
Pseudorandom sequenes onstruted by thepower generatorKatalin Gyarmati∗AbstratWe study the pseudorandom properties of the power generator(whih inludes as speial ases the RSA generator and the Blum-Blum-Shub generator). In order to estimate the pseudorandom mea-sures harater sums with exponential funtions are used.1 IntrodutionWe will study the pseudorandom properties of the power generator bythe following measures of pseudorandomness of �nite binary sequenes intro-dued by C. Mauduit and A. Sárközy [16, pp. 367-370℄.For a binary sequene
EN = {e1, . . . , eN} ∈ {−1, +1}N ,
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write
U(EN , t, a, b) =

t
∑

j=1

ea+jband, for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 < · · · < dℓ,
V (EN , M, D) =

M
∑

n=1

en+d1 . . . en+dℓ
.Finally, for X = {x1, . . . , xℓ} ∈ {−1, +1}ℓ write

Z(EN , M, X) = |{n : 0 ≤ n < M, {en+1, en+2, . . . , en+ℓ} = X}| .Then the well-distribution measure of EN is de�ned as
W (EN) = max

a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣

∣

∣

∣

∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

,where the maximum is taken over all a, b, t suh that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N , while the orrelation measure of order ℓ of EN isde�ned as

Cℓ(EN) = max
M,D

|V (EN , M, D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,where the maximum is taken over all D = (d1, . . . , dℓ) and M suh that
0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N . The normality measure of order ℓ isde�ned as

Nℓ(EN ) = max
M,X

∣

∣Z(EN , M, X) − M/2ℓ
∣

∣ ,where the maximum is taken over all X = {x1, . . . , xℓ} ∈ {−1, +1}ℓ, and Msuh that 0 < M ≤ N − ℓ + 1.The power generator is de�ned by the following:2



Let k ≥ 2, m ≥ 1 and ϑ be integers suh that (ϑ, m) = 1. De�ne thesequene {un} by the reurrene relation
un ≡ uk

n−1 (mod m), 0 ≤ un ≤ m − 1, n = 1, 2, . . . (1)with the initial value u0 = ϑ.The power generator has many appliations in ryptography, see [1℄, [4℄,[14℄, [21℄. In the two speial ases (k, ϕ(m)) = 1 (where ϕ(m) is the Eulerfuntion) and k = 2 this sequene is known as the RSA generator and as theBlum-Blum-Shub generator, respetively.Although various properties of the power generator have been studied ina number of papers, see [1℄, [3℄, [5℄, [4℄, [6℄, [12℄, [13℄, [14℄, [17℄, [21℄, fewunonditional results are known: Clearly, the sequene (1) beomes periodi,possible values of the period are studied in [10℄. Cusik [5℄ proved thatthe rightmost bit of the Blum-Blum-Shub generator assumes values 0 and 1almost equally often, provided that the period is large enough. Friedlander,Lieman and Shparlinski [8℄, proved that if the period of the RSA generatoris large enough, then the elements of the sequene is uniformly distributedmodulo m and a positive proportion of the rightmost and leftmost bits isuniformly distributed. Lower bounds on the linear omplexity of the powergenerator have been given in [12℄, [20℄. The results of this paper will be alsounonditional.Notation 1 Let p be a prime, ϑ ∈ F∗
p be an element. De�ne the sequene unby (1) with a prime modulus p in plae of m (then the value of un is �xed inthe interval [0, p − 1]). Clearly the multipliative order of un ≡ ϑkn

(mod p)3



is non-inreasing as n → ∞. Let n0 denote the smallest positive integer suhthat for n ≥ n0 the multipliative order of
un ≡ ϑkn

(mod p)is the same number: t. Then
(k, t) = 1. (2)Denote by T the multipliative order of k modulo t.Throughout the paper we will use these notations: p, ϑ, t, k, T, n0 and thesequene {un} will be as it desribed here. Clearly the sequene

un0, un0+1, un0+2, . . .is purely periodi with the period T .We onvert the sequene {un} to a binary sequene by the parity of itslast bit:Constrution 1 De�ne the sequene EN = {e1, . . . , eN} by
en =











+1 if un is even,
−1 if un is odd. (3)In this paper we will study the pseudorandom properties of the sequene

EN . First we will give upper bounds for the well-distribution measure and thenormality measure of order ℓ. In Theorems 1 and 2 the length of the sequeneis T (de�ned in Notation 1), whih is the period of the power generator.Theorem 1
W (ET ) ≪ p7/8(log p)2.4



For the normality measure we haveTheorem 2 For all ε > 1/4 we have
Nℓ(ET ) ≪ kε(ℓ−1)p7/8(log p)ℓ+1,where the implied onstant depends only on ε.The proof of Theorems 1 and 2 will be based on extensions of theoremsof Friedlander, Hansen and Shparlinski in [7℄ and [9℄.Until very reently only the short-range orrelation (∑n en+d1en+d2 . . . en+dℓfor small di's) ould be handled. By using Bourgain [2℄ new result, we willbe able to handle the long-range orrelation as well, whih was out of reahuntil now. Thus here all the three pseudorandom measures of the power gen-erator are studied, and this unonditionally proves that the pseudorandomgenerator has strong pseudorandom properties.We will estimate the orrelation measure EN de�ned by (3) for some

N < T , so the length of the sequene will be smaller than the period of thepower generator following from ertain tehnial onditions in Bourgain [2℄theorem. The exat value of the length N is de�ned in Theorem 3.Theorem 3 Suppose that ℓ2 < p. Denote by N = N(ϑ, k, δ) the largestpositive integer suh that for all 1 ≤ i < j ≤ 2N we have
(kj − ki, t) ≤ tp−δ. (4)Then there exists a onstant ε(ℓ, δ) = ε > 0 depending on ℓ and δ suh thatfor the sequene EN of length N de�ned by (4) we have
Cℓ(EN ) ≤ p1−ε. (5)5



The proof will be based on a reent result of Bourgain [2℄. The upperbound (5) for the orrelation measure is non-trivial if N , the length of thesequene (de�ned by (4)) is large. The following orollary studies a simplease when N is indeed large.Corollary 1 Let p − 1 = 2q, where p and q are odd primes, ϑ be primitiveroot modulo p, and k be primitive root modulo q. Then for the sequene
E(p−3)/4 of length (p − 3)/4 de�ned by (3) we have

Cℓ(E(p−3)/4) ≤ p1−ε,for an absolute onstant ε > 0.We remark that (3) is not the only way to de�ne a binary sequene {en}from the sequene {un}. For example, Theorems 1,2,3 also hold for thesequene EN = {e1, . . . , eN} de�ned by
en =











+1 if 0 ≤ un < p/2,
−1 if p/2 ≤ un < p.In Setion 2 we will estimate ertain related exponential sums and theproofs of Theorems 1,2 and 3 will be ompleted in Setion 3.In this paper we study the prime modulus ase, i.e., un ≡ un−1 (mod p),where p is a prime. These results an be extended for the omposite modulusase by using exponential sums in [9℄. Here I did not arry out the proof,sine the omputations will be similar but more di�ult. However, it mayhappen that the power generator has stronger pseudorandom properties inthe prime modulus ase than in the omposite modulus ase. This situation6



indeed happens for the Legendre symbol sequene
Em =

{(

p(1)

m

)

,

(

p(2)

m

)

, . . . ,

(

p(m)

m

)}

, f(x) ∈ Zm.Goubin, Mauduit and Sárközy [11℄ proved that under ertain onditions onthe polynomial p(x), this sequene has strong pseudorandom properties if
m is a prime: W (Em), Cℓ(Em) ≪ m1/2 log m. If m is omposite Rivat andSárközy [18℄ proved that for all polynomial p(x) we have C4(Em) ≫ m.Throughout the paper we write ep(a) = exp(2πia

p
).2 Exponential sumsJ. Friedlander, J. Hansen and I. Shparlinski gave an upper bound forthe sum ∑T

x=1 ep(aϑkx
). Later Friedlander and Shparlinski [9℄ extended thisresult to the sum∑T

x=1 ep(a1ϑ
kx

+a2ϑ
kx+1

· · ·+arϑ
kx+r−1

). Here we will studythe extension this result to general powers and inomplete sums. First wewill study the inomplete sum analog of the result in [9℄.Lemma 1 Let t, T be as in Notation 1. Let ε1 > 1/4 and suppose that
t > p1/2+δ for a onstant δ > 0. Let ai ∈ Fp, L, M ∈ N with L ≤ T . Then

M+L
∑

x=M+1

ep(a1ϑ
kx

+ a2ϑ
kx+1

+ · · · + arϑ
kx+r−1

) ≪ kε1(r−1)T 1/4t1/2p1/8 log p,where the implied onstant depends only on δ and ε1. In the speial ase
r = 1 we obtain

M+L
∑

x=M+1

ep(a1ϑ
kx

) ≪ T 1/4t1/2p1/8 log p,where the implied onstant depends only on δ.7



Using J. Bourgain's result [2℄, we will prove:Lemma 2 For 1 ≤ i ≤ r let hi ∈ Zp−1, ϑi = ϑhi and ai ∈ F∗
p where

(h1, . . . , hr, p − 1) = 1 also holds. Then the sequene
{a1ϑ

kx

1 + · · ·+ arϑ
kx

r }beomes periodi with period T (where T is de�ned in Notation 1). Denoteby
N(ϑ1, . . . , ϑr, k, δ) = Nthe largest positive integer N suh that N ≤ T , for all 0 ≤ i ≤ N , 1 ≤ j ≤ r

(kihj , t) ≤ tp−δ, (6)and for all pairs {i1, j1}, {i2, j2} with 1 ≤ i1, i2 ≤ N , 1 ≤ j1 ≤ j2 ≤ r wehave
(ki1hj1 − ki2hj2, t) ≤ tp−δ or (ki1hj1 − ki2hj2, t) = t. (7)If there is no suh N de�ne N(ϑ1, . . . , ϑr, k, δ) = N by 1.Let L, M ∈ N with L ≤ T . Then there exists a onstant ε(r, δ) = ε2 ≥ 0depending on only r (the number of ϑi's) and δ suh that:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · · + arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2

(

p−ε2 +
(r + 1)r/2

N1/2

)

log p.Moreover, in the speial ase (h1, t) = 1 we may replae the term (r + 1)r/2by (r + 1)1/2:
∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · · + arϑ
kx

r )

∣

∣

∣

∣

∣

≪ (tT )1/2

(

p−ε2 +
(r + 1)1/2

N1/2

)

log p.where the implied onstant fators are absolute.8



Proof of Lemma 1 and Lemma 2We will use the following deep theorem of Bourgain [2℄:Lemma 3 Let p be a prime. Given r ∈ Z+ and δ > 0, there is an ε =

ε(r, δ) > 0 satisfying the following property: If
f(x) = a1x

k1 + · · · + arx
kr ∈ Z[x] and (ai, p) = 1where the exponents 1 ≤ ki ≤ p − 1 satisfy

(ki, p − 1) < p1−δ for all 1 ≤ i ≤ r

(ki − kj, p − 1) < p1−δ for all 1 ≤ i 6= j ≤ r

(8)then
∣

∣

∣

∣

∣

p−1
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

< p1−ε.Proof of Lemma 3See in [2℄.In order to prove Lemma 1 and Lemma 2 �rst we need estimates foromplete sums.First we give an upper bound for n0 de�ned in Notation 1. Let ord ϑdenote the multipliative order of ϑ modulo p. n0 is the smallest integer forwhih (kn0 , ord ϑ) is maximal. From this
n0 ≤

log ord ϑ

log 2
< 1.45 log p. (9)We will dedue the �rst two statements of Lemma 4 from Bourgain'stheorem (Lemma 3), while the third part will be proved by extending anargument of Friedlander and Shparlinski [9℄.9



Lemma 4 Let ϑ1, . . . , ϑr ∈ Fp and N(ϑ1, . . . , ϑr, k, δ) = N as in Lemma 2,
j ∈ ZT . Then there exists a onstant ε(r, δ) = ε2 ≥ 0 depending on only rand δ suh that:
∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2

(

p−ε2 +
(r + 1)r/2

N1/2

)

.(10)If (h1, t) = 1 (where h1 is de�ned by ϑ1 ≡ ϑh1 (mod p)), then we may replaethe term (r + 1)r/2 by (r + 1)1/2:
∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

1 + · · · + arϑ
kx

r )eT (jx)

∣

∣

∣

∣

∣

≪ (tT )1/2

(

p−ε2 +
(r + 1)1/2

N1/2

)

,(11)where the implied onstants are absolute.If ϑi = ϑki for 1 ≤ i ≤ r then there exists an upper bound, where theexponent of p is given: Suppose that ε1 > 1/4 and t > p1/2+δ for a onstant
δ > 0, then
∣

∣

∣

∣

∣

n0−1+T
∑

x=n0

ep(a1ϑ
kx

+ a2ϑ
kx+1

+ · · ·+ arϑ
kx+r−1

)eT (jx)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8,(12)where the implied onstant depends only on ε1 and δ.Proof of Lemma 4The proof is similar to the proof of Theorem 8 in [7℄ in the speial ase
ν = 1, but in order to prove (10) and (11) we use Bourgain's theorem inplae of Weil's theorem. 10



Let S =
∣

∣

∣

∑n0−1+T
x=n0

ep(a1ϑ
kx

1 + · · ·+ arϑ
kx

r )eT (jx)
∣

∣

∣
and K ⊆ {k1, . . . , kT}.For y = kv ∈ K denote v by indky. Clearly,

S =
1

|K|

∣

∣

∣

∣

∣

∑

y∈K

n0−1+T
∑

x=n0

ep(a1ϑ
ykx

1 + · · · + arϑ
ykx

r )eT (j(x + indky))

∣

∣

∣

∣

∣

.By the Cauhy-Shwartz inequality we have
S ≤

T 1/2

|K|





n0−1+T
∑

x=n0

∣

∣

∣

∣

∣

∑

y∈K

ep(a1ϑ
ykx

1 + · · · + arϑ
ykx

r )eT (jindky)

∣

∣

∣

∣

∣

2




1/2

.We reall that ϑi ≡ ϑhi (mod p), where (h1, . . . , hr, p − 1) = 1. Let d =

(p− 1)/t. Sine the order of ϑkx is t for n0 ≤ x, for eah of these powers ϑkx ,there exist preisely d values of z ∈ F∗
p suh that ϑkx

≡ zd (mod p). Thus
S ≤

T 1/2

|K| d1/2





p−1
∑

z=1

∣

∣

∣

∣

∣

∑

y∈K

ep(a1z
yh1d + · · ·+ arz

yhrd)eT (jindky)

∣

∣

∣

∣

∣

2




1/2

≤
T 1/2

|K| d1/2

(

∑

y∈K

∑

x∈K

∣

∣

∣

p−1
∑

z=1

ep(a1z
yh1d + · · ·+ arz

yhrd−

− a1z
xh1d − · · · − arz

xhrd)
∣

∣

∣

)1/2

.For given y, x ∈ K de�ne the polynomial gy,x(z) ∈ Fp[z] by
gy,x(z)

def
= a1z

yh1d + · · ·+ arz
yhrd − a1z

xh1d − · · · − arz
xhrd.Denote by gy,x(z) ≡ c that the polynomial gy,x(z) ∈ Fp[z] is identiallyonstant. Then

S ≤
T 1/2

|K| d1/2

(

∑

x∈K

∑

y∈K

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

)1/2

≤
T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+
∑

x,y∈K
gy,x(z)≡c

p









1/2 (13)11



Next we estimate the number of the pairs y, x ∈ K with gy,x(z) ≡ c.Clearly, then apart from the multipliity, the set {yh1d, . . . , yhrd} \ {0},ontains the same residue lasses modulo p− 1 as the set {xh1d, . . . , xhrd} \

{0}. So the set {yh1, . . . , yhr}\{0} ontains the same residue lasses modulo
t as the set {xh1, . . . , xhr} \ {0}. We will use the following lemma.Lemma 5 For given x ∈ K at most (r + 1)r piees of y ∈ K exist suh thatthe sets {xh1, . . . , xhr} \ {0}, {yh1, . . . , yhr} \ {0} ontain the same residuelasses modulo t apart from the multipliity. If (h1, t) = 1 then at most r +1piees of y ∈ K exist with this property.Proof of Lemma 5 De�ne hr+1 by 0. Then for every 1 ≤ i ≤ r there exitsa 1 ≤ j(i) ≤ r + 1 suh that

yhi ≡ xhj(i) (mod t). (14)This ongruene determines y uniquely modulo t
(t,hi)

. As i runs through thenumbers 1, 2, . . . , r, by the Chinese Remainder Theorem we get that y isuniquely determined modulo t
(t,h1,...,hr)

= t (sine (h1, . . . , hr, p − 1) = 1).In the speial ase (h1, t) = 1 the �rst ongruene yh1 ≡ xhj(1) (mod t)determines y uniquely. The elements of K are distint modulo t, thus if theongruenes in (14) are given, then at most one y ∈ K exists with the desiredproperty. Sine eah j(i) may take r + 1 di�erent values, from this followsthe lemma.We return to the proof of Lemma 4. De�ne the onstant c(r) by
c(r) =











r + 1 if (h1, t) = 1,

(r + 1)r otherwise. (15)12



By Lemma 5, for �xed x ∈ K at most c(r) piees of y exist with gy,x(z) ≡ c.
x ∈ K may take |K| di�erent values, thus at most c(r) |K| pairs (y, x) existssuh that gy,x(z) ≡ c. By this and (13) we get

S ≤
T 1/2

|K| d1/2









∑

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

+ c(r) |K| p









1/2

.Let Q

Q
def
= max

x,y∈K
gy,x(z)6≡c

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gy,x(z))

∣

∣

∣

∣

∣

.Then
S ≤

T 1/2

|K| d1/2

(

|K|2 Q + c(r) |K| p
)1/2

≤

(

TQ

d

)1/2

+

(

c(r)
Tp

|K| d

)1/2

. (16)In order to prove (10) and (11) we hoose K = {k1, . . . , kN} with N =

N(ϑ1, . . . , ϑr, k, δ). Then |K| = N . For x, y ∈ K and p−1
t

= d by (6) we have
(dxhj , p − 1) = d(xhj , t) ≤ dtp−δ < p1−δ. (17)Clearly (17) also holds with y in plae of x. Similarly, by (7)

(dxhj1 − dyhj2, p − 1) = d(xhj1 − yhj2, t)











≤ dtp−δ < p1−δ or
= dt = p − 1.Thus (8) holds for the polynomial gy,x(z) ∈ Fp[z] and we may use Lemma 3sine gy,x(z) 6≡ c. Then

Q ≤ p1−ε2.By this, (15), (16), t = p−1
d

and |K| = N we get:
S ≪

(

Tp1−ε2

d

)1/2

+

(

c(r)
Tp

Nd

)1/2

≪ (Tt)1/2(p−ε2 + c(r)1/2N−1/2)13



whih proves (10) and (11) in Lemma 4.In order to get (12) we reall the proof of Friedlander and Shparlinski[9℄. Consider the speial ase hi = ki−1 for 1 ≤ i ≤ r. In order to estimate
Q in this speial ase we need Weil's theorem for harater sums, whih wepresent in the following form:Lemma 6 For any prime p, and any polynomial f(x) ∈ Fp[x] of degree
D ≥ 1 whih is not identially onstant, the bound

∣

∣

∣

∣

∣

p
∑

x=1

ep(f(x))

∣

∣

∣

∣

∣

≤ Dp1/2.holds.Proof of Lemma 6This lemma an be dedued from Weil's theorem. See [22℄, an elementaryproof an be found in [19℄.We will also need the following lemma of Friedlander, Hansen and Shpar-linski [7℄:Lemma 7 For any set W ⊆ Z∗
t of ardinality |W| = W , any �xed δ > 0 andany integer h ≥ tδ, there exists an integer a ∈ Z∗

t , suh that the ongruene
ak ≡ b (mod t), k ∈ W, 0 ≤ b ≤ h − 1 (18)has

La(h) ≫
Wh

tsolutions.Proof of Lemma 7 14



This is Lemma 2 in [7℄.We return to the proof of (12) in Lemma 4. Let ε1 > 1/4. If kε1(r−1) >

T 3/4

t1/2p1/8 , then using the trivial estimate we obtain S ≤ T ≤ kε1(r−1)t1/2T 1/4p7/8whih was to be proved. Thus we may suppose
k(r−1)/2 ≤

T 3/(8ε1)

t1/(4ε1)p1/(16ε1)
. (19)Set

h =

[

(r + 1)1/2t

T 1/2k(r−1)/2p1/4

] (20)Then by (19), T ≤ t and t > p1/2+δ we have
h ≫

t

T 1/2 T 3/(8ε1)

t1/(4ε1)p1/(16ε1) p1/4
=

t1+1/(4ε1)

T 1/2+3/(8ε1)p1/4−1/(16ε1)
≫

t1/2−1/(8ε1)

p1/4−1/(16ε1)

=

(

t

p1/2

)1/2−1/(8ε1)

≫ t
2δ

1+2δ
(1/2−1/(8ε1)),thus we may use Lemma 7. Let W = {k1, . . . , kT}. We selet a as in Lemma2. Let now K denote the subset of W whih satis�es the orrespondingongruene (18). Then the degree of the polynomial gy,x(z

a) is less than
hkr−1d. By this and Lemma 6 we have
Q = max

x,y∈K
gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z))

∣

∣

∣

∣

∣

= max
x,y∈K

gy,x(z)≡0

∣

∣

∣

∣

∣

p−1
∑

z=1

ep(gx,y(z
a))

∣

∣

∣

∣

∣

≤ hkr−1dp1/2. (21)By Lemma 7
|K| ≫

Th

t
. (22)

15



By (2) and (15) we have c(r) = r + 1. By this, (16), (20), (21), (22) and
t = p−1

d
we get

S ≤

(

Thkr−1dp1/2

d

)1/2

+

(

c(r)Tp

|K| d

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)Tt

|K|

)1/2

≤
(

Tkr−1hp1/2
)1/2

+

(

(r + 1)t2

h

)1/2

≪
(

(r + 1)kr−1Tt2p1/2
)1/4

,whih was to be proved.We return to the proof of Lemma 1 and Lemma 2. Let
S =

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

1 + · · · + arϑ
kx

r )

∣

∣

∣

∣

∣

.We will suppose M ≥ n0, sine by (9) the ontribution of the terms of
M ≤ x ≤ n0 in S is small, at most n0 ≤ 1.45 log p. Using

T
∑

j=1

eT (nj) =











T if T | n,
0 otherwise,we get

S =
1

T

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )

M+L
∑

x=M

T
∑

j=1

eT ((y − x)j)

∣

∣

∣

∣

∣

=
1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · ·+ arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

. (23)Let
Q = max

j

∣

∣

∣

∣

∣

n0−1+T
∑

y=n0

ep(a1ϑ
ky

1 + · · · + arϑ
ky

r )eT (jy)

∣

∣

∣

∣

∣

.16



By (23) we have
S ≤

1

T

T
∑

j=1

∣

∣

∣

∣

∣

M+L
∑

x=M

eT (−jx)

∣

∣

∣

∣

∣

Q. (24)By Lemma 4 there exits a onstant ε2 > 0 depending only on r and δ suhthat
Q ≪ (tT )1/2(p−ε2 + (c(r))1/2N−1/2), (25)where the onstant c(r) is de�ned by (15). Moreover in the speial ase

ϑi = ϑki−1 for 1 ≤ i ≤ r we get that for every ε1 > 1/4

Q ≪ kε1(r−1)t1/2T 1/4p1/8 (26)also holds.By the sum of geometri progression, the triangle-inequality and |1 − e(x)| ≥

4 ‖ x ‖ we have
T
∑

j=1

∣

∣

∣

∣

∣

L
∑

x=0

eT (−jx)

∣

∣

∣

∣

∣

≤

T
∑

j=1

2

|1 − e(j/T )|
≤

1

2

T
∑

j=1

1

‖ j/T ‖
≤

[(T+1)/2]
∑

j=1

1

‖ j/T ‖

=

[(T+1)/2]
∑

j=1

j

T
≪ T log T. (27)By (24), (25), (26) and (27) we get the statements of Lemma 1 and Lemma2.Remark 1 In fat, using the results of Friedlander, Hansen and Shparlinski[7℄, the following an be proved: if t > p1/2+δ for all integer ν ≥ 1 we have:

∣

∣

∣

∣

∣

M+L
∑

x=M

ep(a1ϑ
kx

+ a2ϑ
kx+1

+ · · ·+ arϑ
kx+r−1

)

∣

∣

∣

∣

∣

≪ T 1− 2ν+1
2ν(ν+1) t

1
2ν p

1
4(ν+1) log T.Here, we presented the proof only in the speial ase ν = 1.17



3 Proofs of Theorem 1-3In order to express the terms of the sequene EN we will use additiveharaters as in [15℄. We will use the following representation:Lemma 8 For n ∈ N rp(n) denotes the unique r ∈ {0, . . . , p − 1} for whih
n ≡ r (mod p). Then for odd integer p, there exists a funtion νp(a, x) :

Z × Z → C suh that
1

p

∑

|a|<p/2

νp(a, x)ep(an) =











+1 if rp(n) ≡ x (mod 2),
0 if rp(n) 6≡ x (mod 2),and the funtion νp(a, x) satis�es

νp(0, x) =











p+1
2

if x ≡ 0 (mod 2),
p−1
2

if x ≡ 1 (mod 2). (28)Furthermore, for 1 ≤ |a| < p/2 we have
|νp(a, x)| ≪

p

min{a, p − 2a}
. (29)Proof of Lemma 8Sine for r ∈ Z, we have

1

p

∑

|a|<p/2

ep(a(n − r)) =











1 if n ≡ r (mod p),
0 otherwise,for 0 ≤ n ≤ p − 1 we have

1

p

∑

|a|<p/2









∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar)









ep(an) =











1 if n ≡ x (mod 2),
0 otherwise.18



Thus we may de�ne νp(a, x) by
νp(a, x)

def
=

∑

r≡x (mod 2),
0≤r≤p−1

ep(−ar).From this immediately follows (28). By omputing the geometri sum above,using the triangle inequality and |1 − e(x)| ≥ 4 ‖ x ‖ we get (29).Writing ν(a) = ν(a, 0) − ν(a, 1) from Lemma 8 we get immediately:Lemma 9 For 0 ≤ n ≤ p − 1 and an odd integer p, we have
1

p

∑

|a|<p/2

νp(a)ep(an) =











+1 if rp(n) ≡ 0 (mod 2),
−1 if rp(n) ≡ 1 (mod 2),where the funtion νp(a) satis�es

νp(0) = 1, |νp(a)| ≪
p

min{a, p − 2a}
(1 ≤ |a| < p/2).Proof of Theorem 1If t ≤ p7/8 Theorem 1 and 2 are trivial, sine all pseudorandom measuresof ET are less or equal than T ≤ t ≤ p7/8. Thus we may suppose that

t > p7/8. (30)We have to prove that for any 0 ≤ b < p, 0 ≤ c < b, 1 ≤ M < T , we havethe estimate
∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

≪ p7/8(log p)2.By Lemma 9 we have
∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb≤M

ec+jb

∣

∣

∣

∣

∣

∣

∣

∣

=
1

p

∑

|a|<p/2

νp(a)
∑

j
c+jb≤M

ep(auc+jb)19



Sine uc+jb ≡
(

ϑ(kc)
)(kb)j

(mod p), the multipliative order of kb modulo t islarger or equal than T/b and by (30) we may use Lemma 1 and obtain
∣

∣

∣

∣

∣

∣

∣

∣

∑

j
c+jb

ep(auc+jb)

∣

∣

∣

∣

∣

∣

∣

∣

≪ T 1/4t1/2p1/8 ≪ p7/8 log p.Thus
∣

∣

∣

∣

∣

∣

∣

∑

x
r+xm≤M

er+xm

∣

∣

∣

∣

∣

∣

∣

≪
1

p





∑

1≤|a|<p/2

|νa(p)|



 p7/8 log p + |νp(0)| , (31)By Lemma 9 νp(0) = 1 and ∑1≤|a|<p/2 |νa(p)| ≪
∑

1≤|a|<p/4+1
p
a
≪ p log p, sothe theorem follows from this and (31).Proof of Theorem 2By Lemma 8 for M ≤ T − ℓ + 1 we have

Z(ET , M, X) =
1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ). (32)If (a1, . . . , aℓ) = (0, . . . , 0) then trivially
∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

= M − 1. (33)By Lemma 8 we have
(p − 1)ℓ

2ℓ
≤ |νp(0, un+1) · · · νp(0, un+ℓ)| ≤

(p + 1)ℓ

2ℓ
. (34)By (30) we may use Lemma 1 and for all ε1 > 1/4 we have that if (a1, . . . , aℓ) 6=

(0, . . . , 0) then
∣

∣

∣

∣

∣

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1ϑ
kn+1

+ · · · + aℓϑ
kn+ℓ

)

∣

∣

∣

∣

∣

≪ kε1(r−1)T 1/4t1/2p1/8 log p ≪ kε1(r−1)p7/8 log p, (35)20



where the implied onstant depends only on ε1. By (32), (33), (35) and thetriangle inequality we have
∣

∣Z(ET , M, X) − M/2ℓ
∣

∣ ≤
1

pℓ

∣

∣

∣

∣

∣

∑

(a1,...,aℓ)6=(0,...,0),
|ai|<p/2 (1≤i≤ℓ)

νp(a1, un+1) · · · νp(aℓ, un+ℓ)

∑

n<M

ep(a1un+1 + · · ·+ aℓun+ℓ)

∣

∣

∣

∣

∣

+
1

pℓ

∣

∣

∣

∣

(p + 1)ℓ

2ℓ
(M − 1) −

M

2ℓ

∣

∣

∣

∣

.Sine ℓ < p we have
1

pℓ

∣

∣

∣

∣

(p + 1)ℓ

2ℓ
(M − 1) −

M

2ℓ

∣

∣

∣

∣

≤

(

(p + 1)ℓ

pℓ
− 1

)

M

2ℓ
≤

eℓM

p2ℓ
≤

eℓ

2ℓ
< 1.5.If (a, p) = 1 let µp(a) = p

min{a,p−2a}
and let µp(0) = p+1

2
. Then by Lemma 8

νp(a, un+i) ≤ µ(a). By this and (34) we have
∣

∣Z(ET , M, X) − M/2ℓ
∣

∣≪
1

pℓ







∣

∣

∣

∣

∣

∣

∑

|a|<p/2

µp(a)

∣

∣

∣

∣

∣

∣

ℓ

kε1(r−1)p7/8 log p






+ 1.5.Using ∣∣

∣

∑

|a|<p/2 µp(a)
∣

∣

∣
≪
∑

1≤|a|≤p/4+1
p
a
≪ log p, we get the theorem.Proof of Theorem 3Theorem 3 is trivial if N ≤ p1/2. Thus we may suppose that

N > p1/2. (36)By Lemma 9 for M < p and 0 ≤ d1 < · · · < dℓ ≤ p − M we have
∑

n≤M

en+d1 . . . en+dℓ
=

1

pℓ

∑

|a1|<p/2

· · ·
∑

|aℓ|<p/2

νp(a1) · · ·νp(aℓ)

∑

n<M

ep(a1un+d1 + · · · + aℓun+dℓ
)
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If (a1, . . . , aℓ) 6= (0, . . . , 0) we may use Lemma 2 with h1 = kd1 , . . . , hℓ = kdℓ .By (2) (hi, t) = (k, t) = 1, thus we obtain
∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · ·+ aℓun+dℓ
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n<M

ep(a1

(

ϑkd1
)kn

+ · · · + aℓ

(

ϑkdℓ

)kn

)

∣

∣

∣

∣

∣

≪ (tT )1/2

(

p−ε2 +
(r + 1)1/2

N1/2

)

log p.By (36) and r2 < p we have
∣

∣

∣

∣

∣

∑

n<M

ep(a1un+d1 + · · · + aℓun+dℓ
)

∣

∣

∣

∣

∣

≪ p1−ε2/2,where the implied onstant depends only on ε2. Thus
∣

∣

∣

∣

∣

∑

n≤M

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

=
1

pℓ











∑

|a|<p/2

|νp(a)|





ℓ

p1−ε2/2 + M






.Using ∣∣

∣

∑

|a|<p/2 νp(a)
∣

∣

∣
≪
∣

∣

∣

∑

|a|<p/4+1
p
a

∣

∣

∣
≪ log p, we get

Cℓ(EN) ≤ c1p
1−ε2/4,where the onstant c1 depends only on ε2. From this for large p > p0 followsthe theorem, while for small p ≤ p0 the theorem is trivial with an ε > 0 forwhih N < p1−ε if p < p0. Suh ε > 0 exists, sine N < p.Proof of Corollary 1Sine q is a prime, t = q or t = 2q. k is a primitive root modulo q, thusfor 1 ≤ i < j ≤ q − 1 we have

(kj − ki, t) = 1 or (kj − ki, t) = 222
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