On the correlation of binary sequences, II

Katalin Gyarmati, Christian Mauduit

Abstract

This paper concerns the study of the correlation measures of fi-
nite binary sequences, more particularily the dependence of correla-
tion measures of even order and correlation measures of odd order.
These results generalize previous results due to Gyarmati [7] and to
Anantharam [3] and provide a partial answer to a conjecture due to
Mauduit [12]. The last part of the paper concerns the generalization

of this study to the case of finite binary n-dimensional lattices.

1 Introduction

In 1997 Mauduit and Sarkozy [13] initiated the systematic study of finite
binary sequences Eyx = {ej,es,...,ex} with ej,eq,..., ey € {+1,—1} (see
[14] for the generalization to k symbols). They proposed to use the following

measures of pseudorandomness:
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The well-distribution measure of Ex is defined as

E €a+jb

where the maximum is taken over all a,b,t € Nwith 1 < a < a+(t—1)b < N,

max

while for k£ € N, k > 2 the correlation measure of order k of En is defined as

Cv(EN) = max

Entdy - - - Entd
Mds,..., ntda nt

where the maximum is taken over all M € N and non-negative integers
dy < dy < ---<d such that M + d, < N.

Since 1997 numerous papers have been written on this subject. In the
majority of these papers special sequences are constructed and/or tested for
pseudorandomness (see [8] for references), while in [1], [2], [4], [5], [6], [7], [11],
[15] and [16] the measures of pseudorandomness are studied. In particular in
[4] Cassaigne, Mauduit and Sarkozy compared correlations of different order.
They proved the following
Theorem A a) For k,{,N € N, k | {, Ex € {—1,+1}" we have

) < N ((a]z!w (Cg(]gN))k/f X ( g_]\j )k/f> .

b) If k, N € N and k < N, then there is a sequence Eyx € {—1,+1}" such
that if ¢ < N/2, then

Co(Ex) > (N =€)k — 54k*NY?log N if k| ¢
Co(Ey) < 2TKXUNY?1og N if k1 ¢
This result shows some kind of independence between Cj and Cy when k { ¢

and ¢ 1 k. In this paper we will show a link between Cy and Cy when k and
¢ have different parity.



Cassaigne, Mauduit and Sérkozy [4] asked the following related question:
Problem 1. For N — oo, are there sequences Ey such that Cy(Ey) =
O(V/N) and Cs(Ey) = O(1) simultaneously?
In [12] Mauduit also asked another closely related question
Problem 2. Let k, ¢ > 2 be integers. Is it true that for every Fy €
{—1,+1}*" we have
Coki1(EN)Cou(En) > N

where the implied constant factor depends only on k and ¢7 Or at least
Cgk+1(EN)CQg(EN) > Netkh) (1)

where the implied constant factor and the constant % < ¢(k,¢) <1 depend
only on k and ¢7

First Gyarmati [7] solved both Problem 1 and Problem 2 in the weaker
form (1) when k > ¢. The answer follows from the main result of [7]:
Theorem B Ifk,/ €N, 2k +1>2(, N € N and N > 67k* + 400, then for
all E, € { — 1,41} we have

2k+1 2k +1\¢ 1
(17 k(2¢+ 1) C%> + <17 2; ) N2k76022k+1 > §N2k—z+1

It follows trivially that
Corollary A Ifk,/ € N,logN >2k+1>2(, N € N and N > 67k* + 400,
E,e{—1,+1}" and

1
Co(E < Nl*[/(2k+1)
ulEn) < 55 K20+ 1)

then we have

1 2 R
Ex)>=(———) N2
Corn(En) > g (17(2k+ 1))

Corollary B If k,{ € N, 2k + 1> 20 then
Cop1(En)Cou(En) > N 14/ (2k+1)
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where the implied constant factor depends only on k and (. (This is the case
c(k,0)=1- T{H > L in Problem 2.)

Later Anantharam [3] sharpened Theorem A and he proved the following;:
Theorem C

2
Ca(En)Ca(Ex) = 5N,

Theorem C solves Problem 2 in the stronger form in the special case (2k +

1,2¢) = (3,2), so (1) holds with ¢ = 1.

2 Results

In this paper we would like to generalize the results in the previous section.
Theorem B studies only the case 2k + 1 > 2¢ while Theorem C involves only
Csy and (5. Here we study the general case, when there is no restriction of
the order of the correlation measures. The proof uses methods from [3] and

[7]. We will prove the following:
Theorem 1 There is a constant i, depending only on k and ¢ such that if
Corr1(En) < creN'?, (2)

then
Copy1 (En)*Cop( Ex ) > N2 (3)

where the implied constant factor depends only on k and (.
Remark 1 Theorem 1 is optimal: For Ey = {+1,—1,+1,—1,+1...} we
have CQkJrl(EN) =1 and C2Z(EN) =N — 26-'- 1.

Remark 2 It is an important question whether condition (2) is necessary in

Theorem 1. Cassaigne, Mauduit and Sarkozy [4] proved that for every e and

4



N > N(](E)
Cori1(EN), Cou(Ey) < N1/2(10g N)1/2 )

holds with probability 1 — e. Fix a sequence Ey for which (4) indeed holds
and N is large enough. From (3) and (4)

N5+k+1/2(10g N)Z+k+1/2 > N2k+1 (5)
follows. Since (5) is true for an N large enough we get from (5):
(4 k+1/2>2k+1

and thus
20> 2k + 1.

But in Theorem 1 2¢ can be less than 2k + 1 so we need an additional

assumption on the size of Cor1(Ey) and Cop( Ey).
Let us see some corollaries of Theorem 1.

Corollary 1 Suppose that Cy(Ey) < N'Y/%(log N)'/2, then

2k+1)/(4£
Coy1(EN) > min {Nl/{ N¢ /(40) }

(log N)(2k+1)/(4£)

where the implied constant factor depends on k and €.
Corollary 2 If Cor1(En) = O(1), then
ng(EN) > N,

where the implied constant factor depends on k and €.



Corollary 3
Cor41(En)Cou(En) > Netkb)

where the implied constant factor depends only on k and ¢ and where

1 ifk>1,

k)= 126t g oy
2 40 .

Remark 3 Corollary 3 solves Problem 2 in the stronger form when k£ > /¢
and in the weaker form (1) when k < /.

Our method can be adapted in the n-dimensional case. This theory has
been extended to n dimensions by Hubert, Mauduit and Sarkozy [10]. They
introduced the following definitions:

Denote by I7, the set of n-dimensional vectors whose coordinates are

integers between 0 and N — 1:
Iy ={x=(z1,...,2n) : ©1,...,2, € {0,1,...,N —1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice.
In [10] the definition of binary sequences is extended to more dimensions

by considering functions of type
ex =n(x): Iy — {—1,+1}.

If x = (z1,...,2,) so that n(x) = n((xy,...,x,)) then we will slightly sim-
plify the notation by writing n(x) = n(z1,...,x,).

Such a function can be visualized as the lattice points of the N-lattice
replaced by the two symbols + and —, thus they are called binary N -lattices.
Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption
of digital images.

Gyarmati, Mauduit and Sérkozy [9] introduced the correlation measures

for binary lattices:



The correlation measure of order k of the lattice n : Iy — {—1,+1} is
defined by

Ci(n) = max |y n(x+di)---n(x+do)|,

Bd,dic | £
where the maximum is taken over all distinct dy,...,dx € I} and all set B
of the special form
B={x=(z1,...,2,): 0< 2 <tiy(< N),..., 0< 2, <t,(<N)}

such that B +dy,..., B +dx C I}.

We get in the n-dimensional case

Theorem 2 There is a constant ci g, depending only on k, { and n such

that for an n-dimensional binary lattice n: I — {—1,+1} we have
Cort1(n) < Ck:,é,nNn/27

then
CQkJrl(n)%CQé(n)%Jrl > Nn(2k+1)’

where the implied constant factor depends only on k, ¢ and n.

We will give a sketch of the proof at the end of the paper.

3 Proof of Theorem 1

Let L =[N/2] and 1 < M < N/2 be integers, where the value of M will

be fixed later. Consider the following equation



20 2k+1

¥y > e

1<ni<no<--<ngop4+1<L 1<d1 <do < <dgy <M j=1 i=1
2k+1 22

D> > e s

1<d1 <dg<-<dgy<M 1<n; <na<--<ngpp1<L i=1 j=1

We will use the following lemmas

Lemma 1 For allt,A € N, t < A there is a polynomial p; a(x) € Q[x] with
the degree t such that if x1,xs,...,x4 € {—1,+1} then

pea(zr+ -+ x4) = Z Tiy Tiy - - - Ti, -

1<i) <o <<y <A

Denote the coefficients of pra by aria:
_ t t—1
Pea(T) = Qe at’ + Q1447 4o+ agya-

Then a,; 4 =0 if r Zt (mod 2), and (—1)*/2a,, 4 > 0 ifr =t (mod 2).

- (1)

Proof of Lemma 1. This is Lemma 2 in [7].

If t is even we also have:

Lemma 2

|apgal < AT,

Proof of Lemma 2 This follows from Lemma 3 and Lemma 5 in [7]. (Indeed
in [7] by Lemma 3 we get |a,; 4| < d;i;A®/2. In [7] w; is defined by
do;+dij+---+d;; in Lemma 4 and in Lemma 5 d; ; < w; < 1 is proved.)



Next we return to the proof of Theorem 1. First we rearrange A. For a
moment we fix the value of ny,ns,..., N1 in the first sum. Next we use

Lemma 1 with t =2¢, A= M and z, = Hfﬁ’fl en;+u for 1 <u < M. We get

20 2k+1

- ¥ S e

1<n; <na < <ngp41 <L 1<d) <do<--<dgy<M j=1 i=1

M 2k+1
- E P2e, M E H Cnitu
1<n; <na<---<ngpy1<L u=1 i=1
Similarly we rearrange B. For a moment we fix the value of dy,ds, ..., dy

in the first sum. Next we use Lemma 1 with t = 2k +1, A = L and
xu:]_[leewd for 1 <u < M. We get

2k+1 2¢

p- ¥ S e

1<di <do<--<doy<M 1§n1<n2<---<n2k+1§L =1 j=1

L 2
= E P2k+1,L g H€u+dj

1<d1 <d2<---<dop<M u=1 j=1

We denoted the coefficients of p; 4(z) by a, 4 in Lemma 1. Using these

notations we get

M 2k+1

E (20,20, M E H Cnitu

1<ni<no<---<ngp41 <L u=1 i=1

M 2k+1 21

+ Q2p—1,20,M E H €nitu + -+ ap2m

u=1 i=1

L 20
= E QA2k+1,2k+1,L E H€u+dj

1<d1 <da < <doy <M u=1 j=1
L 2 2k

+ ok 2k+1,L E H Cutd; +-4agokern |- (6)
u—1 j=1

2k+1



By Lemma 1 agox+1, = 0. From this and (6) we get

L o 2k+1
E 2k +1,2k+1,L E H Cutd;
1<dy <do<---<doe<M u=1 j=1
L 2 2k L 20

+ Aok 2k41,L E H Cutd; + oA a1kt E H Cu+td;

u=1 j=1 u=1 j=1

M 2k+1 2t
- E (20,20, M E H Enitu
1<ni<no<--<ngp41<L u=1 i=1

M 2k+1 2¢-1 M 2k+1
+ Qop—1,20,M E H €nitu + a1 20m g H €n;+u

u=1 i=1 u=1 i=1

= E @0,2¢,M -

1<ni<no<---<ngop+1<L

Again by Lemma 1 there is a constant ¢; depending only on k£ and ¢ such

that

L o 2k+1
E A2k41,2k+1,L E H Cutd;
1<d; <da<---<doy <M u=1 j=1
L 2k L 2

+ Q2k,26+1,L E H Cutd; + - a1 2k41,L E Cutd;

u=1 j=1 u=1j=1

M 2k+1 2t
- E Q2¢,20, M E H €nitu
1<ni<no<--<nop+1<L u=1 =1

M 2k+1 24-1 M 2k+1
+ Qop_1,20,M E H En;tu + - a1,20,M E H En;tu

u=1 i=1 u=1 i=1
> ¢ LML (7)

By Lemma 1 a,; 4 = 0 if r # t (mod 2). Using this and the triangle-
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inequality we get from (7)

2k+1 r

L 2
5 S sl S T e,

1<dy <da <+ <dgy <M r=1 u=1 j=1
= == (mod 2) !
20 M 2k+1 "
2k+1 10
+ > > araen| DT enien| = LM (8)
1<ni<n2<---<n <L r=2 u=1 =1
AR (mod 2)

By the definition of the correlation measures we have

L 2
Z H Cutd;| < Cu(EN),
M 2k+1
Z H Enitu < C2k+1<EN)'
u=1 i=1
By this and (8) we get
2%k+1
Z Z |ar2k11,0] Coe(EN)"
1<d1 <d2 < <dge <M —1 T(:n%od 2)
20
T Z Z |ar20,01| Corr (En)" > e LT M.

1<ni<ng<-<ngpy1<L r
+ r=0 (mod 2)

By this and Lemma 2

2k+1 2¢
M2 Z L(2k+1—7")/202£(EN)7" + [2k+1 Z M(Qﬁ—r)/202k+1 (EN)T
r=1 r(:réod 2) r=0 r(:n%od 2)
Z C1L2k+1Mg. (9)
Lemma 3

Ca(Ey) > N2

where the implied constant factor depends only on (.

11



Proof of Lemma 3 See in [1] and [11].
By this for 1 <r < 2k + 1 we have

L(2k+lfr)/202Z(EN)r < CQ[(EN)QkJrl.

Using this and (9) we get there is a constant ¢, depending only on &k and ¢
such that

20

CQMZECM(EN)%—H + L2k+1 Z M(Qk—r)/ZCQk_H (EN)T
r=0 r(:n%od 2)

> e LM (10)

Now we fix the value of M. Let M = c3Co;,1(Eyn)?, where the value of the

constant c3 will depend only on k£ and ¢. We choose the value of ¢3 such that

(4+1\"
|Vmax ( i ) “ < c3.
2<r<2¢ C1

Then
M@0y (By) < —M* 11
i) < 7o ()
holds. Now we fix the constant ¢, in Theorem 1, we put ¢, = ﬁ Then

2c3Co,41(En)? < N, so M < N/2 indeed. By (10) and (11) we get
o M Cop(Ey )2+ + L%chj_gl MY > e L2

MO (B )26+ > C1 L2kt
C2 2@( N) = —£+1

M2 (EBr)2E+ > C1 2R+t
2(En) = ol +1)

Writing L = [N/2] and M = c3Cy,,1(Ey)? we get
. N2k
- [—] C§C2k+1<EN)2Z

C§ZC21¢+1(EN)MC%(EN)%H > 5

- CQ(E -+ 1)
Coi1(En)* Cor(En)*M ! > N2

12



which was to be proved.

The proofs of Corollary 1 and 2 are immediate from Theorem 1.

4 Proof of Corollary 3

If Copp1(Ey) > N'Y2 then Corollary 3 is trivial since by Lemma 3
Co(Ey) > N2 also holds and then Chyyi(Eyn)Co(Ex) > N. Thus we
may assume that Cyyy1(Ey) < N2

If £k < ¢ by Theorem 1 and Lemma 3:

(02k+1(EN)CQZ(EN))2£ = Cops1(EN) ¥ Cop(En ) Cop( By )~ 2k+D
> N2k+IC2Z<EN)2Zf(2k+1)
> N2k+1N€—k—1/2 — Nf+k+1/2

so that
Cops1(En)Co(Ey) > N2 EkHD/@O,
If £ > ¢ then by Theorem 1
k+1 2% 2k41 2k—20+1
(02k+1(EN)02£(EN))2 = Copy1(En)*Co(En)* Copy1(En)
> N2k+102k+1(EN)2k72£+1

> N2k+1

so that
Copy1(En)Cou(En) > N.
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5 Sketch of the proof of Theorem 2

Since the method of the proof is very similar to the proof of Theorem 1
we only write a sketch of the proof.

Let P,(S) denote the set of those subsets of S which contains exactly ¢
elements. Let L = [N/2] and 1 < M < N/2 be integers where the value of
M will be fixed later. In order to compare Coy1(n) and Cyy(n) consider the
following equation

20 2k+1

def
A= E: E HHn(nﬁdj)
{n1,m2,...,n0k 41 YEPor41(I7) {d1,d2,....,dog } Py (I,) j=1 i=1
2k+1 2/

= > > IT T +d) < B.

{d1,da,....dag y€Pag(I};) {n1,n2,...,nop 41 yE€Pop1 (I}) =1 j=1
Then by using the same arguments as in the proof of Theorem 1 we get

2k+1
M2 Z Ln(2k+177‘)/20% (,’7)7"

r=1
r=1 (mod 2)

20
+ Ln(2k+1) Z M(2Z7r)n/202k+1<n)r > Can(QkJrl)MnZ. (12>

r=2
r=0 (mod 2)

Here we need the following extension of Lemma 3:

Lemma 4 Ifn: I}, — {—1,+1} is an n-dimensional binary lattice then
Ca(n) > N"/?

where the implied constant factor depends only on ¢ and n.

Proof of Lemma 4 For n = 1 this is Lemma 3. For n = 2 this is Theorem
4 in [9] and the proof can be easily extended for n > 2 thus we omit here the

proof.
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Using this and (12) we get there are constant ¢; and ¢y depending only

on k, ¢ and n such that

20
C2M2nZC%<n)2k+1 4+ M2k Z M"(”*")/QC%H(n)T
r=0 r(:n%od 2)

> Can(Qk—l—l)MnK' (13)

Now we fix the value of M. Let M = c3Co1(n)?, where the value of the

constant cg will depend only on k£ and ¢. We choose the value of c3 such that

/ 1 2/r
|Vmax < i ) “ < c3.
2<r<2¢ C1

Then similarly to the proof of Theorem 1 from (13) we obtain

C2k+1 <?7>2€C2Z <?7>2k+1 > Nn(2k+1)

which was to be proved.
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