
On a problem of DiophantusKatalin Gyarmati1 IntrodutionThe Greek mathematiian Diophantus of Alexandria noted that the ra-tional numbers 1
16
, 33

16
, 17

4
, and 105

16
have the following property: the produt ofany two of them inreased by 1 is a square of rational number. Later Fermatfound a set of four positive integers with the above property: {1,3,8,120}(see [3℄). Reently Phil Gibbs has found a set of six rational numbers hav-ing this property: { 11

192
, 32

192
, 155

27
, 512

27
, 1235

48
, 180873

16

} (unpublished yet). A setof positive integers {a1, a2, a3, . . . , am} is said to have the property of Dio-phantus if aiaj + 1 is a perfet square for all 1 ≤ i < j ≤ m. Suh a setis alled a Diophantine m-tuple. It is a well-known open question whetherthere exist Diophantine quintuples.Andrej Dujella and Attila Peth® [4℄ proved that the pair {1,3} annotbe extended to a Diophantine quintuple. Reently Dujella has proved thatthere are no Diophantine ninetuples (unpublished yet).Euler (see [3℄) showed that every Diophantine pair an be extended toa quadruple. Arkin, Hoggatt, Straus [1℄ proved that this also holds forDiophantine triples.Erd®s [5℄ and Moser [16℄ asked the additive analog of the problem, i.e.,whether for all k there are integers a1 < a2 < . . . < ak suh that ai + aj isa perfet square for all 1 ≤ i < j ≤ k. J. Lagrange [11℄ and Niolas [12℄found a set of six integers suh that the sum of any two of them is a perfetsquare. A. Sárközy, J. Rivat, C.L. Stewart [13℄ proved the following result:if A ⊆ {1, 2, 3, . . . , N} and a + a′ is a perfet square for all a, a′ ∈ A, a 6= a′then we have |A| ≪ log N .In this paper our goal is to extended the problems and results desribedabove in various diretions. One of the theorems to be proved will alsogeneralize the following result of I. Shur [7℄: for all positive integers n thereexists a real number M suh that the Fermat ongruene xn + yn ≡ zn1



(modp) has a non-trivial solution if p is a prime and p ≥ M . Another prooffor this result an be found in [10, pp. 97-98℄.2 The resultsTheorem 1 If A,B ⊆ {1, 2, 3, . . . , N} and ab + 1 is a kth power for all
a ∈ A, b ∈ B then we havea)

min (|A| , |B|) ≤ 1

log 2
log N for k = 2,b)

min (|A| , |B|) ≤ 1

log(k − 1)
log log N + 1 for k ≥ 3.Probably for k=2, |A| ≥ 2 we have |B| ≪ log N . We have been able toprove this only under a further ondition:Theorem 2 Let A,B ⊆ {1, 2, 3, . . . , N}, a1, a2 ∈ A, a1 ≤ a2 ≤ 2a1. If

ab + 1 is a perfet square for all a ∈ A, b ∈ B then we have
|B| ≤ 1

log 2
log N.Conversely, we an give a set B where log N ≪ |B|.Theorem 3 There exist B ⊆ {1, 2, 3, . . . , N} suh that if A = {1, 2} then

ab + 1 is a perfet square for all a ∈ A, b ∈ B and |B| ≥
[

1
log 36

log N
]

.After this we will study the modular analog of the problem. It will turnout that unlike the problem of Diophantus here arbitrarily large "good" setsexist.Theorem 4 There is a onstant p0 suh that if p is a prime of the form4k+1 and p > p0 then there exists A ⊆ Zp so that |A| ≥ 1
6 log 3

log p and
aa′ + 1 is a square (i.e., quadrati residue or 0) mod p for all a, a′ ∈ A,
a 6= a′. 2



Next we will give an upper bound for |A| |B| for sets A, B with theproperty that ab+1 is a square mod p for all a ∈ A, b ∈ B. The proof willbe based on the following theorem of Vinogradov:Theorem 5 If A,B ⊆ Zp and S =
∑

a∈A

∑

b∈B

(

ab+1
p

) then |S| ≤
√

2p |A| |B|.From this it is easy to dedue:Theorem 6 If p is a prime, A,B ⊆ {1, 2, 3, . . . , p − 1} and for all a ∈ A,
b ∈ B the number ab + 1 is quadrati residue or 0 (mod p) then
|A| |B| ≤

(√
2p + 1

)2.In order to see that the same holds in the general ase where ab + 1 is a
kth power for all a ∈ A, b ∈ B or a+ b is a kth power for all a ∈ A, b ∈ B wehave to use multipliative haraters. χ0 will denote the prinipal harater.Part a) of the next theorem generalizes Vinogradov's Theorem 5, while partb) is due to Erd®s and Shapiro:Theorem 7 Let A, B ⊆ {1, 2, . . . , p − 1} and χ 6= χ0 be a multipliativeharater mod p. Then we havea)

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(ab + 1)

∣

∣

∣

∣

∣

≤
√

p |A| |B|,b)
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(a + b)

∣

∣

∣

∣

∣

≤
√

p |A| |B|.Using this theorem we will getTheorem 8 Let k ∈ N. If p is a prime, (p − 1, k) 6= 1, A,B ⊆{1, 2, . . . ,
p − 1} anda) for all a ∈ A, b ∈ B, there exists an integer x suh that ab + 1 ≡ xk

(mod p) orb) for all a ∈ A, b ∈ B, there exists an integer x suh that a + b ≡ xk

(mod p) then we have
|A| |B| ≤ (

√
p + 3)2.3



The importane of the ondition (p − 1, k) 6= 1 lies in the fat that if
(p−1, k) = 1 then the ongruene xk ≡ a (mod p) has preisely 1 solutionfor all a ∈ N and thus there is no non-trivial upper bound for |A| |B|.Next we extend the additive analog of the problem of Diophantus to thease of two di�erent sequenes and k ≥ 2. The proof is like that in thease of a single set A and k = 2 (see [13℄). The interesting feature of theseresults is that the proofs are based on a sieve result.Theorem 9 For any integer k > 1, there is a real number N0 suh that if
N ≥ N0, A,B ⊆ {1, 2, . . . , N} and a + b is a kth power for all a ∈ A, b ∈ Bthen we have min (|A| , |B|) ≤ 4k log N .Finally we will generalize the problems further by replaing xk by apolynomial h(x).Theorem 10 Let h(x) ∈ Fp[x] where the degree of h(x) is n > 1. Let p be aprime and p > n, A, B ⊆ {1, 2, . . . , p− 1} and |A| |B| ≥ p

(

p−1
p−n

)2

(n− 1)2.a) If for all d > 1, d|p− 1, the polynomial h(x) is not the onstant multipleof a dth power of a ploynomial mod p then there exist a ∈ A, b ∈ B suhthat the ongruene ab ≡ h(x) (mod p) is solvable and, indeed, denotingthe number of solutions of the ongruene in a ∈ A, b ∈ B, x ∈ Fp by N ,we have
|N − |A| |B|| <

n

p − 1
|A| |B| + (n − 1)

√

p |A| |B|.b) There exist a ∈ A, b ∈ B suh that the ongruene a+b ≡ h(x) (mod p)is solvable, and denoting the number of solution of the ongruene (in a, b,x) by M , we have
|M − |A| |B|| < (n − 1)

√

p |A| |B|.The starting point in our proof will be the Weil's Theorem. Is theondition that for all d|p−1 h(x) is not the onstant multiple of a dth powerneessary? Suppose that there are onstants c, d and h′(x) ∈ Fp[x] suhthat d|p − 1 and h(x) = c (h′[x])d. Let m be a number whih is not a dthpower mod p and A = {xd : x ∈ Fp, x 6= 0}, B = {cmxd : x ∈ Fp, x 6= 0}.Then for all a ∈ A, b ∈ B there are no x ∈ Fp suh that ab = cxd thereforethe ongruene ab ≡ h(x) (mod p) is not solvable in Fp. Speializing thisTheorem we obtain a generalization of the Fermat ongruene.4



Corollary Let n ∈ N f(x), g(x), h(x) ∈ Fp[x] suh that the degree ofeah of f(x), g(x), h(x) is ≤ n. Let p be a prime and p > n4.a) Suppose that, for all d > 1, d|p − 1, neither of f(x), g(x), h(x) is theonstant multiple of a dth power of a polynomial mod p. Then the ongruene
f(x)g(y) ≡ h(z) (mod p) is solvable.b) The ongruene f(x) + g(y) ≡ h(z) (mod p) is solvable.This result is not new (see [10, pp. 97-98℄); the point is that it is obtainedhere as a very speial ase of a general result involving general sequenes.3 ProofsProof of Theorem 1Let x, y ∈ A, x < y and c, d ∈ B, c < d. Then (y − x)(d − c) > 0.From this:

(xc + 1)(yd + 1) > (xd + 1)(yc + 1).

(xc + 1)(yd + 1) is a kth power and k
√

(xd + 1)(yc + 1) is an integer thus:
xycd + xc + yd + 1 ≥

(

k
√

(xd + 1)(yc + 1) + 1
)k

.So:
xycd + xc + yd + 1 ≥ xycd + xd + yc + 1 + k(xycd)

k−1

k .Using that xd + yc > xc we get: yd > kk(xc)k−1.Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn} where a1 < a2 < . . . < amand b1 < b2 < . . . < bn. For simpliity we shall assume that m ≤ n. In thease k = 2 we get a1b1 ≥ 4 or a2b2 ≥ 16 beause aibj + 1 is a perfet squarefor all 1 ≤ i ≤ j ≤ 2. From this:
N2 ≥ ambm > 4am−1bm−1 > . . . > 4m.So: m ≤ 1

log 2
log N .Similar result holds in the ase k > 2. Then we have at+1bt+1 > (atbt)

k−1for 1 ≤ t ≤ m. Using that a1b1 > 2k−1 we get:
N2 ≥ ambm > (am−1bm−1)

k−1 > . . . > 2(k−1)m

.5



Then:
m ≤ 1

log(k − 1)
log log N + 1whih ompletes the proof of Theorem 1.Proof of Theorem 2Let B = {b1, b2, . . . , bn} where b1 < b2 < . . . < bn. We have proved that

a2bt+1 > 4a1bt for 1 ≤ t ≤ n − 1. 2a1 ≥ a2 so we have bt+1 > 2bt. Therefore
N ≥ 2m whene the statement of the theorem follows.Proof of Theorem 3Let x1 = 5, x2 = 29 and xn = 6xn−1−xn−2 for n ≥ 3. Then xn ≤ 6xn−1.From this: xn < 6n. Let B = {xi

2 − 1 : xi <
√

N}.It remains to prove that |B| ≥ [ 1
log 36

log N
] and for all a ∈ A, b ∈ B thenumber ab + 1 is a perfet square. If 6i ≤

√
N then xi

2 − 1 ∈ B.So |B| ≥
[

1
log 36

log N
]. We write:

yn =
1

2
xn+1 −

3

2
xn.Then:

yn+1 =
1

2
(6xn+1 − xn) − 3

2
xn+1 = 4xn + 3

(

1

2
xn+1 −

3

2
xn

)

= 4xn + 3yn.So we have:
yn+1 = 3yn + 4xn,

xn+1 = 2yn + 3xn.Therefore the numbers yn, xn satisfy the Pell equation y2 − 2x2 = −1 sinethe numbers 3,2 form the smallest solution of the Pell equation y2−2x2 = 1.Therefore both (xi
2 − 1) + 1 = xi

2 and 2 (xi
2 − 1) + 1 = yi

2 are perfetsquares. This ompletes the proof of Theorem 3.Theorem 4 will follow from the following Ramsey type result:Lemma 1 If s1, s2, s3 are non-negative integers then there exists an integerr with the following property: If G is a omplete graph, |G| ≥ r and C is any3-olouring of the edges of G with olours c1, c2, c3, then for some 1 ≤ i ≤ 36



the graph G has a subgraph G' whih is monohromati with olour ci and
|G′| ≥ si.Furthermore, denoting the least integer r with this property by R (s1, s2, s3)we have:

R (s1, s2, s3) ≤
(s1 + s2 + s3)!

s1!s2!s3!
.Proof of Lemma 1If any of the numbers s1, s2, s3 is 0 then the lemma is trivial beause

R (s1, s2, s3) = 0. We may assume that s1, s2, s3 > 0. The following inequal-ity is well-known [9, p. 75℄:
R (s1, s2, s3) ≤ R (s1 − 1, s2, s3) + R (s1, s2 − 1, s3) + R (s1, s2, s3 − 1)for s1, s2, s3 > 0. Using indution we get: R (s1, s2, s3) ≤ (s1+s2+s3)!

s1!s2!s3!
.Proof of Theorem 4Consider the graph whose verties are the residue lasses modulo p. Sine

p is a prime of the form 4k + 1 there exists an integer i suh that i2 ≡ −1
(mod p).Let the edge e join the lasses a and b. We olour e with c1 if (ab+1

p

)

= 1or 0. Furthermore we olour e with c2 if (−ab+1
p

)

= 1 or 0 and (ab+1
p

)

= −1.Finally we olour e with c3 if (−a2b2+1
p

)

= 1 or 0 and (ab+1
p

)

=
(

−ab+1
p

)

=

= −1 (we set (0
p

)

= 0). We olour all edges beause otherwise:
(

ab + 1

p

)

=

(−ab + 1

p

)

=

(−a2b2 + 1

p

)

= −1.So:
−1 =

(

(ab + 1) (−ab + 1) (−a2b2 + 1)

p

)

=

(

(a2b2 − 1)
2

p

)

.But this ontradits the obvious fat that ((a2b2−1)
2

p

)

= 1 or 0.Take c =
[

1
3 log 3

log p
]

+ 1. Applying the lemma we obtain:
R(c, c, c) ≤ (3c)!

c!c!c!
.7



By Stirling formula, for c → ∞ we have:
(3c)!

c!c!c!
≤ (1 + o(1))

(

3c
e

)3c√
2π3c

((

c
e

)c√
2πc
)3 ≤ 33c−3 ≤ p.Thus if p is large enough then R(c, c, c) ≤ p. Therefore the graph has asubgraph X whih is monohromati cj for some 1 ≤ j ≤ 3 and |X| ≥ c.Let A be X if we oloured the edges of X with c1. Let A be {ix : x ∈ X}if we oloured the edges of X with c2. Let A be {ix2 : x ∈ X} if we olouredthe edges of X with c3.Now |A| ≥ 1

2
|X|. Using the de�nition of olouring, we obtain that theprodut of any two elements of A inreased by 1 is a quadrati residue or 0mod p.Proof of Theorem 5See [17, h.5, problem 8℄.Proof of Theorem 6We may assume that |A| ≤ |B|. Using the ondition of the theorem thatfor all a ∈ A, b ∈ B we have (ab+1

p

)

= 1 or 0, it follows from Theorem 5that
|A| |B| −

√

|A| |B| ≤ |A| (|B| − 1) ≤
∑

a∈A

∑

b∈B

(

ab + 1

p

)

≤
√

2p |A| |B|.But this is equvivalent with the assertion.Proof of Theorem 7Erd®s and Shapiro proved Theorem 7b in [6℄. Later Friedlander andIwanie [8℄ studied similar questions. They proved that if A ⊆ (M, M +A),
B ⊆ (M, M +B), AB ≤ p and B ≤ A then for any integer r ≥ 1 and ε > 0,we have

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(a + b)

∣

∣

∣

∣

∣

≪ A
1

2 |A|
1

2 |B|





(

A + p
1

2r B
)

B

A2 |B|2





1

4r

p
1

8r
+ε+

+ |A|
1

2 |B|
1

2

(

A + p
1

2r B
)

1

2

,8



the implied onstant depending on r and ε.In order to prove Theorem 7a, we will use Gaussian sums let:
τ (χ) =

n
∑

m=1

χ(m)e

(

m

q

)

,where χ is a primitive harater. Then |τ(χ)| =
√

p; the proof an be foundin [2, p. 66℄ We shall need the following lemmas.Lemma 2 If χ is a primitive harater mod p then we have:
χ(n) =

1

τ (χ)

p
∑

h=1

χ(h)e

(

hn

p

)

.Proof of Lemma 2See [2, p.68℄.The following lemma is well-known and very simple.Lemma 3 If T (α) =
∑p

n=1 cne(nα) then
p
∑

h=1

∣

∣

∣

∣

T

(

h

p

)∣

∣

∣

∣

2

= p

p
∑

n=1

|cn|2 .By Lemma 2 we get:
S =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(ab + 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

τ (χ)

∑

a∈A

∑

b∈B

p
∑

h=1

χ(h)e

(

(ab + 1)h

p

)

∣

∣

∣

∣

∣

.We replae h = lb−1 and use the fat that |τ(χ)| =
√

p:
S =

1√
p

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p
∑

l=1

χ(lb−1)e

(

(al + lb−1)

p

)

∣

∣

∣

∣

∣

.Let B′ = {b−1 : b ∈ B}. It is trivial that |B′| = |B|. Furthermore:9



S =
1√
p

∣

∣

∣

∣

∣

p
∑

l=1

χ(l)
∑

a∈A

e

(

al

p

)

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

≤

≤ 1√
p

p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

.Using the inequality Cauhy-Shwarz we get:
S ≤ 1√

p

√

√

√

√

p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

2 p
∑

l=1

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

2

.Applying Lemma 3 with cn = 0 if n /∈ A and cn = 1 if n ∈ A we get:
p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

2

= p |A|Similary writing cn = 0 if n /∈ B′ and cn = χ(n) if n ∈ B′, by Lemma 3 weget:
p
∑

l=1

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

2

= p |B| .Then:
S ≤ √

p
√

|A| |B|.Proof of Theorem 8Let f(a, b) be ab+1 in ase a) and a+b in ase b). It will be su�ient toprove that Theorem 8 holds when k is a prime. Indeed, in the general asewe know that (k, p − 1) 6= 1, thus k has a k0 prime divisor whih divides
p − 1. Then f(a, b) is a perfet kth

0 power mod p for all a ∈ A, b ∈ B.So onsider the ase when k is a prime and thus k|p − 1. Without lossof generality we may assume that |A| ≤ |B|. We will using the followingsimple statement: for (x, p) = 1 we have
∑

χ:χk=χ0

χ(x) =

{

k if x is a kth power mod p and x 6≡ 0 mod p,
0 if x is not a kth power mod p or x ≡ 0 mod p.10



By this and Theorem 7, for |A| ≤ |B| we get:
k
(

|A| |B| −
√

|A| |B|
)

≤ k |A| (|B| − 1) ≤

≤
∑

a∈A

∑

b∈B

f(a,b)6=0

∑

χ:χk=χ0

χ (f(a, b)) ≤

≤ |A| |B| +
∑

χ:χk=χ0

χ 6=χ0

∑

a∈A

∑

b∈B

χ (f(a, b)) ≤ |A| |B| + (k − 1)
√

p
√

|A| |B|.It follows that
|A| |B| ≤

(√
p +

2k − 1

k − 1

)2

.In order to prove Theorem 9, we shall need the following lemma.Lemma 4 (Gallagher) Let X be a set of integers in the interval [M +1, M +
N ]. For eah prime p let νX(p) denote the number of residue lasses modulop that ontain an element of X. Then for any �nite set of primes P wehave

|X| ≤

∑

p∈P

log p − log N

∑

p∈P

log p

νX(p)
− log Nprovided that the denominator is positive.Proof of Lemma 4This is Gallagher's "larger sieve" (see [13℄).Proof of Theorem 9Let A′ and B′ denote the sets of integers r suh that r ∈ {1, 2 . . . p − 1}and there is at least one a ∈ A resp. b ∈ B ongruent to r modulo p. Thenusing Theorem 8 with A′ and B′, respetively, we get:

min{νA (p) , νB (p)} ≤ √
p + 4.11



Let P = {p : p is a prime, p ≡ 1 mod k, p ≤ 4 (ϕ(k) log N)2}. Divide theset P into two parts:
PA = {p ∈ P : min{νA (p) , νB (p)} = νA (p)},

PB = {p ∈ P : min{νA (p) , νB (p)} 6= νA (p)}.It follows from Lemma 4 that either of the following inequalities is true ifits denominator is positive:
|A| ≤

∑

p∈PA

log p − log N

∑

p∈PA

log p

νA(p)
− log N

,

|B| ≤

∑

p∈PB

log p − log N

∑

p∈PB

log p

νB(p)
− log N

.We may assume that ∑

p∈PA

log p

νA(p)
− log N ≥

∑

p∈PB

log p

νB(p)
− log N . Then byMertens's theorem and the prime number theorem of arithmeti progressionof small moduli we have:

W = 2

(

∑

p∈PA

log p

νA (p)
− log N

)

≥
∑

p∈PA

log p

νA (p)
− log N +

∑

p∈PB

log p

νB (p)
− log N =

=
∑

p∈P

log p

min (νA (p) , νB (p))
− 2 log N ≥

∑

p∈P

log p√
p + 4

− 2 log N =

= (2 + o(1)) log Nwhene
|A| ≤

∑

p∈P

log p − log N

(1 + o(1)) log N
≤ 4k log N.This ompletes the proof of Theorem 9.Proof of Theorem 10a) We shall need the following lemmas:12



Lemma 5
∑

χ

∣

∣

∣

∣

∣

p−1
∑

n=1

cnχ(n)

∣

∣

∣

∣

∣

2

= (p − 1)

p−1
∑

n=1

c2
n.This lemma is well-known and easy to prove.Lemma 6 Suppose χ is a modulo p harater of order d > 1. Suppose

f(x) ∈ Fp[x] has m distint roots over the algebrai losure of Fp, and it isnot the onstant multiple of the dth power of a polynomial over Fp. Then:
∣

∣

∣

∣

∣

∣

∑

x∈Fp

χ (f(x))

∣

∣

∣

∣

∣

∣

≤ (m − 1)
√

p.Proof of Lemma 6This Lemma was proved by A. Weil (see [15, p. 43℄).If ab ≡ h(x) (mod p) then ∑

χ

χ (a−1b−1h(x)) = p − 1otherwise ∑
χ

χ (a−1b−1h(x)) = 0. It is lear that there exist a ∈ A, b ∈ Bsuh that the ongruene ab ≡ h(x) (mod p) is solvable if and only if
0 < (p − 1)N =

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ

χ
(

a−1b−1h(x)
)

.Let H denote the number of distint zeros of h(x). Then:
|(p − H) |A| |B| − (p − 1)N | =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ 6=χ0

χ
(

a−1b−1h(x)
)

∣

∣

∣

∣

∣

.Using the Cauhy-Shwarz inequality, Lemma 5 and Lemma 6 we have:
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ 6=χ0

χ
(

a−1b−1h(x)
)

∣

∣

∣

∣

∣

≤13



≤
∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

a∈A

χ(a−1)
∑

b∈B

χ(b−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

x=0

χ (h(x))

∣

∣

∣

∣

∣

≤

≤

√

√

√

√

∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

a∈A

χ(a−1)

∣

∣

∣

∣

∣

2
√

√

√

√

∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

b∈B

χ(b−1)

∣

∣

∣

∣

∣

2

(H − 1)
√

p ≤

≤ (H − 1)(p − 1)
√

p |A| |B|.If |A| |B| ≥ p
(

p−1
p−H

)2

(H − 1)2 then ∑
a∈A

∑

b∈B

p−1
∑

x=0

∑

χ

χ (a−1b−1h(x)) > 0.Furthermore:
(H − 1)

√

p |A| |B| >

∣

∣

∣

∣

N − p − H

p − 1
|A| |B|

∣

∣

∣

∣

≥ |N − |A| |B|| − H

p − 1
|A| |B| .Thus Theorem 10a is proved.b) We will use the following lemma:Lemma 7 Suppose p is a prime. Suppose g(x) = anx

n + . . . + a0 is apolynomial with integer oe�ients, 0 < n < p and p 6 |an Then:
∣

∣

∣

∣

∣

p−1
∑

x=0

e

(

g(x)

p

)

∣

∣

∣

∣

∣

≤ (n − 1)
√

p.Proof of Lemma 7A. Weil proved this lemma in [15, p. 45℄.If a + b ≡ h(x) (mod p) then p−1
∑

k=0

e
(

k(h(x)−a−b)
p

)

= p otherwise
p−1
∑

k=0

e
(

k(h(x)−a−b)
p

)

= 0. It is lear that there exist a ∈ A, b ∈ B suh thatthe ongruene a + b ≡ h(x) (mod p) is solvable if and only if
0 < pN =

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=0

e

(

k (h(x) − a − b)

p

)

.Then:
|p |A| |B| − pN | =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e

(

k (h(x) − a − b)

p

)

∣

∣

∣

∣

∣

.14



Using the Cauhy-Shwarz inequality, Lemma 3 and Lemma 7 we have:
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e

(

k (h(x) − a − b)

p

)

∣

∣

∣

∣

∣

=

=

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

−ka

p

)

∑

b∈B

e

(

−kb

p

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

x=0

e

(

kh(x)

p

)

∣

∣

∣

∣

∣

≤

≤

√

√

√

√

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

−ka

p

)

∣

∣

∣

∣

∣

2
√

√

√

√

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

b∈B

e

(

−kb

p

)

∣

∣

∣

∣

∣

2

(n − 1)
√

p ≤

≤ (n − 1)p
√

p |A| |B|.If |A| |B| > p(n− 1)2 then ∑
a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e
(

k(h(x)−a−b)
p

)

> 0. Thus Theorem10 is proved.Proof of CorollaryIn part a) it will be su�ient prove that the statement holds in the asewhen for all d|p− 1 h(x) is not the onstant multiple of a dth power. Let
A = {f(x) : x ∈ Fp}, B = {g(y) : y ∈ Fp}. Then |A|, |B| ≥ p−1

n
beausethe ongruenes f(x) ≡ a (mod p), g(y) ≡ a (mod p) have at most nsolutions. So |A| |B| > p

(

p−1
p−n

)2

(n − 1)2. Using Theorem 10 we get thestatement of Corollary.I would like to thank Professor András Sárközy for the valuable advie.
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