On a problem of Diophantus

Katalin Gyarmati

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the ra-
tional numbers %, %, 1747, and % have the following property: the product of
any two of them increased by 1 is a square of rational number. Later Fermat
found a set of four positive integers with the above property: {1,3,8,120}
(see [3]). Recently Phil Gibbs has found a set of six rational numbers hav-
ing this property: {5, o5, 155 512 1255 18O L (ynpyblished yet). A set
of positive integers {aj, as, as, ..., a,} is said to have the property of Dio-
phantus if a;a; + 1 is a perfect square for all 1 <7 < j < m. Such a set
is called a Diophantine m-tuple. It is a well-known open question whether
there exist Diophantine quintuples.

Andrej Dujella and Attila Pethd [4] proved that the pair {1,3} cannot
be extended to a Diophantine quintuple. Recently Dujella has proved that
there are no Diophantine ninetuples (unpublished yet).

Euler (see [3]) showed that every Diophantine pair can be extended to
a quadruple. Arkin, Hoggatt, Straus [1]| proved that this also holds for
Diophantine triples.

Erdés [5] and Moser [16] asked the additive analog of the problem, i.e.,
whether for all k& there are integers a; < as < ... < a; such that a; + a; is
a perfect square for all 1 < ¢ < j < k. J. Lagrange [11] and Nicolas [12]
found a set of six integers such that the sum of any two of them is a perfect
square. A. Sarkozy, J. Rivat, C.L. Stewart [13] proved the following result:
if AC{1,2,3,...,N} and a+ @ is a perfect square for all a,a’ € A,a # d
then we have |A| < log N.

In this paper our goal is to extended the problems and results described
above in various directions. One of the theorems to be proved will also
generalize the following result of I. Schur [7]: for all positive integers n there
exists a real number M such that the Fermat congruence z" + y" = 2"
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(modp) has a non-trivial solution if p is a prime and p > M. Another proof
for this result can be found in [10, pp. 97-98].

2 The results

Theorem 1 If A,B C {1,2,3,...,N} and ab + 1 is a k'™ power for all
a € A, be B then we have

a)

1
min (|A|, |B|) < g2 log N for k=2,
b)
1
) < ——loglog N + 1 k> 3.
min (|A], [B]) < Tog(k —1) o8 loe N + for k>

Probably for k=2, | A| > 2 we have |B| < log N. We have been able to
prove this only under a further condition:

Theorem 2 Let A,B C {1,2,3,...,N}, aj,a2 € A, a3 < as < 2ay. If
ab + 1 is a perfect square for all a € A, b € B then we have

1B <

1
log N.
log 2

Conversely, we can give a set B where log N < |B].

Theorem 3 There exist B C {1,2,3,..., N} such that if A = {1,2} then

ab + 1 is a perfect square for alla € A, b € B and |B| > [logﬁ log N] :

After this we will study the modular analog of the problem. It will turn
out that unlike the problem of Diophantus here arbitrarily large "good" sets
exist.

Theorem 4 There is a constant pg such that if p is a prime of the form

4k+1 and p > po then there exists A C Z, so that |A| > 6T1g310gp and

aa’ + 1 is a square (i.e., quadratic residue or 0) mod p for all a,a’ € A,

a+a.



Next we will give an upper bound for |A||B| for sets A, B with the
property that ab+1 is a square mod p for all a € A, b € B. The proof will
be based on the following theorem of Vinogradov:

Theorem 5 If A, BCZ, and S = 5 3 (%) then |S| < v/2p [ A[1B].

acAbeB

From this it is easy to deduce:

Theorem 6 If p is a prime, A,B C {1,2,3,...,p— 1} and for all a € A,
b e B the number ab+1 is quadratic residue or 0 (mod p) then

Al 18| < (vZp+1)°.

In order to see that the same holds in the general case where ab+ 1 is a
k" power for alla € A, b € Bor a+bisa k" power foralla € A, b € B we
have to use multiplicative characters. o will denote the principal character.
Part a) of the next theorem generalizes Vinogradov’s Theorem 5, while part
b) is due to Erdds and Shapiro:

Theorem 7 Let A, B C {1,2,...,p— 1} and x # xo be a multiplicative
character mod p. Then we have

@)
Z Z x(ab+1)

acA beB

< pl|Al|B],

b)

D> xla+b)| </plA[[B].

acA beB

Using this theorem we will get

Theorem 8 Let k € N. If p is a prime, (p— 1,k) # 1, A, B C{1,2,...,
p—1} and

a) for all a € A, b € B, there exists an integer © such that ab + 1
(mod p) or

b) for all a € A, b € B, there exists an integer x such that a +b = a*
(mod p) then we have

Il
8

[AB] < (VP +3)*.



The importance of the condition (p — 1,k) # 1 lies in the fact that if
(p—1,k) = 1 then the congruence ¥ = a (mod p) has precisely 1 solution
for all @ € N and thus there is no non-trivial upper bound for |A||B].

Next we extend the additive analog of the problem of Diophantus to the
case of two different sequences and k& > 2. The proof is like that in the
case of a single set A and k = 2 (see [13]). The interesting feature of these

results is that the proofs are based on a sieve result.

Theorem 9 For any integer k > 1, there is a real number Ny such that if
N> Ny, A, BC{1,2,...,N} and a+b is a k" power for alla € A, b€ B
then we have min (|Al, |B|) < 4klog N.

Finally we will generalize the problems further by replacing z* by a
polynomial h(z).

Theorem 10 Let h(x) € Fy[z] where the degree of h(x) isn > 1. Let p be a
2

prime and p >n, A, BC{1,2,...,p—1} and |A||B| Zp(}%) (n—1)2

a) If for all d > 1, d|p — 1, the polynomial h(x) is not the constant multiple

of a d™ power of a ploynomial mod p then there exist a € A, b € B such

that the congruence ab = h(x) (mod p) is solvable and, indeed, denoting
the number of solutions of the congruence in a € A, b€ B, x € F, by N,

we have n
N —[A]B]] < o1 |A[B] + (n = 1)v/p|Al|B].

b) There exist a € A, b € B such that the congruence a+b = h(z) (mod p)
is solvable, and denoting the number of solution of the congruence (in a, b,
z) by M , we have

|M = |A[|B]| < (n = 1)\/p|A[|B].

The starting point in our proof will be the Weil’s Theorem. Is the
condition that for all d|p—1 h(z) is not the constant multiple of a d** power
necessary? Suppose that there are constants ¢, d and h/(z) € Fp[z] such
that d|p — 1 and h(z) = ¢(W[z])®. Let m be a number which is not a d™
power mod p and A= {z?:z € F,, v #0}, B={cmz?:x € F,, v #0}.
Then for all a € A, b € B there are no x € F, such that ab = cz? therefore
the congruence ab = h(z) (mod p) is not solvable in Fj,. Specializing this
Theorem we obtain a generalization of the Fermat congruence.
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Corollary Let n € N f(z), g(z), h(xz) € F,lz] such that the degree of
each of f(x), g(x), h(z) is < n. Let p be a prime and p > n*.
a) Suppose that, for all d > 1, d|p — 1, neither of f(x), g(x), h(z) is the
constant multiple of a d™ power of a polynomial mod p. Then the congruence
f(x)g(y) = h(z) (mod p) is solvable.
b) The congruence f(z) + g(y) = h(z) (mod p) is solvable.

This result is not new (see [10, pp. 97-98]); the point is that it is obtained
here as a very special case of a general result involving general sequences.

3 Proofs

Proof of Theorem 1
Let z,y € A, x < yand ¢,d € B, ¢ < d. Then (y —z)(d —¢) > 0.
From this:
(xe+ 1) (yd+ 1) > (xd + 1)(yc + 1).

(ze+1)(yd + 1) is a k' power and {/(zd + 1)(yc + 1) is an integer thus:

k
ryed +xe+yd+1> <'{/(azd+ 1)(yc+ 1)+1) :

So:
xycd + xc+yd+ 1> xyed + xd + yc+ 1 + k(xycd)%.

Using that zd + yc > zc we get: yd > k*(xc)*~1.

Let A = {ay,a9,...,an}, B={b1,bs,...,b,} where a; <as <...<ap,
and by < by < ... < b,. For simplicity we shall assume that m < n. In the
case k = 2 we get a;b; > 4 or agby > 16 because a;b; + 1 is a perfect square
forall 1 <¢ <75 < 2. From this:

N2> apnbm > 4am—1bymy > ... > 4™,

. 1
So: mS @lOgN

Similar result holds in the case & > 2. Then we have a;; 101 > (asb;
for 1 <t < m. Using that a;b; > 287! we get:

)kfl

m

N2 > ambp > (am_1bm1)t > ... > 207D



Then:

1
< —loglogN +1
= log(k — 1) 0glog N +

which completes the proof of Theorem 1.

Proof of Theorem 2

Let B = {b1,bs,...,b,} where by < by < ... < b,. We have proved that
aobiyy > 4ayby for 1 <t <mn—1. 2a; > as so we have b;,1 > 2b;. Therefore
N > 2™ whence the statement of the theorem follows.

Proof of Theorem 3
Let x1 =5, o = 29 and x,, = 6x,,_1 — x,,_o for n > 3. Then z,, < 6z,,_1.
From this: z,, < 6" Let B={z,> —1:2; < \/N}

[t remains to prove that |B| > [bngﬁ log N} and for all a € A,b € B the

number ab + 1 is a perfect square. If 6/ <+/N then z;2—1¢€ B.
So |B| > [@ 1ogN}. We write:

1 3
Yn = 2xn+1 2$n
Then:
1 3 1 3
Yni1 = 5 (641 — Tp) — axnﬂ =4z, + 3 (§$n+1 — §x") =4x, + 3y,.
So we have:
Yn+1 = 3yn + 437117
Tpy1 = 2yn + 3z,
Therefore the numbers v, x,, satisfy the Pell equation y? — 222 = —1 since

the numbers 3,2 form the smallest solution of the Pell equation y? — 222 = 1.
Therefore both (z2—1)+ 1 = x;2 and 2 (z;> — 1) + 1 = y;® are perfect
squares. This completes the proof of Theorem 3.

Theorem 4 will follow from the following Ramsey type result:

Lemma 1 If sy, s9, s3 are non-negative integers then there exists an integer
r with the following property: If G is a complete graph, |G| > r and C'is any
3-colouring of the edges of G with colours ci, ¢z, c3, then for some 1 <1 <3



the graph G has a subgraph G’ which is monochromatic with colour ¢; and
|G/| > Si.
Furthermore, denoting the least integer r with this property by R (s1, so, S3)

we have:
(81 —+ S9 —+ 83)!

R S1, 892, S3 <
( Y )_ 81!82!83!

Proof of Lemma 1

If any of the numbers sq, S5, s3 is 0 then the lemma is trivial because
R (s1, 82,53) = 0. We may assume that s, s9, s3 > 0. The following inequal-
ity is well-known [9, p. 75]:

R(Sl, S, 83) S R(Sl — 1, S2, 83) + R(Sl, S9 — 1, 83) + R(Sl, S9,S83 — 1)

(s1+s2+s3)!

for sq, 89,53 > 0. Using induction we get: R (s, S, s3) < PP

Proof of Theorem 4

Consider the graph whose vertices are the residue classes modulo p. Since
p is a prime of the form 4k + 1 there exists an integer i such that 2 = —
(mod p).

Let the edge e join the classes a and b. We colour e with ¢; if (%) =1

or 0. Furthermore we colour e with ¢, if (%) = 1or 0 and (%) =—1.
Finally we colour e with cs if (#) =1 or 0 and (%) = (#) —

= —1 (we set (%) = (). We colour all edges because otherwise:

(ab+1) B (—ab+1) B (—a2b2+1) _
P P P '

e ((ab+1)(—ab+1) (—a2b2+1)) B ((a2b2 - 1)2> |

p - p

So:

a202—1)2
But this contradicts the obvious fact that (#) =1 or 0.
Take ¢ = [@ logp] + 1. Applying the lemma we obtain:

(3¢)!

R(e,c,0) < clelel”




By Stirling formula, for ¢ — oo we have:

E)36\/ 27 3c

(30)' < (1 _'_0(1» (e < 33073 Sp-

clele! — ((E)C\/Q—m)ff =

Thus if p is large enough then R(c, ¢, ¢) < p. Therefore the graph has a
subgraph X which is monochromatic ¢; for some 1 < j < 3 and |X| > c.

Let A be X if we coloured the edges of X with ¢;. Let A be {ix : z € X}
if we coloured the edges of X with cy. Let A be {iz? : z € X} if we coloured
the edges of X with cs.

Now |A] > 1 |X|. Using the definition of colouring, we obtain that the
product of any two elements of A increased by 1 is a quadratic residue or 0
mod p.

Proof of Theorem 5
See [17, ch.5, problem §].

Proof of Theorem 6
We may assume that |A| < |B|. Using the condition of the theorem that

for all a € A,b € B we have (%) =1 or 0, it follows from Theorem 5
that

AB— VIATBI < 1A (B - 1) < 3 (b; 1) < VB IAB.

acA beB

But this is equvivalent with the assertion.

Proof of Theorem 7
Erdés and Shapiro proved Theorem 7b in [6]. Later Friedlander and

Iwaniec [8] studied similar questions. They proved that if A C (M, M + A),

BC (M,M+B), AB <pand B < A then for any integer r > 1 and € > 0,

we have

<A + par B) B\ "

A2(BJ?

< A% |Al* |B] pEtet

ZZX(a+b)

acA beB

+ 141 |B|? <A+p%3)5,
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the implied constant depending on r and «.

In order to prove Theorem 7a, we will use Gaussian sums let:

() = mi:lxm)e ().

where x is a primitive character. Then |7(x)| = /p; the proof can be found
in [2, p. 66] We shall need the following lemmas.

Lemma 2 If x is a primitive character mod p then we have:

T (1@ th;ﬂh)e (%) |

x(n) =

Proof of Lemma 2
See [2, p.68].

The following lemma is well-known and very simple.

Lemma 3 If T(«a) = >?_. c,e(na) then

o

p

h=1

By Lemma 2 we get:

ZZX(ab+ 1)

acA beB

S:

_ (1_)2 ,, y(h)e(w).

-
X a€A beB h=1 p

We replace h = [b~! and use the fact that |7(X)| = /p:

35S ()

acA beB =1

1
S=—
/P
Let B = {b~! : b e B}. Tt is trivial that |B’| = |B|. Furthermore:
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s @ g @)
SR )]

Using the inequality Cauchy-Schwarz we get:

<al)
> el
acA p
Applying Lemma 3 with ¢, =0if n ¢ A and ¢, = 1 if n € A we get:

(3] -ou

acA

2 p

D

2
=1 ‘

250 ;)

beB’

1 p
SS% Z

=1

p

2

=1

Similary writing ¢, = 0 if n ¢ B’ and ¢, = X(n) if n € B', by Lemma 3 we

get: ,
S b (%)| —plB].

beB’

P

2

=1

Then:
S <V I|AllBI.

Proof of Theorem 8

Let f(a,b) be ab+1 in case a) and a+b in case b). It will be sufficient to
prove that Theorem 8 holds when £ is a prime. Indeed, in the general case
we know that (k,p — 1) # 1, thus k has a ko prime divisor which divides
p— 1. Then f(a,b) is a perfect k&* power mod p for alla € A, b € B.

So consider the case when £ is a prime and thus k|p — 1. Without loss
of generality we may assume that [A| < |B|. We will using the following
simple statement: for (z,p) =1 we have

Z (2) = k if x is a k'™ power mod p and z # 0 mod p,
X 0 if z is not a k£ power mod p or z = 0 mod p.
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By this and Theorem 7, for |A| < |B| we get:
k(141181 = VIATIBI) < kA(1B] = 1) <
<3 Y U <

acA  beB k=
Flap)#0 X0

<ANBI+ Y0 >0 x(f(ab) < [ABl + (k= 1)ypv/IAlIB].

xixk=xo A€EA bEB
X7X0

It follows that

2k —1\°
Al < (Vi 3
In order to prove Theorem 9, we shall need the following lemma.

Lemma 4 (Gallagher) Let X be a set of integers in the interval [M +1, M+
N]. For each prime p let vx(p) denote the number of residue classes modulo
p that contain an element of X. Then for any finite set of primes P we

have
> logp —log N

X < B
> 25— log N

provided that the denominator is positive.

Proof of Lemma 4
This is Gallagher’s "larger sieve" (see [13]).

Proof of Theorem 9

Let A’ and B’ denote the sets of integers r such that r € {1,2...p — 1}
and there is at least one a € A resp. b € B congruent to » modulo p. Then
using Theorem 8 with A" and B’, respectively, we get:

min{va (p), vs ()} < B+ 4
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Let P={p: pisaprime, p=1modk, p<4(p(k)log N)z}. Divide the
set P into two parts:

Py={peP: min{va(p),vs(p)} =va(p)},
Pg={pec P: min{va(p),vs(p)} #valp)}.

It follows from Lemma 4 that either of the following inequalities is true if
its denominator is positive:

> logp —log N
Pa
“A| < = logp ’
pGZPA valp) log N
> logp —log N
PEPR

> logp —log N’
PEPB

B <

We may assume that ) loi(p) —logN > > loi(p) — log N. Then by
pEPA va\p = vB\p
Mertens’s theorem and the prime number theorem of arithmetic progression

of small moduli we have:

W:2<Z log p —logN> >y logp _ N+Z——l

o va(p) = vap) =

-3 e
mm , VB

1
())—210gN>Z ng 7 —2logN =
p

pEP

=(240(1))log N

whence
> logp —log N

peEP
(14 0(1))log N
This completes the proof of Theorem 9.

|A| < < 4klog N.

Proof of Theorem 10
a) We shall need the following lemmas:
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Lemma 5

=(p-1)> c.

n=1

hS]

>

This lemma is well-known and easy to prove.

Lemma 6 Suppose x is a modulo p character of order d > 1. Suppose
f(x) € F,[x] has m distinct roots over the algebraic closure of F,, and it is
not the constant multiple of the d™ power of a polynomial over F,. Then:

Proof of Lemma 6
This Lemma was proved by A. Weil (see [15, p. 43]).

If ab=h(x) (modp) then > x(a ‘b~ 'h(z))=p—1
X
otherwise >_ x (a7'07'h(x)) = 0. It is clear that there exist a € A, b € B

X
such that the congruence ab = h(z) (mod p) is solvable if and only if

1< -V =T TS S ()
acA beB =0 x
Let H denote the number of distinct zeros of h(x). Then:

DR METIEN

acA beB =0 x#xo

((p — H) |A[|B| =

Using the Cauchy-Schwarz inequality, Lemma 5 and Lemma 6 we have:

ZZZZ (a707 h(2))| <

acA beB =0 x#xo0
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< 3 [ r@) x| [ Sx e <
X#Xo la€A beB z=0
< X x| | [ -1 <
X#X0 |a€A X#xo | bEB

<(H-1)(p—1)/pl|Al|B|

2 p—1
I 1A Bl = p (25) (H = 1)* then 5 5% Sx () >0
ac eBx=0 x
Furthermore:

(H = 1)v/plA[|B| >

Thus Theorem 10a is proved.
b) We will use the following lemma:

p—H i
N-E22 g |B|' > |V — A |Bl| - —— |A]|B].
p p

Lemma 7 Suppose p is a prime. Suppose g(x) = a,z" + ...+ ag is a
polynomial with integer coefficients, 0 < n < p and p fa, Then:

ZZ;e (%) < (n—1)vbp.

Proof of Lemma 7
A. Weil proved this lemma in [15, p. 45].

p—1
If a+b=h(z) (modp) then > e (W) = p otherwise
k=0

p—1
doe (W) = 0. Tt is clear that there exist a € A, b € B such that
k=0

the congruence a + b = h(x) (mod p) is solvable if and only if

0PN =Y Sp‘le<k(h(x)p—a_b))_

Then:




Using the Cauchy-Schwarz inequality, Lemma 3 and Lemma 7 we have:

zzif% ”%WZ

acA beB =0 k
-1
beB p =0

00

3

L
?v
S

I
B =
ML
o
m
L
/\
™
"@|@
~_ ~_

IA

aeA p

B
Il
—_

< (n—1)pv/pl|Al|B].

p—1p—1
I A 1B > pln—1)2 then 3 3 5 z (7“) > 0. Thus Theorem
acAbeB r=0 k=
10 is proved.

Proof of Corollary

In part a) it will be sufficient prove that the statement holds in the case
when for all d|p — 1 h(z) is not the constant multiple of a d'* power. Let
A={f(z):2€F,}, B={g(y):y € F,}. Then |A|, |B] > 21 because
the congruences f(z) = (mod p), g(y) = a (mod p) have at most n

a
solutions. So |A||B| > p( ) (n — 1)2. Using Theorem 10 we get the
statement of Corollary.

I would like to thank Professor Andras Sarkozy for the valuable advice.
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