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combinatorial tools dominate.
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1 Introduction

Throughout this paper Z,N and QQ denote the set of the integers, positive
integers and rational numbers, respectively. p will denote a prime number.
F, denotes the finite field of order ¢, and we write ¢ = p" (with » € N) and

F, = F, \ {0}.

Séarkozy [9], [10] proved that if p is a prime and A, B,C, D are “large” subsets of
F, (more precisely, |A| |B||C| |D| is greater than C'p® with an absolute constant
C), then the equation

a+b=cd, ae A beB, ceC, deD, (1.1)

resp.
ab+1=cd, ac A, beB, ceC, deD (1.2)

can be solved.
Gyarmati and Sarkozy [6], [7] generalized these results to finite fields:
Theorem A If q is a prime power, A,B,C,D C F, and
[Al1B[[c] D] > ¢,

then (1.1) can be solved.
Theorem B If q is a prime power, A,B,C,D C F, and

A |B][c| D] > 1004,
then (1.2) can be solved.

If a theorem says that a certain equation can be solved in “large” (in the
infinite case, “dense”) subset(s) of a given set S, then we will call this result a
density result. More precisely, if S is finite and our theorem says that there is
a ¢ > 0 so that in order to guarantee the solvability of the equation it suffices
to assume that the size of the subset(s) is > |S|' ¢, then we will call the result
a strong density result, while if the corresponding lower bound is of form
> |8|(£(S1)) " with some f(N) = +o0, f(N) = N°®), then we will speak
of weak density result. Moreover, if only one subset A is given and all the
variables must assume values belonging to A (e.g., in (1.1) it is assumed that
A =B =C = D), then we will call the result a special density result, otherwise
we will speak of general density result. Finally, if a theorem says that for any
k-coloring of S the given equation must have a monochromatic solution, then
the result is called a Ramsey type theorem. Using this terminology we may
say that Theorems A and B are strong general density results.



In [6] and [7] Theorems A and B were also generalized by considering equations
a+b=f(c,d), a€ A beB, ceC, deD,

resp.

ab= f(c,d), a€ A, beB, ceC, deD
with f(z,y) € F,[z,y], A, B,C,D C F,, and it was shown that if f(z,y) sat-
isfies certain conditions, then these equations are solvable and, indeed, strong
general density theorems of type Theorems A and B were proved.

Even more generally, we proposed to study general equations of form
F(ai,...,a,) =0, a1 € Ay,...,a, € A, (1.3)

(with F(z1,...,2,) € Flzy,...,2,], A1,..., A, C F,) over F,. In particu-
lar, we studied the connection between the solvability and n, the number of
variables. We showed that if n = 2, then there is no general density result:

Theorem C Let q be a prime power, let f(x,y) € Fy[z,y] be of degree u and
vin x and y, resp., and assume that u,v < Z. Then there are A, B C F,; with

¢ go]9
424 18 = [

so that
fla,0) =0, a€ A beB

cannot be solved.

By Theorems A, B and their generalizations, there are (strong general) density
results with n = 4. However, we showed that not every polynomial F' with
n=41is “good”:

Theorem D Letn € N, n > 2, dy,...,d, € N and € > 0. Then there is
a po = po(n,dy,...,dn,e) so that if p is a prime with p > py and fi(x) €

Fplz], ..., fa(x) € Fy[z] are polynomials of degree d, ..., d,, resp., then there
are subsets A, ..., A, of F, so that

|A;| > (%—6)]) fori=1,2,...,n,
and
glar,...,an) = filar)) + -+ fulan) =0, a,€ Ay,...,an € A, (1.4)
has no solution.

We also proved a similar theorem with

g(a,...,a,) = fi(ar) ... fala,) —1



in place of the polynomial g in (1.4).

By Theorems A and B there are (strong) general density results with n = 4
but, by Theorem C, there is none with n = 2. We do not know what the
situation for n = 3 is, so that in [7] we raised the following problem (here we
formulate it in a slightly different form):

Problem A Is there a polynomial F(z1, s, x3) € Z[z1, x2, 23] of three vari-
ables so that there is a general density result on the solvability of

F(a1:a27a3) = 0; ai € Ala s € AQ; as € -’431
in F, (for ¢ = +00)?

In [7] Gyarmati and Sarkézy also proposed to study similar problems in N and
infinite fields. In particular, we pointed out that there are no density theorems
in N on the solvability of equations (1.1) and (1.2). On the other hand, we
asked whether there are Ramsey type results in N on the solvability of these
equations:

Problem B Does there exist a k& € N so that for any k-coloring of N, (1.1) (to
avoid trivialities, one should add the restriction a # b) has a monochromatic
solution? If yes, then what is the greatest £ with this property? If the answer
is negative, then what weaker statements can be proved on the coloring of the
solutions of (1.1)?

Problem C Does there exist a £ € N so that for any k-coloring of N,
ab+8 =cd

has a monochromatic solution? (Modulo 8 discussion shows that 1 in (1.2)
must be replaced by, say, 8.) If yes, then what is the greatest k£ with this
property?

Note that in the papers [6], [7], [9] and [10] character sums were used (and,
indeed, [6] was devoted completely for deducing the necessary character sum
estimates).

In this paper we will continue the work by focusing on the most interesting
cases when n (the number of variables) is 3, resp. 4, and we will pay more
attention to equations over N, resp. Q. These problems are beyond the reach
of the analytical methods, thus here we will use elementary-combinatorial
methods, and the statements proved will be weaker. First in Sections 2, 3,
4, 5 and 6 we will study equations with n = 3 (i.e., in 3 variables) over N
and F,. Then in Sections 7, 8 and 9 we will study equations with n = 4. In
Section 10 solvability in @Q will be considered. Finally, in Section 11 we will
present unsolved problems.



2 Arithmetic means in N and F,

The most important equation with n = 3 is, perhaps, the equation
a+b=2c, a€A beB, ceC. (2.1)

First consider this equation over N. If A is the set of the even numbers, B is
the set of the odd numbers and C = N, then (2.1) has no solution which shows
that there is no general density theorem in this case.

Now consider the special case A = B = C. Then a = b = ¢ is a trivial solution.
We may restrict ourselves to look for nontrivial solutions:

a+b=2c, abceA a#b. (2.2)

For n € N, let r3(n) denote the cardinality of the maximal set selected from
{1,2,...,n} so that (2.2) has no solution. Then by Roth’s theorem [8] we have

1/2
r3(n) < Cigiezy (and this has been improved to r3(n) < cn (1_()18()1?05_") / by

Bourgain [2]) so that there is a (weak) special density theorem. By Behrend’s

theorem [1] we have r3(n) > nexp(—c(log n)1/2) which shows that there is no
strong special density theorem.

Now consider equation (2.1) over F,. Let ¢ = p be a prime, A = {2k + 1 :
0<2t+1<p/2},B={2k: 0<2k<p/2},C={k:0<Ek<p/2}.
(Throughout this paper we identify F, with the field of the modulo p residue
classes, and we do not distinguish between an integer a and the modulo p
residue class represented by a.) Then (2.1) has no solution so that again,
there is no general density theorem. (Similar is the situation for ¢ = p" with
p > 2; we leave the details to the reader.)

Assume now that ¢ = p” with p — 400, A C F,, and consider equation (2.2)
over [F,. IF, forms a linear vector space of dimension r over its prime field F,,
let eg,es9,...,e. be a basis of this vector space. Every a € A has a unique
representation in form

a=z(a)e; + -+ z,(a)e, with z1(a),...,z,(a) € F,.

By the pigeon hole principle there are ys,...,y, so that writing A" = {a :
zo(a) = Yo, ..., x.(a) = y,} we have

, A
A > ;' (2.3)
If
|A| > 7‘3(p)
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then it follows from (2.3) that writing B = {x1(a) : a € A’} we have
|B| = [A'| > r3(p)

and B C {1,2,...,p} can be assumed. Then B contains a 3 term arith-
metic progression, i.e., there are distinct elements ai,a9,a3 € A’ so that
z1(a1),z1(ag), z1(az) form a 3 term arithmetic progression. Then (2.2) holds
with a1, ag, ag in place of a, b, ¢, and thus by Roth’s theorem [8] there is a weak
special density theorem over F, for p — +o00. (Note that the case ¢ = 2" is
different: then (2.2) becomes

a+b=0, abeA a#b
which has no solution.)

On the other hand, if ¢ = p is a prime and A is a maximal set selected
from {n : 0 < n < p/2} such that it does not contain a 3 term arithmetic
progression, then 4 as a subset of F, is such that (2.2) cannot be solved, and
by Behrend’s theorem [1], we have

|A| > pexp (—C(logp)1/2).

This shows that there is no strong special density theorem over [F,.

3 Geometric means in N and F,

The multiplicative analog of equation (2.1) is
ab=c*, ac€ A, beB, ceCl. (3.1)

First consider this equation over N. The example A = {a : ais odd}, B =
{b: b=2 (mod4)}, C = N shows that there is no general density theorem.
In the special case A = B = C again we must assume that a # b:

ab=¢?, abce A, a+#b. (3.2)

Then the example A = {n : |u(n)| = 1} (where u(n) is the Mobius function,
i.e., A consists of the squarefree integers) shows that there is no special density
theorem either.

On the other hand, there is a Ramsey type result over N:
Proposition 1 For every k € N and every k-coloring of N the equation

ab=c® a#b (3.3)



has a monochromatic solution in N.

Proof. Define a new k-coloring of N so that n € N should be of the same
color as 2" according to the original k-coloring. Then by van der Waerden’s
theorem [12] there is a 3 term arithmetic progression d, d + e, d + 2e (with
e # 0) in N which is monochromatic in terms of the new k-coloring. Then
a =24, b = 292 ¢ = 29%¢ i5 3 monochromatic solution of (3.3) in terms of
the original k-coloring. O

Now consider F,. Let v denote the quadratic character of I, i.e., for a € F,
we have

+1 if a # 0 and 2% = a has solution in F,,
v(a) =4 -1 ifa# 0 and z? = a has no solution in F,,
0 ifa=0.

Then for A={a: a € Fy,vy(a) =41}, B={b: b€ F,,v(b) = -1}, C =T,
equation (3.1) has no solution which shows that there is no general density
theorem.

On the other hand, there is a weak special density theorem over F:
Proposition 2 If ACT; and

|A| > r3(g — 1), (3-4)
then equation (3.2) can be solved.

Proof. Let g be a primitive element of I,, and define K by
K={k:ke{1,2,...,q-1},¢" € A}.

By (3.4), K contains an arithmetic progression k, k + d, k + 2d (with d > 0).
Then a = g%, b = g**t?4, ¢ = g*¥*¢ is a solution of (3.2). O

Indeed, by Roth’s theorem [8] this can be considered as a weak special density
theorem. On the other hand, there is no strong special density theorem in
this case. To see this, define £ so that it is a maximal set selected from
{1,2,...,[(g — 1)/2]} which contains no arithmetic progression of 3 terms,
and let A = {g°: £ € L} (where again g is a primitive element of F,). Then
(3.2) has no solution, and by Behrend’s theorem [1] we have

Al = £] = r5([(g — 1)/2]) > gexp(—c(logq)*/?).



4 The equation a(b+ ¢) = be

We have seen that there is neither general nor special result on the second
degree homogeneous equation (3.2) over N, but there is a Ramsey type result
in this case. Now we will show a less trivial example of this type.

Consider the equation
alb+c)=bc, a€ A beB, ceC (4.1)

first over N. Then the example A =B =C = {n: n € N, nis odd} shows
that there is neither general nor special density theorem in this case. On the
other hand, there is a Ramsey type theorem:

Theorem 1 For every k € N and every k-coloring of N, the equation
a(b+c¢) =be, a,b,ce A (4.2)

has a monochromatic solution.

Proof. We will need

Lemma 1 For every n € N there are different rational numbers x1,xs,. .., %,
so that for all 1 < i < j < n we have —— € 7.

Proof of Lemma 1. Let t1,t,,...,t, be different positive integers and set

1

B l; H (tu_tv).
uF#v

X

Then we have

1 1
ot Tt —ty) 1 T (tw—ty)
u#v uFv
_ ti —t; _ 1
tit; T (bw —to)  tit;  TI (tu—1ty)
uFv uFv
(uzv):lé(j:i)

xi—:rj

1

whence € Z follows and this completes the proof of the lemma.

Now assume that n is a positive integer which is large enough in terms of k£ and
which will be fixed later, and define the numbers z1, z,, . .., z, as it is described
in Lemma 1. Consider the complete graph of n vertices Py, P, ..., P,, and k-
color its edges so that the edge (P;, P;) should be colored by the same color as
the positive integer | in the given k-coloring of N. Now we fix n: it should

z;— |



be so large that Ramsey’s theorem guarantees a monochromatic triangle in
any k-coloring of the complete graph of n vertices. Then in our graph we can
find a monochromatic triangle with vertices, say, F;, P;, P,; without the loss
of generality we may assume that z; > z; > z,. Writing a = — =1

T;—xyp’ - Ti—Zj

and ¢ = w;—:w’ clearly a,b, ¢ is a monochromatic solution of the equation in
J

(4.1) in N, O

Now consider equation (4.1) over F,. If ¢ = p is a prime, then the example
A=B=C= {a ta €, al e {1,3,...,2 [fz’] — 1}} shows that there is

neither general, nor special density theorem (and examples of similar nature
can be given for general ¢ as well). On the other hand, again there is a Ramsey
type theorem:

Theorem 2 For every k € N there is a number qo = qo(k) such that if q > qo,
then for every k-coloring of F,, equation (4.2) has a monochromatic solution.

The method of the proof of Theorem 2 can be adjusted to prove this theorem,
we leave the details to the reader.

5 The equation a + b = c?

So far we have studied simple linear or second degree equations, and in each
case it turned out that there is at least a Ramsey type theorem. Now we will
study a further equation of this type where the situation is worse. Indeed,
consider the equation

a+b=c* a€cA beB, cel (5.1)

over N. The example A =B =C = {n: n € N, nis odd} shows that there
is neither general nor special density theorem in this case. We will show that
there is no Ramsey type theorem either. More exactly, a = b = ¢ = 2 is always
a monochromatic solution which we will call trivial solution, and we will be
looking only for nontrivial monochromatic solutions.

Theorem 3 N can be colored by 16 colors so that the equation
a+b=c (5.2)
has no nontrivial monochromatic solution.

Proof. We have to write N as the disjoint union of 16 sets so that, apart from
the trivial solution, (5.2) cannot be solved in either of them. Define the 16



sets in the following way: let

Ai={n:neN, n=i(modb)} fori=1,3 and 4,

Bi={n:neN, n=m-5""®* withm =i (mod5), u,v=0,1,...}
fort=1,2,3 and 4,

Ci={n:neN n=m-5"" " with m =i (mod5), u,v=0,1,...}
for:=1,2,3 and 4,

Di={n:neN, n=m-5"+2 with m =i (mod5), u=1,2,...}
fori=1,2,3 and 4,

& ={2}.

Then clearly, N is the disjoint union of these 16 sets. It remains to see that
(5.2) cannot be solved in either of the first 15 sets.

Case 1. Assume that a,b,c € A; with 4 = 1,3 or 4. Then clearly a + b =
2; (mod5) and ¢ = 4? (mod 5) and since i® — 21 = i(i — 2) # 0 (mod 5) thus
(5.2) cannot hold.
Case 2. Assume that a,b,c € B; with 1 =1,2,3 or 4. Write
a = m(a)5”" @I b = m(p)s? VO ¢ = ()52 RO (5.3)
Then ¢? can be written in the form
& = (m(c))?5> T @D with (m(c))? =42 # 0 (mod5). (5.4)

Now we have to distinguish two cases.

Case 2a. Assume that a and b are divisible by different powers of 5. We may
assume that a is divisible by higher power of 5 than 6. Then a + b is of the
form

a+b=ma+b)5"""" @O with m(a+b) =m(b) =i £ 0 (mod5). (5.5)

By (5.4) and (5.5), a + b, resp. ¢ are divisible by different powers of 5, thus
(5.2) cannot hold.

Case 2b. Assume that a and b are divisible by the same power of 5 so that
u(b) = u(a), v(b) = v(a). Then we have

a+b = (m(a)+m(b))5>" @+ with m(a)+m(b) = 2i # 0 (mod 5). (5.6)

By (5.4) and (5.6), again a + b, resp. ¢? are divisible by different powers of 5,
thus (5.2) cannot hold.

Case 3. Assume that a,b,c € C; with 7 = 1,2, 3 or 4. This case can be handled
in exactly the same way as Case 2 thus we leave the details to the reader.

10



Case 4. Assume that a,b,c € D; with ¢ =1, 2,3 or 4. Write
a=m(a)5"Y +2, b=m()5"® +2, ¢=m(c)5" + 2. (5.7)
Then ¢? can be written in the form
= (m(c))?5%) 4+ 4m(c)5"°) 4 4 = m(c?)54) + 4 (5.8)

with
m(c®) = 4m(c) = 4i # 0 (mod 5). (5.9)

Again we have to distinguish two cases.

Case 4a. Assume that u(a) # u(b). We may assume that u(a) > u(b). Then
we have

a+b=(m(a)5"® +2) + (m(b)5"®) +2) = m(a+b)5"® +4  (5.10)
with
m(a +b) = m(a)549*® L m(b) = m(b) =i #Z 0 (mod5). (5.11)
By (5.8), (5.9), (5.10) and (5.11) and since
4i # i (modb) (fori € {1,2,3,4}),
thus (5.2) cannot hold.
Case 4b. Assume that u(a) = u(b). Then we have
a+b=(m(a) +m()5*? + 4 with m(a) + m(b) = 2i (mod5). (5.12)
By (5.8), (5.9) and (5.12) and since
4i # 2 (mod5) (for i € {1,2,3,4}),

thus (5.2) cannot hold. O

If pis a prime and we take

A= {a: O<a<§, o = [g] +1,...,p—2,p—1 (modp)},
then it can be shown that |A| > p and, clearly, (5.2) has no solution with
a,b,c € A so that there is neither general nor special density theorem on the
solvability of (5.2) in FF,. We do not know whether there is a Ramsey type
theorem in F, (or more generally, in F,).

11



6 The Fermat equation in [F,

By Schur’s classical theorem [11] the Fermat equation
a"+b" =c", abc#0 (withneN, n>2) (6.1)

is solvable in I, for p > po(n). Now we will sharpen this result by proving the
following Ramsey type theorem:

Theorem 4 For all k,n € N there is a number py = po(k,n) such that if
p > po, then for any k-coloring of T, the equation

a" 4+ 0" =c" (6.2)
has a monochromatic solution in ]F;.

Proof. Consider a k-coloring of I, i.e., a partition of it into k disjoint sets:

S

F = A, AZﬂA]:@fOI"1SZ<]Sk

p
=1

Let g be a primitive root modulo p, and for u € {1,2,...,p — 1} define
q(u),(u) € Z by

u=q(u)n+ r(u), 0 <r(u) <n.

Define a new coloring of F; so that for 1 <wu,v < p — 1, the elements ¢g* and
g" of F; belong to the same colorclass if and only if ¢?™ and ¢%") belong to
the same colorclass A;: g9, g9 € A; for some 1 < i < k, and we also have
r(u) = r(v); there are kn color classes in this new coloring. Now we need a
lemma of Schur [11] which was also used in the proof of his theorem on the
solvability of (6.1):

Lemma 2 For every t € N and any t-coloring of the set {1,2,...,[tle]}, the
equation
rT+y==z

has a monochromatic solution in this set.

If p—1 > (kn)!e then we may apply this lemma for the new coloring of F;, and
we obtain that there are g“, ¢”, ¢ which belong to the same new colorclass
and satisfy
9" +9"=9",
ie.,
giwntr(n) 4 gantrv) — gatwintr(w)

12



with r(u) = 7(v) = r(w). Dividing by ¢"™ we obtain
(g™ + (g7 = (g7

so that a = ¢?™, b = g™ ¢ = ¢2™) is a monochromatic solution of (6.2). O

7 The equation a + b = cd

Unfortunately, we have not been able to settle Problem B on the existence of
monochromatic solutions of

a+b=cd, a#b (7.1)

for any k-coloring of N, but we have proved certain partial results. In partic-
ular, we have found several proofs for the following weaker result:

Theorem 5 For every k € N and for any k-coloring of N, equation (7.1) can
be solved so that a and b, resp. ¢ and d are of the same color.

Here we will present two proofs which sharpen this result in various directions.
The first one provides further information on the integers a, b, ¢, d described
in Theorem 5.

Theorem 6 For every k € N and any k-coloring of N, 1i.e., for

k
N:UAZ', AiﬂAj:(Z) fOT1§i<j§]€,

=1

there is a color class A, and a finite subset D C A, of it with the property that
for every ¢ € Ay there are a d € D and a,b of the same color so that a,b,c,d
satisfy equation (7.1).

Proof. For n € N let i(n) denote the integer i with n € A;. Consider the
complete graph on the vertex set N, and k-color it so that the edge joining the
integers u,v (u # v) is colored by the color assigned to A;(,+.). By Ramsey’s
theorem this graph contains arbitrarily large monochromatic clique thus, in
particular, there are distinct positive integers uq, us, ..., ug+1 so that all the
edges (ur,us) (1 <r < s <k-+1) are of the same color, i.e., there is a color
class A; so that u, +us € Agfor all 1 <r < s<k+1. Let D = {u, + us :
1 <r < s<k+1}. For every ¢ € Ay, by the pigeon hole principle there are
1<m < n<k+1so that cu,, and cu, are of the same color. Then a = cu,,
b = cu,, c and d = u, + u, satisfy all the requirements in the theorem. Il

13



The other sharpening of Theorem 5 provides estimate for the number of inte-
gers n which have representations in form

n=a+b=cd, a#b (7.2)

with a and b, resp. ¢ and d of the same color. We will show that the logarithmic
density of the integers which have representations of this form is large:

Theorem 7 For a fized k-coloring of N, let N denote the set of the integers
n which have representations in form (7.2) with a and b, resp. ¢ and d of the
same color. There is a positive absolute constant C' such that if k € N, N € N
and N > Ny(k), then for any k-coloring of N we have

1_C
> —>—logN. (7.3)
n<N n k
neN

Proof. We will derive the result from a theorem of Erdés, Sarkozy and T. Sés
[4], and another theorem of Erdés and Sérkozy [3]:

Lemma 3 [4] For a fized k-coloring of N, let M denote the set of the even
integers 2n which have a monochromatic representation in the form a+ b with
a # b. Then to every k > 2 there exists an My(k) such that for any k-coloring
of N we have

M .
‘{n: 2n < M, 2n EM}‘ > 5 —3M 2" for M > My(k).

Lemma 4 [3] There is a positive absolute constant Cy such that if k € N,
M e N, M > My(k) and for a fized k-coloring of N, B denotes the set of the
integers which have a monochromatic representation in the form cd, then

1 C
- > —log M.
2 3> 7 los

b<M
beB

(Indeed, Lemma 4 is a slightly weaker form of Theorem 2 in [3].)

In order to derive the statement of the theorem from these lemmas, first intro-
duce a new coloring of N: color n € N by the same color which is used to color
2n in the original coloring given in the theorem. Let B denote the set of the
integers which have a monochromatic representation in terms of the original
coloring in the form cd, and let B’ denote the set of the integers which have a
monochromatic representation in terms of the new coloring in the form ¢'d’.
Note that if n' = ¢d’" € B, then n = 4n’ = 4(dd') = (2¢)(2d") € B. Thus
defining N as in the theorem and M as in Lemma 3 (both in terms of the
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original coloring) we have

1 1 1
o=> > == > = (7.4)
n<N n n<N,4n n n<N,4n n
neN neN neMnNB
1 1 1 1
R R YR i
n<N,4n n<N,4|n 4n/<N n<N,4|n
nesb neBngM 4n’eB n¢M
S 1 3 1 3 1
4 n'<N/4 n n<N,2|n n
n'eB’ n¢gM
If N is large enough in terms of k, then here we have
1 _C
> o => flog[N/él] (7.5)
n'<N/4 n
n’eB
by Lemma 4, and
1
Y —<K (7.6)
n<N,2|n
n¢M

with a constant K = K (k) depending only on k& which follows from Lemma 3
by partial summation.

7.3) follows from (7.4), (7.5) and (7.6) with € in place of C if N is large
5k
enough in terms of k. U

(We remark that it follows from the results in [3] that the lower bound in (7.3)
is the best possible apart from the value of C, and the lower bound (7.3) for
the (lower) logarithmic density cannot be improved to a similar lower bound
for the (lower) asymptotic density.)

8 An example

We have seen that writing F'(a,b,c,d) = a + b — cd, for any k-coloring of N
the equation
F(a,b,c,d) =0

has “many” solutions such that a and b, resp. ¢ and d are of the same color.
One may think that, perhaps, this implies that there is always at least one
monochromatic solution. Thus one might like to answer the following question:
does there exist a second degree polynomial G(a, b, c,d) € Z|a, b, c,d] so that
for any k-coloring of N, the equation

G(a,b,c,d) =0 (8.1)
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has solution such that a and b, resp. ¢ and d are of the same color, however,
there is a k-coloring of N such that (8.1) has no monochromatic solution? We
will show that such a polynomial does exist and, indeed, we will prove slightly
more:

Theorem 8 Write g(z,y) = (x+y+1)*+z and
G(a,b,c,d) = g(a,b) — g(c+1,d + 1).
Then
(i) N has a 2-coloring such that (8.1) has no monochromatic solution,

(ii) for any k-coloring of N, (8.1) has solution such that a and b, resp. ¢ and
d are of the same color.

Proof. The proof will be based on

Lemma 5
9(z,y) = g(u,v), z,y,u,v €N (8.2)
holds if and only if

Proof. Assume that (8.2) holds.

CASFE 1. Assume first that
TH+y=u-+o. (8.3)

Then by (8.2) we have

gz, y)=@F+y+1)’+z=9gu,v)=(u+v+1) +u=(z+y+1)°+u

whence z = u, and then y = v also follows from (8.3).

CASE 2. Assume now that x + y # u + v. We may assume that
r+y<u-++w.

Then we have

gzy)=@+y+1)P+r<(@+y+1)’+z+y
<(w+vy’+utv<ut+v+1)2<(u+v+1)?+u=g(u,v)

which contradicts (8.2), thus this case cannot occur, and this completes the
proof of the lemma.
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(i) Consider the following 2-coloring, i.e., 2-partition of N:

N=AUA, A NA,=0with A ={n:neN, nisodd}
As ={n: neN, niseven}.

By Lemma 5, the numbers a, b, ¢, d satisfy (8.1) if and only if
a=c+1, b=d+1, (8.4)

so that every solution (a, b, ¢, d) is of the form (c+1,d+1,¢,d), but ¢+ 1 and
¢ (and d + 1 and d) belong to different color classes.

(ii) Consider a k-coloring, i.e., a k-partition of N:

k
N:UAi; AiﬂAj:Q) for1 <i<j<k.

i=1

Then by the pigeon hole principle there are u,v € {1,2,...,k} so that there
are infinitely many n € N with

neA, n+1leA,. (8.5)

Let S denote the set of the positive integers n satisfying (8.4). Then for any
pair ¢,d € S, the numbers a, b defined by (8.4) form a solution of (8.1) with
the property that a and b, resp. ¢ and d are of the same color. U

9 Generalizations of equations (1.1) and (1.2)

In this section we will study the following generalizations of the equations in
(1.1) and (1.2):
a+b+m=cd, (9.1)
resp.
ab+m =cd (9.2)

where m is fixed. Over F, these equations can be reduced easily to equations
(1.1) and (1.2), and then it follows from Theorems A and B that there are
density results on the solutions of these equations.

The case of N is more interesting; it is easy to see that there are no density
results, but we may look for Ramsey type results. Consider first equation (9.1).

Theorem 9 (i) For a fited m € N and k-coloring of N, let N denote the set
of the integers n which have representations in form

n=a+b+m=cd

17



with a and b, resp. ¢ and d of the same color. There is a positive absolute
constant C' such that if m,k € N, N € N and N > Ny(k,m), then for any
k-coloring of N we have

1
> —> glogN. (9.3)
n<N n k
neN

(ii) If m € N and m + 1 is not a square:
m+1# 2% forz€eZ, (9.4)

then there is a k € N and a k-coloring of N such that (9.1) has no monochro-
matic solution.

(Note that this theorem also shows that there exist polynomials G(a, b, ¢, d)
of the type that we were looking for in Section 8. However, there we proved a
slightly sharper result in a relatively simple and direct way, while here we will
also need the relatively deep results from [3].)

Proof. (i) The result can be derived from the following variant of Lemma 4:

Lemma 6 There are positive absolute constants Cy,Cy such that if k € N,
M e N, m > My(k) and for a fized k-coloring of N, B denotes the set of the
integers which have a monochromatic representation in the form cd, then we
have

1

> 3> %logM (9.5)
b<M,2b

beB

and . C

> e ?ZlogM. (9.6)
b<M.2b

beB

Proof. (9.5) can be derived from Theorem 2 in [3] and it is implicit in the proof
of Theorem 7, while (9.6) can be proved by an easy modification of the proof
of Theorem 2 in [3]; we leave the details to the reader.

To prove (9.3) one has to combine Lemma 3 with (9.5) if m is even and with
(9.6) if m is odd (in the manner of the proof of Theorem 7); again we leave
the details to the reader.

(ii) We will need

Lemma 7 For every m € N satisfying (9.4) there are infinitely many primes

p such that
1
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((%) denotes the Legendre symbol).

Proof. By (9.4) there is a prime g such that m+1 is divisible by an odd power
of ¢, say, ¢ | m+ 1, ¢*™ { m + 1. Write m + 1 = ¢*'¢g{ ... ¢, and
if ¢ # 2, then let h be a quadratic non-residue modulo ¢q. By the Chinese
remainder theorem and Dirichlet’s theorem, there are infinitely many primes
p such that

p =5 (mod8)
and
p=1(modg) fori=1,...,r
if g =2, and
p = h (modg),
p=1 (mod8)
and
p=1(modg) for 1 <i<r, ¢ #2

if ¢ # 2. Then by the quadratic reciprocity law, if ¢ = 2 then we have

(E2)-C) ) ) -l -

while for g # 2,

=)0 - Ben- -

which completes the proof of the lemma.

Now let p be a prime such that
p>m+1 (9.8)
and p satisfies (9.7). Define a p-coloring, i.e., a p-partition of N in the following
way:
P
N=|JA, AinA;=0 with A; ={n: n=1 (modp)} fori=1,...,p.
i=1

We will show that for this p-coloring (9.1) has no monochromatic solution.
Indeed, let a, b, c,d € A; so that

b

c=d=1i (modp).

Il

a
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Then we have
a+b+m=2i+m (modp)

and
cd = i* (mod p).
Thus it would follow from (9.1) that

2i +m = 4> (mod p)

whence
m+1=(i—1)* (modp).
By (9.7) and (9.8) this cannot hold. O

Now consider equation (9.2).

Theorem 10 For every m € Z, m # 0, there is a k € N and a k-coloring of
N such that (9.2) has no monochromatic solution.

Proof. Let p be a prime with p { m, and consider the following p-coloring, i.e.,
p-partition of N:

p
N = A, AnA; # 0 with A; = {n:ne N,n =i(modp)} fori=1,2,...,p.
i=1

We will show that for this p-coloring (9.2) has no monochromatic solution.
Indeed, assume that a, b, c,d € A; so that

a=b=c=d=1i (modp).
Then we have
ab+m =i* +m (modp) (9.9)
and
cd = i* (mod p). (9.10)

By p 1 m it follows from (9.9) and (9.10) that
ab+m # cd (mod p)

thus (9.2) cannot hold. O

Note that Theorem 10 settles Problem C: The answer to the question in The-
orem 10 is negative.

We do not know whether for every m € N, m # 0 and any k-coloring of N,
equation (9.2) must have a solution such that a and b, resp. ¢ and d are of the
same color.
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10 Equations over Q

So far we have studied equations over [, resp. N. One may also ask similar
questions on equations over Q. In particular, one might like to study the
connection between the behavior of an equation over N, resp. Q. E.g., one
may ask the following question: does there exist a polynomial F'(z1,...,x,) €
Z[xq,...,x,] such that for a suitable k-coloring of N the equation

F(ml,...,xn)zo

has no monochromatic solution in N but, on the other hand, for any k-coloring
of Q it has monochromatic solution in Q? We will show that the answer is
affirmative:

Theorem 11 (i) The equation
2 +2b—2c—1=0 (10.1)
has no solution in Z, but

(ii) for every k € N and k-coloring of Q, equation (10.1) has a monochromatic
solution in Q.

Proof. (i) is trivial. To prove (ii), rewrite (10.1) as

(o 2)+ - (-2
¢—3 5)=\¢"3)
For a given k-coloring of Q, define a new k-coloring of Q in the following way:

assign to z € Q the color of x + % in the original coloring. Then by Lemma 2
(Schur’s theorem [11]) the equation

rT+y==z
has a monochromatic solution in terms of the new coloring. Then the numbers

a=2x+ %, b=y+ %, c=z+ % form a monochromatic solution (in terms of
the original coloring) of (10.1) in Q.

11 TUnsolved problems

Finally, we will present several problems which we have not been able to settle.
First for the sake of completeness we recall three further related problems from
[7] (in a slightly modified form).
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Problem 1 Are there Ramsey type results on the solvability of (1.1), resp.
(1.2) in Z,, (with k, the number of colors fixed and m — +00)? (It is easy to
see that for composite m there are no density results.)

Problem 2 Can one sharpen Theorems A and B if we have a lower bound
for min{|A|, |B|,|C|, |D|} instead of |A| |B||C||D|? More precisely, does there
exist a § > 0 such that if ¢ > o, A, B,C,D C F, and

. 3
min{ |4, |B|,[C|, D]} > pt?,
then (1.1), resp. (1.2) can be solved?

Problem 3 Does there exist an elementary-algebraic proof for Theorems A
and B?

Some new problems:

Problem 4 Is it true that for all € > 0 there is a kg = ko(e) such that if
keN, k> ky p>po =po(€,k) and A, B C Fp with

min{|A[, B[} > p*,

then
a1+a2:b1...bk, al,GQEA, bl,...,bkEB

can be solved?

Note that as the special case 2 1 k, A = {1, 2,..., [p5]+1}, B= {b : (%) =— }
shows, it would follow from the affirmative answer that the least quadratic non-
residue modulo p is O(p®). This shows that some of the problems of the type
studied by us can be very difficult and, indeed, our work was motivated partly
by trying to understand better the problem of the least quadratic non-residue.

Problem 5 By Theorem 3 there is no Ramsey type theorem on the solvability
of the equation

a+b=c (11.1)

in N. Is this also true with F, in place of N?

Problem 6 Gyarmati [5] studied the following generalization of the Fermat
equation in [F,:
2™ +y" =2" xyz #N0. (11.2)

This motivates the following question: can one sharpen Theorem 4 so that for
every m,n,r, k € N there is a py = po(m, n,r, k) such that if p is a prime with
p > po, then for any k-coloring of F,, equation (11.2) has a monochromatic
solution?
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Problem 7 Is it true that for every £ € N and every k-coloring of Q, the
equation
a+b=cd

has a monochromatic solution in Q? (We conjecture that the answer is affir-
mative, in which case, perhaps, this can be shown without first settling the
analog problem over N.)

Problem 8 If m in Theorem 10 has only “large” prime factors, then the
number k& = k(m) (the number of colors) in the proof is also large. Thus one
might like to answer the following question: can one sharpen Theorem 10 by
proving that there exists a universal K such that for every m € Z, m # 0,
there is a £k € N with ¥ < K and a k-coloring of N so that (9.2) has no
monochromatic solution?

Problem 9 Is it true that for every £ € N and every k-coloring of N the
equation
ab+1=cd (11.3)

has a solution such that a and b, resp. ¢ and d are of the same color? More
generally, is it true that this holds with equation (9.2) in place of (11.3) for
every m € N, m # 07

Problem 10 Can one extend Theorem 10 from N to Q, i.e., is it true that
for every m € Q, m # 0 there is a k € N and a k-coloring of Q such that (9.2)
has no monochromatic solution in Q7
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