) < ck,ℓN
1/2,

then

C2k+1(EN )
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1,

where the implied onstant fator depends only on k and ℓ.

This theorem has the following onsequenes:

Corollary 1.1 (Gyarmati, Mauduit) If C2k+1(EN) = O(1), then

C2ℓ(EN ) ≫ N , where the implied onstant fator depends on k and ℓ.

Corollary 1.2 (Gyarmati, Mauduit)

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)

where the implied onstant fator depends only on k and ℓ and where

c(k, ℓ) =

{

1 if k ≥ ℓ,
1
2
+ 2k+1

4ℓ
if k < ℓ.

In Setion 3 I will prove Theorem 1.3 and its onsequenes.

First Goubin, Mauduit and Sárközy [31℄ sueeded in onstruting large

families of pseudorandom binary sequenes. They also studied the pseudo-

random properties of the generated sequenes. Their onstrution was the

following:

Constrution 1.1 (Goubin, Mauduit, Sárközy) Suppose that p is a

prime number, and f(x) ∈ Fp[x] is a polynomial with degree k > 0 and

no multiple zero in Fp. De�ne the binary sequene Ep = (e1, . . . , ep) by

en =

{ (

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(1.2)

9



Indeed, �rst Ho�stein and Lieman [64℄ proposed the use of polynomials f(n)
in (1.2) suh that they are squarefree and neither even, nor odd, but they

did not prove anything on the pseudorandom properties of the orresponding

sequene Ep = (e1, . . . , ep).
Ahlswede, Khahatrian, Mauduit and Sárközy [1℄ introdued the notion

of family-omplexity of families of binary sequenes (in order to haraterize

the ryptographi appliability of the family). They proposed to use the

following measure to study whether a family has �rih�, �omplex� struture

or not:

De�nition 1.5 (Ahlswede, Khahatrian, Mauduit, Sárközy)

The family omplexity C(F) of a family F of binary sequenes

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any

1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj ∈ {−1,+1}j, we have at

least one EN = (e1, . . . , eN) ∈ F for whih

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

In [1℄ in Setion 3 it is proved that

Proposition 1.1 (Ahlswede, Khahatrian, Mauduit, Sárközy)

C(F) ≤ log |F|
log 2

.

Ahlswede, Khahatrian, Mauduit and Sárközy [1℄ proved the following:

Theorem 1.D (Ahlswede, Khahatrian, Mauduit, Sárközy) Let p be

a prime. Consider all the polynomials f(x) suh that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For eah of these polynomials f(x), onsider the binary sequene

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1,+1}p de�ned by (1.2), and let F1 denote

the family of all the binary sequenes obtained in this way. Then

C(F1) ≥ K. (1.3)

By Proposition 1.1 it is lear that

|C(F1)| ≤
log |F1|
log 2

≤ K + 1

log 2
log p. (1.4)

In [41℄ I improved on (1.3) and proved the following:

10



Theorem 1.4

C(F1) ≫ K log p.

By (1.4) this lower bound is sharp apart from the onstant fator.

In this dissertation I will study the family omplexity in Setion 4 and I

will prove Theorem 1.4 there.

For a truly random binary sequene the well-distribution measure and

the orrelation measures are small (≪ N1/2(logN)c for a sequene of length

N). Several onstrutions have been given for whih these measures are

small (≪ N1/2(logN)c), thus the sequene EN has strong pseudorandom

properties. But in ertain appliations, e.g. in ryptography, it is not

enough to know that the sequene has strong pseudorandom properties,

it is also important that the subsequenes EM (where EM is of the form

(ex, ex+1, . . . , ex+M−1)) also have strong pseudorandom properties for values

M possibly small in terms of N . In Setion 5 I will deal with this problem

in ase of values M ≫ N1/4+ε
. Clearly, almost all sequenes of length N

onsist a subsequene (1, 1, . . . , 1) ontaining c logN of 1's, thus then for the

orrelation of subsequenes of length M = O(logN) we annot expet any

non-trivial bound. It is an interesting open question for whih sequenes

EN ∈ {−1,+1}N with strong pseudorandom properties and for whih val-

ues of M one an estimate max
EM=(ex,ex+1,...,ex+M−1)⊂EN

Cℓ(EM) by a non-trivial

upper bound. Note that this problem is related to the estimate of the least

quadrati nonresidue ϑp modulo p. Burgess [12℄ proved that ϑp < p
1

4
√

e
+ε
,

and it is onjetured that ϑp is O(log p log log p). The di�ulty of Burgess's

proof and the gap between the onjeture and Burgess's result are point-

ing in that diretion that probably one annot prove a non-trivial bound

for max
EM=(ex,ex+1,...,ex+M−1)⊂EN

Cℓ(EM) when M ≪ N c
if c is a onstant small

enough.

This problem has important appliations, for example, it may our that,

say, we want to enrypt a message of estimated length slightly less than N ,

thus we use an N bit sequene possessing strong pseudorandom properties.

However, it may turn out that the text to be enrypted is of length less

than, say,

√
N . In this ase we use only a short part (of length

√
N) of the

sequene, so we will need ontrol over the pseudorandom properties of the

short subsequenes. In Setion 5, I will onstrut a sequene for whih the

following holds:

Theorem 1.5 There exists a sequene EN ∈ {−1,+1}N for whih we have

Cℓ(EM ) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN

11



for every M ≤ N and EM ⊆ EN (where EM is of the form

(ex, ex+1, . . . , ex+M−1)). Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2

and

W (EN) ≪ N3/4 logN

holds.

This result was published in [45℄, here I will deal with these problems and

prove Theorem 1.5 in Setion 5. In order to prove this result we will need

the multidimensional theory of pseudorandomness, and in Setions 6, 7 and

8 we will also need this theory.

The multidimensional theory of pseudorandomness was developed by Hu-

bert, Mauduit and Sárközy [65℄. They introdued the following de�nitions:

Denote by InN the set of n-dimensional vetors whose oordinates are

integers between 0 and N − 1:

InN = {x = (x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is alled an n-dimensional N-lattie or brie�y an N-lattie. In [61℄

this de�nition was extended to more general latties in the following way: Let

u1,u2, . . . ,un be n linearly independent vetors, where the i-th oordinate of

ui is a positive integer and the other oordinates of ui are 0, so that, writing

zi = |ui|, ui is of the form (0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers

with 0 ≤ t1, t2, . . . , tn < N . Then we all the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

n-dimensional box N-lattie or brie�y a box N-lattie.

In [65℄ the de�nition of binary sequenes was extended to more dimensions

by onsidering funtions of type

ex = η(x) : InN → {−1,+1}. (1.5)

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).
Suh a funtion an be visualized as the lattie points of the N-lattie

replaed by the two symbols + and −, thus they are alled binary N -latties.

Binary 2 or 3 dimensional pseudorandom latties an be used in enryption

of digital images and in medial diagnostis.

12



Hubert, Mauduit and Sárközy [65℄ introdued the following measure of

pseudorandomness of binary latties (here we will present the de�nition in

the same slightly modi�ed but equivalent form as in [61℄):

De�nition 1.6 (Hubert, Mauduit, Sárközy) Let

η : InN → {−1,+1}.

be a binary lattie. De�ne the pseudorandom measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) . . . η(x+ dℓ)

∣

∣

∣

∣

∣

, (1.6)

where the maximum is taken over all distint d1, . . . ,dℓ ∈ InN and all box

N-latties B suh that B + d1, . . . , B + dℓ ⊆ InN .

Then η is said to have strong pseudorandom properties, or brie�y, it is

onsidered a �good� pseudorandom lattie if for �xed n and ℓ and �large� N
the measure Qℓ(η) is �small� (muh smaller, then the trivial upper bound

Nn
). This terminology is justi�ed by the fat that, as was proved in [65℄,

for a truly random binary lattie de�ned on InN and for �xed ℓ the measure

Qℓ(η) is �small�; in partiular, it is less than Nn/2
multiplied by a logarithmi

fator.

In their �rst paper [65℄ on the multidimensional theory of pseudorandom-

ness Hubert, Mauduit and Sárközy gave onstrutions for binary latties with

strong pseudorandom properties. They gave nearly optimal upper bounds

for the pseudorandom measures of the latties onstruted. However, these

early onstrutions also have disadvantages: they are rather arti�ial, and

their implementation is ompliated. Thus in [61℄ and [62℄ with my oauthors

A. Sárközy and C. L. Stewart we de�ned a new onstrution whih is based

on the use of the Legendre symbol. This onstrution is muh more natural

and �exible than the earlier ones, and it an be implemented more easily. In

Setions 6 and 7 I will present results from [61℄ and [62℄. We will study the

properties of the following:

Constrution 1.2 (Gyarmati, Sárközy, Stewart) Let p be an odd

prime, f(x1, x2) ∈ Fp[x1, x2] be a polynomial in two variables. De�ne

η : I2p → {−1,+1} by

η(x1, x2) =

{ (

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p | f(x1, x2).
(1.7)
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In Setion 6.1 negative examples are presented: we will show that for

ertain polynomials f(x1, x2) the assoiated binary lattie η(x1, x2) has weak
pseudorandom properties. It turns out that depending on the form of the

polynomial we have to distinguish two di�erent ases. More preisely, we say

the following:

De�nition 1.7 (Gyarmati, Sárközy, Stewart) The polynomial f(x1, x2)
is alled degenerate if it is of the form

f(x1, x2) =

(

r
∏

j=1

fj(αjx1 + βjx2)

)

g(x1, x2)
2, (1.8)

where αj, βj ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].
A polynomial f ∈ Fp[x1, x2] whih an be expressed in the form (1.8) is

said to be degenerate and otherwise it is said to be non-degenerate.

In Setion 6 we analyze the non-degenerate ase, while in Setion 7 the

degenerate ase. These setions are based on the papers [61℄ and [62℄. Next

I present the main results from these two setions:

Theorem 1.6 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a polynomial of degree k. Suppose that f(x1, x2) annot be expressed in

the form (1.8) and one of the following 5 onditions holds:

a) f(x1, x2) is irreduible in Fp[x1, x2],
b) ℓ = 2,
) 2 is a primitive root modulo p,
d) 4k+ℓ < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary p-lattie η de�ned in (1.7) we have

Qℓ(η) < 11kℓp3/2 log p. (1.9)

In the ase of degenerate polynomial we will de�ne the rank of the poly-

nomial as the smallest positive integer r for whih f(x1, x2) an be written

in the form (1.8).

Theorem 1.7 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a non-onstant degenerate polynomial of rank r with degree k. Suppose

that ℓ, the order of the pseudorandom measure is not greater than the rank r
of f(x1, x2), and one of the following 5 onditions holds:

a) f(x1, x2) is irreduible in Fp[x1, x2],
b) ℓ = 2,

14



) 2 is a primitive root modulo p,
d) (4k)ℓ < p or (4ℓ)k < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary lattie η de�ned in (1.7) we have

Qℓ(η) < 11kℓp3/2 log p. (1.10)

In Setion 7.3 I also show that in ase of degenerate polynomials, there

is a pseudorandom measure of large order whih is large:

Theorem 1.8 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a de-

generate polynomial with rank r and degree m and n in x1 and x2, respe-
tively. Then there exists a positive integer ℓ with ℓ ≤ 2r for whih

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p.

Our upper bounds (1.9) and (1.10) are not optimal sine they are signi�-

antly larger than the optimal p(log p)c. In Setion 7.5 we will show that for

a ertain (rather speial) family of polynomials the �nite �eld onstrution

presented in [79℄ is equivalent to a Legendre symbol onstrution of type

(1.7). Thus in this ase we obtain a family of binary latties whih ombines

the advantages of the two onstrutions: as in [79℄ we have optimal bounds,

and as a Legendre symbol onstrution it an be implemented fast and easily.

Some authors gave further onstrutions of binary sequenes and lat-

ties with strong pseudorandom properties (see my survey paper [46℄). The

onstrutions based on ellipti urves are espeially important, see e.g. the

papers of Mérai [82℄, [83℄, [84℄, [85℄, Chen [16℄, Chen, Li and Xiao [17℄ and

Liu, Zhan and Wang [72℄.

In Setions 2, 3, 4, 5, 6 I present results from my papers [39℄, [49℄, [41℄,

[45℄, [61℄, [62℄ (three of them is written jointly with my oauthors).

In Setion 8 I present a short summary of 18 papers whih I have been

written on the theory of pseudorandomness sine my PhD.
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2 Pseudorandom sequenes onstruted by the

power generator

One of the most studied pseudorandom generator is Blum-Blum-Shub,

alled this way after the name of its reators: Leonore Blum, Manuel Blum

and Mihael Shub [8℄. The unpreditability of this generator has been proved

assuming the di�ulty of integer fatorization. In this setion I prove quan-

titative results by estimating the pseudorandom properties of the generated

sequenes.

Leonore Blum, Manuel Blum and Mihael Shub [8℄ de�ned the power

generator by the following:

Let k ≥ 2, m ≥ 1 and ϑ be integers suh that (ϑ,m) = 1. De�ne the

sequene {un} by the reurrene relation

un ≡ ukn−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . (2.1)

with the initial value u0 = ϑ.
The power generator has many appliations in ryptography, see [8℄, [19℄,

[70℄, [101℄. In the two speial ases (k, ϕ(m)) = 1 (where ϕ(m) is the Euler

funtion) and k = 2 this sequene is known as the RSA generator and as the

Blum-Blum-Shub generator, respetively.

Although various properties of the power generator have been studied in

a number of papers, see [8℄, [11℄, [18℄, [19℄, [23℄, [32℄, [63℄, [70℄, [81℄, [101℄, few

unonditional results are known: Clearly, the sequene (2.1) beomes peri-

odi, possible values of the period are studied in [27℄. Cusik [18℄ proved that

the rightmost bit of the Blum-Blum-Shub generator assumes values 0 and 1

almost equally often, provided that the period is large enough. Friedlander,

Lieman and Shparlinski [26℄, proved that if the period of the RSA generator

is large enough, then the elements of the sequene is uniformly distributed

modulo m and a positive proportion of the rightmost and leftmost bits is

uniformly distributed. Lower bounds on the linear omplexity of the power

generator have been given in [32℄, [100℄. The results of this setion will be

also unonditional.

Notation 2.1 Let p be a prime, ϑ ∈ F∗
p be an element. De�ne the sequene

un by (2.1) with a prime modulus p in plae of m (then the value of un is

�xed in the interval [0, p − 1]). Clearly the multipliative order of un ≡ ϑk
n

(mod p) is non-inreasing as n → ∞. Let n0 denote the smallest positive

integer suh that for n ≥ n0 the multipliative order of

un ≡ ϑk
n

(mod p)
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is the same number: t. Then

(k, t) = 1. (2.2)

Denote by T the multipliative order of k modulo t.

Throughout the setion we will use these notations: p, ϑ, t, k, T, n0 and the

sequene {un} will be as it desribed here. Clearly the sequene

un0, un0+1, un0+2, . . .

is purely periodi with the period T .
We onvert the sequene {un} to a binary sequene by the parity of its

last bit:

Constrution 2.1 (Blum, Blum, Shub) De�ne the sequene EN =
(e1, . . . , eN) by

en =

{

+1 if un is even,

−1 if un is odd.

(2.3)

In this setion we will study the pseudorandom properties of the sequene

EN . First we will give upper bounds for the well-distribution measure and

the normality measure of order ℓ. In Theorems 2.1 and 2.2 the length of

the sequene is T (de�ned in Notation 2.1), whih is the period of the power

generator.

Theorem 2.1

W (ET ) ≪ p7/8(log p)2.

For the normality measure we have

Theorem 2.2 For all ε > 1/4 we have

Nℓ(ET ) ≪ kε(ℓ−1)p7/8(log p)ℓ+1,

where the implied onstant depends only on ε.

The proof of Theorems 2.1 and 2.2 will be based on extensions of theorems

of Friedlander, Hansen and Shparlinski in [25℄ and [28℄.

Until very reently only the short-range orrelation

(

∑

n en+d1en+d2 . . . en+dℓ for small di's) ould be handled. By using Bourgain

[9℄ new result, we will be able to handle the long-range orrelation as well,

whih was out of reah until now. Thus here all the three pseudorandom
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measures of the power generator are studied, and this unonditionally proves

that the pseudorandom generator has strong pseudorandom properties.

We will estimate the orrelation measure EN de�ned by (2.3) for some

N < T , so the length of the sequene will be smaller than the period of the

power generator following from ertain tehnial onditions in Bourgain [9℄

theorem. The exat value of the length N is de�ned in Theorem 2.3.

Theorem 2.3 Suppose that ℓ2 < p. Denote by N = N(ϑ, k, δ) the largest

positive integer suh that for all 1 ≤ i < j ≤ 2N we have

(kj − ki, t) ≤ tp−δ. (2.4)

Then there exists a onstant ε(ℓ, δ) = ε > 0 depending on ℓ and δ suh that

for the sequene EN of length N de�ned by (2.3) we have

Cℓ(EN ) ≤ p1−ε. (2.5)

The proof will be based on a reent result of Bourgain [9℄. The upper

bound (2.5) for the orrelation measure is non-trivial if N , the length of the

sequene (de�ned by (2.4)) is large. The following orollary studies a simple

ase when N is indeed large.

Corollary 2.1 Let p−1 = 2q, where p and q are odd primes, ϑ be primitive

root modulo p, and k be primitive root modulo q. Then for the sequene

E(p−3)/4 of length (p− 3)/4 de�ned by (2.3) we have

Cℓ(E(p−3)/4) ≤ p1−ε,

where the onstant ε > 0 depends only on ℓ.

We remark that (2.3) is not the only way to de�ne a binary sequene {en}
from the sequene {un}. For example, Theorems 2.1, 2.2, 2.3 also hold for

the sequene EN = (e1, . . . , eN) de�ned by

en =

{

+1 if 0 ≤ un < p/2,
−1 if p/2 ≤ un < p.

In Setion 2.1 we will estimate ertain related exponential sums and the

proofs of Theorems 2.1, 2.2 and 2.3 will be ompleted in Setion 2.2.

In this setion we study the prime modulus ase, i.e., un ≡ ukn−1 (mod p),
where p is a prime. These results ould be extended to the omposite modulus

ase by using exponential sum estimates from [28℄. Here I do not arry out

the proof, sine the omputations would be similar but more ompliated.
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However, it may happen that the power generator has stronger pseudorandom

properties in the prime modulus ase than in the omposite modulus ase.

This situation indeed happens for the Jaobi symbol sequene

Em =

((

f(1)

m

)

,

(

f(2)

m

)

, . . . ,

(

f(m)

m

))

, f(x) ∈ Zm[x].

Goubin, Mauduit and Sárközy [31℄ proved that under ertain onditions on

the polynomial f(x), this sequene has strong pseudorandom properties if m
is a prime: W (Em), Cℓ(Em) ≪ m1/2 logm. If m is a produt of two di�erent

odd primes, then Rivat and Sárközy [94℄ proved that for all polynomial f(x) ∈
Zm[x] we have C4(Em) ≫ m. The situation is very similar in ase of some

other onstrutions, see e.g. the paper of Liu, Zhan and Wang [73℄.

Throughout the setion we write ep(a) = exp(2πia
p
).

2.1 Exponential sums

J. Friedlander, J. Hansen and I. Shparlinski gave an upper bound for

the sum

∑T
x=1 ep(aϑ

kx). Later Friedlander and Shparlinski [28℄ extended this

result to the sum

∑T
x=1 ep(a1ϑ

kx+a2ϑ
kx+1 · · ·+arϑkx+r−1

). Here we will study
the extension this result to general powers and inomplete sums. First we

will study the inomplete sum analog of the result in [28℄.

Lemma 2.1 Let t, T be as in Notation 2.1. Let ε1 > 1/4 and suppose that

t > p1/2+δ
for a onstant δ > 0. Let ai ∈ Fp, L,M ∈ N with L ≤ T . Then

∣

∣

∣

∣

∣

M+L
∑

x=M+1

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8 log p,

where the implied onstant depends only on δ and ε1. In the speial ase

r = 1 we obtain

∣

∣

∣

∣

∣

M+L
∑

x=M+1

ep(a1ϑ
kx)

∣

∣

∣

∣

∣

≪ T 1/4t1/2p1/8 log p,

where the implied onstant depends only on δ.

Using J. Bourgain's result [9℄, we will prove:

Lemma 2.2 For 1 ≤ i ≤ r let hi ∈ Zp−1, ϑi = ϑhi
and ai ∈ F∗

p where

(h1, . . . , hr, p− 1) = 1 also holds. Then the sequene

{a1ϑk
x

1 + · · ·+ arϑ
kx

r }
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beomes periodi with period T (where T is de�ned in Notation 2.1). Denote

by

N(ϑ1, . . . , ϑr, k, δ) = N

the largest positive integer N suh that N ≤ T , for all 0 ≤ i ≤ N , 1 ≤ j ≤ r

(kihj , t) ≤ tp−δ, (2.6)

and for all pairs {i1, j1}, {i2, j2} with 1 ≤ i1, i2 ≤ N , 1 ≤ j1 ≤ j2 ≤ r we

have

(ki1hj1 − ki2hj2, t) ≤ tp−δ
or (ki1hj1 − ki2hj2, t) = t. (2.7)

If there is no suh N de�ne N(ϑ1, . . . , ϑr, k, δ) = N by 1.

Let L,M ∈ N with L ≤ T . Then there exists a onstant ε(r, δ) = ε2 ≥ 0
depending on only r (the number of ϑi's) and δ suh that:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)r/2

N1/2

)

log p.

Moreover, in the speial ase (h1, t) = 1 we may replae the term (r + 1)r/2

by (r + 1)1/2:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

log p,

where the implied onstant fators are absolute.

Proof of Lemma 2.1 and Lemma 2.2

We will use the following deep theorem of Bourgain [9℄:

Lemma 2.3 (Bourgain) Let p be a prime. Given r ∈ Z+
and δ > 0, there

is an ε = ε(r, δ) > 0 satisfying the following property: If

f(x) = a1x
k1 + · · ·+ arx

kr ∈ Z[x] and (ai, p) = 1

where the exponents 1 ≤ ki ≤ p− 1 satisfy

(ki, p− 1) < p1−δ
for all 1 ≤ i ≤ r

(ki − kj, p− 1) < p1−δ
for all 1 ≤ i 6= j ≤ r

(2.8)

then

∣

∣

∣

∣

∣

p−1
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

< p1−ε.
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Proof of Lemma 2.3

See in [9℄.

In order to prove Lemma 2.1 and Lemma 2.2 �rst we need estimates for

omplete sums.

First we give an upper bound for n0 de�ned in Notation 2.1. Let ord ϑ
denote the multipliative order of ϑ modulo p. n0 is the smallest integer for

whih (kn0 , ord ϑ) is maximal. From this

n0 ≤
log ord ϑ

log 2
< 1.45 log p. (2.9)

We will dedue the �rst two statements of Lemma 2.4 from Bourgain's

theorem (Lemma 2.3), while the third part will be proved by extending an

argument of Friedlander and Shparlinski [28℄.

Lemma 2.4 Let ϑ1, . . . , ϑr ∈ Fp and N(ϑ1, . . . , ϑr, k, δ) = N as in Lemma

2.2, j ∈ ZT . Then there exists a onstant ε(r, δ) = ε2 ≥ 0 depending on only

r and δ suh that:

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)r/2

N1/2

)

.

(2.10)

If (h1, t) = 1 (where h1 is de�ned by ϑ1 ≡ ϑh1 (mod p)), then we may replae

the term (r + 1)r/2 by (r + 1)1/2:

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

,

(2.11)

where the implied onstants are absolute.

If ϑi = ϑk
i
for 1 ≤ i ≤ r then there exists an upper bound, where the

exponent of p is given: Suppose that ε1 > 1/4 and t > p1/2+δ
for a onstant

δ > 0, then

∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)eT (jx)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8,

(2.12)

where the implied onstant depends only on ε1 and δ.
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Proof of Lemma 2.4

The proof is similar to the proof of Theorem 8 in [25℄ in the speial ase

ν = 1, but in order to prove (2.10) and (2.11) we use Bourgain's theorem in

plae of Weil's theorem.

Let S =
∣

∣

∣

∑n0−1+T
x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)
∣

∣

∣
and K ⊆ {k1, . . . , kT}.

For y = kv ∈ K denote v by indky. Clearly,

S =
1

|K|

∣

∣

∣

∣

∣

∑

y∈K

n0−1+T
∑

x=n0

ep(a1ϑ
ykx

1 + · · ·+ arϑ
ykx

r )eT (j(x+ indky))

∣

∣

∣

∣

∣

.

By the Cauhy-Shwartz inequality we have

S ≤ T 1/2

|K|





n0−1+T
∑

x=n0

∣

∣

∣

∣

∣

∑

y∈K

ep(a1ϑ
ykx

1 + · · ·+ arϑ
ykx

r )eT (jindky)

∣

∣

∣

∣

∣

2




1/2

.

We reall that ϑi ≡ ϑhi (mod p), where (h1, . . . , hr, p − 1) = 1. Let d =
(p− 1)/t. Sine the order of ϑk

x
is t for n0 ≤ x, for eah of these powers ϑk

x
,

there exist preisely d values of z ∈ F∗
p suh that ϑk

x ≡ zd (mod p). Thus

S ≤ T 1/2

|K| d1/2





p−1
∑

z=1

∣

∣

∣

∣

∣

∑

y∈K

ep(a1z
yh1d + · · ·+ arz

yhrd)eT (jindky)

∣

∣

∣

∣

∣

2




1/2

≤ T 1/2

|K| d1/2

(

∑

y∈K

∑

x∈K

∣

∣

∣

p−1
∑

z=1

ep(a1z
yh1d + · · ·+ arz

yhrd−

− a1z
xh1d − · · · − arz

xhrd)
∣

∣

∣

)1/2

.

For given y, x ∈ K de�ne the polynomial gy,x(z) ∈ Fp[z] by

gy,x(z)
def

= a1z
yh1d + · · ·+ arz

yhrd − a1z
xh1d − · · · − arz

xhrd.

Denote by gy,x(z) ≡ c that the polynomial gy,x(z) ∈ Fp[z] is identially

onstant. Then

S ≤ T 1/2

|K| d1/2

(

∑

x∈K

∑

y∈K

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

)1/2

,
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S ≤ T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+
∑

x,y∈K
gy,x(z)≡c

p









1/2

. (2.13)

Next we estimate the number of the pairs y, x ∈ K with gy,x(z) ≡ c.
Clearly, then apart from the multipliity, the set {yh1d, . . . , yhrd} \ {0},
ontains the same residue lasses modulo p− 1 as the set {xh1d, . . . , xhrd} \
{0}. So the set {yh1, . . . , yhr}\{0} ontains the same residue lasses modulo

t as the set {xh1, . . . , xhr} \ {0}. We will use the following lemma.

Lemma 2.5 For given x ∈ K at most (r+1)r piees of y ∈ K exist suh that

the sets {xh1, . . . , xhr} \ {0}, {yh1, . . . , yhr} \ {0} ontain the same residue

lasses modulo t apart from the multipliity. If (h1, t) = 1 then at most r+1
piees of y ∈ K exist with this property.

Proof of Lemma 2.5 De�ne hr+1 by 0. Then for every 1 ≤ i ≤ r there

exists a 1 ≤ j(i) ≤ r + 1 suh that

yhi ≡ xhj(i) (mod t). (2.14)

This ongruene determines y uniquely modulo

t
(t,hi)

. As i runs through the

numbers 1, 2, . . . , r, by the Chinese Remainder Theorem we get that y is

uniquely determined modulo

t
(t,h1,...,hr)

= t (sine (h1, . . . , hr, p − 1) = 1).

In the speial ase (h1, t) = 1 the �rst ongruene yh1 ≡ xhj(1) (mod t)
determines y uniquely. The elements of K are distint modulo t, thus if the
ongruenes in (2.14) are given, then at most one y ∈ K exists with the

desired property. Sine eah j(i) may take r + 1 di�erent values, from this

follows the lemma.

We return to the proof of Lemma 2.4. De�ne the onstant c(r) by

c(r) =

{

r + 1 if (h1, t) = 1,
(r + 1)r otherwise.

(2.15)

By Lemma 2.5, for �xed x ∈ K at most c(r) piees of y exist with gy,x(z) ≡ c.
x ∈ K may take |K| di�erent values, thus at most c(r) |K| pairs (y, x) exists
suh that gy,x(z) ≡ c. By this and (2.13) we get

S ≤ T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+ c(r) |K| p









1/2

.
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Let Q

Q
def

= max
x,y∈K

gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

.

Then

S ≤ T 1/2

|K| d1/2
(

|K|2Q+ c(r) |K| p
)1/2 ≤

(

TQ

d

)1/2

+

(

c(r)
Tp

|K| d

)1/2

. (2.16)

In order to prove (2.10) and (2.11) we hoose K = {k1, . . . , kN} with

N = N(ϑ1, . . . , ϑr, k, δ). Then |K| = N . For x, y ∈ K and

p−1
t

= d by (2.6)

we have

(dxhj , p− 1) = d(xhj , t) ≤ dtp−δ < p1−δ. (2.17)

Clearly (2.17) also holds with y in plae of x. Similarly, by (2.7)

(dxhj1 − dyhj2, p− 1) = d(xhj1 − yhj2, t)

{

≤ dtp−δ < p1−δ
or

= dt = p− 1.

Thus (2.8) holds for the polynomial gy,x(z) ∈ Fp[z] and we may use Lemma

2.3 sine gy,x(z) 6≡ c. Then
Q ≤ p1−ε2.

By this, (2.15), (2.16), t = p−1
d

and |K| = N we get:

S ≪
(

Tp1−ε2

d

)1/2

+

(

c(r)
Tp

Nd

)1/2

≪ (T t)1/2(p−ε2 + c(r)1/2N−1/2)

whih proves (2.10) and (2.11) in Lemma 2.4.

In order to get (2.12) we reall the proof of Friedlander and Shparlinski

[28℄. Consider the speial ase hi = ki−1
for 1 ≤ i ≤ r. In order to estimate

Q in this speial ase we need Weil's theorem for harater sums, whih we

present in the following form:

Lemma 2.6 (Weil) For any prime p, and any polynomial f(x) ∈ Fp[x] of
degree D ≥ 1 whih is not identially onstant, the bound

∣

∣

∣

∣

∣

p
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

≤ Dp1/2.

holds.
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Proof of Lemma 2.6

This lemma an be dedued fromWeil's theorem. See [106℄, an elementary

proof an be found in [99℄.

We will also need the following lemma of Friedlander, Hansen and Shpar-

linski [25℄:

Lemma 2.7 (Friedlander, Hansen, Shparlinski) For any set W ⊆ Z∗
t

of ardinality |W| = W , any �xed δ > 0 and any integer h ≥ tδ, there exists

an integer a ∈ Z∗
t , suh that the ongruene

ak ≡ b (mod t), k ∈ W, 0 ≤ b ≤ h− 1 (2.18)

has

La(h) ≫
Wh

t

solutions.

Proof of Lemma 2.7

This is Lemma 2 in [25℄.

We return to the proof of (2.12) in Lemma 2.4. Let ε1 > 1/4. If kε1(r−1) >
T 3/4

t1/2p1/8
, then using the trivial estimate we obtain S ≤ T ≤ kε1(r−1)t1/2T 1/4p1/8

whih was to be proved. Thus we may suppose

k(r−1)/2 ≤ T 3/(8ε1)

t1/(4ε1)p1/(16ε1)
. (2.19)

Set

h =

[

(r + 1)1/2t

T 1/2k(r−1)/2p1/4

]

. (2.20)

Then by (2.19), T ≤ t and t > p1/2+δ
we have

h≫ t

T 1/2 T 3/(8ε1)

t1/(4ε1)p1/(16ε1)
p1/4

=
t1+1/(4ε1)

T 1/2+3/(8ε1)p1/4−1/(16ε1)
≫ t1/2−1/(8ε1)

p1/4−1/(16ε1)

=

(

t

p1/2

)1/2−1/(8ε1)

≫ t
2δ

1+2δ
(1/2−1/(8ε1)),

thus we may use Lemma 2.7. LetW = {k1, . . . , kT}. We selet a as in Lemma

2.2. Let now K denote the subset of W whih satis�es the orresponding

ongruene (2.18). Then the degree of the polynomial gy,x(z
a) is less than
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hkr−1d. By this and Lemma 2.6 we have

Q = max
x,y∈K

gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z))

∣

∣

∣

∣

∣

= max
x,y∈K

gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z
a))

∣

∣

∣

∣

∣

≤ hkr−1dp1/2.

(2.21)

By Lemma 2.7

|K| ≫ Th

t
. (2.22)

By (2.2) and (2.15) we have c(r) = r + 1. By this, (2.16), (2.20), (2.21),

(2.22) and t = p−1
d

we get

S ≤
(

Thkr−1dp1/2

d

)1/2

+

(

c(r)Tp

|K| d

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)T t

|K|

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)t2

h

)1/2

≪
(

(r + 1)kr−1T t2p1/2
)1/4

,

whih was to be proved.

We return to the proof of Lemma 2.1 and Lemma 2.2. Let

S =

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )

∣

∣

∣

∣

∣

.

We will suppose M ≥ n0, sine by (2.9) the ontribution of the terms of

M ≤ x ≤ n0 in S is small, at most n0 ≤ 1.45 log p. Using

T
∑

j=1

eT (nj) =

{

T if T | n,
0 otherwise,
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we get

S =
1

T

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )
M+L
∑

x=M

T
∑

j=1

eT ((y − x)j)

∣

∣

∣

∣

∣

=
1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

. (2.23)

Let

Q = max
j

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

.

By (2.23) we have

S ≤ 1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)
∣

∣

∣

∣

∣

Q. (2.24)

By Lemma 2.4 there exists a onstant ε2 > 0 depending only on r and δ suh
that

Q≪ (tT )1/2(p−ε2 + (c(r))1/2N−1/2), (2.25)

where the onstant c(r) is de�ned by (2.15). Moreover in the speial ase

ϑi = ϑk
i−1

for 1 ≤ i ≤ r we get that for every ε1 > 1/4

Q≪ kε1(r−1)t1/2T 1/4p1/8 (2.26)

also holds.

By the sum of geometri progression, the triangle-inequality and

|1− e(x)| ≥ 4 ‖ x ‖ we have

T
∑

j=1

∣

∣

∣

∣

∣

L
∑

x=0

eT (−jx)
∣

∣

∣

∣

∣

≤
T
∑

j=1

2

|1− e(j/T )| ≤
1

2

T
∑

j=1

1

‖ j/T ‖ ≤
[(T+1)/2]
∑

j=1

1

‖ j/T ‖

=

[(T+1)/2]
∑

j=1

j

T
≪ T log T. (2.27)

By (2.24), (2.25), (2.26) and (2.27) we get the statements of Lemma 2.1 and

Lemma 2.2.

Remark 2.1 In fat, using the results of Friedlander, Hansen and Shpar-

linski [25℄, the following an be proved: if t > p1/2+δ
for all integer ν ≥ 1 we
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have:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx + a2ϑ

kx+1

+ · · ·+ arϑ
kx+r−1

)

∣

∣

∣

∣

∣

≪ T
1− 2ν+1

2ν(ν+1) t
1
2ν p

1
4(ν+1) log T.

Here, we presented the proof only in the speial ase ν = 1.

2.2 Proofs of Theorems 2.1-2.3

In order to express the terms of the sequene EN we will use additive

haraters as in [76℄. We will use the following representation:

Lemma 2.8 (Mauduit, Rivat, Sárközy) For n ∈ N rp(n) denotes the

unique r ∈ {0, . . . , p− 1} for whih n ≡ r (mod p). Then for odd integer p,
there exists a funtion νp(a, x) : Z× Z → C suh that

1

p

∑

|a|<p/2

νp(a, x)ep(an) =

{

+1 if rp(n) ≡ x (mod 2),
0 if rp(n) 6≡ x (mod 2),

and the funtion νp(a, x) satis�es

νp(0, x) =

{

p+1
2

if x ≡ 0 (mod 2),
p−1
2

if x ≡ 1 (mod 2).
(2.28)

Furthermore, for 1 ≤ |a| < p/2 we have

|νp(a, x)| ≪
p

min{a, p− 2a} . (2.29)

Proof of Lemma 2.8

Sine for r ∈ Z, we have

1

p

∑

|a|<p/2

ep(a(n− r)) =

{

1 if n ≡ r (mod p),
0 otherwise,

for 0 ≤ n ≤ p− 1 we have

1

p

∑

|a|<p/2









∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar)









ep(an) =

{

1 if n ≡ x (mod 2),
0 otherwise.
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Thus we may de�ne νp(a, x) by

νp(a, x)
def

=
∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar).

From this immediately follows (2.28). By omputing the geometri sum

above, using the triangle inequality and |1− e(x)| ≥ 4 ‖ x ‖ we get (2.29).

Writing ν(a) = ν(a, 0)− ν(a, 1) from Lemma 2.8 we get immediately:

Lemma 2.9 (Mauduit, Rivat, Sárközy) For 0 ≤ n ≤ p − 1 and an odd

integer p, we have

1

p

∑

|a|<p/2

νp(a)ep(an) =

{

+1 if rp(n) ≡ 0 (mod 2),
−1 if rp(n) ≡ 1 (mod 2),

where the funtion νp(a) satis�es

νp(0) = 1, |νp(a)| ≪
p

min{a, p− 2a} (1 ≤ |a| < p/2).

Proof of Theorem 2.1

If t ≤ p7/8 Theorem 2.1 and 2.2 are trivial, sine all pseudorandom mea-

sures of ET are less or equal than T ≤ t ≤ p7/8. Thus we may suppose

that

t > p7/8. (2.30)

We have to prove that for any 0 ≤ b < p, 0 ≤ c < b, 1 ≤M < T , we have
the estimate

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

≪ p7/8(log p)2.

By Lemma 2.9 we have

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

=
1

p

∑

|a|<p/2

νp(a)
∑

j
c+jb≤M

ep(auc+jb)
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Sine uc+jb ≡
(

ϑ(k
c)
)(kb)j

(mod p), the multipliative order of kb modulo t is
larger or equal than T/b and by (2.30) we may use Lemma 2.1 and obtain

∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb

ep(auc+jb)

∣

∣

∣

∣

∣

∣

∣

∣

≪ T 1/4t1/2p1/8 ≪ p7/8 log p.

Thus

∣

∣

∣

∣

∣

∣

∣

∑

x
r+xm≤M

er+xm

∣

∣

∣

∣

∣

∣

∣

≪ 1

p





∑

1≤|a|<p/2

|νa(p)|



 p7/8 log p+ |νp(0)| , (2.31)

By Lemma 2.9 νp(0) = 1 and

∑

1≤|a|<p/2 |νa(p)| ≪
∑

1≤|a|<p/4+1
p
a
≪ p log p,

so the theorem follows from this and (2.31).

Proof of Theorem 2.2

By Lemma 2.8 for M ≤ T − ℓ+ 1 we have

Z(ET ,M,X) =
1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ). (2.32)

If (a1, . . . , aℓ) = (0, . . . , 0) then trivially

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

=M − 1. (2.33)

By Lemma 2.8 we have

(p− 1)ℓ

2ℓ
≤ |νp(0, un+1) · · · νp(0, un+ℓ)| ≤

(p+ 1)ℓ

2ℓ
. (2.34)

By (2.30) we may use Lemma 2.1 and for all ε1 > 1/4 we have that if

(a1, . . . , aℓ) 6= (0, . . . , 0) then

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1ϑ
kn+1

+ · · ·+ aℓϑ
kn+ℓ

)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8 log p ≪ kε1(r−1)p7/8 log p, (2.35)
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where the implied onstant depends only on ε1. By (2.32), (2.33), (2.35) and

the triangle inequality we have

∣

∣Z(ET ,M,X)−M/2ℓ
∣

∣ ≤ 1

pℓ

∣

∣

∣

∣

∣

∑

(a1,...,aℓ)6=(0,...,0),
|ai|<p/2 (1≤i≤ℓ)

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

+
1

pℓ

∣

∣

∣

∣

(p+ 1)ℓ

2ℓ
(M − 1)− M

2ℓ

∣

∣

∣

∣

.

Sine ℓ < p we have

1

pℓ

∣

∣

∣

∣

(p+ 1)ℓ

2ℓ
(M − 1)− M

2ℓ

∣

∣

∣

∣

≤
(

(p+ 1)ℓ

pℓ
− 1

)

M

2ℓ
≤ eℓM

p2ℓ
≤ eℓ

2ℓ
< 1.5.

If (a, p) = 1 let µp(a) =
p

min{a,p−2a}
and let µp(0) =

p+1
2
. Then by Lemma 2.8

νp(a, un+i) ≤ µ(a). By this and (2.34) we have

∣

∣Z(ET ,M,X)−M/2ℓ
∣

∣≪ 1

pℓ







∣

∣

∣

∣

∣

∣

∑

|a|<p/2

µp(a)

∣

∣

∣

∣

∣

∣

ℓ

kε1(r−1)p7/8 log p






+ 1.5.

Using

∣

∣

∣

∑

|a|<p/2 µp(a)
∣

∣

∣≪
∑

1≤|a|≤p/4+1
p
a
≪ log p, we get the theorem.

Proof of Theorem 2.3

Theorem 2.3 is trivial if N ≤ p1/2. Thus we may suppose that

N > p1/2. (2.36)

By Lemma 2.9 for M < p and 0 ≤ d1 < · · · < dℓ ≤ p−M we have

∑

n≤M

en+d1 . . . en+dℓ =
1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1) · · ·νp(aℓ)
∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)
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If (a1, . . . , aℓ) 6= (0, . . . , 0) we may use Lemma 2.2 with h1 = kd1 , . . . , hℓ = kdℓ .
By (2.2) (hi, t) = (k, t) = 1, thus we obtain

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1

(

ϑk
d1
)kn

+ · · ·+ aℓ

(

ϑk
dℓ

)kn

)

∣

∣

∣

∣

∣

≪ (tT )1/2
(

p−ε2 +
(r + 1)1/2

N1/2

)

log p.

By (2.36) and r2 < p we have

∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ)

∣

∣

∣

∣

∣

≪ p1−ε2/2,

where the implied onstant depends only on ε2. Thus

∣

∣

∣

∣

∣

∑

n≤M

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

=
1

pℓ











∑

|a|<p/2

|νp(a)|





ℓ

p1−ε2/2 +M






.

Using

∣

∣

∣

∑

|a|<p/2 νp(a)
∣

∣

∣
≪
∣

∣

∣

∑

|a|<p/4+1
p
a

∣

∣

∣
≪ p log p, we get

Cℓ(EN) ≤ c1p
1−ε2/4,

where the onstant c1 depends only on ε2. From this for large p > p0 follows
the theorem, while for small p ≤ p0 the theorem is trivial with an ε > 0 for

whih N < p1−ε
if p < p0. Suh ε > 0 exists, sine N < p.

Proof of Corollary 2.1

Sine q is a prime, t = q or t = 2q. k is a primitive root modulo q, thus
for 1 ≤ i < j ≤ q − 1 we have

(kj − ki, t) = 1 or (kj − ki, t) = 2

whih is less than tp−δ
for δ < 1/2. Thus (2.4) holds with N = (p−3)/4 and

using Theorem 3 we get the orollary.
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3 On the orrelation of binary sequenes

Sine 1997 numerous papers have been written on the theory of pseu-

dorandomness. In the majority of these papers speial sequenes are on-

struted and/or tested for pseudorandomness (see [52℄ and [97℄ for refer-

enes), while, for example in [3℄, [4℄, [14℄, [33℄, [34℄, [36℄, [69℄, [78℄ and [102℄

the measures of pseudorandomness are studied. In [46℄ I gave a survey paper

on the most important results related to these measures.

In [14℄ Cassaigne, Mauduit and Sárközy ompared orrelations of di�erent

order. They proved the following

Theorem 3.A (Cassaigne, Mauduit, Sárközy) a) For k, ℓ, N ∈ N, k | ℓ,
EN ∈ {−1,+1}N we have

Ck(EN) ≤ N

(

(ℓ!)k/ℓ

k!

(

Cℓ(EN )

N

)k/ℓ

+

(

ℓ2

N

)k/ℓ
)

.

b) If k,N ∈ N and k ≤ N , then there is a sequene EN ∈ {−1,+1}N suh

that if ℓ ≤ N/2, then

Cℓ(EN ) > (N − ℓ)/k − 54k2N1/2 logN if k | ℓ
Cℓ(EN ) < 27k2ℓN1/2 logN if k ∤ ℓ

This result shows some kind of independene between Ck and Cℓ when k ∤ ℓ
and ℓ ∤ k. In this setion we will show a link between Ck and Cℓ when k and

ℓ have di�erent parity.
Cassaigne, Mauduit and Sárközy [14℄ asked the following related question:

Problem 3.1. (Cassaigne, Mauduit, Sárközy) For N → ∞, are

there sequenes EN suh that C2(EN) = O(
√
N) and C3(EN ) = O(1) simul-

taneously?

In [75℄ Mauduit also asked another losely related question

Problem 3.2. (Mauduit) Let k, ℓ ≥ 2 be integers. Is it true that for

every EN ∈ {−1,+1}N we have

C2k+1(EN )C2ℓ(EN) ≫ N

where the implied onstant fator depends only on k and ℓ? Or at least

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)
(3.1)

where the implied onstant fator and the onstant

1
2
< c(k, ℓ) ≤ 1 depend

only on k and ℓ?
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In [36℄ I solved both Problem 3.1 and Problem 3.2 in the weaker form

(3.1) when k ≥ ℓ. The answer follows from the main result of [36℄:

Theorem 3.B If k, ℓ ∈ N, 2k + 1 > 2ℓ, N ∈ N and N > 67k4 + 400, then
for all En ∈ { − 1,+1}N we have

(

17
√

k(2ℓ+ 1) C2ℓ

)2k+1

+

(

17
2k + 1

2ℓ

)ℓ

N2k−ℓC2
2k+1 ≥

1

9
N2k−ℓ+1

It follows trivially that

Corollary 3.A If k, ℓ ∈ N, logN ≥ 2k+1 > 2ℓ, N ∈ N and N > 67k4+400,
En ∈ { − 1,+1}N and

C2ℓ(EN ) <
1

20
√

k(2ℓ+ 1)
N1−ℓ/(2k+1)

then we have

C2k+1(EN) >
1

8

(

2ℓ

17(2k + 1)

)ℓ/2

N1/2.

Corollary 3.B If k, ℓ ∈ N, 2k + 1 > 2ℓ then

C2k+1(EN)C2ℓ(EN) ≫ N1−ℓ/(2k+1)

where the implied onstant fator depends only on k and ℓ. (This is the ase
c(k, ℓ) = 1− ℓ

2k+1
> 1

2
in Problem 3.2.)

Later Anantharam [5℄ sharpened Theorem 3.A and he proved the follow-

ing:

Theorem 3.C (Anantharam)

C3(EN)C2(EN ) ≥
2

25
N.

Theorem 3.C solves Problem 3.2 in the stronger form in the speial ase

(2k + 1, 2ℓ) = (3, 2), so (3.1) holds with c = 1.

3.1 Results

In this setion we will generalize the earlier results. Theorem 3.B studies

only the ase 2k + 1 > 2ℓ while Theorem 3.C involves only C2 and C3. Here
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we study the general ase, when there is no restrition of the order of the

orrelation measures. The proof uses methods from [5℄ and [36℄. We will

prove the following:

Theorem 3.1 (Gyarmati, Mauduit) There is a onstant ck,ℓ depending

only on k and ℓ suh that if

C2k+1(EN) < ck,ℓN
1/2, (3.2)

then

C2k+1(EN )
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1, (3.3)

where the implied onstant fator depends only on k and ℓ.

Remark 3.1 Theorem 3.1 is optimal: For EN = (+1,−1,+1,−1,+1 . . . ) we
have C2k+1(EN ) = 1 and C2ℓ(EN) = N − 2ℓ+ 1.

Remark 3.2 It is an important question whether ondition (3.2) is neessary

in Theorem 3.1. Cassaigne, Mauduit and Sárközy [14℄ proved that for every

ε and N > N0(ε)

C2k+1(EN), C2ℓ(EN) ≪ N1/2(logN)1/2 (3.4)

holds with probability 1− ε. Fix a sequene EN for whih (3.4) indeed holds

and N is large enough. From (3.3) and (3.4)

N ℓ+k+1/2(logN)ℓ+k+1/2 ≫ N2k+1
(3.5)

follows. Sine (3.5) is true for an N large enough we get from (3.5):

ℓ+ k + 1/2 ≥ 2k + 1

and thus

2ℓ ≥ 2k + 1.

But in Theorem 3.1 2ℓ an be less than 2k + 1 so we need an additional

assumption on the size of C2k+1(EN ) and C2ℓ(EN).

Let us see some orollaries of Theorem 3.1.

Corollary 3.1 (Gyarmati, Mauduit) Suppose that C2ℓ(EN) ≪
N1/2(logN)1/2, then

C2k+1(EN ) ≫ min

{

N1/2,
N (2k+1)/(4ℓ)

(logN)(2k+1)/(4ℓ)

}
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where the implied onstant fator depends on k and ℓ.

Corollary 3.2 (Gyarmati, Mauduit) If C2k+1(EN ) = O(1), then

C2ℓ(EN) ≫ N,

where the implied onstant fator depends on k and ℓ.

Corollary 3.3 (Gyarmati, Mauduit)

C2k+1(EN)C2ℓ(EN ) ≫ N c(k,ℓ)

where the implied onstant fator depends only on k and ℓ and where

c(k, ℓ) =

{

1 if k ≥ ℓ,
1
2
+ 2k+1

4ℓ
if k < ℓ.

Remark 3.3 Corollary 3.3 solves Problem 3.2 in the stronger form when

k ≥ ℓ and in the weaker form (3.1) when k < ℓ.
These results an be extended to the multidimensional ase, for the details

see the paper [49℄.

3.2 Proof of Theorem 3.1

Let L = [N/2] and 1 ≤ M ≤ N/2 be integers, where the value of M will

be �xed later. Consider the following equation

A def

=
∑

1≤n1<n2<···<n2k+1≤L

∑

1≤d1<d2<···<d2ℓ≤M

2ℓ
∏

j=1

2k+1
∏

i=1

eni+dj

=
∑

1≤d1<d2<···<d2ℓ≤M

∑

1≤n1<n2<···<n2k+1≤L

2k+1
∏

i=1

2ℓ
∏

j=1

eni+dj
def

= B.

We will use the following lemmas proved by me in [36℄.

Lemma 3.1 For all t, A ∈ N, t ≤ A there is a polynomial pt,A(x) ∈ Q[x]
with the degree t suh that if x1, x2, . . . , xA ∈ {−1,+1} then

pt,A(x1 + · · ·+ xA) =
∑

1≤i1<i2<···<it≤A

xi1xi2 . . . xit .
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Denote the oe�ients of pt,A by ar,t,A:

pt,A(x) = at,t,Ax
t + at−1,t,Ax

t−1 + · · ·+ a0,t,A.

Then ar,t,A = 0 if r 6≡ t (mod 2), and (−1)(t−r)/2ar,t,A ≥ 0 if r ≡ t (mod 2).
If t is even we also have:

a0,t,A = (−1)t/2
(

A/2

t/2

)

.

Proof of Lemma 3.1 This is Lemma 2 in [36℄.

Lemma 3.2

|ar,t,A| ≤ A(t−r)/2.

Proof of Lemma 3.2 This follows from Lemma 3 and Lemma 5 in [36℄.

(Indeed in [36℄ by Lemma 3 we get |ar,t,A| ≤ di,jA
(t−r)/2

. In [36℄ ωj is de�ned

by d0,j+d1,j+ · · ·+dj,j in Lemma 4 and in Lemma 5 di,j ≤ ωj ≤ 1 is proved.)
Next we return to the proof of Theorem 3.1.

First we rearrange A. For a moment we �x the value of n1, n2, . . . , n2k+1

in the �rst sum. Next we use Lemma 3.1 with t = 2ℓ, A = M and xu =
∏2k+1

i=1 eni+u for 1 ≤ u ≤M . We get

A =
∑

1≤n1<n2<···<n2k+1≤L

∑

1≤d1<d2<···<d2ℓ≤M

2ℓ
∏

j=1

2k+1
∏

i=1

eni+dj

=
∑

1≤n1<n2<···<n2k+1≤L

p2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)

.

Similarly we rearrange B. For a moment we �x the value of d1, d2, . . . , d2ℓ
in the �rst sum. Next we use Lemma 3.1 with t = 2k + 1, A = L and

xu =
∏2ℓ

j=1 eu+dj for 1 ≤ u ≤M . We get

B =
∑

1≤d1<d2<···<d2ℓ≤M

∑

1≤n1<n2<···<n2k+1≤L

2k+1
∏

i=1

2ℓ
∏

j=1

eni+dj

=
∑

1≤d1<d2<···<d2ℓ≤M

p2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)

.

We denoted the oe�ients of pt,A(x) by ar,t,A in Lemma 3.1. Using these
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notations we get

∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a0,2ℓ,M

)

=
∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a0,2k+1,L

)

. (3.6)

By Lemma 3.1 a0,2k+1,L = 0. From this and (3.6) we get

∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

))

−
∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

))

=
∑

1≤n1<n2<···<n2k+1≤L

a0,2ℓ,M .

Again by Lemma 3.1 there is a onstant c1 depending only on k and ℓ suh
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that

∣

∣

∣

∣

∣

∑

1≤d1<d2<···<d2ℓ≤M

(

a2k+1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k+1

+ a2k,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

)2k

+ · · ·+ a1,2k+1,L

(

L
∑

u=1

2ℓ
∏

j=1

eu+dj

))

−
∑

1≤n1<n2<···<n2k+1≤L

(

a2ℓ,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ

+ a2ℓ−1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

)2ℓ−1

+ · · ·+ a1,2ℓ,M

(

M
∑

u=1

2k+1
∏

i=1

eni+u

))∣

∣

∣

∣

∣

≥ c1L
2k+1M ℓ. (3.7)

By Lemma 3.1 ar,t,A = 0 if r 6≡ t (mod 2). Using this and the triangle-

inequality we get from (3.7)

∑

1≤d1<d2<···<d2ℓ≤M

2k+1
∑

r=1
r≡1 (mod 2)

|ar,2k+1,L|
∣

∣

∣

∣

∣

L
∑

u=1

2ℓ
∏

j=1

eu+dj

∣

∣

∣

∣

∣

r

+
∑

1≤n1<n2<···<n2k+1≤L

2ℓ
∑

r=2
r≡0 (mod 2)

|ar,2ℓ,M |
∣

∣

∣

∣

∣

M
∑

u=1

2k+1
∏

i=1

eni+u

∣

∣

∣

∣

∣

r

≥ c1L
2k+1M ℓ.

(3.8)

By the de�nition of the orrelation measures we have

∣

∣

∣

∣

∣

L
∑

u=1

2ℓ
∏

j=1

eu+dj

∣

∣

∣

∣

∣

≤ C2ℓ(EN ),

∣

∣

∣

∣

∣

M
∑

u=1

2k+1
∏

i=1

eni+u

∣

∣

∣

∣

∣

≤ C2k+1(EN ).
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By this and (3.8) we get

∑

1≤d1<d2<···<d2ℓ≤M

2k+1
∑

r=1
r≡1 (mod 2)

|ar,2k+1,L|C2ℓ(EN)
r

+
∑

1≤n1<n2<···<n2k+1≤L

2ℓ
∑

r=2
r≡0 (mod 2)

|ar,2ℓ,M |C2k+1(EN)
r ≥ c1L

2k+1M ℓ.

By this and Lemma 3.2

M2ℓ

2k+1
∑

r=1
r≡1 (mod 2)

L(2k+1−r)/2C2ℓ(EN)
r + L2k+1

2ℓ
∑

r=2
r≡0 (mod 2)

M (2ℓ−r)/2C2k+1(EN)
r

≥ c1L
2k+1M ℓ. (3.9)

In order to prove Theorem 3.1 we will use Theorem 1.C as a lemma.

Lemma 3.3 (Alon, Kohayakawa, Mauduit, Moreira, Rödl)

C2ℓ(EN) ≫ N1/2

where the implied onstant fator depends only on ℓ.

Proof of Lemma 3.3 See in [3℄ and [69℄.

By this for 1 ≤ r ≤ 2k + 1 we have

L(2k+1−r)/2C2ℓ(EN )
r ≪ C2ℓ(EN)

2k+1.

Using this and (3.9) we get there is a onstant c2 depending only on k and ℓ
suh that

c2M
2ℓC2ℓ(EN)

2k+1 + L2k+1
2ℓ
∑

r=2
r≡0 (mod 2)

M (2ℓ−r)/2C2k+1(EN)
r

≥ c1L
2k+1M ℓ. (3.10)

Now we �x the value of M . Let M = c3C2k+1(EN)
2
, where the value of the

onstant c3 will depend only on k and ℓ. We hoose the value of c3 suh that

⌈

max
2≤r≤2ℓ

(

ℓ+ 1

c1

)2/r
⌉

≤ c3.
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Then

M (2ℓ−r)/2C2k+1(EN)
r ≤ c1

ℓ+ 1
M ℓ

(3.11)

holds. Now we �x the onstant ck,ℓ in Theorem 3.1, we put ck,ℓ =
1
2c3

. Then

2c3C2k+1(EN )
2 ≤ N , so M ≤ N/2 indeed. By (3.10) and (3.11) we get

c2M
2ℓC2ℓ(EN)

2k+1 + L2k+1 c1ℓ

ℓ+ 1
M ℓ ≥ c1L

2k+1M ℓ

c2M
2ℓC2ℓ(EN )

2k+1 ≥ c1
ℓ+ 1

L2k+1M ℓ

M2ℓC2ℓ(EN )
2k+1 ≥ c1

c2(ℓ+ 1)
L2k+1M ℓ.

Writing L = [N/2] and M = c3C2k+1(EN )
2
we get

c2ℓ3 C2k+1(EN)
4ℓC2ℓ(EN)

2k+1 ≥ c1
c2(ℓ+ 1)

[

N

2

]2k+1

cℓ3C2k+1(EN )
2ℓ

C2k+1(EN)
2ℓC2ℓ(EN)

2k+1 ≫ N2k+1

whih was to be proved.

The proofs of Corollaries 3.1 and 3.2 are immediate from Theorem 3.1.

3.3 Proof of Corollary 3.3

If C2k+1(EN ) ≫ N1/2
then Corollary 3.3 is trivial sine by Lemma 3.3

C2ℓ(EN ) ≫ N1/2
also holds and then C2k+1(EN)C2ℓ(EN ) ≫ N . Thus we

may assume that C2k+1(EN) ≪ N1/2

If k < ℓ by Theorem 3.1 and Lemma 3.3:

(C2k+1(EN)C2ℓ(EN ))
2ℓ = C2k+1(EN)

2ℓC2ℓ(EN)
2k+1C2ℓ(EN )

2ℓ−(2k+1)

≫ N2k+1C2ℓ(EN)
2ℓ−(2k+1)

≫ N2k+1N ℓ−k−1/2 = N ℓ+k+1/2,

so that

C2k+1(EN)C2ℓ(EN) ≫ N1/2+(2k+1)/(4ℓ).
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If k ≥ ℓ then by Theorem 3.1

(C2k+1(EN)C2ℓ(EN))
2k+1 = C2k+1(EN )

2ℓC2ℓ(EN)
2k+1C2k+1(EN )

2k−2ℓ+1

≫ N2k+1C2k+1(EN)
2k−2ℓ+1

≫ N2k+1,

so that

C2k+1(EN )C2ℓ(EN) ≫ N.
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4 On the omplexity of a family related to the

Legendre symbol

In this setion we study large families of �nite, binary sequenes

EN = (e1, e2, . . . , eN) ∈ {−1,+1}N .

In many appliations it is not enough to know that the family ontains many

binary sequenes with strong pseudorandom properties; it is also important

that the family has a �rih�, �omplex� struture, there are many �indepen-

dent� sequenes in it. Ahlswede, Khahatrian, Mauduit and Sárközy [1℄

introdued the notion of f -omplexity (�f � for family):

De�nition 4.1 (Ahlswede, Khahatrian, Mauduit, Sárközy)

The family omplexity C(F) of a family F of binary sequenes

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any

1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj ∈ {−1,+1}j, we have at

least one EN = (e1, . . . , eN) ∈ F for whih

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

In [1℄ in Setion 3 the following is proved: In order to get an upper bound

for C(F), we take all spei�ations of the form

e1 = ε1, e2 = ε2, . . . , eC(F) = εC(F). (4.1)

By the de�nition of f -omplexity, for suh a spei�ation, there is a sequene

E ∈ F for whih (4.1) holds. ε1, ε2, . . . , εC(F) may take 2C(F)
di�erent values,

thus,

2C(F) ≤ |F| .

So:

Proposition 4.1 (Ahlswede, Khahatrian, Mauduit, Sárközy)

C(F) ≤ log |F|
log 2

.

Numerous binary sequenes have been tested for pseudorandomness by

J. Cassaigne, Z. Chen, X. Du, L. Goubin, K. Gyarmati, S. Ferenzi, S. Li, H.

Liu, C. Mauduit, L. Mérai, J. Rivat and A. Sárközy. However, the �rst on-

strutions produed only �few� pseudorandom sequenes, usually for a �xed
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integer N , the onstrution provided only one pseudorandom sequene EN of

length N . L. Goubin, C. Mauduit, A. Sárközy [31℄ sueeded in onstruting

large families of pseudorandom binary sequenes. Their onstrution was the

following:

Constrution 4.1 (Goubin, Mauduit, Sárközy) Suppose that p is a

prime number, and f(x) ∈ Fp[x] is a polynomial with degree k > 0 and

no multiple zero in Fp. De�ne the binary sequene Ep = (e1, . . . , ep) by

en =

{ (

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(4.2)

Ahlswede, Khahatrian, Mauduit and Sárközy [1℄ proved the following:

Theorem 4.A (Ahlswede, Khahatrian, Mauduit, Sárközy) Let p be

a prime. Consider all the polynomials f(x) suh that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For eah of these polynomials f(x), onsider the binary sequene

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1,+1}p de�ned by (4.2), and let F1 denote

the family of all the binary sequenes obtained in this way. Then

C(F1) ≥ K. (4.3)

By Proposition 4.1 it is lear that

|C(F1)| ≤
log |F1|
log 2

≤ K + 1

log 2
log p.

We will improve on (4.3) and we will prove the following:

Theorem 4.1 For the family de�ned in Theorem 4.1 we have

C(F1) ≥
K − 1

2 log 2
log p−O(K log(K log p)). (4.4)

4.1 Proof of Theorem 4.1

In this proof c1, c2 will denote absolute onstants. For K ≥ p1/2/ log p the
right-hand side of (4.4) is negative, so the theorem is trivial. Thus we may

suppose that

K < p1/2/ log p. (4.5)
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Let k be the greatest odd integer with k ≤ K. Let

j ≤ k

2 log 2
log p− c1k

log 2
log(k log p), (4.6)

where we will �x the value of the absolute onstant c1 later. Suppose that

we have the spei�ation

en1 = ε1, en2 = ε2, . . . , enj
= εj. (4.7)

Let I = {n1, n2, . . . , nj}. We will onsider all polynomials f(x) of the form

fa1,a2,...,ak(x) = (x− a1)(x− a2) · · · (x− ak) (4.8)

with ai 6∈ I, and we will prove by a ounting argument that there is at

least one k-tuple a1, a2, . . . , ak (where ai 6∈ I) for whih the sequene Ep

de�ned by (4.2) with fa1,a2,...,ak(x) in plae of f(x) satis�es (4.7). Suppose

that β1, β2, . . . , βt are the roots of f(x) whih have odd multipliity in the

fatorization of f(x). Sine the degree of f(x) is odd, t the number of these

roots are also odd, so t ≥ 1. Let f1(x) = (x− β1)(x− β2) . . . (x− βt). Then
f1(x) has no multiple zero and the sequene E ′

p de�ned by (4.2) with f1(x)
in plae of f(x) satis�es (4.7).

Sine this will be true for every j ≤ k
2 log 2

log p− c1k
log 2

log(k log p) from this

C(F) ≥
[

k

2 log 2
log p− c1k

log 2
log(k log p)

]

≥ K − 1

2 log 2
log p− c2K log(K log p)

follows.

Now onsider a k-tuple a1, a2, . . . , ak with ai 6∈ I, and onsider the orre-

sponding polynomial

fa1,a2,...,ak(x) = (x− a1)(x− a2) · · · (x− ak).

De�ne the sequene Ep = (e1, e2, . . . , ep) by

en =

{ (

fa1,a2,...,ak (n)

p

)

if (fa1,...,ak(n), p) = 1, so n 6= ai for 1 ≤ i ≤ k,

1 if p | fa1,...,ak(n), so n = ai for some 1 ≤ i ≤ k.
(4.9)

Clearly,

1

2
(1 + εieni

) =

{

1 if eni
= εi,

0 if eni
= −εi.
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If ni 6= as for 1 ≤ s ≤ l then

1

2

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

=

{

1 if eni
= εi,

0 if eni
= −εi.

Let N be the number of polynomials fa1,a2,...,ak(x) ∈ Fp[x] with

a1, a2, . . . , ak ∈ Fp \ I suh that for the sequene (4.9) spei�ation (4.7)

holds. Then

N =

p−1
∑

a1=0
a1 6∈I

p−1
∑

a2=0
a2 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

1

2j

j
∏

i=1

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

.

(4.10)

Here

A(a1, . . . , ak)
def

=

j
∏

i=1

(

1 + εi

(

(ni − a1) · · · (ni − ak)

p

))

= 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ
(

(ni1 − a1) · · · (ni1 − ak)

p

)

(

(ni2 − a1) · · · (ni2 − ak)

p

)

· · ·
(

(niℓ − a1) · · · (niℓ − ak)

p

)

.

The Legendre symbol is multipliative, thus

A(a1, . . . , ak) = 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ

k
∏

j=1

(

(ni1 − aj)(ni2 − aj) . . . (niℓ − aj)

p

)

.

Writing this in (4.10) we get

N =

p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

1

2j

(

1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

)

,
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N =
(p− |I|)k

2j
+

1

2j

p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p− j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ
p−1
∑

a1=0
a1 6∈I

· · ·
p−1
∑

ak=0
ak 6∈I

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p− j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ






p−1
∑

a=0
a6∈I

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p







k

. (4.11)

Lemma 4.1 (Weil) Suppose that p is a prime, χ is a non-prinipal har-

ater modulo p of order d, f ∈ Fp[x] has s distint roots in Fp, and it is not

a onstant multiple of the d-th power of a polynomial over Fp. Then:

∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

< sp1/2.

Poof of Lemma 4.1

This is Weil's theorem, see [106℄.

By the triangle-inequality and by Lemma 4.1:

∣

∣

∣

∣

∣

∣

∣

p−1
∑

a=0
a6∈I

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

p−1
∑

a=0

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

+ j ≤ ℓp1/2 + j ≤ jp1/2 + |I| .
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Thus by (4.11) and the triangle-inequality

N ≥ (p− j)k

2j
− 1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

(jp1/2 + j)k =
(p− j)k

2j
− (jp1/2 + j)k.

Thus N > 0 follows from

p− j

2j/k
> jp1/2 + j

p > 2j/k(jp1/2 + j) + j. (4.12)

Thus it remains to prove (4.12). By (4.6)

2j/k(jp1/2 + j) + j ≤ 2(
1

2 log 2
log p−

c1
log 2

log(k log p))
(

k

2 log 2
p1/2 log p+

k

2 log 2
log p

)

+
k

2 log 2
log p ≤ p1/2

(k log p)c1

(

k log p

2 log 2
p1/2 +

kp1/2 log p

2 · 31/2 log 2

)

+
k

2 log 2
log p ≤ p1/2

(k log p)c1
1.138(k log p)p1/2 +

k

2 log 2
log p.

By this and (4.5)

2j/k(jp1/2 + j) + j ≤ 1.138
p

(k log p)c1−1
+

p1/2

2 log 2

≤ 1.138
p

(k log p)c1−1
+

p

2 · 31/2 log 2
≤ 1.138

p

(k log p)c1−1
+ 0.414p.

For c1 = 9 we have

2j/k(jp1/2 + j) + j ≤ 1.138
p

(log 3)8
+ 0.414p < p

whih proves (4.12). Thus for j ≤ k
2 log 2

log p− 9k
log 2

log(k log p) we have that

(4.12) holds. Then N > 0. So there is a sequene Ep for whih spei�ation

(4.7) holds. Thus we proved

C(F1) ≥
[

k

2 log 2
log p− 9k

log 2
log(k log p)

]

≥ K − 1

2 log 2
log p−O(K log(K log p)).
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5 On the orrelation of subsequenes

A sequene EN is onsidered a �good� pseudorandom sequene if eah of

these measures W (EN), Cℓ(EN ) (at least for small ℓ) is �small� in terms of

N (in partiular all are o(N) as N −→ ∞). Indeed, it was proved in [14℄

that for a truly random sequene EN ⊆ {−1,+1}N eah of these measures

is ≪ √
N logN and ≫

√
N . Later these bounds were sharpened by Alon,

Kohayakawa, Mauduit, Moreira and Rödl [4℄ (see Theorems 1.A and 1.B).

Numerous binary sequenes have been tested for pseudorandomness by

several authors. In the best onstrutions we have W (EN) ≪
√
N(logN)c1

and Cℓ(EN ) ≪
√
N(logN)cℓ with positive onstants c1 and cℓ. From this it

follows that

|U(EN , t, a, b)| ≪ N1/2(logN)c1 (5.1)

and

|V (EN ,M,D)| ≪ N1/2(logN)cℓ (5.2)

(for all t, a, b,M,D). For every M and t, we trivially have

max
EN∈{−1,+1}N

|U(EN , t, a, b)| = t,

max
EN∈{−1,+1}N

|V (EN ,M,D)| =M.

If |U(EN , t, a, b)| is large ompared with t or |V (EN ,M,D)| is large ompared

with M , then it may our that our sequene EN has a �part� with weak

pseudorandom properties. Indeed, if t or M is smaller than

√
N then the

estimates (5.1) and (5.2) are trivial. Thus it may our that, say, we want to

enrypt a message of estimated length slightly less than N , thus we use an

N bit sequene possessing strong pseudorandom properties. However, it may

turn out that the text to be enrypted is of length less than, say,

√
N . In

this ase we use only a short part (of length

√
N) of the sequene although

we do not have any ontrol over the pseudorandom properties of the short

subsequenes. In this setion we would like to present onstrutions with

non-trivial estimates for V (EN ,M,D) in ase of small M 's.

Theorem 5.1 For every N there is a binary sequene EN ∈ {−1,+1}N suh

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2
are suh that 0 ≤ d1 < d2 < · · · <

dℓ < M + dℓ ≤ N , then we have

|V (EN ,M,D)| ≪ ℓ2N1/4 logN. (5.3)
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From this follows that for 1 ≤M ≤ N we have

|V (EN ,M,D)| ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN.

Corollary 5.1 For the binary sequene EN ∈ {−1,+1}N onstruted in the

proof of Theorem 5.1 we have

Cℓ(EM ) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN (5.4)

for every M ≤ N and EM ⊆ EN (so EM is of the form (ex, ex+1, . . . , eM)).

It is an interesting question whether similar results hold for U(EN , t, a, b)?
Theorem 5.1 is not optimal in the sense that it follows from (5.4) for the

sequene EN whih satis�es the onditions of Theorem 5.1 that

Cℓ(EN ) ≪ ℓ2N3/4 logN,

while in the best onstrutions we have Cℓ(EN ) ≪ N1/2(logN)cℓ . Next we

will show the existene of suh a sequene.

Theorem 5.2 For every N there is a binary sequene EN ∈ {−1,+1}N suh

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2
satisfy 0 ≤ d1 < d2 < · · · < dℓ <

M + dℓ ≤ N , then we have

|V (EN ,M,D)| ≪ ℓ2N1/4 logN. (5.5)

Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2 (5.6)

and

W (EN) ≪ N3/4 logN (5.7)

holds.

From (5.5) follows that for 1 ≤M ≤ N we have

|V (EN ,M,D)| ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN.

Corollary 5.2 For the binary sequene EN ∈ {−1,+1} onstruted in the
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proof of Theorem 5.2 we have

Cℓ(EM) ≪ ℓ2
⌈

M

N1/2

⌉

N1/4 logN, (5.8)

W (EM) ≪
⌈

M

N1/2

⌉1/2

M1/2N1/8(logN)1/2, (5.9)

for every M ≤ N and EM ⊆ EN (where EM is of the form

(ex, ex+1, . . . , ex+M−1)). Moreover

Cℓ(EN) ≪ ℓ2N1/2(logN)2

and

W (EN) ≪ N3/4 logN

holds.

The proofs of Theorems 5.1 and 5.2 are onstrutive. The on-

strution in Theorem 5.2 uses two-dimensional binary latties (see Setion

1). In [50℄ we redued the two dimensional ase to the one dimensional one

by the following way: To any 2-dimensional binary N-lattie

η(x) : I2N → {−1,+1} (5.10)

we may assign a unique binary sequene EN2 = EN2(η) = (e1, e2, . . . , eN2) ∈
{−1,+1}N by taking the �rst (from the bottom) row of the lattie (5.10) then

we ontinue the binary sequene by taking the seond row of the lattie, then

the third row follows, et.; in general, we set

eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N − 1, j = 1, 2, . . . , N. (5.11)

In [50℄ we asked if it is true that if EN2(η) is a �good� pseudorandom binary

sequene then η is a �good� pseudorandom 2-dimensional lattie? The answer

to this question is negative; we showed that it may our that the pseudoran-

dom measures of the sequene EN2(η) are small, however, the orresponding

pseudorandom measures of the lattie η are large. Here we study the oppo-

site. We will prove that if the lattie η has small orrelation measure, then

the orresponding E2
N(η) sequene has small orrelation measures as well.

Theorem 5.3 Let η be an arbitrary binary lattie. Then

Cℓ(EN2(η)) ≤ (ℓ+ 2)Cℓ(η).

By Cℓ(η) ≤ Qℓ(η) it follows that
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Corollary 5.3 Let η be an arbitrary binary lattie. Then

Cℓ(EN2(η)) ≤ (ℓ+ 2)Qℓ(η).

In the proof of Theorem 5.2 we will use Theorem 5.3. But Theorem 5.3

is of independent interest: by using Theorem 5.3 we an onstrut pseudo-

random binary sequenes by using pseudorandom binary latties.

We remark that one may obtain similar results for shorter intervals in

Theorem 5.2: If t is an integer then for M ≤ N1/t
we have

|V (EN ,M,D)| ≪ N1/(2t) logN

in plae of (5.5) while Cℓ(EN ) ≪ N1/2(logN)cℓ andW (EN) ≪ N3/4(logN)c1

also holds. However the proof of this result would be lengthy (we would need

more sophistiated sums as the ones in Lemma 5.4 and the relation between

the pseudorandom measures of the binary latties and the assoiated binary

sequenes is more ompliated) thus we omit here the details, but one might

like to return to this problem in a subsequent paper.

Throughout the setion [a, b] will denote the set {a, a+ 1, . . . , b}.

5.1 Proofs

Proof of Theorem 5.1

For N = 2 the theorem is trivial. For N ≥ 3 by Chebysev's theorem

there exists an odd prime p suh that

N1/2 < p < 2N1/2. (5.12)

For an irreduible polynomial f(x) ∈ Fp[x] of degree k ≥ 2, we de�ne a

binary sequene Ep(f) = (e1, e2, . . . , ep) by the following way:

en =

(

f(n)

p

)

.

(We remark that sine f is irreduible, for an integer n, f(n) is never divisible

by p thus
(

f(n)
p

)

always assumes±1.) Next we will onstrut a pseudorandom

binary sequene for whih (5.3) holds. Let f1(x), f2(x), . . . , fp(x) be di�erent
irreduible polynomials of degree k ≥ 2 and for 1 ≤ i ≤ p let fi(x) be of the
form

fi(x) = xk + ai,k−2x
k−2 + ai,k−3x

k−3 + · · ·+ ai,0 (5.13)

with ai,j ∈ Fp. (so the oe�ient of xk−1
is 0 in fi(x)). We remark that the
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number of moni irreduible polynomials of degree k < p over the �nite �eld
Fq is

Lq(k) =
1

k

∑

d|k

µ

(

k

d

)

qd

see [29, pp. 602-629℄. For k ≥ 4

Lq(k) ≥
1

k
qk − 1

k

[k/2]
∑

d=1

qd ≥ 1

k
qk − 1

k
q
qk/2 − 1

q − 1
≥ 1

k

(

qk − q(k+2)/2
)

≥ 1

2k
qk.

For every j ∈ Fq onsider f(x + j). Between these q di�erent irreduible

polynomials there is exatly one whih is of the form

f(x+ j) = xk + ak−2x
k−2 + · · ·+ a0

(so the oe�ient of xk−1
is 0 in f(x + j)). Thus for k ≥ 4 and p ≥ 3 the

number of irreduible polynomials whih are of the form xk + ak−2x
k−2 +

· · ·+ a0 is

Nq(k)
def

=
1

q
Lq(k) ≥

1

2k
qk−1. (5.14)

For k ≥ 4, p ≥ 3 we have Np(k) ≥ p, thus there exist p di�erent irreduible

polynomials f1(x), f2(x), . . . , fp(x) whih are of the form (5.13). Let

Ep2
def

= (Ep(f1), Ep(f2), . . . , Ep(fp)) (5.15)

where Ep2 is a binary sequene of length p2 obtained by writing the ele-

ments of Ep(f1), Ep(f2), . . . , Ep(fp) suessively. Let Ep2 = (e1, e2, . . . , ep2)
and sine by (5.12) we have

N < p2 < 4N,

we may de�ne EN by the sequene of the �rst N elements of Ep2:

EN = (e1, e2, . . . , eN).

If M < p, D = (d1, . . . , dℓ)

V (EN ,M,D) = V (Ep2,M,D)

= e1+d1e1+d2 . . . e1+dℓ + e2+d1e2+d2 . . . e2+dℓ + · · ·+ eM+d1eM+d2 . . . eM+dℓ .

Next we will prove that for eah 1 ≤ i ≤ ℓ and 1 ≤ n < M , there exist
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integers ai, bi and intervals Ii = {1, 2, . . . , bi} and Ji = {bi+1, bi+2, . . . ,M}
suh that

en+di =







(

fai(n+di)

p

)

if n ∈ Ii,
(

fai+1(n+di)

p

)

if n ∈ Ji,
(5.16)

(if bi = M then Ji = ∅). Indeed, let mp(x) denote the least nonnegative

integer with

x ≡ mp(x) (mod p),

so 0 ≤ mp(x) ≤ p− 1. Then

n + di =

[

n + di − 1

p

]

p+mp(n + di − 1) + 1.

Thus

en+di = f[n+di−1

p ]+1
(mp(n+ di − 1) + 1) = f[n+di−1

p ]+1
(n+ di). (5.17)

In (5.16) 0 ≤ n ≤M < p. Let di = qip+ si where 0 ≤ si ≤ p− 1. Then

[

n+ di − 1

p

]

=

[

qip+ si + n− 1

p

]

= qi +

[

si + n− 1

p

]

=

{

qi if n ≤ p− si,
qi + 1 if n > p− si,

(5.18)

whih proves (5.16) with ai = qi + 1 and bi = max{p− si,M}, so Ii = [1, bi],
Ji = [bi+1,M ] (if bi =M then Ji = ∅). Then {1, b1+1, b2+1, . . . , bℓ+1,M+1}
is a multiset whih ontains integers 1 = c1 < c2 < · · · < cm =M + 1 where

m ≤ ℓ+ 2. (5.19)

Then [0,M ] = ∪m−1
j=1 [cj , cj+1 − 1]. By the de�nition of the cj's, cj < bi + 1 <

cj+1 is not possible, thus cj+1 − 1 ≤ bi or bi ≤ cj − 1, so [cj, cj+1 − 1] ⊆ [0, bi]
or [cj, cj+1 − 1] ⊆ [bi + 1,M ]. Hene

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ =
m−1
∑

j=1

∑

n∈[cj ,cj+1−1]

en+d1 . . . en+dℓ . (5.20)

Now eah interval [cj , cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ.
Thus for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exists

�xed numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) suh that
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for n ∈ [cj , cj+1 − 1]

en+d1en+d2 . . . en+dℓ =

(

fh1(n+ d1)

p

)(

fh2(n+ d2)

p

)

. . .

(

fhℓ
(n+ dℓ)

p

)

=

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

Next we estimate

∑

n∈[cj,cj+1−1]

en+d1en+d2 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

Here fh1(x+ d1), . . . , fhℓ
(x+ dℓ) are di�erent polynomials. Indeed if

fhr(x+ dr) = fht(x+ dt),

then substituting x+ dr by x we get

fhr(x) = fht(x+ dt − dr). (5.21)

It is easy to see that there is exatly one among the polynomials

fht(x), fht(x + 1), . . . , fht(x + p − 1) for whih the oe�ient of xk−1
is 0,

and this one is fht(x). From this and (5.21) follows that

dr ≡ dt (mod p). (5.22)

Thus from (5.21) we get

fhr(x) = fht(x).

Sine the polynomials f1, f2, . . . , fℓ are di�erent, from this

hr = ht (5.23)

follows. Now we ompute the value hr = ht. By (5.17) for n ∈ [cj , cj+1 − 1]
en+dr = fhr(n+ dr), en+dt = fht(n+ dt) where

hr =

[

n + dr − 1

p

]

+ 1,

ht =

[

n + dt − 1

p

]

+ 1. (5.24)
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By (5.23) and (5.24)

[

n+ dr − 1

p

]

=

[

n+ dt − 1

p

]

. (5.25)

Now

n + dr = qrp+ sr, n+ dt = qtp+ st (5.26)

where 0 ≤ sr, st ≤ p− 1. By (5.22)

sr = st. (5.27)

Now

[

n+ dr − 1

p

]

+ 1 =

[

qrp+ sr − 1

p

]

+ 1 = qr + 1 +

[

sr − 1

p

]

.

Similarly

[

n+ dt − 1

p

]

= qt + 1 +

[

st − 1

p

]

.

By this, (5.25) and (5.27) we have

qr = qt.

By this, (5.26) and (5.27)

dr = dt,

whih is a ontradition. So indeed, the irreduible polynomials fh1(x +
d1), . . . , fhℓ

(x + dℓ) are di�erent. Thus the produt fh1(x + d1)fh2(x +
d2) . . . fhℓ

(x+ dℓ) is not of the form cg2(x). We will use the following lemma:

Lemma 5.1 (Winterhof) Suppose that p is a prime, χ is a non-prinipal

harater modulo p of order d, f ∈ Fp[x] has s distint roots in Fp, and it is

not a onstant multiple of the d-th power of a polynomial over Fp. Let y be

a real number with 0 < y ≤ p. Then for any x ∈ R:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< p1/2 log p. (5.28)

Poof of Lemma 5.1

This lemma is the one-dimensional ase of Lemma 5.10 due to Winterhof

[107℄, who derived it from Weil theorem [106℄. We mention that a slightly

weaker version of the lemma an be found in Lemma 1 in [2℄ where 9sp1/2 log p
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is proved in plae of the right hand side of (5.28). (In the ase f(x) = x
the best onstant fator is ahieved by Bourgain, Cohrane, Paulhus and C.

Pinner in [10℄, and their method also works for higher degree polynomials.)

Sine later in the proof we will also use Weil's theorem, we state it here

as a lemma (see in [71℄ and [106℄):

Lemma 5.2 (Weil) Suppose that p is a prime, χ is a non-prinipal har-

ater modulo p of order d, f ∈ Fp[x] has s distint roots in Fp, and it is not

a onstant multiple of the d-th power of a polynomial over Fp. Then:

∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

< sp1/2.

By Lemma 5.1 we get

∑

n∈[cj,cj+1−1]

en+d1en+d2 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1(n+ d1)fh2(n+ d2) . . . fhℓ
(n+ dℓ)

p

)

.

< ℓkp1/2 log p.

By (5.19) and (5.20) we get

|V (EN ,M,D)| ≪ ℓ2kp1/2 log p≪ ℓ2kN1/4 logN. (5.29)

Sine k, the degree of the polynomials f1(x), f2(x), . . . , fp(x) an be hosen

as k = 4, from (5.29) we get (5.3), whih was to be proved.

Proof of Theorem 5.2 First we will need some tehnial preparation in

order to be able to estimate harater sums of the type whih appear later

in the proof of our theorem. First Katz [67℄ and Perelmuter-Shparlinski

[92℄ studied harater sums over sub�elds of a �nite �eld. Their result was

generalized by Wan [105℄ who proved the following very general theorem:

Lemma 5.3 (Wan) Let the fi(T ) with 1 ≤ i ≤ n be pairwise oprime poly-

nomials. Let D be the degree of the largest squarefree divisor of

∏n
i=1 fi(T ).

Let χi be a multipliative harater of the �eld Fqm for 1 ≤ i ≤ n. Suppose

that for some 1 ≤ i ≤ n, there is a root ξi of multipliity mi of fi(T ) suh
that the harater χmi

is non-trivial on the set NormFqm [ξi]/Fqm
(Fq[ξ]). Then

we have

∣

∣

∣

∣

∣

∣

∑

a∈Fq

χ1(f1(a)) . . . χn(fn(a))

∣

∣

∣

∣

∣

∣

≤ (mD − 1)q1/2.
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Part a) of the following lemma is a onsequene of Lemma 5.3, while the

estimate in part b) - the inomplete ase - is new and I will derive it diretly

from Weil's theorem. (At the same time I will also give an alternative proof

for part a), sine in order to do so I just need to add one more sentene to

the proof of part b).)

Lemma 5.4 Let p be an odd prime, q = p2 and denote the quadrati har-

ater of Fq by γ. Clearly Fp ⊆ Fq. Let I = [a, a + 1, a + 2, . . . , b] ⊆ Fp and

f(x) ∈ Fq[x] be a polynomial whih is not of the form cg(x)h2(x) with c ∈ Fq,

g(x) ∈ Fp[x] and h(x) ∈ Fq[x]. Suppose that f(x) has m distint zeros in its

splitting �eld over Fp. Then

a)

∣

∣

∣

∣

∣

∣

∑

x∈Fp

γ(f(x))

∣

∣

∣

∣

∣

∣

≤ 2mp1/2, (5.30)

b)

∣

∣

∣

∣

∣

∑

x∈I

γ(f(x))

∣

∣

∣

∣

∣

≤ 2mp1/2(1 + log p). (5.31)

Proof of Lemma 5.4 Let n ∈ Fp be a quadrati non-residue modulo p, so

(

n

p

)

= −1. (5.32)

The polynomial x2 − n ∈ Fq[x] = Fp2[x] is reduible in Fq[x], let θ ∈ Fq be

an element for whih

θ2 = n (5.33)

in Fq. Sine n is quadrati non-residue modulo p, θ 6∈ Fp. Then {1, θ} is a

basis of Fq over Fp, so every element of Fq an be written uniquely in the

form x+ θy with x, y ∈ Fp. Then de�ne the onjugate of x+ θy by

x+ θy
def

= x− θy.

Then for a, b ∈ Fq we have

ab = a · b,
a + b = a + b,

and

aa ∈ Fp. (5.34)

It is easy to hek that

x+ θy = (x+ θy)p, (5.35)
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sine by using the Euler lemma for x, y ∈ Fp we have

(x+ θy)p = xp + θpyp = xp +
(

θ2
)p−1/2

θyp = x+
(

θ2
)p−1/2

θy

= x+ n(p−1)/2θy = x+

(

n

p

)

θy = x− θy.

Thus the onjugation is an automorphism of Fq whih an be extended to an

automorphism of Fq by

Fq → Fq,

ε→ εp.

This is the Froebenius automorphism.

Lemma 5.5 For x, y ∈ Fp

γ(x+ θy) =

(

(x+ θy)(x+ θy)

p

)

=

(

x2 − ny2

p

)

.

Proof of Lemma 5.5 Using (5.35) and the Euler lemma we get

γ(x+ θy) = (x+ θy)(q−1)/2 = (x+ θy)(p
2−1)/2

= (x+ θy)(p
2−p)/2(x+ θy)(p−1)/2

= ((x+ θy)p)(p−1)/2 (x+ θy)(p−1)/2

=
(

x+ θy
)(p−1)/2

(x+ θy)(p−1)/2

= (x− θy)(p−1)/2(x+ θy)(p−1)/2

=
(

x2 − θ2y2
)(p−1)/2

=
(

x2 − ny2
)(p−1)/2

,

whih proves Lemma 5.5.

By Lemma 5.5

∑

x∈I

γ(f(x)) =
∑

x∈I

(

f(x)f(x)

p

)

.
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Sine I ⊆ Fp, if f(x) = akx
k + · · ·+ ao, then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

)

(akxk + · · ·+ ao)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

p

)

.

Here the oe�ients of

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

are in Fp, sine

f(x) an be written in the form p(x)+θr(x) with p(x), r(x) ∈ Fp[x] and then

f(x) = akx
k + · · ·+ ao = p(x) − θr(x) so f(x)f(x) = (p(x) + θr(x))(p(x) −

θr(x)) = p2(x)− nq2(x) ∈ Fp[x].
Let b(x) =

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

. Then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

b(x)

p

)

.

Here we need Weil's theorem. If the onditions of Lemma 5.1 and Lemma

5.2 hold, then using these lemmas we get (5.30) and (5.31) whih was to be

proved. So indeed, we need to prove that the onditions of Lemma 5.1 and

Lemma 5.2 hold for b(x), so b(x) is not of the form ch2(x), with c ∈ Fp,

h(x) ∈ Fp[x].
Let

f(x) = ak(x− ε1)(x− ε2) . . . (x− εk)

where ak ∈ Fq, ε1, . . . , εk ∈ Fp. Then for x ∈ Fp

f(x) = ak (x− ε1) · · · (x− εk)

= ak (x− εp1) · · · (x− εpk) .

Then b(x) = f(x)f(x) = akak(x− ε1) · · · (x− εk)(x− εp1) · · · (x− εpk). Clearly
by (5.34) we have akak ∈ Fp. The next question is that when is a produt

(x− ε1) · · · (x− εk) (x− εp1) · · · (x− εpk) of the form n2(x) with n(x) ∈ Fp[x].
Let α1, α2, . . . , αt be the di�erent elements among ε1, . . . , εk whih have odd

multipliity in the fatorization of f(x) = ak(x − ε1) . . . (x − εk). Writing

g(x) = (x−α1) . . . (x−αt) we get that f(x) is of the form akg(x)h
2(x) where

g(x) has no multiple roots and g(x), h(x) ∈ Fp[x]. Then

b(x) = akak(x− α1) . . . (x− αt)(x− αp
1) . . . (x− αp

t )s
2(x)

with s(x) ∈ Fp[x]. Here (x−α1) . . . (x−αt)(x−αp
1) . . . (x−αp

t ) is of the form
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u2(x) with u(x) ∈ Fp[x] if and only if {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t}.

If {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t} then for every symmetri polynomial

v ∈ Fp[x1, x2, . . . , xt] we have

v(α1, . . . , αt) = v(αp
1, . . . , α

p
t ) = vp(α1, . . . , αt).

Thus v(α1, . . . , αt) ∈ Fp. So the oe�ients of g(x) = (x − α1) . . . (x − αt)

are the elements of Fp. Thus the oe�ients of h2(x) = f(x)
akg(x)

are in Fq.

Let h(x) = xf+bf−1x
f−1+· · ·+b0. We will prove by indution that bf−i ∈

Fq. Indeed the oe�ient of x2f−1
in h2(x) is 2bf−1, thus bf−1 ∈ Fq. Suppose

that bf−1, bf−2, . . . , bf−v ∈ Fp. We will prove that bf−v−1 ∈ Fp also holds.

Indeed the oe�ient of x2f−v−1
is of the form 2bf−v−1+j(bf−1, bf−2, . . . , bf−v)

with j ∈ Fp[x1, x2, . . . , xv]. Thus 2bf−v−1 + j(bf−1, bf−2, . . . , bf−v) is in Fq,

and by the indutive hypothesis j(bf−1, bf−2, . . . , bf−v) is in Fq, thus bf−v−1

is in Fq. So we proved that h(x) ∈ Fq[x]. Thus b(x) = akak(x − ε1) . . . (x −
εk)(x− ε1) . . . (x− εk) is of the form cn2(x) with c ∈ Fq, n(x) ∈ Fq[x] if and
only if f(x) is of the form cg(x)h2(x) with c ∈ Fq, g(x) ∈ Fp[x], h(x) ∈ Fq[x],
whih was to be proved.

In order to prove Theorem 5.2 we need one more lemma. Namely:

Lemma 5.6 Let f(x) ∈ Fp2[x] be an irreduible polynomial in Fp2[x] of de-
gree k, whih is of the form

f(x) = xk + ak−1x
k−1 + · · ·+ a0,

where ak−1 ∈ Fp but f(x) 6∈ Fp[x], so there is an 1 ≤ i ≤ k − 2 suh that

ai 6∈ Fp. Then for d1, d2, . . . , dℓ ∈ Fp2 we have

f(x+ d1)f(x+ d2) . . . f(x+ dℓ) 6∈ Fp[x].

Proof of Lemma 5.6 Every f(x) ∈ Fp2 [x] an be uniquely written in the

form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

with ai ∈ Fp2. Then de�ne

τ(f(x))
def

= akx
k + ak−1x

k−1 + · · ·+ a0.

Clearly,

τ(τ(f(x))) = f(x)

τ(f(x) + g(x)) = τ(f(x)) + τ(g(x))

τ(f(x)g(x)) = τ(f(x))τ(g(x)).
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Lemma 5.7 If f(x) ∈ Fp2[x] is irreduible in Fp2[x], then τ(f(x)) ∈ Fp2 [x]
is also irreduible in Fp2[x] .

Proof of Lemma 5.7 Whenever

τ(f(x)) = g(x)h(x) with g(x), h(x) ∈ Fp2[x],

then

f(x) = τ(τ(f(x))) = τ(g(x))τ(h(x)).

Sine f(x) is irreduible it follows that τ(f(x)) or τ(g(x)) is onstant. From
this follows that f(x) or g(x) is onstant. But then τ(f(x)) is irreduible.

Lemma 5.8 If f(x) ∈ Fp2 [x] is an irreduible polynomial in Fp2[x] with

leading oe�ient 1, but f(x) 6∈ Fp[x] then g(x)
def

= f(x)τ(f(x)) is in Fp[x]
and g(x) is irreduible in Fp[x].

Proof of Lemma 5.8 De�ne n and θ as in (5.32) and (5.33). Then every

f(x) ∈ Fp2[x] an be uniquely written in the form

f(x) = a(x) + θb(x)

with a(x), b(x) ∈ Fp[x]. Then

τ(f(x)) = a(x)− θb(x).

Thus

f(x)τ(f(x)) = (a(x) + θb(x))(a(x)− θb(x)) = a2(x)− nb2(x) ∈ Fp[x].

Suppose that f(x)τ(f(x)) is not irreduible in Fp[x], so

f(x)τ(f(x)) = g(x)h(x) (5.36)

with g(x), h(x) ∈ Fp[x], where the leading oe�ients of g(x) and h(x) are
1 and deg g(x), deg h(x) ≥ 1. Then (5.36) also holds in Fp2[x] sine Fp ⊆
Fp2 . But there is a unique fatorization in Fp2[x], and f(x) and τ(f(x)) are
irreduible polynomials in Fp2[x] with leading oe�ients 1, thus

f(x) = g(x), τ(f(x)) = h(x)

or

f(x) = h(x), τ(f(x)) = g(x).
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In both ases we get f(x) ∈ Fp[x], whih is a ontradition.

Now we are ready to prove Lemma 5.6. Suppose that

f(x+ d1) . . . f(x+ dℓ) ∈ Fp[x].

Let α ∈ Fp be a root of f(x+ d1), then f(α + d1) = 0, thus

f(α+ d1) . . . f(α+ dℓ) = 0.

But then the minimal polynomial of α in Fp[x] divides f(x+d1) . . . f(x+dℓ) ∈
Fp[x]. Next we determine the minimal polynomial of α in Fp[x]. α is a root

of f(x + d1)τ(f(x + d1)) and by Lemma 5.8 this polynomial is irreduible

in Fp[x]. So the minimal polynomial of α is f(x + d1)τ(f(x + d1)) in Fp[x].
Thus

f(x+ d1)τ(f(x+ d1)) | f(x+ d1) . . . f(x+ dℓ) in Fp[x].

But Fp[x] ⊆ Fp2[x], so

f(x+ d1)τ(f(x+ d1)) | f(x+ d1) . . . f(x+ dℓ) in Fp2[x].

Thus

τ(f(x+ d1)) | f(x+ d2) . . . f(x+ dℓ) in Fp2[x].

By Lemma 5.7, τ(f(x+d1)) is irreduible in Fp2[x] and its leading oe�ient

is 1, thus by the unique fatorization in Fp2[x], there is an 2 ≤ i ≤ ℓ suh
that

τ(f(x+ d1)) = f(x+ di).

Without the loss of generality we may assume

τ(f(x+ d1)) = f(x+ d2). (5.37)

By the de�nition of f(x) it is of the form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

where ak = 1, ak−1 ∈ Fp[x]. Then

f(x+ d1) =
k
∑

i=0

(

(

k

i

)

akd
k−i
1 +

(

k − 1

i

)

ak−1d
k−1−i
1

+

(

k − 2

i

)

ak−2d
k−2−i
1 + · · ·+

(

i

i

)

ai

)

xi
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and

f(x+ d2) =
k
∑

i=0

(

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2

+

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai

)

xi

By the de�nition of τ

τ(f(x+ d1)) =
k
∑

i=0

(

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · ·+
(

i

i

)

ai

)

xi.

By (5.37) we get that for 0 ≤ i ≤ k

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · ·+
(

i

i

)

ai

=

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2 +

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai.

(5.38)

For i = k − 1 this gives

(

k

k − 1

)

akd1 +

(

k − 1

k − 1

)

ak−1 =

(

k

k − 1

)

akd2 +

(

k − 1

k − 1

)

ak−1. (5.39)

By the onditions of Lemma 5.6 we have ak = 1 and ak−1 ∈ Fp, thus ak = ak
and ak−1 = ak−1, so from (5.39)

d1 = d2 (5.40)

follows.

Next we prove by indution that ai ∈ Fp. Indeed, by the onditions of

Lemma 5.6, ak and ak−1 ∈ Fp. Next suppose that ak, ak−1, . . . , ai+1 ∈ Fp.

We will prove that ai ∈ Fp. Indeed by ak, ak−1, . . . , ai+1 ∈ Fp then

ak = ak, ak−1 = ak−1, . . . , ai+1 = ai+1
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By this, (5.38) and (5.40) we get

ai = ai,

so ai ∈ Fp whih was to be proved. Thus ak, ak−1, . . . , a0 ∈ Fp. But then

f(x) ∈ Fp[x], whih is ontradition. Thus we proved Lemma 5.6.

Next we return to the proof of Theorem 5.2. For N = 2 the theorem is

trivial. For N ≥ 3 let p be an odd prime for whih

N1/2 < p < 2N1/2. (5.41)

(By Chebysev's theorem suh a prime p exists.) Let q = p2 and let n be a

quadrati non-residue modulo p, so
(

n
p

)

= −1. Let θ ∈ Fp2 be a number for

whih

θ2 = n

in Fq. Then {1, θ} is a basis of Fq over Fp.

Let f(x) be an irreduible polynomial of degree k ≥ 2 whih is of the

form

f(x) = xk + ak−2x
k−2 + · · ·+ a0

(so the oe�ient of the term xk−1
is 0) but

f(x) 6∈ Fp[x].

By (5.14) the number of suh polynomials is

R
def

= Np2(k)−Np(k) ≥
1

2k
p2k−1 − 1

k
pk−1 > 0,

thus suh a polynomial exists, indeed.

De�ne the binary lattie η : I2p → {−1,+1} by

η(x) = η((x1, x2)) = γ(f(x1 + θx2)).

Lemma 5.9

Qℓ(η) ≤ kℓ
(

p(1 + log p)2
)

≪ kℓN1/2(logN)2. (5.42)

Proof of Lemma 5.9 We remark that this onstrution is a shifted version

of the onstrution in Theorem 1 in [79℄. We annot use Theorem 1 in

[79℄ beause none of the onditions a), b) and ) holds in Theorem in [79℄.

However, similarly to the proof of Theorem 1 in [79℄, it is easy to prove that
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(5.42) holds:

Write di = (d
(i)
1 , d

(i)
2 ) (for i = 1, . . . , ℓ), and onsider the general term of

the n-fold sum in (1.6):

∑

x∈B

η(x+ d1) . . . η(x+ dℓ)

=

[t1/b1]
∑

j1=0

[t2/b2]
∑

j2=0

η
(

(j1b1 + d
(1)
1 , j2b2 + d

(1)
2 )
)

. . . η
(

(j1b1 + d
(ℓ)
1 , j2b2 + d

(ℓ)
2 )
)

,

(5.43)

where B is a box-lattie of form

B = {x = (j1b1, j2b2) : 0 ≤ j1b1 ≤ t1(< p), 0 ≤ j2b2 ≤ t2(< p), j1, j2 ∈ N}.

Now write

z = j1b1 + j2b2θ (5.44)

so that z belongs to the box

B′ = {j1b1 + j2b2θ : 0 ≤ j1b1 ≤ t1, 0 ≤ j2b2 ≤ t2, j1, j2 ∈ N}, (5.45)

and set

zi = d
(i)
1 + d

(i)
2 θ. (5.46)

If z ∈ B′
then f(z + z1) . . . f(z + zk) 6= 0, and by the de�nition of η and

the multipliativity of γ, the produt in (5.43) is

γ
(

f(z + z1)
)

. . . γ
(

f(z + zk)
)

= γ
(

f(z + z1) . . . f(z + zk)
)

.

Then from (5.43) we get

∑

x∈B

η(x+ d1) . . . η(x+ dℓ) =
∑

z∈B′

γ (f(z + z1) . . . f(z + zℓ)) (5.47)

Now we need the following result of Winterhof:

Lemma 5.10 (Winterhof) Let p be a prime, n ≥ 1 be an integer, q = pn

and let v1, v2, . . . , vn be a basis of the vetor spae Fpn over Fp. Let χ be a

multipliative harater of Fq of order d > 1, f ∈ Fq[x] be a nononstant

polynomial whih is not a d-th power of a polynomial of Fp[x] and whih has

m distint zeros in its splitting �eld over Fq, and k1, . . . , kn are non-negative

integers with k1 ≤ p, . . . , kn ≤ p, then, writing B =
{ n
∑

i=1

xivi : 0 ≤ ji < ki

}

,
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we have

∣

∣

∣

∣

∑

z∈B

χ(f(z))

∣

∣

∣

∣

< mq1/2(1 + log p)n.

Proof of Lemma 5.10 This is a part of Theorem 2 in [107℄ (where its proof

was based on A. Weil's theorem [106℄).

Write h(z) = f(z + z1) . . . f(z + zk). Then in order to prove (5.42), it

su�es to show:

Lemma 5.11 h(x) has at least one zero in Fp whose multipliity is odd.

Proof of Lemma 5.11 Sine z1, z2, . . . , zℓ are di�erent the irreduible poly-
nomials f(z+z1), . . . , f(z+zℓ) are di�erent. (Indeed, the oe�ients of xk−1

are di�erent.) So h(x) has a zero in Fq whose multipliity is odd. Thus h(x)
annot be the onstant multiple of a square. Applying Lemma 5.10 we obtain

from (5.47)

∑

x∈B

η(x+ d1) . . . η(x+ dℓ) ≪ kℓp(1 + log p)2 ≪ kℓN1/2(logN)2,

whih was to be proved.

In [50℄ we redued the two dimensional ase to the one dimensional one

by the following way: To any 2-dimensional binary p-lattie

η(x) : I2p → {−1,+1} (5.48)

we may assign a unique binary sequene Ep2 = Ep2(η) = (e1, e2, . . . , ep2) ∈
{−1,+1}p2 by taking the �rst (from the bottom) row of the lattie (5.48) then

we ontinue the binary sequene by taking the seond row of the lattie, then

the third row follows, et.; in general, we set

eip+j = η((j − 1, i)) = γ(f((j − 1) + iθ))

for i = 0, 1, . . . , p− 1, j = 1, 2, . . . , p.

Thus we obtain a sequene of length p2

Ep2
def

= (e1, e2, . . . , ep2).

Now N < p2 < 4N . Consider the �rst N elements of Ep2, they form a

sequene of length N:

EN
def

= (e1, e2, . . . , eN).

We state that EN satis�es the onditions of the lemma.
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First we estimate |V (EN ,M,D)|. Let mp(x) denote the unique integer x
for whih

mp(x) ≡ x (mod p), 0 ≤ mp(x) < p.

Then

en+di = e[n+di−1

p ]p+mp(n+di−1)+1

and so

en+di = η

(

mp(n+ di − 1),

[

n+ di − 1

p

])

= γ

(

f

(

n+ di − 1 +

[

n+ di − 1

p

]

θ

))

. (5.49)

If 1 ≤ n ≤ M < p then

[

n+di−1
p

]

may take two di�erent values, namely qi

and qi + 1. Indeed, de�ne qi and si by di = qip + si where 0 ≤ si ≤ p − 1.
Then

[

n+ di − 1

p

]

=

[

qip+ si + n− 1

p

]

= qi +

[

si + n− 1

p

]

=

{

qi if n ≤ p− si,
qi + 1 if n > p− si.

Moreover there exists a number bi = min{M, p−si} suh that for n ≤ bi ≤M
[

n+di−1
p

]

= qi and for bi < n ≤M we have

[

n+di−1
p

]

= qi +1. Let Ii = [0, bi],

Ji = [bi + 1,M ] (if bi =M then Ji = ∅).
Then {1, b1 + 1, b2 + 1, . . . , bℓ + 1,M + 1} is a multiset whih ontains

integers 1 = c1 < c2 < · · · < cm = M + 1 with m ≤ ℓ + 2. Then [0,M ] =
∪m−1
j=1 [cj, cj+1 − 1].

V (EN ,M,D) =
M
∑

n=1

en+d1 . . . en+dℓ =
m−1
∑

j=1

∑

n∈[cj,cj+1−1]

en+d1 . . . en+dℓ (5.50)

By the de�nition of the cj 's, cj < bi+1 < cj+1 is not possible, thus cj+1−1 ≤ bi
or bi ≤ cj − 1, so [cj , cj+1 − 1] ⊆ [0, bi] or [cj, cj+1 − 1] ⊆ [bi + 1,M ]. Eah

interval [cj, cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ. Thus

for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exist �xed

numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) suh that for
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n ∈ [cj , cj+1 − 1]

en+d1en+d2 . . . en+dℓ = γ (f(n+ d1 − 1 + h1θ)) γ (f(n+ d2 − 1 + h2θ)) . . .

γ (f(n+ dℓ − 1 + hℓθ))

= γ
(

f(n+ d1 − 1 + (h1 + 1)θ)f(n+ d2 − 1 + (h2 + 1)θ)

. . . f(n+ dℓ − 1 + (hℓ + 1)θ)
)

.

Hene

∑

n∈[cj ,cj+1−1]

en+d1 . . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

γ (f(n+ d1 − 1 + h1θ) · · ·f(n+ dℓ − 1 + hℓθ)) . (5.51)

Next we prove that the irreduible polynomials f(x + d1 − 1 +
h1θ), · · · , f(x+ dℓ − 1 + hℓθ) are di�erent. Sine if i 6= j and

f(x+ di − 1 + hiθ) = f(x+ dj − 1 + hjθ),

then

hi ≡ hj (mod p) and di ≡ dj (mod p). (5.52)

This an be proved by onsidering the oe�ient xk−1
in the polynomials

f(x+ di − 1+ hiθ) and f(x+ dj − 1+ hjθ). By (5.49) we have hi =
[

n+di−1
p

]

and hj =
[

n+dj−1

p

]

for n ∈ [cj , cj+1 − 1]. hi ≡ hj (mod p), by 0 ≤ hi =
[

n+di−1
p

]

, hj =
[

n+dj−1

p

]

< p then hi = hj. So for n ∈ [cj , cj+1 − 1]

[

n + di − 1

p

]

=

[

n + dj − 1

p

]

(5.53)

By (5.52),

n+ di − 1 ≡ n+ dj − 1 (mod p). (5.54)

We get from (5.53) and (5.54) that

n+ di − 1 = n+ dj − 1

So

di = dj
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whih is a ontradition. Thus

qj(x)
def

= f(x+ d1− 1+h1θ)f(x+ d2− 1+h2θ) · · ·f(x+ dℓ− 1+hℓθ) (5.55)

has no multiple root. Here by de�nition f(x) 6∈ Fp[x], by using Lemma 5.6

qj(x) 6∈ Fp[x] and it has no multiple root. Thus it is not of the form cg(x)h2(x)
with c ∈ Fp, g(x) ∈ Fp[x], h(x) ∈ Fq[x]. By the triangle inequality, Lemma

5.4, (5.50), (5.51) and (5.55) we get

|V (EN ,M,D)| ≤
m−1
∑

j=1

∣

∣

∣

∣

∣

∣

∑

n∈[cj ,cj+1−1]

γ(qj(n))

∣

∣

∣

∣

∣

∣

≪
m−1
∑

j=1

(deg qj)p
1/2 log p

≪ ℓ(deg qj)p
1/2 log p≪ ℓ2kp1/2 log p

≪ ℓ2kN1/4 logN

whih proves (5.5), sine we may hoose degf = k as k = 4.
Next we prove (5.6). By Lemma 5.9 we have Qℓ(η) ≪ kℓN1/2(logN)2.

By Theorem 5.3 (whih we will prove later) Cℓ(EN) ≪ Cℓ(Ep2) ≪
kℓ2N1/2(logN)2 ≪ kℓN1/2(logN)2, sine k an be hosen as k = 4 this

proves (5.6).

Next we prove (5.7). We split EN into

[

N−1
p

]

+ 1 di�erent subse-

quenes: E(1) = (e1, e2, . . . , ep), E
(2) = (ep+1, ep+2, . . . , e2p),. . . , E

([N−1
p ]+1) =

(e([N−1
p ]p+1), . . . , eN). By the triangle-inequality

W (EN) ≤
[N−1

p ]+1
∑

j=1

W (Ej). (5.56)

Here Ej = (e(j−1)p+1, . . . , ejp) = (f1, f2, . . . , fp) for 1 ≤ j ≤
[

N−1
p

]

and

Ej = (e(j−1)p+1, . . . , eN) = (f1, f2, . . . , fN−(j−1)p) for j =
[

N−1
p

]

+ 1.

In [78℄ Mauduit and Sárközy proved thatW (EN) ≤
√

NC2(EN). By this

and using (5.6) for ℓ = 2 we get (5.7), whih ompletes the proof of Theorem

5.2. We also remark that by using the same argument and (5.8) we get (5.9)

in Corollary 5.2.

Proof of Theorem 5.3 For x ∈ Z let

x = rN(x)N +mN (x)

where mN (x) ≡ x (mod N), 0 ≤ mN (x) ≤ N − 1 and rN(x) =
[

x
N

]

.
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By de�nition

exN+y+1 = η(y, x) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1

and thus

en = η(mN(n− 1), rN(n− 1)).

Then for 1 ≤ i ≤ ℓ

en+di = η(mN(n + di − 1), rN(n+ di − 1)). (5.57)

Here

n+ di − 1 = (rN(n− 1) + rN(di))N +mN (n− 1) +mN(di).

Thus if 0 ≤ mN (n− 1) +mN(di) ≤ N − 1 then

rN(n+ di − 1) = rN(n− 1) + rN(di)

mN (n+ di − 1) = mN(n− 1) +mN (di)

and if N ≤ mN(n− 1) +mN (di) then

rN(n+ di − 1) = rN(n− 1) + rN(di) + 1

mN (n+ di − 1) = mN(n− 1) +mN (di)−N.

Thus we get that there exists an ai
def

= N − 1−mN(di) suh that for mN (n−
1) ≤ ai

rN(n+ di − 1) = rN(n− 1) + rN(di)

mN (n+ di − 1) = mN(n− 1) +mN (di) (5.58)

and for ai + 1 ≤ mN (n− 1)

rN(n+ di − 1) = rN(n− 1) + rN(di) + 1

mN (n+ di − 1) = mN(n− 1) +mN (di)−N. (5.59)

Then {1, a1 + 1, a2 + 1, . . . , aℓ + 1, mN(M − 1) + 1, N} is a multiset whih

ontains integers 1 = c1 < c2 < · · · < cm ≤ N where m ≤ ℓ + 3. By (5.58)

and (5.59) we get that for cj ≤ n ≤ cj+1 − 1 there exist numbers bi,j and fi,j
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suh that

rN(n+ di − 1) = rN(n) + rN(di − 1) + bi,j

mN (n+ di − 1) = mN(n) +mN(di − 1)− fi,j (5.60)

where bi,j ∈ {0, 1} and fi,j ∈ {0, N}. Moreover, if bi,j = 0 then fi,j = 0 and

if bi,j = 1 then fi,j = N . Now

[0,M ] =

= {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

, x = 0, 1, . . . , mN(M − 1)}

∪ {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

− 1, x = mN (M − 1) + 1,

. . . , N − 1}

Thus

[0,M ] = ∪m−1
j=1 {n : n = rN (N − 1)N +mN (n− 1) + 1,

cj ≤ mN(n− 1) ≤ cj+1 − 1, rN (n− 1) ∈ {0, 1, 2, . . . , Tj}} (5.61)

where Tj =
[

M−1
N

]

if cj+1 ≤ mN (M − 1) + 1 and Tj =
[

M−1
N

]

− 1 if mN(M −
1) + 1 ≤ cj. (Sine mN (M − 1) + 1 ∈ {c1, c2, . . . , cm} and c1 < c2 < · · · < cm
thus cj < mN(M − 1) + 1 < cj+1 is not possible.) By this, (5.57) and (5.58)

V (EN ,M,D) =

M
∑

n=1

en+d1 . . . en+dℓ =

m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

en+d1 . . . en+dℓ

=

m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

ℓ
∏

i=1

η(mN(n− 1) +mN(di)− fi,j, rN(n− 1) + rN(di) + bi,j)

By (5.61)

{(mN(n− 1), rN(n− 1)) : 1 ≤ n ≤M and cj ≤ mN (n− 1) ≤ cj+1 − 1} =

{(x, y) : 0 ≤ x ≤ Tj and cj ≤ y ≤ cj+1 − 1}.
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Using this and (5.60) we get

V (EN ,M,D) =

m−1
∑

j=1

Tj
∑

x=0

cj+1−1
∑

y=cj

ℓ
∏

i=1

η(x+mN (di)− fi,j, y + rN (di) + bi,j) ≤ (m− 1)Qℓ(η)

≤ (ℓ+ 2)Qℓ(η)

whih was to be proved. Here we used the fat that the pairs (mN (di)− fi,j,
rN (di) + bi,j) are di�erent for �xed j as i runs over 1, 2, . . . , ℓ. Indeed if

(mN(di1)− fi1,j, rN (di1) + bi1,j) = (mN (di2)− fi2,j, rN(di2) + bi2,j),

then

N(rN (di1) + bi1,j) +mN(di1)− fi1,j = N(rN (di2) + bi2,j) +mN(di2)− fi2,j.

Sine if bi,j = 0 then fi,j = 0 and if bi,j = 1 then fi,j = N , from this we get

NrN(di1) +mN(di1) = NrN (di2) +mN (di2)

di1 = di2

whih is a ontradition.
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6 On Legendre symbol latties (the non-

degenerate ase)

Pseudorandom binary sequenes have many important appliations. In

partiular, they are used as a key stream in the lassial stream ipher alled

the Vernam ipher.

In one dimension, hene in the ase of binary sequenes, many good on-

strutions have been given. Typially, the really good onstrutions involve

Fp, additive or multipliative haraters and polynomials, and the ruial

tool in the estimation of the pseudorandom measures is Weil's theorem. Un-

fortunately, this approah in its original form does not readily apply in higher

dimensions. The di�ulty is that in n dimensions onstrutions involving Fp,

haraters and polynomials f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn], lead natu-

rally to the n-dimensional analogues of Weil's theorem. In partiular they

lead to the theorem of Deligne. While Fouvry and Katz [24℄ have simpli�ed

the requirements for applying Deligne's theorem the inonvenient assumption

of nonsingularity is still required in order to obtain sharp bounds.

In spite of these di�ulties, in [65℄ and [80℄ good n-dimensional on-

strutions were presented. In these papers the authors got around the dif-

�ulty desribed above in the following way. Finite �elds Fq with q = pn

and polynomials G(x) ∈ Fq[x] are onsidered. Charater sums involving

G(x) and haraters of Fq an be estimated by Weil's theorem so that no

nonsingularity assumption is needed. On the other hand, if e1, e2, . . . , en
is a basis in Fq, then every x ∈ Fq has a unique representation in the form

x = x1e1+x2e2+· · ·+xnen with x1, x2, . . . , xn ∈ Fp. Then g(x1, x2, . . . , xn) =
G(x1e1 + x2e2 + · · ·+ xnen) ∈ Fq[x1, x2, . . . , xn] is a well-de�ned polynomial,

and the estimate of n-fold harater sums involving g(x1, x2, . . . , xn) an be

redued to the estimate of harater sums over Fq involving G, so that Weil's

theorem an be used. (This priniple goes bak to Davenport and Lewis

[20℄.)

This detour enables one to give sharp upper bounds, but it also has on-

siderable disadvantages. In partiular, in this way we get rather arti�ial on-

strutions. More natural onstrutions annot be tested with this approah.

Seondly, the implementation of these arti�ial onstrutions is more om-

pliated. Thus one might like to look for a trade-o� between appliability of

the method and sharpness of the result, in other words, for a method whih

is muh more �exible and appliable at the expense of providing weaker but

still nontrivial upper bounds. We will show that in the ase when n = 2,
there is suh a method, based on the tehniques introdued by Gyarmati and

Sárközy [60℄ to estimate ertain related harater sums. This method allows
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us to give a simple desription of the exeptional polynomials, see Setion

6.1. But the prie paid for the �exibility of this method is that the upper

bounds are not optimal usually. For a two dimensional p-lattie they are,

up to logarithmi fators, p3/2 instead of the optimal bound of p. On the

other hand, they improve on the trivial bound of p2 onsiderably. Here we

mention that in Setion 7 we will be able to show that for a ertain (rather

speial) family of polynomials the �nite �eld onstrution presented in [79℄

is equivalent to a Legendre symbol onstrution of type (6.2). Thus in this

ase we obtain a family of binary latties whih ombines the advantages of

the two onstrutions: as in [79℄ we have optimal bounds, and as a Legendre

symbol onstrution it an be implemented fast and easily.

In Setions 6 and 7 I present results from [61℄ and [62℄, where with my

oauthors Cameron L. Stewart and András Sárközy we studied a onstrution

based on the Legendre symbol:

In one dimension the best and most intensively studied onstrution is

based on the use of the Legendre symbol, see [31℄, [64℄, [77℄, [98℄. Let p
be a prime, f(x) ∈ Fp[x] be a polynomial, and de�ne the sequene Ep =
(e1, . . . , ep) by

en =

{ (

f(n)
p

)

if (f(n), p) = 1,

+1 if p | f(n).
(6.1)

We will identify the elements of Fp with the residue lasses modulo p, and
we will not distinguish between the residue lasses and their representing

elements. The natural two dimensional extension of this onstrution is the

following.

Constrution 6.1 (Gyarmati, Sárközy, Stewart) Let p be an odd

prime, f(x1, x2) ∈ Fp[x1, x2] be a polynomial in two variables. De�ne

η : I2p → {−1,+1} by

η(x1, x2) =

{ (

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p | f(x1, x2).
(6.2)

First, in Setion 6.1, we will show that in two dimensions there are new

di�ulties arising, and there are many "bad" polynomials f(x1, x2). Then,

in Setion 6.2, we will formulate Theorem 6.1, our main result. We will also

present several su�ient riteria for a polynomial f(x1, x2) for whih the or-

responding binary p-lattie (6.2) possesses strong pseudorandom properties.

The rest of this setion will be devoted to the proof of this main result.

In Setion 7 we will study (6.2) in the ase when f(x1, x2) is one of the

degenerate polynomials desribed in Setion 6.1. Moreover, we will also study
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implementation problems related to some onstrutions based on Theorem

6.1.

6.1 Negative examples

In this setion we will present examples of polynomials f(x1, x2) ∈
Fp[x1, x2] for whih the binary p-lattie de�ned in (6.2) has weak pseudo-

random properties.

Example 6.1 (Gyarmati, Sárközy, Stewart) If

f(x1, x2) = c (g(x1, x2))
2

with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2], then every element of the lattie de�ned

in (6.2) is

(

c
p

)

exept the zeros of f(x1, x2). It follows that if the degree of

f(x1, x2) is not very large, then Q1(η) is large.

Example 6.2 (Gyarmati, Sárközy, Stewart) If f(x1, x2) = g(x1) with a

polynomial g(x) ∈ Fp[x] of one variable, then we have

η(x1, x2)η(x1, x2 + 1) =

(

g(x1)

p

)(

g(x1)

p

)

= +1

(exept the zeros of g(x1)) from whih it follows that Q2(η) is large.

Example 6.3 (Gyarmati, Sárközy, Stewart) If f(x1, x2) = g(x1)h(x2)
with polynomials g(x), h(x) ∈ Fp[x], then it an be shown by a little ompu-

tation that Q4(η) is large.

The polynomials f(x1, x2) ourring in Examples 6.1-6.3 are speial ases

of the following:

De�nition 6.1 (Gyarmati, Sárközy, Stewart) The polynomial f(x1, x2)
is alled degenerate if it is of the form

f(x1, x2) =

(

r
∏

j=1

fj(αjx1 + βjx2)

)

g(x1, x2)
2, (6.3)

where αj, βj ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].

A polynomial f ∈ Fp[x1, x2] whih an be expressed in the form (6.3) is

said to be degenerate and otherwise it is said to be non-degenerate.
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As Examples 6.1, 6.2 and 6.3 show, if f is degenerate then it may be that

the assoiated binary p-lattie (6.2) has weak pseudorandom properties. We

shall analyse the situation when f is degenerate in more details in Setion

7. In the balane of this setion we shall restrit our attention to binary

p-latties (6.2) for whih f is non-degenerate.

6.2 Su�ient onditions

In one dimension Goubin, Mauduit and Sárközy [31℄ gave su�ient on-

ditions on the polynomial f(x) to guarantee small pseudorandom measures.

Let Fp denote an algebrai losure of Fp.

Theorem 6.A (Goubin, Mauduit, Sárközy) Let f(x) ∈ Fp[x] be a poly-

nomial of degree k(> 0) whih has no multiple zero in Fp. De�ne the sequene

Ep ∈ {−1,+1}p by (6.1). Then W (Ep), the �well-distribution measure� of

Ep, satis�es
W (Ep) < 10kp1/2 log p.

Moreover assume that one of the following 3 onditions holds:

a) ℓ = 2,
b) 2 is a primitive root modulo p,
) (4k)ℓ < p or (4ℓ)k < p,
Then Cℓ(Ep), "the orrelation measure of order ℓ," satis�es

Cℓ(Ep) ≤ 10kℓp1/2 log p.

(See [77℄ for the de�nition of well-distribution measure and orrelation mea-

sure.)

We extend their result to the 2 dimensional ase:

Theorem 6.1 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a polynomial of degree k. Suppose that f(x1, x2) annot be expressed in

the form (6.3) and one of the following 5 onditions holds:

a) f(x1, x2) is irreduible in Fp[x1, x2],
b) ℓ = 2,
) 2 is a primitive root modulo p,
d) 4k+ℓ < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary p-lattie η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p.

The rest of this setion is devoted to the proof of this theorem.
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6.3 Proof of Theorem 6.1

For k > p1/2/10 the theorem is trivial. Thus we may suppose that

k ≤ p1/2/10. (6.4)

Similarly, we may suppose that

k2 + ℓ2 < p, (6.5)

otherwise the theorem is trivial sine

4k2ℓ2 > k2 + ℓ2 ≥ p,

and so

10kℓp3/2 log p > p2.

Lemma 6.1 If F is a �eld, then in F[x1, x2, . . . , xn] every polynomial has a

fatorization into irreduible polynomials whih is unique apart from onstant

fators and reordering.

Proof of Lemma 6.1 See, for example [93, Theorem 207℄.

If f(x1, x2) ∈ Fp[x1, x2], then we will also write f(x1, x2) = f(x) with

x = (x1, x2).

Lemma 6.2 (Gyarmati, Sárközy, Stewart) Let p ≥ 5 be a prime and χ
be a multipliative harater of order d. Suppose that h(x1, x2) ∈ Fp[x1, x2]
is not of the form cg(x1, x2)

d
with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2]. Let k be the

degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattie B ⊆ I2p .

We remark that the upper bound in the lemma is nearly sharp: it is easy

to see that there are polynomials h(x1, x2) of the form h(x1, x2) = f(x1) (so
that h(x1, x2) depends only one of the two variables) for whih the left hand

side of the inequality in the lemma with F2
p in plae of B is > c(k)p3/2.

Proof of Lemma 6.2

It follows easily from Lemma 6.1 that h(x1, x2) annot be of form both

g1(x1)p1(x1, x2)
d
and g2(x2)p2(x1, x2)

d
simultaneously with g1(x), g2(x) ∈

Fp[x] and p1(x1, x2), p2(x1, x2) ∈ Fp[x1, x2]. Thus by symmetry reasons we

may suppose that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d
.
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Sine B is a box p-lattie, write it in the form

B = {x = (v1b1, v2b2) : v1, v2 ∈ N, 0 ≤ v1b1 ≤ t1, 0 ≤ v2b2 ≤ t2} (6.6)

with b1, b2 ∈ N and 0 ≤ t1, t2 < p. Then by the triangle inequality

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

≤
∑

0≤v2≤[t2/b2]

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For �xed v2, b1 and b2, the polynomial h(v1b1, v2b2) is a polynomial of one

variable in v2. We will use the following onsequene of Weil's theorem [106℄:

Lemma 6.3 (Weil) Suppose that p is a prime, χ is a non-prinipal har-

ater modulo p of order d, f(x) ∈ Fp[x] has s distint roots in Fp, and it is

not the onstant multiple of the d-th power of a polynomial over Fp. Let y be

a real number with 0 < y ≤ p. Then for any x ∈ Fp:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.

Proof of Lemma 6.3

This is an immediate onsequene of Lemma 1 in [2℄.

If, for �xed v2, b1, b2, the polynomial h(xb1, v2b2) ∈ Fp[x] of one variable

is not of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x], then by Lemma 6.3

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ 9kp1/2 log p.

We will show that for �xed b1 and b2 there are only few values of v2 for whih
the polynomial h(xb1, v2b2) ∈ Fp[x] is of the form cg(x)d. For this we need

Lemma 6.4 (Gyarmati, Sárközy, Stewart) Let h(x, y) ∈ Fp[x, y] be a

polynomial of two variables, whih is not of the form q(y)p(x, y)d with q(y) ∈
Fp[y], p(x, y) ∈ Fp[x, y]. Denote by n and m the degree of the polynomial

h(x, y) in x and y, respetively. Then there are at most nm + m values

y0 ∈ Fp suh that

h(x, y0) ∈ Fp[x]

is of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x].

Proof of Lemma 6.4 This is Lemma 4 in [60℄.
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Let n and m be the degree of h(x1, x2) in x1 and x2 respetively. We have

assumed that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d
, thus by Lemma

6.4, there are at most nm + m values of v2 suh that h(xb1, v2b2) is of the
form cg(x)d for some c ∈ Fp, g(x) ∈ Fp[x]. Let V denote the set of these v2's.
Then

|V| ≤ mn+m ≤ k2 + k. (6.7)

By (6.6)

∣

∣

∣

∣

∣
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∣

∣
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≤
∑
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∣
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∣
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∣

∣
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0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣
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∣

∣

∣

∣

+
∑

v2∈Fp\V

∣
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∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For v2 ∈ V we use the trivial estimate p for the inner sum. By Lemma 6.4

and (6.7)

∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ (k2 + k)p.

For v2 ∈ Fp \ V we use Lemma 6.3 to dedue that

∑

v2∈Fp\V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

< 9kp3/2 log p.

Thus by (6.4)

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

< (k2 + k)p+ 9kp3/2 log p < 10kp3/2 log p

whih ompletes the proof of Lemma 6.2.

Lemma 6.5 (Gyarmati, Sárközy, Stewart) Suppose that f ∈ Fp[x1, x2]
is a polynomial suh that there are no distint d1, . . . ,dℓ ∈ F2

p with the

property that f(x + d1) . . . f(x + dℓ) is of the form cg(x)2 with c ∈ Fp,

g ∈ Fp[x1, x2]. Let k be the degree of the polynomial f(x1, x2). Then for the

binary p-lattie η de�ned in (6.3) we have

|Qℓ(η)| < 11kℓp3/2 log p.
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Proof of Lemma 6.5 We have

Qℓ(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) · · ·η(x+ dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distint d1, . . . ,dℓ ∈ I2p and box p-
latties B suh that B + d1, . . . , B + dℓ ⊆ I2p . Let B be the box p-lattie,
d1, . . . ,dℓ ∈ I2p be the vetors for whih this maximum is attained so that

Qℓ(η) =

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) · · ·η(x+ dℓ)

∣

∣

∣

∣

∣

.

Write h(x) = f(x+ d1) · · ·f(x+ dℓ), then

Qℓ(η) ≤
∣

∣

∣

∣

∣

∑

x∈B

(

h(x)

p

)

∣

∣

∣

∣

∣

+
∑

x∈B
h(x)=0

1.

h(x) is a polynomial of degree kℓ. Estimating the number of zeros of h(x)
we �nd that

∑

x∈B
h(x)=0

1 ≤ kℓp. (6.8)

By assumption h(x) is not of the form cg(x)2 and its degree is ℓk. Thus
by Lemma 6.2 and (6.8) we have

Qℓ(η) ≤ 10ℓkp3/2 log p+ ℓkp,

whih was to be proved.

Suppose that one of the 5 onditions in Theorem 6.1 holds. We will prove

that the produt

h(x) = f(x+ d1) . . . f(x+ dℓ)

annot be the onstant multiple of a perfet square. Then by Lemma 6.5 we

get Theorem 6.1.

Next we will introdue three de�nitions (they are very similar to the ones

introdued by Goubin, Mauduit and Sárközy in [31℄).

De�nition 6.2 (Gyarmati, Sárközy, Stewart) Let G be a group with re-

spet to addition. Let A and B be subsets of G and suppose that for all c in
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G the number of solutions of

a+ b = c,

with a in A and b in B is even. Then (A,B) is said to have property P.

De�nition 6.3 (Gyarmati, Sárközy, Stewart) Let r, ℓ, and m be posi-

tive integers with r, ℓ ≤ m. The triple (r, ℓ,m) is said to be admissible if

there are no A,B ⊆ Zm suh that |A| = r, |B| = ℓ, and (A,B) possesses

property P.

We shall also introdue an equivalene relation on Fp[x1, x2] as in the

proof of Theorem 6.A in [31℄.

De�nition 6.4 (Gyarmati, Sárközy, Stewart) Two polynomials

ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are equivalent if there are a1, a2 ∈ Fp

suh that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Write the polynomial f(x1, x2) in the theorem as a produt of irreduible

polynomials in Fp[x1, x2]. (Reall that the lattie η is determined by this

polynomial f(x1, x2), the de�nition of η is presented in (6.2).) Let us group

these fators so that in eah group the equivalent irreduible fators are

olleted. Consider a typial group ϕ(x1 + a1,1, x2 + a2,1), ϕ(x1 + a1,2, x2 +
a2,2), . . . , ϕ(x1 + a1,s, x2 + a2,s). Then f(x1, x2) is of the form

f(x1, x2) = ϕ(x1 + a1,1, x2 + a2,1) · · ·ϕ(x1 + a1,s, x2 + a2,s)g(x1, x2),

where g(x1, x2) has no irreduible fator equivalent with any ϕ(x1+a1,i, x2+
a2,i) (1 ≤ i ≤ s).

We will use the following lemma:

Lemma 6.6 (Gyarmati, Sárközy, Stewart) Let ϕ(x1, x2) ∈ Fp[x1, x2] be
nonzero and let c, a1, a2 ∈ Fp with (a1, a2) 6= (0, 0) be suh that

ϕ(x1, x2) = cϕ(x1 + a1, x2 + a2), (6.9)

for all (x1, x2) in F2
p. Suppose that the degree of ϕ(x1, x2) is less than p. Then

there is a polynomial g ∈ Fp[x] suh that

ϕ(x1, x2) = g(a2x1 − a1x2). (6.10)
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Proof of Lemma 6.6 We will use repeatedly the fat that if two poly-

nomials of degree less than p in eah variable de�ne the same polynomial

funtion, then they must also be idential polynomials.

By onsidering the highest degree terms in (6.9), we get c = 1 so that

ϕ(x1, x2) = ϕ(x1 + a1, x2 + a2).

It follows from this that for every t ∈ Fp

ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2). (6.11)

One of a1 and a2 is nonzero and, without loss of generality, we may suppose

that a2 6= 0. Then write ϕ(x1, x2) in the form

ϕ(x1, x2) = ϕ(a−1
2 ((a2x1 − a1x2) + a1x2), x2)

= qn(a2x1 − a1x2)x
n
2 + qn−1(a2x1 − a1x2)x

n−1
2 + . . .

+ q0(a2x1 − a1x2), (6.12)

where qi(x) ∈ Fp[x] are polynomials of one variable. For �xed x1, x2 write

A = ϕ(x1, x2) and Qi = qi(a2x1 − a1x2) = qi(a2(x1 + ta1) − a1(x2 + ta2)).
Then by (6.11) and (6.12) for every t ∈ Fp:

A = ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2) = Qn(x2 + ta2)
n + · · ·+Q0.

Both A and the expression on the right above are polynomials in t of degree
at most p. These polynomials de�ne the same funtion and so they are the

same polynomials, whih is possible only if n = 0. It follows that

q0(a2x1 − a1x2)− ϕ(x1, x2) = Q0 −A = 0,

for every x1, x2 ∈ Fp. Sine both q0 and ϕ have degree less than p in x1 and
x2, thus

q0(a2x1 − a1x2) = ϕ(x1, x2)

as formal polynomials, whih proves (6.10).

First we study the ase when ondition a) holds in Theorem 6.1, so when

f(x1, x2) is irreduible in Fp[x1, x2]. As before let d1, . . . ,dℓ be distint ele-

ments of I2p and put h(x) = f(x+d1) · · · f(x+dℓ). Then by Lemma 6.6 the

irreduible polynomials f(x + dj) are di�erent sine f(x1, x2) is not of the
form (6.3). By Lemma 6.1, there is unique fatorization in Fp[x1, x2], thus
h(x) annot be the onstant multiple of a perfet square. By using Lemma

6.5 we get the statement.
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Next we prove parts b), ) and d) in Theorem 6.1. Write f(x1, x2) in the

form u(x1, x2)(v(x1, x2))
2
where u(x1, x2) is squarefree, so, in other words,

there is no non-onstant irreduible polynomial h(x1, x2) with (h(x1, x2))
2
a

divisor of u(x1, x2). Sine f(x1, x2) is not of the form (6.3), in the fator-

ization of u(x1, x2) there is an irreduible fator u(x1, x2) whih annot be

written in the form

u(x1, x2) = u(αx1 + βx2). (6.13)

Consider the polynomials u(x + ai) for i = 1, 2, . . . , r whih are equivalent

with u(x) and appear in the fatorization of u(x).
We shall prove that h(x) = f(x + d1) · · ·f(x + dℓ) is not a onstant

multiple of a perfet square. We shall suppose that h(x) is the onstant

multiple of a perfet square. Then h1(x) = u(x + d1) · · ·u(x + dℓ) is also a

onstant multiple of a perfet square.

Write h1(x) as a produt of irreduible polynomials in Fp[x1, x2]. Then

all polynomials u(x + ai + dj) (1 ≤ i ≤ s, 1 ≤ j ≤ ℓ) our amongst the

fators. These polynomials u(x+ai+dj) are equivalent, and no other fators

belonging to this equivalene lass will our amongst the irreduible fators

of h1(x). By Lemma 6.6 all polynomials u(x+c) for c ∈ F2
p are distint sine

u is not of the form (6.13). Thus in the olletion, formed by the equivalent

fators u(x+ai+dj), every polynomial must our an even number of times.

As a onsequene every c ∈ F2
p ours an even number of times in the form

ai + dj with 1 ≤ i ≤ r and 1 ≤ j ≤ ℓ.

Lemma 6.7 (Gyarmati, Sárközy, Stewart) Let s(s− 1)/2 < p and

di = (d′i, d
′′
i ) ∈ F2

p (1 ≤ i ≤ s)

be di�erent vetors. Then there exists a λ ∈ F∗
p suh that

d′i + λd′′i ∈ Fp (1 ≤ i ≤ s)

are di�erent.

Proof of Lemma 6.7 Suppose that for some pair (i, j) with 1 ≤ i < j ≤
ℓ we have

d′i + λd′′i = d′j + λd′′j .

Then d′′i 6= d′′j , otherwise we obtain (d′i, d
′′
i ) = (d′j, d

′′
j ). Thus for every i 6= j

at most one λ exists suh that

d′i + λd′′i = d′j + λd′′j .
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The number of pairs (i, j) with 1 ≤ i < j ≤ ℓ is ℓ(ℓ − 1)/2. Thus at most

ℓ(ℓ− 1)/2 values of λ exist suh that

d′i + λd′′i = d′j + λd′′j

for some i 6= j. Sine ℓ(ℓ− 1)/2 < p the lemma follows.

We have A = {a1, . . . , ar} and D = {d1, . . . ,dℓ} ⊆ F2
p, where r ≤ k. By

Lemma 6.7 we may hoose λ ∈ Fp suh that both sets

A′ = {a′ + λa′′ : (a′, a′′) ∈ A}

and

D′ = {d′ + λd′′ : (d′, d′′) ∈ D}

ontain di�erent elements.

Lemma 6.8 (Gyarmati, Sárközy, Stewart) (A′,D′) possesses property

P.

Proof of Lemma 6.8 In order to verify the lemma we need to prove that

for any c ∈ Fp the number of solutions

a + d = c, a ∈ A′, d ∈ D′
(6.14)

is even. Indeed, it is lear that the number of solutions of (6.14) is the same

as the number of solutions of

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D
c′ + λc′′ = c. (6.15)

Sine (A,D) possesses property P, for eah (c′, c′′) ∈ F2
p the number of solu-

tions of the equation

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

is even. Thus the number of solutions of the system (6.15) is also even,

and equivalently, the number of solutions of (6.14) is also even. This proves

Lemma 6.8.

By Lemma 6.8 (A′,D′) possesses property P. Thus (r, ℓ, p) is not an ad-

missible triple. By ontrast we have the following lemma.

Lemma 6.9 (Goubin, Mauduit, Sárközy) (i) For every prime p and r ∈
N the triple (r, 2, p) is admissible.
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(ii) If p is prime, r, ℓ ∈ N and

4ℓ+r < p,

then (r, ℓ, p) is admissible.

(iii) If p is a prime suh that 2 is a primitive root modulo p, then for

every pair (r, ℓ) ∈ N with r < p, ℓ < p the triple (r, ℓ, p) is admissible.

Proof of Lemma 6.9 Parts (i) and (iii) are Theorem 2 in [31℄ while part

(ii) is Theorem 2 in [79℄.

Sine (r, ℓ, p) is not admissible parts b), ) and d) of Theorem 6.1 follow

from Lemma 6.9. In the proofs of b) and d) we ould have replaed Lemma

6.8 by Lemma 4 in [79℄, however the lemma there does not su�e to prove

part ) in Theorem 6.1, thus we have preferred to prove Lemma 6.8 here.

In order to prove part e) in Theorem 6.1 we note that the degree of the

polynomial h(x1, x2) in x1 is odd, thus it annot be the onstant multiple of

a perfet square. Using Lemma 6.5 again part e) follows.
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7 On Legendre symbol latties (the degenerate

ase and a related onstrution)

In this setion our goal is to ontinue the study of Constrution 6.1.

First we will analyze the degenerate ase. In Setion 7.1 we will analyze

the struture of the degenerate polynomials f(x1, x2), and we will introdue

the notion of the normal form and rank r = r(f) of suh a polynomial. In

Setion 7.2 we will prove that if f is degenerate, ℓ ≤ r = r(f), η is de�ned by

(6.2) and one of four spei�ed onditions holds, then Qℓ(η) is small. We will

also present an algorithm for deiding whether a given polynomial f(x1, x2) is
degenerate and, if it is, for determining its normal form. In Setion 7.3 we will

show that here the upper bound r annot be replaed by 2r. In Setion 7.4 we

will study the implementation of Constrution 6.1 and, in partiular, we will

onstrut a large family of polynomials f(x1, x2) whih are non-degenerate

and satisfy the �rst su�ient ondition in Theorem 6.1 so that the binary

lattie η in (6.2) possesses strong pseudorandom properties. In partiular

its pseudorandom measures Qℓ(η) are small for ℓ not very large. Finally, in

Setion 7.5, we onstrut families of polynomials for whih the bounds for

the pseudorandom measures are essentially optimal.

7.1 Struture of degenerate polynomials

In this setion our goal is to transform the representation (6.3) of a degen-

erate polynomial into another more useful one. We will need several lemmas.

Lemma 7.1 If F is a �eld, then in F[x1, x2, . . . , xn] every polynomial has a

fatorization into irreduible polynomials whih is unique apart from onstant

fators and reordering.

Proof of Lemma 7.1 See, for example [93, Theorem 207℄. �

Lemma 7.2 (Gyarmati, Sárközy, Stewart) Let g1, g2 ∈ Fp[x, y] and f ∈
Fp[x] be non-zero polynomials. Suppose that for some (α, β) ∈ Fp × Fp

g1(x, y)g2(x, y) = f(αx+ βy). (7.1)

Then there exist f1, f2 ∈ Fp[x] suh that

gi(x, y) = fi(αx+ βy)

for i = 1, 2.
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Proof of Lemma 7.2 If (α, β) = (0, 0) the result is immediate. Thus we

may suppose that (α, β) 6= (0, 0) and, without loss of generality, we may

assume that α 6= 0. Put
z = αx+ βy

so that x = α−1z − α−1βy. We may now de�ne h1, h2 in Fp[y, z] by putting

hi(y, z) = gi(α
−1z − α−1βy, y) for i = 1, 2.

From (7.1) we �nd that

h1(y, z)h2(y, z) = f(z). (7.2)

Write

h1(y, z) = ua(z)y
a + ua−1(z)y

a−1 + · · ·+ u0(z),

h2(y, z) = vb(z)y
b + vb−1(z)y

b−1 + · · ·+ v0(z)

and

h1(y, z)h2(y, z) = wa+b(z)y
a+b + wa+b−1(z)y

a+b−1 + · · ·+ w0(z)

where ua(z), vb(z) are not the zero polynomial. Clearly we have

wa+b(z) = ua(z)vb(z). (7.3)

But by (7.2), h1(y, z)h2(y, z) is a one variable polynomial in z, thus we have

wa+b(z) = wa+b−1(z) = · · · = w1(z) = 0 if a+ b > 0. (7.4)

It follows from (7.3) and ua(z) 6= 0, vb(z) 6= 0 that wa+b(z) 6= 0. Thus by (7.4)
we have a+ b = 0 whene a = b = 0. Then h1(y, z) = u0(z), h2(y, z) = v0(z)
whih ompletes the proof of the lemma. �

We shall identify the elements of Fp with the p ongruene lasses modulo

p and shall denote the elements of Fp × Fp by (a, b) with a and b integers

representing the ongruene lass of a and of b modulo p. De�ne the subset

T of Fp × Fp by

T = {(0, 1), (1, 0), (1, 1), (2, 1), . . . , (p− 1, 1)}.

Lemma 7.3 (Gyarmati, Sárközy, Stewart) Let f be a non-onstant de-

generate polynomial in Fp[x1, x2] of degree less than p in x1 and in x2. Then
there exist a non-zero λ in Fp, a non-negative integer r, distint elements
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(γ1, δ1), . . . , (γr, δr) from T, ψ in Fp[x1, x2] and squarefree non-onstant poly-

nomials ϕ1, . . . , ϕr in Fp[x] for whih

f(x1, x2) = λ

(

r
∏

j=1

ϕj(γjx1 + δjx2)

)

ψ2(x1, x2). (7.5)

Further r is uniquely determined and the polynomials ϕj(γjx1 + δjx2) and

ψ(x1, x2) are unique up to onstant fators and reordering of ϕ1(γ1x1 +
δ1x2), . . . , ϕr(γrx1 + δrx2).

We shall refer to a deomposition of f as in (7.5) as a normal form of f
and to r as the rank of f. Notie that sine (γ1, δ1), . . . , (γr, δr) are distint

elements of T we have

γjδi − δjγi 6= 0 for i 6= j. (7.6)

Proof of Lemma 7.3 Let ψ be a polynomial of largest degree for whih

ψ2
divides f in Fp[x1, x2]. Then sine f is degenerate we may write f in the

form (6.3) with ψ as above and with (γi, δi) 6= (0, 0) for i = 1, . . . , s. Further
we may suppose that ϕ1, . . . , ϕs are squarefree polynomials in Fp[x] and that

ϕ1 · · ·ϕs is also squarefree.

Suppose that ϕ is in Fp[x] and (γ, δ) are in Fp × Fp\{(0, 0)} and de�ne

ϕ∗
in Fp[x] by

ϕ∗(x) =

{

ϕ(γx) when γ 6= 0,

ϕ(δx) when γ = 0.

Then

ϕ(γx1 + δx2) =

{

ϕ∗(x1 + δγ−1x2) if γ 6= 0,

ϕ∗(x2) if γ = 0.

Therefore we may write

ϕ1(γ1x1 + δ1x2) · · ·ϕs(γsx1 + δsx2)

as

ϕ∗
1(γ1x1 + δ1x2) · · ·ϕ∗

s(γsx1 + δsx2)

where now (γi, δi) is in T for i = 1, . . . , s. We now ollet and multiply

together the polynomials ϕ∗
i for whih (γi, δi) are the same to get a represen-

tation for f of the form (7.5).
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Suppose that, in addition to (7.5),

f(x1, x2) = λ1

(

s
∏

j=1

ρj(θjx1 + βjx2)

)

ψ2
1(x1, x2)

with (θ1, β1), . . . , (θs, βs) distint elements of T, λ1 a non-zero element of

Fp, ψ1 in Fp[x1, x2] and squarefree non-onstant polynomials ρ1, . . . , ρs in

Fp[x]. By Lemma 7.1 ψ(x) is a onstant times ψ1(x) sine ψ
2(x) and ψ2

1(x)
orrespond to the greatest square fator of f in Fp[x1, x2]. Next note that for
eah j from 1 to s we may deompose ρj(θjx1 + βjx2) into irreduibles and

by Lemma 7.2

ρj(θjx1 + βjx2) = ρj,1(θjx1 + βjx2) · · · ρj,t(θjx1 + βjx2)

where ρj,1, . . . , ρj,t are irreduible polynomials in Fp[x]. Thus eah irreduible

ρj,k(θjx1+βjx2) ours in the essentially unique deomposition of ϕm(γmx1+
δmx2) into irreduibles for some m. Notie that if a polynomial g(x, y) =
f1(γ1x + β1y) = f2(γ2x + β2y) with f1, f2 ∈ F[x] and γ1β2 − γ2β1 6= 0 then

g(x, y) is a onstant. (Indeed, �x a, b, c, d ∈ Fp and we will prove that

g(a, b) = g(c, d). Sine γ1β2 − γ2β1 6= 0 the system of linear equations

γ1x+ β1y = γ1a+ β1b

γ2x+ β2y = γ2c+ β2d

has a unique solution in x, y ∈ Fp. Then

g(a, b) = f1(γ1a+ β1b) = f1(γ1x+ β1y) = g(x, y) = f2(γ2x+ β2y)

= f2(γ2c+ β2d) = g(c, d).)

Thus, by (7.6), (θj , βj) = (γm, δm). Repeating this argument with all the

irreduible fators of ρj and all the irreduible fators of ϕm(γmx1 + δmxz)
we �nd that ϕm(γmx1 + δmx2)/ρj(θjx1 + βjx2) is a onstant. From this it

readily follows that r = s and the result follows. �

We remark that we may determine if a polynomial f is degenerate by �rst

replaing it with a polynomial f ∗
of degree at most p − 1 in eah variable

by using the fat that xp = x for all x in Fp. We then fator f ∗
and write

f ∗
as a produt of irreduibles multiplied by its largest square divisor. Eah

irreduible must be tested to see if it is of the form g(γx+βy) with g ∈ Fp[x]
and (γ, β) ∈ T. Given (γ, β) in T if su�es to hek that the irreduible is

onstant on the lines in Fp × Fp given by γx+ βy = c for c in Fp and this is

a �nite proess. Furthermore T is a �nite set. Either there is an irreduible
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not of the form g(γx+ βy) for any g ∈ F[x] and (γ, β) in T in whih ase f ∗

is non-degenerate or f ∗
is degenerate and we may produe the normal form

as in the proof of Lemma 7.3.

7.2 The pseudorandom measures of small order in the

degenerate ase.

We will show that if f(x1, x2) is a degenerate polynomial and the order ℓ
of the pseudorandom measure Qℓ is not greater than the rank of f then, for

the binary lattie η de�ned in (6.2), Qℓ(η) is small. In fat our estimates are

the same as in the non-degenerate ase studied in Theorem 6.1.

Theorem 7.1 (Gyarmati, Sárközy, Stewart) Let f(x1, x2) ∈ Fp[x1, x2]
be a non-onstant degenerate polynomial of redued normal form (7.5) with

degree k. Suppose that ℓ, the order of the pseudorandom measure is not

greater than the rank r of f(x1, x2), and one of the following 5 onditions

holds:

a) f(x1, x2) is irreduible in Fp[x1, x2],
b) ℓ = 2,
) 2 is a primitive root modulo p,
d) (4k)ℓ < p or (4ℓ)k < p,
e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary lattie η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p.

Proof of Theorem 7.1 The proof will be based on the following result.

Lemma 7.4 (Gyarmati, Sárközy, Stewart) Suppose that f ∈ Fp[x1, x2]
is a polynomial suh that there are no distint d1, . . . ,dℓ ∈ F2

p with the

property that f(x + d1) . . . f(x + dℓ) is of the form cq(x)2 with c ∈ Fp,

q ∈ Fp[x1, x2]. Let k be the degree of the polynomial f(x1, x2). Then for the

binary p-lattie η de�ned in (6.2) we have

|Qℓ(η)| < 11kℓp3/2 log p.

Proof of Lemma 7.4 This is Lemma 6.5 in Setion 6.

In order to ensure the appliability of this lemma, we have to show that

it follows from one of the 5 assumptions in Theorem 7.1 that there are not

distint d1, . . . ,dℓ ∈ F2
p suh that the polynomial

h(x) = f(x+ d1) . . . f(x+ dℓ)
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is of the form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Indeed, if this is proved,

then the assumption in Lemma 7.4 holds in eah of these 5 ases thus the

statement of Theorem 7.1 follows from Lemma 7.4 immediately.

We will prove this by ontradition. Assume that

h(x) = f(x+ d1) · · ·f(x+ dℓ)

is the onstant multiple of a perfet square. Then we will prove

r + 1 ≤ ℓ,

where r denotes the rank of f , whih ontradits our assumption.

Write

di = (d′i, d
′′
i )

for i = 1, . . . , l.
Suppose that f has the normal form

f(x1, x2) = λ

r
∏

j=1

fj(αjx1 + βjx2)ψ
2(x1, x2)

with λ ∈ Fp\{0}, (α1, β1), . . . , (αr, βr) distint elements of T, f1, . . . , fr
squarefree non-onstant polynomials in Fp[x] and ψ ∈ Fp[x1, x2]. Then it

follows that

r
∏

j=1

fj(αjx1+βjx2 + αjd
′
1 + βjd

′′
1)fj(αjx1 + βjx2 + αjd

′
2 + βjd

′′
2) · · ·

fj(αjx1 + βjx2 + αjd
′
ℓ + βjd

′′
ℓ ). (7.7)

is a non-zero multiple of the square of a polynomial in Fp[x1, x2].
Now we will introdue an equivalene relation whih is similar to the one

used in the proof of Theorem 1 in [31℄.

De�nition 7.1 Two polynomials ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are t-
equivalent (t for translation) if there are a1, a2 ∈ Fp suh that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Consider any two fators fj1(αj1x1+βj1x2+αj1d
′
v1 +βj1d

′′
v1) = f ∗

j1(αj1x1+
βj1x2) and fj2(αj2x1+βj2x2+αj2d

′
v2
+βj2d

′′
v2
) = f ∗

j2
(αj2x1+βj2x2) with j1 6= j2

on the right hand side of (7.7), fator them into irreduible polynomials, and

onsider an irreduible fator ϕ1 of the former polynomial and ϕ2 of the latter
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polynomial. Then by Lemma 7.2, these irreduible fators are of the form

ϕ1(αj1x1+βj1x2), and ϕ2(αj2x1+βj2x2). Assume that these two polynomials

are t-equivalent, so that there exist a, b ∈ Fp suh that

ϕ1(αj1x1 + βj1x2) = ϕ2(αj2(x1 + a) + βj2(x2 + b))

= ϕ2((αj2x1 + βj2x2) + (αj2a+ βj2b)) = ϕ3(αj2x1 + βj2x2)
(7.8)

(where ϕ3(z) = ϕ2(z + (αj2a+ βj2b))). Both the �rst and last polynomial in

(7.8) are in normal form, and sine the normal form is unique, we must have

(αj1 , βj1) = (αj2, βj2) whene j1 = j2.
Thus if two fators fj1(αj1x1 + βj1x2 + αj1d

′
v1
+ βj1d

′′
v1
) and fj2(αj2x1 +

βj2x2 + αj2d
′
v2 + βj2d

′′
v2) on the right hand side of (7.7) have t-equivalent

irreduible fators then j1 = j2. But then the expression (7.7) is of the form

cq(x1, x2)
2
if and only if

fj(αjx1 + βjx2 + αjd
′
1 + βjd

′′
1) · · ·fj(αjx1 + βjx2 + αjd

′
ℓ + βjd

′′
ℓ )

is the onstant multiple of a square for every 1 ≤ j ≤ r. Writing z =
αjx1 + βjx2 and d

∗
j(i) = αjd

′
i + βjd

′′
i ∈ F∗

p we obtain for 1 ≤ j ≤ r:

fj(z + d∗j(1))fj(z + d∗j(2)) · · · fj(z + d∗j(ℓ))

is of the form cq(z)2. Let Dj be the set of terms of the sequene

(d∗j(1), . . . , d
∗
j(ℓ)) whih our with odd multipliity. If Dj is not empty,

then the one variable polynomial

∏

d∈Dj

fj(z + d)

is also the onstant multiple of a perfet square. By the proof of Lemma 7.2 in

[31℄ this is not possible (note that by Lemma 7.2, in ase a) the one-variable

polynomial f(z) is also irreduible) sine the polynomial fj(z) is squarefree.
It remains to onsider the ase when Dj is empty for j = 1, . . . , r. 


Then, for

1 ≤ j ≤ r, in the sequene

(αjd
′
1 + βjd

′′
1, αjd

′
2 + βjd

′′
2, . . . , αjd

′
ℓ + βjd

′′
ℓ )

every term ours with even multipliity, hene every term ours with mul-

tipliity at least 2. Then for every j, there is a number 2 ≤ i(j) ≤ ℓ suh
that

αjd
′
1 + βjd

′′
1 = αjd

′
i(j) + βjd

′′
i(j).
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We will prove that 1, i(1), i(2), . . . , i(r) are di�erent numbers. It is lear that

none of i(1), i(2), . . . , i(r) is equal to 1. It remains to prove that

x = i(j1) = i(j2) (7.9)

is not possible. Suppose that (7.9) holds. Then

αj1d
′
1 + βj1d

′′
1 = αj1d

′
x + βj1d

′′
x,

αj2d
′
1 + βj2d

′′
1 = αj2d

′
x + βj2d

′′
x.

Thus

αj1(d
′
1 − d′x)− βj1(d

′′
1 − d′′x) = 0,

αj2(d
′
1 − d′x)− βj2(d

′′
1 − d′′x) = 0. (7.10)

Sine (d′1, d
′′
1) 6= (d′x, d

′′
x) from (7.10) we obtain

αj1βj2 − αj2βj1 = 0,

from whih j1 = j2 follows. Thus 1 < i(1), i(2), . . . , i(r) ≤ ℓ and

i(1), i(2), . . . , i(r) are di�erent numbers, so that

r + 1 ≤ ℓ

whih ontradits the onditions of Theorem 7.1 and this ompletes the proof

of the theorem. �

7.3 The pseudorandom measures of large order in the

degenerate ase

In Setion 7.2 we showed that in the degenerate ase if ℓ ≤ r then Qℓ(η)
is small. Now we will prove that Qℓ(η) is large for some ℓ with ℓ ≤ 2r.

Theorem 7.2 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a de-

generate polynomial with rank r and degree m and n in x1 and x2, respe-
tively. Then there exists a positive integer ℓ with ℓ ≤ 2r for whih

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p.

94



Proof of Theorem 7.2We may assume that r ≤ p1/2/4 sine otherwise the
theorem is immediate. Suppose that f(x1, x2) has the normal form

f(x1, x2) = λ
r
∏

j=1

fj(αjx1 + βjx2)ψ(x1, x2)
2

with (α1, β1), . . . , (αr, βr) distint elements from T.We distinguish two ases.

In the �rst ase all of the αi's are non-zero. In the seond ase one of the

αi's is zero and in that ase we may suppose, without loss of generality, that

(α1, β1) = (0, 1) (sine x1 and x2 play symmetri role and if α1 = 0, β1 6= 0, 1
then writing y = β1x2, x1, x2 an be replaed by the variables x1,

y
β1
). There

exists an integer γi with 1 ≤ |γi| ≤ p1/2 + 1 suh that γiαi is ongruent

modulo p to a positive integer of size at most p1/2 for i = 1, . . . , r in the

�rst ase and i = 2, . . . , r in the seond ase. To see this onsider the �rst

[p1/2]+2 multiples of αi in Fp. Two of them have representations whih di�er

by at most (p − 1)/([p1/2] + 1), so by at most p1/2, and the di�erene gives

the result. In the seond ase we may take γ1 = 1 so γ1β1 = 1.
Put

E = {ε = (ε1, . . . , εr) with εi ∈ {0, 1} for i = 1, . . . , r}

and for eah ε in E put

d(ε) = ε1(β1,−α1)γ1 + · · ·+ εr(βr,−αr)γr.

Notie that for eah ε in E, d(ε) has oordinates represented by integers

between −r(p1/2 + 1) and r(p1/2 + 1).

Lemma 7.5 (Gyarmati, Sárközy, Stewart)

∏

ε∈E

f(x+ d(ε))

is the square of a polynomial in Fp[x1, x2].

Proof of Lemma 7.5 Write

fj(x1, x2) = fj(αjx1 + βjx2),

for j = 1, . . . , r, so that

f(x) = λ

r
∏

j=1

fj(x1, x2)ψ
2(x1, x2). (7.11)
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For eah integer j with 1 ≤ j ≤ r we may split E into two disjoint sets

E0
j and E1

j where ε in E is in E0
j if εj = 0 and is in E1

j if εj = 1. For ε in

E0
j let ε

1
denote the element of E1

j with the same oordinates as ε exept for

the j-th oordinate whih is 1. Then, for ε in E0
j ,

fj(x+ d(ε)) = fj(x+ d(ε1))

and so

∏

ε∈E

fj(x+ d(ε)) =
∏

ε∈E0
j

(fj(x+ d(ε))fj(x+ d(ε1)))

=





∏

ε∈E0
j

fj(x+ d(ε))





2

.

The result now follows from (7.11) sine |E| is even. �

Let D be the set of d = d(ε) whih our with odd multipliity among

the terms d(ε) with ε in E. It follows from Lemma 7.5 that ifD is non-empty

then

∏

d∈D

f(x+ d) (7.12)

is the square of a polynomial in Fp[x1, x2].
We laim that (0, 0) is in D. Certainly d(0, . . . , 0) = (0, 0). Further if ε is

in E and d(ε) = (0, 0) then ε1α1γ1+ · · ·+εrαrγr = 0. Sine αiγi is ongruent
to a positive integer of size at most p1/2 and r is at most p1/2/4 we see that

ε1 = · · · = εr = 0 in the �rst ase and that ε2 = · · · = εr = 0 in the seond

ase. But in the seond ase we �nd that d(ε) = (ε1β1γ1, 0) = (ε1, 0) so

ε1 = 0. Therefore if ε is in E and d(ε) = (0, 0) we see that ε = (0, . . . , 0) and
this shows that (0, 0) is in D. Clearly, |D| ≡ |E| (mod 2) and sine |E| = 2r

we onlude that

2 ≤ |D| ≤ |E| = 2r.

Let d = (d1, d2) in D. Then d1 and d2 are integers between −r(p1/2 + 1)
and r(p1/2 + 1). Put

d11 = min
d∈D

d1, d12 = min
d∈D

d2

and

d0 = (d11, d
1
2).
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Then d− d0 ∈ I2p for d ∈ D sine r ≤ p1/2/4. Next put

B = {(x1, x2) ∈ I2p | 0 ≤ xi < p− 2r(p1/2 + 1) for i = 1, 2}.

Notie that

|B| ≥ (p− 2r(p1/2 + 1))2 ≥ p2 − 4rp3/2. (7.13)

Put

F (x) =
∏

d∈D

f(x+ d− d0).

F (x) is the square of a polynomial in Fp[x1, x2] by (7.12). Let ℓ = |D|. With

η de�ned by (6.2) we �nd that

Qℓ(η) ≥
∣

∣

∣

∣

∣

∑

x∈B

∏

d∈D

η(x+ d− d0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈B
F (x)6=0

(

F (x)

p

)

+
∑

x∈B
F (x)=0

∏

d∈D

η(x+ d− d0)

∣

∣

∣

∣

∣

∣

∣

∣

≥
∑

x∈B
F (x)6=0

1−
∑

x∈B
F (x)=0

1 ≥ |B| − 2
∑

x∈F2
p

F (x)=0

1. (7.14)

It is easy to see that if a polynomial F ∈ Fp[x1, x2] is of degree u and v in x1
and x2, respetively, then the number of its zeros x ∈ F2

p is at most (u+ v)p.
Thus it follows from (7.13) and (7.14) that

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p

whih proves Theorem 7.2. �

7.4 Generating a large family of suitable polynomials

In this setion we onstrut a large family of polynomials whih are non-

degenerate.

Theorem 7.3 (Gyarmati, Sárközy, Stewart) Let f ∈ Fp[x1, x2] be a

polynomial of the form

f(x1, x2) = xk1 + x1x2g(x1, x2) + x2h(x2) (7.15)
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with g ∈ Fp[x1, x2], deg g ≤ k − 3, h ∈ Fp[x2], deg h(x2) ≤ k − 2 and

x2 ∤ h(x2). Then for the binary lattie η de�ned in (6.2) we have

Qℓ(η) < 11kℓp3/2 log p. (7.16)

Proof of Theorem 7.3 We will need the following generalization of the

Shönemann-Eisenstein theorem.

Lemma 7.6 If f(x) = a0x
n+· · ·+an is a polynomial over an integral domain

R and a is a maximal ideal of R with

a0 6≡ 0 (mod a),

a1 ≡ · · · ≡ an ≡ 0 (mod a),

an 6≡ 0 (mod a
2)

then f(x) annot be deomposed in R[x] into a produt of non-onstant fa-

tors.

Proof of Lemma 7.6 See, for example [93, Theorem 282℄. �

R = Fp[x2] is an integral domain and a =< x2 > is a maximal ideal in it.

Then the onditions of Lemma 7.6 hold for the polynomial f(x1, x2) ∈ R[x1]
in (7.15), thus f(x1, x2) is irreduible.

In order to use Theorem 7.1 we prove that f(x1, x2) is not of the form

(7.5). Sine f(x1, x2) is irreduible we have to prove that f(x1, x2) is not of
the form

f(x1, x2) = f1(α1x1 + β1x2). (7.17)

Let h be the degree of f1 and onsider the terms of degree h in f1, so

f1(α1x1 + β1x2) = c(α1x1 + β1x2)
h + f2(α1x1 + β1x2),

where the degree of f2(α1x1 + β1x2) is ≤ h − 1 and c 6= 0 ∈ Fp. Clearly,

c(α1x1 + β1x2)
h
equals the sum of the terms of degree k of f(x1, x2), thus by

the onditions of Theorem 7.2 we have

c(α1x1 + β1x2)
h = xk1.

We may suppose that k is less than p sine the result is immediate otherwise.

It then follows that h = k, c = α1 = 1 and β1 = 0, thus from (7.17)

f(x1, x2) = f1(x1). (7.18)
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On the other hand f(x1, x2) ontains a power of x2, and this ontradits

(7.18). Thus f(x1, x2) is not of the form (7.5). We have also proved that

f(x1, x2) is irreduible, and by using Theorem 7.1 a) we obtain the result.�

7.5 A Legendre symbol onstrution with optimal

bounds

As we remarked already in [61℄, our upper bounds are not optimal; in

partiular, in (7.16) the optimal upper bound would be, up to logarithmi

fators, p (with a fator depending on k and ℓ). On the other hand this

onstrution is more natural than the ones using �nite �elds in [65℄, [79℄

or [80℄ (where the bounds are sharper), and it an be implemented faster.

However, we will show that for a ertain (rather speial) family of polynomials

the �nite �eld onstrution presented in [79℄ is equivalent to a Legendre

symbol onstrution of type (6.2). Thus in this ase we obtain a family of

binary latties whih ombines the advantages of the two onstrutions: as

in [79℄ we have optimal bounds, and as a Legendre symbol onstrution it

an be implemented fast and easily.

Indeed, ombining Theorems 7.1 and 7.2 of [79℄, we get the following

result:

Theorem 7.A (Mauduit, Sárközy) Let p be an odd prime, n ∈ N, q =
pn, and denote the quadrati harater of Fq by γ (setting also γ(0) = 0).
Consider the linear vetor spae formed by the elements of Fq over Fp, and

let v1, . . . , vn be a basis of this vetor spae. Let f(x) ∈ Fq[x] be a polynomial

of degree k with

0 < k < p (7.19)

whih has no multiple zero. De�ne the n-dimensional binary p-lattie η(x) :
Inp → {−1,+1} by

η(x) = η((x1, . . . , xn))

=

{

γ(f(x1v1 + · · ·+ xnvn)) for f(x1v1 + · · ·+ xnvn) 6= 0
1 for f(x1v1 + · · ·+ xnvn) = 0.

(7.20)

Assume also that ℓ ∈ N with

4n(k+ℓ) < p. (7.21)

Then we have

Qℓ(η) < kℓ
(

q1/2(1 + log p)n + 2
)

. (7.22)

Our next result follows from Theorem 7.A in the ase that n = 2 and for
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a speial hoie of v1, v2 and the polynomial f .

Theorem 7.4 (Gyarmati, Sárközy, Stewart) Let p be an odd prime and

let r be a quadrati non-residue modulo p. Then the polynomial x2 − r is

irreduible over Fp; denote one of its zeros by θ, and onsider the extension

of Fp by θ: Fp[θ](∼= Fp2). Let k and ℓ be integers whih satisfy (7.19) and

(7.21), and assume that a1, a2, . . . , ak, b1, b2, . . . , bk ∈ Fp satisfy

ai + biθ 6= aj + bjθ and ai + biθ 6= aj − bjθ for 1 ≤ i < j ≤ k. (7.23)

Put

f̃(x1, x2) =

k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2
)

(7.24)

and

η̃(x) = η̃(x) = η̃((x1, x2)) =

{ (

f̃(x1,x2)
p

)

if (f̃(x1, x2), p) = 1

1 if p | f̃(x1, x2).
(7.25)

For eah positive integer ℓ with

42(ℓ+k) < p (7.26)

we have

Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

.

Proof of Theorem 7.4 By the de�nition of θ and Euler's lemma, we have

θp = (θ2)
p−1
2 θ = r

p−1
2 θ = −θ. (7.27)

We will use Theorem 7.A with n = 2, q = p2, v1 = 1, v2 = θ, so that now

the elements of Fq = Fp2 are represented in the form x1 + x2θ. Then by the

generalization of Euler's lemma to Fq and (7.27), for x1 + x2θ ∈ F∗
p2 , so with

(x1, x2) 6= (0, 0), we have

γ(x1 + x2θ) = (x1 + x2θ)
p2−1

2 = (x1 + x2θ)
p2−p

2 (x1 + x2θ)
p−1
2

= ((x1 + x2θ)
p)

p−1
2 (x1 + x2θ)

p−1
2 = (xp1 + xp2θ

p)
p−1
2 (x1 + x2θ)

p−1
2

= (x1 − x2θ)
p−1
2 (x1 + x2θ)

p−1
2 = (x21 − x22θ

2)
p−1
2 = (x21 − rx22)

p−1
2

=

(

x21 − rx22
p

)

.
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By the multipliativity of γ and the Legendre symbol, it follows that writing

f(x1 + x2θ) =

k
∏

i=1

((x1 + x2θ)− (ai + biθ)) (7.28)

and de�ning η(x) = η((x1, x2)) as in (7.20) we have

η(x) = γ(f(x1 + x2θ)) = γ

(

k
∏

i=1

((x1 + x2θ)− (ai + biθ))

)

=
k
∏

i=1

γ ((x1 + x2θ)− (ai + biθ)) =
k
∏

i=1

γ ((x1 − ai) + (x2 − bi)θ)

=
k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2

p

)

=

(

∏k
i=1((x1 − ai)

2 − r(x2 − bi)
2)

p

)

=

(

f̃(x1, x2)

p

)

= η̃(x) (for f(x1 + x2θ) 6= 0) (7.29)

with the polynomial f̃ and the lattie η̃ de�ned by (7.24) and (7.25), respe-

tively, and trivially we have

η(x) = η̃(x) for f(x1 + x2θ) = 0. (7.30)

By (7.23) and the de�nition of r, the polynomial f̃ has no multiple zero, and

now (7.21) holds by (7.26). Thus Theorem 7.A an be applied, and then we

obtain from (7.22), (7.29) and (7.30) that

Qℓ(η) = Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

whih ompletes the proof of Theorem 7.4.

We remark that the onstrution in Theorem 7.4 ould be extended by

also onsidering higher degree fators in (7.28). Even more generally, we

may onsider polynomials f whih are not given in a produt form. In either

ase, we may use the fat that if f(x1 + x2θ) = p(x1, x2) + θq(x1, x2) (with
f(z) ∈ Fp[z], p(x1, x2), q(x1, x2) ∈ Fp[x1, x2] and θ, r de�ned as above), then

we have

γ(f(x1 + θx2)) = γ(p(x1, x2) + θq(x1, x2)) =

(

p2(x1, x2)− rq2(x1, x2)

p

)

.

However this would make the polynomial f̃ in (7.24) in Theorem 7.4 muh
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more ompliated.

Finally, we would like to disuss the implementation of the onstrution in

Theorem 7.4. The ritial point of the implementation is to �nd a quadrati

non-residue r. If p is �xed, then it is known that the GRH implies that

the least quadrati non-residue modulo p is less than (log p)c (with some

positive onstant c), and sine the quadrati harater of a given residue an

be deided in polynomial time (by using Jaobi symbols), r an be hosen

as the least quadrati non-residue modulo p whih an be determined in

polynomial time. On the other hand, no algorithm is known for �nding

the least quadrati non-residue in polynomial time without any unproved

hypothesis. However, in most ases one need not �x p, and this di�ulty

an be avoided. Namely, we may start out from the fat that if p is a prime

of the form 4k − 1, then -1 is a quadrati non-residue modulo p. Thus it is

worthwhile to make �rst a long sequene of primes p1 = 3 < p2 < · · · < pt
of the form 4k − 1 with say, pi < pi+1 < 2pi, and if we need a prime p of

size about N with p ≡ −1 (mod 4), then we take the �rst prime from this

sequene greater than N , and we take r = −1. (If we want a large prime p
of the form 4k − 1, then we may use the fat that the Mersenne primes are

of the form 4k − 1.)
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8 Further results

In this setion, I will write a few sentenes about my further papers

(written partly with my oauthors) about pseudorandomness, whih I have

written sine my PhD:

With Attila Peth® and András Sárközy in [59℄ we studied a pseudorandom

generator based on linear reursions. This onstrution has several advan-

tages: easy implementation and we were able to prove optimal bounds for

the pseudorandom measures.

In [37℄ I sharpened some earlier estimates on the pseudorandom measures

of a onstrution based on the disrete logarithm. (This earlier onstrution

was de�ned in [38℄ and my PhD dissertation [35℄.) In [44℄ I extend this

onstrution. This generalization has the interesting property that in speial

ases we get pseudorandom sequenes based on ellipti urves.

The onnetion between the pseudorandomness of binary sequenes and

binary latties is studied in [50℄. From a two-dimensional binaryN-lattie one

an make a unique binary sequene of lengthN2
by taking �rst the �rst row of

the lattie then ontinuing the sequene by the seond row of the matrix, et.

In [50℄ we showed that the lattie may have weak pseudorandom properties,

however, the assoiated sequene has strong pseudorandom properties. In

Theorem 5.3 I proved a result pointing the opposite diretion, moreover if

the lattie has strong pseudorandom properties, then the assoiated sequene

also has (see Setion 5).

In the appliations it may our that the initial pseudorandom sequene

turns out to be not long enough, thus we have to take the onatenation or

merging of it with another pseudorandom sequenes. I studied this problem

in [40℄ and [42℄.

Three di�erent onstrutions of binary latties with strong pseudorandom

properties are given in [51℄. These onstrutions are the two dimensional

extensions and modi�ations of three of the most important one dimensional

onstrutions.

In [52℄, [53℄, [54℄ we studied the pseudorandom measures of two-

dimensional binary latties with my oauthors. Thus in [52℄ we ompared the

di�erent pseudorandom measures and we estimated the normality measure

by the maximum of Qℓ measures. In [54℄ we studied the symmetry proper-

ties of binary latties. Finally, in [53℄ we introdued the multidimensional

version of the orrelation measure Cℓ and we estimated the minimum of the

measures Cℓ and Qℓ.

In [43℄ I realized that the shape of the box-latties B in De�nition 1.6 is

of very speial type. Sometimes we have to over more general situation, so

in [43℄ I introdued further new measures. I introdued the onvex and line
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measure and studied the onnetions between the new and old measures. I

show that there exists a speial ase of the Legendre symbol onstrution

(see Constrution 1.2) for whih a strong upper bound an be given for these

muh more general measures.

In [55℄, [56℄ with Christian Mauduit and András Sárközy we studied the

following problems: In ryptographi appliations sometimes is not enough

that the binary latties have strong pseudorandom properties, but it is also

important that their large family ontains "signi�antly" di�erent latties.

The ollision and avalanhe e�et study this property. In the one-dimensional

ase these notions are studied for example in the papers [7℄, [22℄, [66℄, [81℄,

[103℄, [104℄. In [55℄ we generalized the ollision and avalanhe e�et for the

multidimensional ase, and we de�ne new measures. In [56℄ we presented a

further onstrution for whih these new measures are optimal.

The linear omplexity is an important and frequently used measure of

unpreditability and pseudorandomness of binary sequenes. In [57℄ and [58℄

we extend this notion to two dimensions. We estimated the linear omplexity

of a truly random binary lattie. We analyzed the onnetion between the

linear omplexity and the orrelation measures, and we utilized the inequali-

ties obtained in this way for estimating the linear omplexity of an important

speial binary lattie. We studied onnetion between the linear omplexity

of binary latties and of the assoiated binary sequenes. We extend the no-

tion of k-error linear omplexity to bit latties. Finally, we present another

alternative de�nition of linear omplexity of bit latties.

Pseudorandomness an be de�ned on various di�erent objets. In [47℄

and [48℄ with Pasal Hubert and András Sárközy we studied pseudorandom

binary funtions on trees.

In [46℄ I presented a survey of the most important results involving the

new quantitative pseudorandom measures of �nite binary sequenes and lat-

ties.
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