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Abstract

Large families of binary sequences of the same length are considered

and a new measure, the cross-correlation measure of order k is intro-

duced to study the connection between the sequences belonging to the

family. It is shown that this new measure is related to certain other

important properties of families of binary sequences. Then the size of

the cross-correlation measure is studied. Finally, the cross-correlation

measures of two important families of pseudorandom binary sequences

are estimated.

1 Introduction

Pseudorandom binary sequences have many applications, in particular,
they play a crucial role in modern cryptography. The pseudorandomness of
the individual binary sequences is usually characterized by using the notion
of linear complexity, and tests based on mathematical statistics (“poker test”,
“runs test”, etc.) are also used. However, these requirements usually study
just a single property of the sequence, and they also have other weak points.
Thus recently a more comprehensive theory of pseudorandomness of binary
sequences has been initiated by Mauduit and Sárközy [34]. They introduced
the following notations and definitions:

Consider a binary sequence

EN = (e1, . . . , eN) ∈ {−1,+1}N .

Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

where the maximum is taken over all a, b, t with a, b, t ∈ N, 1 ≤ a ≤ a+ (t−
1)b ≤ N , while the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 · · · en+dk

∣

∣

∣

∣

∣

where the maximum is taken over all D = (d1, . . . , dk) with non-negative
integers d1 < · · · < dk and M ∈ N with M + dk ≤ N .

Then EN is considered a “good” pseudorandom sequence if both of these
measures W (EN) and Ck(EN) (at least for “small” k) are “small” in terms of N
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(in particular, both are o(N) as N → ∞). Indeed, later Cassaigne, Mauduit
and Sárközy [9] showed that this terminology is justified since for almost all
EN ∈ {−1,+1}N both W (EN) and Ck(EN) are less than N1/2(logN)c (and
they are also greater than εN1/2; see also [5], [6] and [25]). It was also shown
in [34] that the Legendre symbol forms a “good” pseudorandom sequence.
Since that many constructions have been given for binary sequences with
strong pseudorandom properties (see, e.g., [10], [11], [16], [17], [29], [30], [31],
[36], [37], [39]).

However, these “good” constructions produce only a “few” good sequences
while in many applications, e.g., in cryptography one needs “large” families
of “good” pseudorandom binary sequences. If these sequences are constructed
by an algorithm, then we usually speak of pseudorandom generator, and the
algorithm is considered a “good” one if it satisfies the “next bit” test; this
approach has certain weak points. Large families consisting of binary se-
quences which are “good” in terms of the pseudorandom measures defined
above have been also constructed; see, e.g., [19], [20], [27], [28], [31], [32],
[38]. In these constructions it is guaranteed that the individual sequences
belonging to the family possess strong pseudorandom properties. However,
in many applications it is not enough to know this; it can be much more
important to know that the given family has a “rich”, “complex” structure,
there are many “independent” sequences in it. In order to handle this re-
quirement Ahlswede, Khachatrian, Mauduit and Sárközy [2] (see also [3], [4],
[22], [33]) introduced the notion of family complexity or briefly f -complexity
(which can be especially useful in cryptography):

Definition 1 The f -complexity Γ(F) of a family F of binary sequences
EN ∈ {−1,+1}N is defined as the greatest integer j so that for any specifi-
cation

ei1 = ε1, . . . , eij = εj (1 ≤ i1 < · · · < ij ≤ N)

(with ε1, . . . , εj ∈ {−1,+1}) there is at least one EN = (e1, . . . , eN) ∈ F
which satisfies it. The f -complexity of F is denoted by Γ(F). (If there is no
j ∈ N with the property above then we set Γ(F) = 0.)

There are also other properties of families which play an important role
in the applications. Such a property is the existence of collisions in the given
family. This notion appears, e.g., in [8], [35], [40], [41]; we will follow here
Tóth’s [40] presentation. Assume that N ∈ N, S is a given set (e.g., a set of
certain polynomials or the set of all the binary sequences of a given length
much less than N), to each s ∈ S we assign a unique binary sequence

EN = EN (s) = (e1, . . . , eN ) ∈ {−1,+1}N ,
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and let F = F(S) denote the family of the binary sequences obtained in this
way:

F = F(S) = {EN(s) : s ∈ S}. (1)

Definition 2 If s ∈ S, s′ ∈ S, s 6= s′ and

EN (s) = EN(s
′), (2)

then (2) is said to be a collision in F = F(S). If there is no collision in
F = F(S), then F is said to be collision free.

In other words, F = F(S) is collision free if we have |F| = |S|. An ideally
good family of pseudorandom binary sequences is collision free.

There is another related notion appearing in the literature, namely, the
notion of avalanche effect (see, e.g., [8], [15], [24], [40], [41]); here we will
present Tóth’s definition):

Definition 3 If F is a family of form (1), and for any s ∈ S changing
s for any s′ ∈ S with s′ 6= s changes “many” elements of EN (s) (i.e., for
s 6= s′ many elements of the sequences EN(s) and EN (s

′) are different),
then we speak about avalanche effect, and we say that F = F(S) possesses
the avalanche property. If for any s, s′ ∈ S, s 6= s′ at least

(

1
2
− o(1)

)

N
elements of EN (s) and EN(s

′) are different then F is said to possess the
strict avalanche property.

We will also need

Definition 4 If N ∈ N, EN = (e1, . . . , eN) ∈ {−1,+1}N and E ′
N =

(e′1, . . . , e
′
N) ∈ {−1,+1}N , then the distance d(EN , E

′
N) between EN and E ′

N

is defined by
d(EN , E

′
N) = |{n : 1 ≤ n ≤ N, en 6= e′n}|

(so that d(EN , E
′
N) is a variant of the Hamming distance). Moreover if F is

a family of form (1), then the distance minimum m(F) of F is defined by

m(F) = min
s,s′∈S
s 6=s′

d (EN(s), EN(s
′)) .

Applying this notion we may say that the family F in (1) is collision free if
and only if m(F) > 0, and F possesses the strict avalanche property if

m(F) ≥

(

1

2
− o(1)

)

N. (3)
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The notions introduced in Definitions 3 and 4 can be also used when the
family F is not of form (1), i.e., no parameter set S is given; e.g., we may
say that F possesses the avalanche property if for any EN ∈ F , E ′

N ∈ F ,
EN 6= E ′

N the sequences EN and E ′
N have many different elements, and the

distance minimum can be defined as

m(F) = min
EN ,E′

N
∈F

EN 6=E′

N

d(EN , E
′
N).

We will use these notions in this extended sense.
In this paper our goal is to study a further important property of families

of binary sequences. First in Section 2 we will introduce a measure called
cross-correlation measure, and we will study the connection between this new
measure and the other related notions listed above. Then in Section 3 we will
study the connection between the size of the family and its cross-correlation
measure. Finally, in Sections 4 and 5 we will estimate the cross-correlation
of two important families of pseudorandom binary sequences.

2 The definition of the cross-correlation mea-

sure

In Section 1 we mentioned Ck(EN), the correlation measure of order k
of the binary sequence EN which is, perhaps, the most important measure
of pseudorandomness of a single binary sequence; in the definition of this
measure we consider a fixed sequence and we compare different elements of
it (so that this is an autocorrelation type quantity). If, instead of a single
sequence we want to characterize a family of sequences, then it is quite
natural to compare elements of different sequences taken from the family,
i.e., to consider a correlation type quantity involving different sequences.
Thus we suggest to use the following definition:

Definition 5 Let N ∈ N, k ∈ N, and for any k binary sequences
E

(1)
N , . . . , E

(k)
N with

E
(i)
N =

(

e
(i)
1 , . . . , e

(i)
N

)

∈ {−1,+1}N (for i = 1, 2, . . . , k)

and any M ∈ N and k-tuple D = (d1, . . . , dk) of non-negative integers with

0 ≤ d1 ≤ · · · ≤ dk < M + dk ≤ N, (4)
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write

Vk

(

E
(1)
N , . . . , E

(k)
N ,M,D

)

=
M
∑

n=1

e
(1)
n+d1

· · · e
(k)
n+dk

(5)

Let
C̃k

(

E
(1)
N , . . . , E

(k)
N

)

= max
M,D

∣

∣

∣
Vk

(

E
(1)
N , . . . , E

(k)
N ,M,D

)
∣

∣

∣
(6)

where the maximum is taken over all D = (d1, . . . , dk) and M ∈ N satisfying

(4) with the additional restriction that if E
(i)
N = E

(j)
N for some i 6= j, then we

must not have di = dj. Then the cross-correlation measure of order k of the
family F of binary sequences EN ∈ {−1,+1}N is defined as

Φk(F) = max C̃k

(

E
(1)
N , . . . , E

(k)
N

)

(7)

where the maximum is taken over all k-tuples of binary sequences
(

E
(1)
N , . . . , E

(k)
N

)

with

E
(i)
N ∈ F for i = 1, . . . , k.

(Note that other cross-correlation type quantities also occur in [7], [18],
[21].)

Then observe first that by the definition of C̃k, for every EN ∈ {−1,+1}N

we have
C̃k (EN , . . . , EN) = Ck(EN),

thus it follows from (7) that

Proposition 1 We have

Φk(F) ≥ max
EN∈F

Ck(EN). (8)

This means that an upper bound for the cross-correlation of order k of
the family F is also an upper bound for correlation of order k of every
sequence EN ∈ F . Thus it suffices to estimate Φk(F) : if we have a “good”
upper bound for Φk(F), then this guarantees that F consists of sequences
possessing strong pseudorandom properties.

In Section 1 we said that in the applications it is “important to know
that given family has a rich, complex structure, there are many independent
sequences in it”. Can one use the cross-correlation measure of a family to
show that, indeed, this is the case? We will show that already the small cross-
correlation measure of order 2 is enough to guarantee that the sequences in
the family are far apart (literally):
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Proposition 2 If N ∈ N and EN = (e1, . . . , eN ) ∈ F , E ′
N = (e′1, . . . , e

′
N) ∈

F , F ⊂ {−1,+1}N , then we have

∣

∣

∣

∣

d(EN , E
′
N)−

N

2

∣

∣

∣

∣

≤
1

2
C̃2(EN , E

′
N) ≤

1

2
Φ2(F). (9)

Proof. Clearly we have

(en − e′n)
2

4
=

{

0 if en = e′n
1 if en 6= e′n

for n = 1, 2, . . . , N

thus

d(EN , E
′
N ) =

N
∑

n=1

(en − e′n)
2

4
=

N

2
−

1

2

N
∑

n=1

ene
′
n

whence, by (5), (6) and (7),

∣

∣

∣

∣

d(EN , E
′
N)−

N

2

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

N
∑

n=1

ene
′
n

∣

∣

∣

∣

∣

≤
1

2
C̃2(EN , E

′
N) ≤ Φ2(F)

which proves (9).
If the cross-correlation of order 2 of the family F ⊆ {−1,+1}N is o(N):

Φ2(F) = o(N), (10)

then it follows from Definition 4, (9) and (10) that

m(F) = min
EN ,E′

N
∈F

EN 6=E′

N

d(EN , E
′
N ) ≥

N

2
−

1

2
Φ2(F) =

N

2
− o(N)

so that (3) holds. This proves

Proposition 3 If N ∈ N, F ⊂ {−1,+1}N and (10) holds then the family
F possesses the strict avalanche property.

So far we have seen that there is a close connection between collision,
distance minimum and avalanche property in a family of binary sequences
on one hand and its cross-correlation on the other hand. It remains to see
whether there is any connection between the family complexity of a family
and its cross-correlation. We will show by two examples that these two
measures are independent in the sense that it may occur that a family F
is “good” concerning its family complexity, i.e., Γ(F) is large but it is “bad”
considering its cross-correlation, i.e., Φk(F) is also large for every small k;
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on the other hand it is also possible that F is considered “good” since Φk(F)
is small, however F is “bad” concerning its small family complexity. (This
means that it is not enough to study only one of Γ(F) and Φk(F), we have
to estimate both of them.)

Example 1 Let N ∈ N and let F be the set of all the binary sequences of
length N : F = {−1,+1}N . Then clearly Γ(F) is maximal: Γ(F) = N . On
the other hand, EN = (e1, . . . , eN) = (1, . . . , 1) ∈ F thus by (8), for k ∈ N,
k ≤ N we have

Φk(F) ≥ Ck(EN) =

N−k+1
∑

n=1

enen+1 · · · en+k−1 =

N−k+1
∑

n=1

1 = N − k + 1

which is also large.

Example 2 Consider any family F of binary sequences of length N with
small cross-correlation of order k for any small k; e.g., we may take N =
p = prime and the family F1 which will be constructed later in Theorem 1
and which will satisfy the inequality

Φk(F1) < 10kdp1/2 log p

(for any 1 < k < p). Then for at least half of the sequences Ep =
(e1, . . . , ep) ∈ F1 either e1 = +1 or e1 = −1 holds; we may assume that
the first equality. Then let F ′

1 = {Ep = (e1, . . . , ep) : e1 = +1} so that

|F ′
1| ≥

|F1|
2

, we have

Φk(F
′
1) ≤ Φk(F1) < 10kdp1/2 log p

(which is small) and
Γ (F ′

1) = 0

(which is also small) since there is no Ep = (e1, . . . , ep) ∈ F ′
1 satisfying the

specification
e1 = −1.

3 The size of the cross-correlation measure

When we introduce a new pseudorandom measure of sequences or a new
family measure, then it is a question of basic importance that what is the
expected size of the new measure, and what is the size that we hope to
achieve? In case of the measures of pseudorandomness of binary sequences
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our starting point was the study of the behaviour of a truly random binary
sequence of a given length N . In case of families the situation is more com-
plex: usually not only the length N of the sequences is given but also the
size of the family F plays an important role. Our optimal goal is usually to
construct a possible large family F of “good” pseudorandom binary sequences
with the property that it possesses the strong avalanche property, i.e., (3)
holds: m(F) ≥

(

1
2
− o(1)

)

N , and by Proposition 3 this is the case if (9)
holds: Φ2(F) = o(N). It follows from the results of coding theory [42] that
requirement (3) can hold for an F with |F| > 2c1N with some 0 < c1 < 1/2
(e.g., c1 = 0.11 can be taken) but it is known that there is a c2 such that
c1 < c2 < 1/2 and a family with |F| > 2c2N cannot satisfying (3) (e.g.,
c2 = 0.18 can be taken). If we relax (3), then the size of F may grow. How-
ever, one should not forget that the sequences in F must also possess strong
pseudorandom properties; it is not at all easy to combine this requirement
with (3) and a good lower bound for |F|. In the practice it is quite satis-
factory to construct a family F with |F| > exp (N c1) , Φk(F) < N c2 (for all
small k) with some 0 < c1 < 1, c2 < 1 (note that by (8) it also follows from
the upper bound for Φk(F) that every EN ∈ F possesses small correlations
of small order). It remains to present constructions for families with these
properties. This will be done in Sections 4 and 5, but first we will study the
extremal values of Φk(F). (One also might like to study the behaviour of
the cross-correlation measures for a truly random family of given size. This
seems to be a rather difficult task; perhaps we will return to this problem in
a subsequent paper.) It was shown in [5], [25] that for N ∈ N, k ∈ N we have

min
EN∈{−1,+1}N

C2k(EN) >

(

1

2

[

N

k + 1

])1/2

.

By (8) the same lower bound can be given for Φ2k(F). On the other hand,
it was shown in [9] that for all N ∈ N, k ∈ N, 2k + 1 < N we have

min
EN∈{−1,+1}N

C2k+1(EN) = 1. (11)

It is a natural question to ask: what about the extremal values of
Φ2k+1(F)? If E ′

N denotes the binary sequence of N whose every element
is +1, F contains the sequence E ′

N , and 2k + 1 < N , then by (8) we have

Φ2k+1(F) = C2k+1 (E
′
N) = N − 2k.

On the other hand, if 2k + 1 < N then by (11) there is a binary sequence
E ′′

N of length N with C2k+1(E
′′
N ) = 1. If F consists of the single sequence E ′′

N
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then we have
Φ2k+1(F) = C2k+1 (E

′′
N) = 1.

But can Φ2k+1(F) be also small for greater families? We will show that
the answer is affirmative if |F| is “much smaller” than N , the length of the
sequences in F (but we do not know what happens in larger families):

Proposition 4 Let N ∈ N, k ∈ N, 2k + 1 < N , ℓ ∈ N and ℓ < N . For

i = 1, . . . , ℓ, define the binary sequence E
(i)
N =

(

e
(i)
1 , . . . , e

(i)
N

)

of length N by

e(i)n = (−1)[
n+i
ℓ ] for n = 1, . . . , N,

and let F be the family F =
{

E
(1)
N , . . . , E

(ℓ)
N

}

. Then we have

Φ2k+1(F) ≤ 2ℓ. (12)

Proof. Using notation (5), for any M , 1 ≤ i1, . . . , i2k+1 ≤ ℓ and 2k+1-tuple
D = (d1, . . . , d2k+1) satisfying (4) (with 2k + 1 in place of k) we have

∣

∣V2k+1

(

E
(i1)
N , . . . , E

(i2k+1)
N ,M,D

)

∣

∣ =

∣

∣

∣

∣

∣

M
∑

n=1

e
(i1)
n+d1

e
(i2)
n+d2

· · · e
(i2k+1)
n+d2k+1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

n=1

(−1)[
n+d1+i1

ℓ ] · · · (−1)

[

n+d2k+1+i2k+1

ℓ

]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ℓ
∑

r=1

[Mℓ ]−1
∑

m=0

(−1)[
ℓm+r+d1+i1

ℓ ] · · · (−1)

[

ℓm+r+d2k+1+i2k+1

ℓ

]

+
∑

ℓ[Mℓ ]<n≤M

(−1)[
n+d1+i1

ℓ ] · · · (−1)

[

n+d2k+1+i2k+1

ℓ

]

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

ℓ
∑

r=1

[Mℓ ]−1
∑

m=0

(−1)m+[ r+d1+i1
ℓ ] · · · (−1)

m+
[

r+d2k+1+i2k+1

ℓ

]

∣

∣

∣

∣

∣

∣

∣

+
∑

ℓ[Mℓ ]<n≤M

1

≤

∣

∣

∣

∣

∣

∣

∣

ℓ
∑

r=1

(−1)[
r+d1+i1

ℓ ]+···+
[

r+d2k+1+i2k+1

ℓ

]

[Mℓ ]−1
∑

m=0

(−1)(2k+1)m

∣

∣

∣

∣

∣

∣

∣

+ ℓ
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≤

∣

∣

∣

∣

∣

ℓ
∑

r=1

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[Mℓ ]−1
∑

m=0

(−1)m

∣

∣

∣

∣

∣

∣

∣

+ ℓ ≤ ℓ · 1 + ℓ = 2ℓ. (13)

(12) follows from (6), (7) and (13).
We do not know what happens in larger families:

Problem 1 Estimate minΦ2k+1(F) for any fixed N, k and |F|.

4 A family with small cross-correlation con-

structed by using the Legendre symbol

The first construction for large families of binary sequences with strong
pseudorandom properties (in terms of the measures described in Section 1)
was given by Goubin, Mauduit and Sárközy [19] and it used the Legendre
symbol (this is, perhaps, still the best construction of this type). They proved
Theorem A. If p is a prime number, f(x) ∈ Fp[x] has degree d (> 0), f(x)
has no multiple zero in Fp, and the binary sequence Ep = Ep(f) = (e1, . . . , ep)
is defined by

en =

{ (

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n),
(for n = 1, 2, . . . , p) (14)

then we have
W (Ep) < 10dp1/2 log p,

and if either
(i) k = 2,
(ii) 2 is primitive root modulo p and k < p, or
(iii) we have

k <
p1/d

4
, (15)

then
Ck(Ep) < 10kdp1/2 log p

also holds.
Indeed, this is a combination of Theorems 1 and 2 in [19]. (Note that

(15) is a corrected form of the inequality appearing in Corollary 2, (ii) in [19];
namely, there the exponent of p is 1/4, while the right exponent provided by
the proof is 1/d as in (15).)
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Let F denote the family of the binary sequences Ep(f) assigned to the
polynomials satisfying the conditions in Theorem A. In Sections 4 and 5 we
will show two different ways to modify the definition of the family slightly
so that one should also have reasonable control over the cross-correlations of
the family.

Theorem 1 Let d ∈ N, p a prime number, d < p, consider all the irreducible
polynomials f(x) ∈ Fp[x] of the form

f(x) = xd + a2x
d−2 + a3x

d−3 + · · ·+ ad (16)

(so that there is no xd−1 term) and let F1 denote the family of the binary
sequences Ep = Ep(f) assigned to these polynomials f by the formula (14).
Then we have
(i)

Φk (F1) < 10kdp1/2 log p (17)

for all k ∈ N, 1 < k < p, and
(ii) if d < p1/2/20 log p, then

|F1| ≥ p[d/3]−1. (18)

Proof. (i) By using the notations in Definition 5, we have to estimate

∣

∣Vk

(

E(1)
p , . . . , E(k)

p ,M,D
)
∣

∣ =

∣

∣

∣

∣

∣

M
∑

n=1

e
(1)
n+d1

. . . e
(k)
n+dk

∣

∣

∣

∣

∣

for
E(i)

p = E(i)
p (fi) ∈ F1 (i = 1, 2, . . . , k)

and M,D satisfying the conditions in Definition 5. Clearly,

fi(n+ di) ≡ 0 (mod p), 1 ≤ n ≤ M, 1 ≤ i ≤ k

has at most dk solutions (in pairs (n, i)). Thus defining
(

a
p

)

as 0 for p | a,

we have

∣

∣Vk

(

E(1)
p , . . . , E(k)

p ,M,D
)
∣

∣ =

∣

∣

∣

∣

∣

M
∑

n=1

e
(1)
n+d1

. . . e
(k)
n+dk

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M
∑

n=1

(

f1 (n+ d1)

p

)

· · ·

(

fk (n+ dk)

p

)

∣

∣

∣

∣

∣

+ dk
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=

∣

∣

∣

∣

∣

M
∑

n=1

(

f1 (n + d1) · · ·fk (n+ dk)

p

)

∣

∣

∣

∣

∣

+ dk. (19)

If for some 1 ≤ i < j ≤ k we have fi(x) 6= fj(x), then

fi(x+ di) 6= fj(x+ dj) (20)

since both fi and fj are of form (16). If 1 ≤ i < j ≤ k and fi(x) = fj(x),
then by the conditions on D in Definition 5 we cannot have di = dj , thus
again (20) holds. Then writing

h(x) = f1 (x+ d1) · · · fk (x+ dk) , (21)

this polynomial is the product of k distinct monic irreducible polynomials,
thus it is squarefree. Now we will need the following lemma:

Lemma 1 If p is a prime number, χ is a non-principal character modulo p
of order t, h(x) ∈ Fp[x] has degree r and it is not of the form h(x) = cg(x)t

with c ∈ Fp, g(x) ∈ Fp[x], and X, Y are real numbers with 0 < Y ≤ p, then

∣

∣

∣

∣

∣

∑

X<n≤X+Y

χ(h(n))

∣

∣

∣

∣

∣

< 9rp1/2 log p.

Proof. This lemma can be derived from Weil’s theorem [44] by using a
method of Vinogradov [43]; see Theorem 2 and Corollary 1 in [34] and Lemma
2 in [3]. (Note that combining Weil’s theorem and Vinogradov’s inequality
with Cochrane’s and Peral’s result [12], we obtain that the absolute constant
9 in this upper bound can be replaced by 4

π2 + o(1) for p → ∞, and then the
absolute constant 10 in (17) in Theorem 1 can also be replaced by 4

π2 +o(1).)
Since the polynomial in (21) is squarefree, thus we may use this lemma

with the quadratic character

χ(n) =

{ (

n
p

)

if (n, p) = 1

0 if p | n,

the polynomial h(x) in (21) and t = 2. Then we get from (19) that

∣

∣Vk

(

E(1)
p , . . . , E(k)

p ,M,D
)
∣

∣ < 9kdp1/2 log p. (22)

(17) follows from (6), (7) and (22).
In order to prove (18) we need a result of S. D. Cohen [13]:

12



Lemma 2 Given a prime power q > 3 and arbitrary positive integers n
and m ≤ n/3, there exists a primitive polynomial xn + a1x

n−1 + · · · + an ∈
Fq[x] with the first m coefficients a1, . . . , am prescribed in advance, with the
exception that there is no primitive cubic over F4 with zero first coefficient.

Proof. This is Theorem 3 in [13].
Now assume that d satisfies the given condition, and consider two distinct

irreducible polynomials f1, f2 of form (16). Write

Ep (f1) =
(

e
(1)
1 , . . . , e(1)p

)

, Ep (f2) =
(

e
(2)
1 , . . . , e(2)p

)

.

Then the proof of (19) gives that

∣

∣

∣

∣

∣

p
∑

n=1

e(1)n e(2)n

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

p
∑

n=1

(

f1(n)f2(n)

p

)

∣

∣

∣

∣

∣

+ 2d

< 18dp1/2 log p + 2d < 20dp1/2 log p < p

thus Ep (f1) 6= Ep (f2). It follows that |F1| is at least the number of irre-
ducible polynomials of form (16). For any fixed

a2 ∈ Fp, a3 ∈ Fp, . . . , a[d/3] ∈ Fp, (23)

there is at least one primitive polynomial f(x) of form (16) with these pre-
scribed coefficients (note that p > 3 follows from the conditions in the theo-
rem), and these polynomials are also irreducible (since primitive polynomials
are irreducible). Since different ai’s determine different irreducible polyno-
mials of form (16) and distinct polynomials determine sequences Ep, thus
the number of these sequences is at least the number of choices of the ai’s in
(23):

|F1| ≥ p[d/3]−1

which proves (18).

5 Another construction

Theorem 1 gives a good upper bound for the cross-correlation, and the size
of the family F1 is also large. However, this theorem has a weakness: since
no good algorithm is known for constructing “many” irreducible polynomials
over Fp (see [1], [14], [23], [26]) thus Theorem 1 proves only existence but it
does not provide an explicit construction. Thus now we will present another
construction which will be more explicit, but the price paid for this is that

13



we will be able to control the cross-correlation of order k only if k = 2 or k
is odd.

Theorem 2 Let d ∈ N, d odd, d < p, and consider all the polynomials
f(x) ∈ Fp[x] of the form

f(x) = (x− x1)(x− x2) · · · (x− xd) (24)

where
x1, x2, . . . , xd are distinct elements of Fp (25)

and
x1 + x2 + · · ·+ xd = 0. (26)

Let F2 denote the family of the binary sequences Ep = Ep(f) assigned to
these polynomials by formula (14). Then we have
(i)

Φk(F2) < 10kdp1/2 log p (27)

if k = 2 or k is odd, and
(ii)

|F2| =
1

d

(

p− 1

d− 1

)

. (28)

Proof. (i) Since a considerable part of the proof is similar to the proof
of (17) in Theorem 1 thus we will leave some details to the reader.

As in the proof of Theorem 1, we have

∣

∣Vk

(

E(1)
p , . . . , E(k)

p ,M,D
)
∣

∣ ≤

∣

∣

∣

∣

∣

M
∑

n=1

(

f1 (n+ d1) · · · fk (n+ dk)

p

)

∣

∣

∣

∣

∣

+ dk (29)

where f1, f2, . . . , fk are of form (24) (with x1, x2, . . . , xd satisfying (25) and
(26)). It follows from (26) that if f(x) is of this form, c ∈ Fp and c 6= 0, then
f(x) 6= f(x+ c), thus by the restriction on the di’s in Definition 5, for k = 2
we cannot have f1 (x+ d1) = f2 (x+ d2) in the sum in (29) thus the monic
polynomial f1 (x+ d1) f2 (x+ d2) is not a square. If k is odd then the degree
of the (monic) polynomial f1 (x+ d1) · · · fk (x+ dk) is kd which is odd (since
both k and d are odd), thus again this polynomial cannot be a square. In
both cases we may use Lemma 1 to estimate the sum in (29), and we get the
same upper bound as in the proof of Theorem 1 which proves (27).

(ii) As in the proof of Theorem 1, it follows from (24), (26) and the proof
of (27) (with k = 2) that for two distinct polynomials f1, f2 of form (24)
(with x1, x2, . . . , xd satisfying (25) and (26)) we have Ep(f1) 6= Ep(f2). Thus

14



|F2| is equal to the number of the polynomials f(x) which satisfy (24), (25)
and (26). The number of d-tuples x1, x2, . . . , xd satisfying (25) and

x1 + x2 + · · ·+ xd = c

is independent of c since there is a bijection between the solutions for different
c values (note that 0 < d < p). Thus the number of solutions of (25) and (26)
is the total number of d-tuples satisfying (25) divided by p: 1

p

(

p
d

)

= 1
d

(

p−1
d−1

)

,

and this proves (28).
Acknowledgement. We would like to thank Arne Winterhof and the
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