Pseudorandom sequences constructed by the

power generator

Katalin Gyarmati*

Abstract

We study the pseudorandom properties of the power generator
(which includes as special cases the RSA generator and the Blum-
Blum-Shub generator). In order to estimate the pseudorandom mea-

sures character sums with exponential functions are used.

1 Introduction

We will study the pseudorandom properties of the power generator by
the following measures of pseudorandomness of finite binary sequences intro-
duced by C. Mauduit and A. Sarkozy [16, pp. 367-370).

For a binary sequence

EN = {61, ey GN} € {—]_, +1}N,
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write

U(En,t,a,b) = Zeaﬂb
and, for D = (dy, ..., d;) with non-negative integers 0 < d; < --- < dj,
V(En,M,D) =Y €nia, - na,.
Finally, for X = {z1,...,2,} € {—1,+1}" write
Z(En, M, X)=|{n:0<n < M, {epti1,€nso,.--,nre} = X}|.
Then the well-distribution measure of Ey is defined as

9

t
W(Ey) = max|U(Ew,,a,b)| = max

p E €a+jb

J=1

where the maximum is taken over all a,b,t such that a € Z, b,t € N and
1<a+b<a+th< N, while the correlation measure of order { of Ey is

defined as

)

M
Cy(Ex) = max |V (Ey, M, D)| = max
M,D M,

2 E Cntd; - - - en_i_dz

n=1

where the maximum is taken over all D = (dy,...,d;) and M such that
0<di <---<dy <M+d, <N. The normality measure of order { is

defined as

NZ(EN> IHA}I%?(’Z(ENaM7X) _M/Qé )

where the maximum is taken over all X = {x1,...,z,} € {—1,+1}¢, and M
such that 0 < M < N — ¢+ 1.

The power generator is defined by the following:



Let k£ > 2,m > 1 and ¥ be integers such that (¢J,m) = 1. Define the

sequence {u,} by the recurrence relation
u, =u’ , (modm), 0<u,<m-—1, n=12... (1)

with the initial value vy = .

The power generator has many applications in cryptography, see [1], [4],
[14], [21]. In the two special cases (k,p(m)) = 1 (where ¢(m) is the Euler
function) and k = 2 this sequence is known as the RSA generator and as the
Blum-Blum-Shub generator, respectively.

Although various properties of the power generator have been studied in
a number of papers, see [1], [3], [5], 4], [6], [12], [13], [14], [17], [21], few
unconditional results are known: Clearly, the sequence (1) becomes periodic,
possible values of the period are studied in [10]. Cusick [5] proved that
the rightmost bit of the Blum-Blum-Shub generator assumes values 0 and 1
almost equally often, provided that the period is large enough. Friedlander,
Lieman and Shparlinski [8|, proved that if the period of the RSA generator
is large enough, then the elements of the sequence is uniformly distributed
modulo m and a positive proportion of the rightmost and leftmost bits is
uniformly distributed. Lower bounds on the linear complexity of the power
generator have been given in [12], [20]. The results of this paper will be also

unconditional.

Notation 1 Let p be a prime, ¥ € F, be an element. Define the sequence uy,
by (1) with a prime modulus p in place of m (then the value of u, is fived in

the interval [0,p — 1]). Clearly the multiplicative order of u, = 9*" (mod p)



s non-increasing as n — 00. Let ng denote the smallest positive integer such

that for n > ng the multiplicative order of
u, =9 (mod p)
is the same number: t. Then
(k,t) = 1. (2)
Denote by T the multiplicative order of k modulo t.

Throughout the paper we will use these notations: p,9,t,k,T,ny and the

sequence {u,} will be as it described here. Clearly the sequence

un07 U‘n0+17 un0+27 ce .

is purely periodic with the period 7.
We convert the sequence {u,} to a binary sequence by the parity of its

last bit:
Construction 1 Define the sequence Ex = {e1,...,en} by

+1 if u, is even,
en = (3)
-1 if u, s odd.
In this paper we will study the pseudorandom properties of the sequence
En. First we will give upper bounds for the well-distribution measure and the

normality measure of order /. In Theorems 1 and 2 the length of the sequence

is T (defined in Notation 1), which is the period of the power generator.

Theorem 1

W(Er) < p"/3(log p)*.



For the normality measure we have
Theorem 2 For all ¢ > 1/4 we have
Ne(Er) < kDT (log p)™*,
where the implied constant depends only on c.

The proof of Theorems 1 and 2 will be based on extensions of theorems
of Friedlander, Hansen and Shparlinski in 7] and [9].

Until very recently only the short-range correlation (> €,4d,€ntd, - - - €ntd,
for small d;’s) could be handled. By using Bourgain [2]| new result, we will
be able to handle the long-range correlation as well, which was out of reach
until now. Thus here all the three pseudorandom measures of the power gen-
erator are studied, and this unconditionally proves that the pseudorandom
generator has strong pseudorandom properties.

We will estimate the correlation measure Ey defined by (3) for some
N < T, so the length of the sequence will be smaller than the period of the
power generator following from certain technical conditions in Bourgain 2]

theorem. The exact value of the length N is defined in Theorem 3.

Theorem 3 Suppose that (> < p. Denote by N = N(V,k,d) the largest

positive integer such that for all 1 < i < j < 2N we have
(K — k' t) <tp~°. (4)

Then there exists a constant €({,9) = > 0 depending on ¢ and § such that

for the sequence Ey of length N defined by (4) we have

Co(En) <p'™. (5)



The proof will be based on a recent result of Bourgain [2]. The upper
bound (5) for the correlation measure is non-trivial if N, the length of the
sequence (defined by (4)) is large. The following corollary studies a simple

case when NV is indeed large.

Corollary 1 Let p — 1 = 2q, where p and q are odd primes, ¥ be primitive
root modulo p, and k be primitive root modulo q. Then for the sequence

E—3)4 of length (p — 3)/4 defined by (3) we have

Co(Egp-s)/4) <p'%,
for an absolute constant € > 0.

We remark that (3) is not the only way to define a binary sequence {e,}
from the sequence {u,}. For example, Theorems 1,2,3 also hold for the

sequence Ey = {ey, ..., ey} defined by

+1 if 0 <w, <p/2,
en =
-1 ifp/2 <wu, <p.

In Section 2 we will estimate certain related exponential sums and the
proofs of Theorems 1,2 and 3 will be completed in Section 3.

In this paper we study the prime modulus case, i.e., u, = u,_1 (mod p),
where p is a prime. These results can be extended for the composite modulus
case by using exponential sums in [9]. Here I did not carry out the proof,
since the computations will be similar but more difficult. However, it may
happen that the power generator has stronger pseudorandom properties in

the prime modulus case than in the composite modulus case. This situation



indeed happens for the Legendre symbol sequence

{8 () (8)). e

Goubin, Mauduit and Sarkozy [11] proved that under certain conditions on
the polynomial p(z), this sequence has strong pseudorandom properties if
m is a prime: W(E,,), Cy(E,,) < m'/?logm. If m is composite Rivat and
Sarkozy [18] proved that for all polynomial p(z) we have Cy(E,,) > m.

Throughout the paper we write ¢,(a) = exp(27if).

2 Exponential sums

J. Friedlander, J. Hansen and I. Shparlinski gave an upper bound for

the sum 3.7 e,(a*"). Later Friedlander and Shparlinski [9] extended this
result to the sum 327 e, (a10% +ag* " -+ +a, 9% "). Here we will study
the extension this result to general powers and incomplete sums. First we

will study the incomplete sum analog of the result in [9].

Lemma 1 Let t,T be as in Notation 1. Let e > 1/4 and suppose that

t > p'/**9 for a constant 6 > 0. Let a; € F,, L, M € N with L < T. Then

M+L
Z ep(all,lgk”” + al2,l9k””+1 4o (lrﬁkﬂril) < ksl(r—l)Tl/éltl/Qpl/S lng,
r=M+1

where the implied constant depends only on & and ;. In the special case

r =1 we obtain

M+L
> eplad™) < TV 2p S logp,
z=M+1

where the implied constant depends only on 6.

7



Using J. Bourgain’s result [2], we will prove:

Lemma 2 For 1 < i < r let hy € Zy—y, ¥; = 9" and a; € F}, where

(hi,...,h.,p—1) =1 also holds. Then the sequence
{a9}" + -+ a9}

becomes periodic with period T (where T is defined in Notation 1). Denote
by
N(Vy,...,0:,k,0)=N

the largest positive integer N such that N <T', for all 0 <+ < N,1<j<r
(K'hj,t) < tp~°, (6)

and for all pairs {i1, 1}, {ia, jo} with 1 < dy,ip < N, 1 < j; < jo < 1 we
have
(k" hj, — k2hj, t) <tp™® or (k'hj, — k™hj,,t) = t. (7)
If there is no such N define N(04,...,9,,k,§) =N by 1.
Let Ly M € N with L <T. Then there ezxists a constant £(r,d) =9 > 0

depending on only r (the number of ¥;’s) and § such that:

M+L

. . _ r+1)7/2
> et + -+ 0,00 < (1)1 (p 2+ %) log p.
=M

Moreover, in the special case (hy,t) = 1 we may replace the term (r + 1)7/?

by (r + 1)1/2:

M+L 1/2

e « _ r—+1
> eplady a9 < (1) (p +<N71/)2) oep
=M

where the implied constant factors are absolute.

8



Proof of Lemma 1 and Lemma 2

We will use the following deep theorem of Bourgain [2]:

Lemma 3 Let p be a prime. Given r € Z* and 6 > 0, there is an &€ =

e(r,0) > 0 satisfying the following property: If
f(z) = aiz™ + -+ a2 € Z[z] and (a;,p) =1

where the exponents 1 < k; < p — 1 satisfy

(ki,p—1)<p'™ foralll <i<r
(ki —kj,p—1)<p™ forall1 <i#j<r

then

Proof of Lemma 3

See in [2].

In order to prove Lemma 1 and Lemma 2 first we need estimates for
complete sums.

First we give an upper bound for ny defined in Notation 1. Let ord ¥
denote the multiplicative order of ¥ modulo p. ng is the smallest integer for

which (k" ord 9) is maximal. From this

log ord ¥

< —— < 1.45logp. 9
log 2 ogp (9)

We will deduce the first two statements of Lemma 4 from Bourgain’s

theorem (Lemma 3), while the third part will be proved by extending an

argument of Friedlander and Shparlinski [9].



Lemma 4 Let ¥y,...,9, € F, and N(V4,...,9,,k,0) = N as in Lemma 2,
j € Zr. Then there exists a constant £(r,d) = o > 0 depending on only r

and & such that:

n071+T
S eplantt 4wt en ()| < () (e U
=0

(10)

If (hy,t) = 1 (where hy is defined by ¥, = 9" (mod p)), then we may replace

the term (r +1)"/2 by (r 4+ 1)Y/2:

no—14T 1/2

x T . — T—i_l
S @t ot @ er(n)| < (7)1 (p o )
T=N0Q

where the implied constants are absolute.
If 9; = 0¥ for 1 < i < r then there exists an upper bound, where the
exponent of p is given: Suppose that ¢, > 1/4 and t > p*/*>*° for a constant

0 >0, then

no—1+T
Z ep(alﬁk‘“ + a219kx+1 4+t arﬂkx+T_1>€T(jx) < ksl(rfl)Tl/4ﬁ1/2p1/g7

r=ng

(12)
where the implied constant depends only on 1 and §.
Proof of Lemma 4
The proof is similar to the proof of Theorem 8 in [7] in the special case

v = 1, but in order to prove (10) and (11) we use Bourgain’s theorem in

place of Weil’s theorem.

10



Let S = ‘ZZ(’:;JFT ep(a19 + -+ a9 Ver(jx)| and K C {kt,... kT}.
For y = k¥ € K denote v by indgy. Clearly,

no—1+7T

Z Z ep(ar®V™ + -+ a, 9% Ve (j(x + indk?/))‘ ~

yeKX x=ng

|/C|

By the Cauchy-Schwartz inequality we have

T1/2 [T 2\ V/?
S <

=Kl 3 ep(@®t 4 -+ 0% Yer (jindyy)

yek

r=ng

We recall that ¢; = 9" (mod p), where (hy,...,h.,p—1) = 1. Let d =
(p—1)/t. Since the order of ¥*" is ¢ for ny < x, for each of these powers ¥,

there exist precisely d values of z € F} such that ¥*" = 2? (mod p). Thus

1/2
T — 2\ 1/
= [K] v/ Z Z ep(ar 2™+ -+ a4, 22" Yer (jindyy)
z=1 yE]C

alzyhld 4ot a,rthTd—

T1/2
< -
= K[ d\/2

1/2
T arzmhrd)‘> _

yek zekl  z=1

For given y,x € IC define the polynomial g, ,(2) € F,[2] by

d xhid

def
Gya(2) Eayzvmid ooy pvhrd g gl

Denote by g,.(2) = c that the polynomial g, .(z) € F,[2] is identically
constant. Then

T2 pol 2
|lC|d1/2 <ZZ Zel’ gyx )

ze yek | z=1

1/2
T1/2 p—1
< K[ d/2 Z Zep(gm(z)) + Z D (13)
z,yell | z=1 z,yek
Gy,z(2)#Ec gy,z(2)=c

11



Next we estimate the number of the pairs y,z € K with g,.(2) = c
Clearly, then apart from the multiplicity, the set {yhid, ..., yh,.d} \ {0},
contains the same residue classes modulo p — 1 as the set {xhid, ..., zh,d}\
{0}. So the set {yh,...,yh.}\{0} contains the same residue classes modulo

t as the set {zhq,...,zh,.} \ {0}. We will use the following lemma.

Lemma 5 For given x € K at most (r + 1)" pieces of y € K exist such that
the sets {xhy,...,zh,.} \ {0}, {yh1,...,yh.} \ {0} contain the same residue
classes modulo t apart from the multiplicity. If (hq,t) =1 then at most r+1

pieces of y € K exist with this property.

Proof of Lemma 5 Define h,.,; by 0. Then for every 1 < i < r there exits

al<j(i) <r+1such that

yh; = xhj;  (mod t). (14)

This congruence determines y uniquely modulo ﬁ As i runs through the
numbers 1,2,...,7, by the Chinese Remainder Theorem we get that y is
uniquely determined modulo (1% =t (since (hy,...,h,,p—1) = 1).
In the special case (hi,t) = 1 the first congruence yh; = xhjy) (mod t)
determines y uniquely. The elements of K are distinct modulo ¢, thus if the
congruences in (14) are given, then at most one y € K exists with the desired
property. Since each j(i) may take r + 1 different values, from this follows

the lemma.

We return to the proof of Lemma 4. Define the constant ¢(r) by

r+1 i (b t) =1,
o(r) = (15)
(r+1)" otherwise.

12



By Lemma 5, for fixed x € IC at most ¢(r) pieces of y exist with g, .(z) = c.
x € K may take || different values, thus at most ¢(r) || pairs (y, ) exists

such that g, .(z) = c¢. By this and (13) we get

1/2
T1/2 p—1
SSW > D enlgyal2)| +cr) K| p
z,yekl | z2=1
9y, (2)Zc
Let @
p—1
def
Q= max ep(gy,m(z))|-
gy,x(z)¢0 z=1
Then
T2 ) e (TO\Y? Tp \“/?
S < K K < | == — . (16
< e (P Qe k) < (F2) 4 (cngly) - o)

In order to prove (10) and (11) we choose K = {k!,... kN} with N =

N(d1,...,9.,k,8). Then |K| = N. For z,y € K and 22 = d by (6) we have
(dwhj,p —1) = d(xhj, t) < dtp™® < p*~°. (17)
Clearly (17) also holds with y in place of z. Similarly, by (7)

<dtp™® <p'=% or
(dxhj, — dyhj,,p — 1) = d(zhj, — yhj,,t)

=dt=p—1.

Thus (8) holds for the polynomial g, ,(2) € F,[z] and we may use Lemma 3

since g, (z) # c. Then
Q S p17€2'

By this, (15), (16), t = £} and |K| = N we get:

Tpl—e2\ /2 Tp\ /2
S« (L) (cgg) < 0 e

13



which proves (10) and (11) in Lemma 4.

In order to get (12) we recall the proof of Friedlander and Shparlinski
[9]. Consider the special case h; = k! for 1 < i < r. In order to estimate
@ in this special case we need Weil’s theorem for character sums, which we

present in the following form:

Lemma 6 For any prime p, and any polynomial f(x) € F,[z] of degree

D > 1 which is not identically constant, the bound

P

> elf(z)

r=1

S Dpl/Q.

holds.

Proof of Lemma 6

This lemma can be deduced from Weil’s theorem. See [22|, an elementary
proof can be found in [19].

We will also need the following lemma of Friedlander, Hansen and Shpar-

linski [7]:

Lemma 7 For any set W C Z; of cardinality [W| =W, any fized 6 > 0 and

any integer h > t°, there erists an integer a € ZF, such that the congruence

ak=b (modt), keW,0<b<h-1 (18)
has
Wh
La(h) > e
solutions.

Proof of Lemma 7

14



This is Lemma 2 in [7].
We return to the proof of (12) in Lemma 4. Let g, > 1/4. If k=101 >
T3/4

si75,175, then using the trivial estimate we obtain 5 < T' < ke (r=1)41/21/4,)7/8

which was to be proved. Thus we may suppose

T3/(821)
=02 -~
k S 751/(451)pl/(1651) : (19)
Set
B (r+1)"2t
h = T1/2k(r—1)/2p1/4 (20)
Then by (19), T < t and t > p'/?*9 we have
t t1+1/(461) t1/2—1/(861)
h> T1/2 1/(53)/(516/1()16 pl/4 - T1/2+3/(8e1) pl/4-1/(16e1) > pl/4=1/(16=1)
ti/(de1)p €1
1/2—1/(8¢1)
t 20
—( > tm(l/Qfl/@a))’
pY/ 2)
thus we may use Lemma 7. Let W = {k',... kT}. We select a as in Lemma

2. Let now K denote the subset of VW which satisfies the corresponding
congruence (18). Then the degree of the polynomial g, .(z*) is less than

hk™'d. By this and Lemma 6 we have

p—1 p—1
Q= max 12 cploey())| = max | ep(gny ()| < BEHp!E (21)
gy,x(2)=0 12=1 gy,x(2)=0 1 2=1
By Lemma 7
Th
K] > —=. (22)

15



By (2) and (15) we have ¢(r) = r + 1. By this, (16), (20), (21), (22) and

t:’%lweget

S

IN

(Thkr_ldpl/Q) 12 N (c(’r’)Tp) 12

d K[d

(r+1)Tt\ "
K] )

/2
, 1/2 r+ 1)t !
< (Z k lhpl/Q) <( h ) )

< (Th " hpt?) " + (

< ((r + 1)k,r—1Tt2p1/z)1/4’

which was to be proved.

We return to the proof of Lemma 1 and Lemma 2. Let

M+L
Z ep(ardy + -+ a,95)

=M

S =

We will suppose M > ng, since by (9) the contribution of the terms of

M < x <ngin S is small, at most nyg < 1.45logp. Using

. T it T |n,
> er(ng) =
j=1 0 otherwise,
we get
1 no—1+T M+L T
S=7| > el@d +tail) 33 erlly—a)j)
y=no z=M j=1
1 M+L no—1+4T
= =202 erl=ia)|| Do el 4o a0 Ner(y)| . (23)
Let
no—1+71T
—max| Y ep@dt 4+ a0} er(y)]
! y=no

16



By (23) we have

1
S<T)

J

Q. (24)

T
=1

M+L
> en(—jx)
=M

By Lemma 4 there exits a constant €5 > 0 depending only on r and ¢ such

that

Q < (1) 2(p™= + (e(r)) PN Y2), (25)

where the constant ¢(r) is defined by (15). Moreover in the special case

¥; =98 for 1 < i <r we get that for every &, > 1/4
Q < kel(rfl)tl/QTl/llpl/S (26)

also holds.
By the sum of geometric progression, the triangle-inequality and |1 — e(x)| >

4 || = || we have

T | L T 9 1 1 (T+1)/2] 1
€T<—]37) < — < ; < ;
2.2 2T S 2 TS 2 T
(T+1)/2] j
= T <L TlogT. (27)
j=1

By (24), (25), (26) and (27) we get the statements of Lemma 1 and Lemma
2.

Remark 1 In fact, using the results of Friedlander, Hansen and Shparlinski
[7], the following can be proved: if t > p*/?*% for all integer v > 1 we have:

M+L
Z ep(alﬂkz + aQﬂkIH 4t arﬁk‘z“fl) < T 23(V;;11)t$p4(u1+1) logT.
=M

Here, we presented the proof only in the special case v = 1.

17



3 Proofs of Theorem 1-3

In order to express the terms of the sequence Ey we will use additive

characters as in [15]. We will use the following representation:

Lemma 8 Forn € N r,(n) denotes the unique r € {0,...,p — 1} for which
n = r (mod p). Then for odd integer p, there exists a function v,(a,x) :
7 x 7 — C such that

+1 ifry,(n) =2 (mod 2),

1
- Z vp(a, x)ey,(an) =
P i< 0 ifry(n)Zx (mod 2),

and the function vy(a,x) satisfies

e —
v(0,2) ={ °* Fe=0 (mod?2), (28)
Ll ifr=1 (mod 2).

Furthermore, for 1 < |a| < p/2 we have

b

min{a,p — 2a}’ (29)

vp(a, 7)| <

Proof of Lemma 8

Since for r € Z, we have

1 ifn=r (mod p),

1
p > ela(n—r) =

la|<p/2 0 otherwise,

for 0 < n <p—1 we have

1 ifn=2z (mod 2),

119 Z Z ep(—ar) | ey(an) =

la|]<p/2 \ r=x (mod 2), 0 otherwise.
0<r<p—1

18



Thus we may define v,(a, x) by

vp(a, x) &f Z ep(—ar).
r=z (mod 2),
0<r<p—1

From this immediately follows (28). By computing the geometric sum above,
using the triangle inequality and |1 — e(x)| > 4 || = || we get (29).

Writing v(a) = v(a,0) — v(a, 1) from Lemma 8 we get immediately:
Lemma 9 For 0 <n <p—1 and an odd integer p, we have

1 ifry(n) =0 (mod 2),
LS @eplany = A= 0 tmed2)

P <o —1 ifry(n) =1 (mod 2),
where the function v,(a) satisfies

p
min{a, p — 2a}

w(0) =1, [l < (1< lal <p/2).

Proof of Theorem 1
If t < p™/® Theorem 1 and 2 are trivial, since all pseudorandom measures

of Er are less or equal than 7' < ¢t < p7/®. Thus we may suppose that
t>p8 (30)

We have to prove that forany 0 < b<p, 0<c<b 1< M <T, we have

the estimate

D cerp| < p”¥(logp)*,
c+jg§M

By Lemma 9 we have

S el =2 3 wl@ X eplane)

la|<p/2

J J
c+jb<M c+jb<M

19



"
Since ey jp = (19(kc))(k 4 (mod p), the multiplicative order of k* modulo ¢ is

larger or equal than 7'/b and by (30) we may use Lemma 1 and obtain

> eplauep)| < TVH2p!® < pT/flog p.

J
c+jb
Thus

1
Z Ertam < - Z |Va(p)| p7/8 1ng + |Vp(0)| ) (31)

,,H%SM 1<]al<p/2

By Lemma 9 1,(0) = 1 and 3,1, -p/0 [Va(D)| < D214 (0j<pjars & < plogp, so
the theorem follows from this and (31).

Proof of Theorem 2

By Lemma 8 for M <T — ¢+ 1 we have

1
Z(Er, M, X) = v Z Z Vp(@1, Unt1) * + + Vp(ae, Un-te)
P lai<or tarl<pr2
Z ep(@1Unt1 + -+ - 4 Qplipny). (32)
n<M

If (a1,...,a,) = (0,...,0) then trivially

Z ep(1Upi1 + -+ Qg ye)| = M — 1. (33)
n<M

By Lemma 8 we have

(p—1)f

(p+1)f
o '

2@

< |VP(O7 un-i-l) e VP(O> un+f)| < (34)

By (30) we may use Lemma 1 and for all ; > 1/4 we have that if (ay,...,as) #
(0,...,0) then

S ep(@ ™ e

n<M

§ : ep(alun—I—l + -+ aﬁun-i-ﬁ)
n<M

& kDT /808D o per(r=1) T8 1604, (35)

20



where the implied constant depends only on ;. By (32), (33), (35) and the

triangle inequality we have
Z Vp(a@1, Unt1) -+ Vp(ar, Une)

(a’l 7777 ‘12)#(0 7777 0)7
lai|<p/2 (1<i<{)

| Z(Br, M, X) — M/2"| < z%

1 |(p+1) M
Z ep(@1tn g1+ -+ + gty i) +— v 5 ) (]\4—1)—7 .
n<M p
Since ¢ < p we have
Lp+1) M| _((p+1) M elM el
o M-1)— | <|=——-1]; < <Z <15,
pﬁ ( ) 2| = pﬁ 2w = p2g = o

¢
and let 11,(0) = 222, Then by Lemma 8

If (a,p) =1 let py(a) = m

Vp(a, unti) < p(a). By this and (34) we have

¢
Z pp(a)| kD Blogp | +1.5.
la|<p/2

| Z(Ep, M, X) — M/2"| < 1%

Using ’Z|a|<p/2 ,up(a)’ K Y i<lal<p/art & < logp, we get the theorem.
Proof of Theorem 3

Theorem 3 is trivial if N < p'/2. Thus we may suppose that
N > p'/2, (36)

By Lemma 9 for M <pand 0 <d; < ---<d; <p— M we have

Z€"+d1"'6"+df:é Z Z vp(ar) - - vp(ar)

n<M lai|<p/2 lae|<p/2
E ep(a1tnga, + -+ + aplinia,)

n<M
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If (a1,...,a;) # (0,...,0) we may use Lemma 2 with hy = k% ... h, = k%,

By (2) (h;,t) = (k,t) = 1, thus we obtain

E ep(alun+d1 +oe azun+d/g)

n<M
k™ k™
= |3 eplon () 4 (9))
n<M
ey, (D)2
< (tT)1/2 (p 2+ (]Vf/i 10gp.

By (36) and 7? < p we have

Z ep(@tinay - - + Quinia,) | < P2

n<M

where the implied constant depends only on 5. Thus

14

1 _
L5 ) e

la|<p/2

E €n+dy - - - €n+d¢

n<M

Using ’Z|a|<p/2 vp(a)| < ’Z|a|<p/4+1£ < logp, we get

Cy(En) < cpte/4,

where the constant ¢; depends only on e5. From this for large p > py follows
the theorem, while for small p < py the theorem is trivial with an € > 0 for
which N < p!'=¢ if p < pg. Such € > 0 exists, since N < p.
Proof of Corollary 1

Since ¢ is a prime, t = g or t = 2¢. k is a primitive root modulo ¢, thus

for 1 <1< j<g—1 we have
(K —K'.t)=1 or (K —Fk t)=2
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which is less than tp=° for § > 1/2. Thus (4) holds with N = (p — 1)/3 and

using Theorem 3 we get the corollary.

We would like to thank Professor Andras Sarkozy for the valuable discus-

sions.
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