
On a problem of DiophantusKatalin Gyarmati1 Introdu
tionThe Greek mathemati
ian Diophantus of Alexandria noted that the ra-tional numbers 1
16
, 33

16
, 17

4
, and 105

16
have the following property: the produ
t ofany two of them in
reased by 1 is a square of rational number. Later Fermatfound a set of four positive integers with the above property: {1,3,8,120}(see [3℄). Re
ently Phil Gibbs has found a set of six rational numbers hav-ing this property: { 11

192
, 32

192
, 155

27
, 512

27
, 1235

48
, 180873

16

} (unpublished yet). A setof positive integers {a1, a2, a3, . . . , am} is said to have the property of Dio-phantus if aiaj + 1 is a perfe
t square for all 1 ≤ i < j ≤ m. Su
h a setis 
alled a Diophantine m-tuple. It is a well-known open question whetherthere exist Diophantine quintuples.Andrej Dujella and Attila Peth® [4℄ proved that the pair {1,3} 
annotbe extended to a Diophantine quintuple. Re
ently Dujella has proved thatthere are no Diophantine ninetuples (unpublished yet).Euler (see [3℄) showed that every Diophantine pair 
an be extended toa quadruple. Arkin, Hoggatt, Straus [1℄ proved that this also holds forDiophantine triples.Erd®s [5℄ and Moser [16℄ asked the additive analog of the problem, i.e.,whether for all k there are integers a1 < a2 < . . . < ak su
h that ai + aj isa perfe
t square for all 1 ≤ i < j ≤ k. J. Lagrange [11℄ and Ni
olas [12℄found a set of six integers su
h that the sum of any two of them is a perfe
tsquare. A. Sárközy, J. Rivat, C.L. Stewart [13℄ proved the following result:if A ⊆ {1, 2, 3, . . . , N} and a + a′ is a perfe
t square for all a, a′ ∈ A, a 6= a′then we have |A| ≪ log N .In this paper our goal is to extended the problems and results des
ribedabove in various dire
tions. One of the theorems to be proved will alsogeneralize the following result of I. S
hur [7℄: for all positive integers n thereexists a real number M su
h that the Fermat 
ongruen
e xn + yn ≡ zn1



(modp) has a non-trivial solution if p is a prime and p ≥ M . Another prooffor this result 
an be found in [10, pp. 97-98℄.2 The resultsTheorem 1 If A,B ⊆ {1, 2, 3, . . . , N} and ab + 1 is a kth power for all
a ∈ A, b ∈ B then we havea)

min (|A| , |B|) ≤ 1

log 2
log N for k = 2,b)

min (|A| , |B|) ≤ 1

log(k − 1)
log log N + 1 for k ≥ 3.Probably for k=2, |A| ≥ 2 we have |B| ≪ log N . We have been able toprove this only under a further 
ondition:Theorem 2 Let A,B ⊆ {1, 2, 3, . . . , N}, a1, a2 ∈ A, a1 ≤ a2 ≤ 2a1. If

ab + 1 is a perfe
t square for all a ∈ A, b ∈ B then we have
|B| ≤ 1

log 2
log N.Conversely, we 
an give a set B where log N ≪ |B|.Theorem 3 There exist B ⊆ {1, 2, 3, . . . , N} su
h that if A = {1, 2} then

ab + 1 is a perfe
t square for all a ∈ A, b ∈ B and |B| ≥
[

1
log 36

log N
]

.After this we will study the modular analog of the problem. It will turnout that unlike the problem of Diophantus here arbitrarily large "good" setsexist.Theorem 4 There is a 
onstant p0 su
h that if p is a prime of the form4k+1 and p > p0 then there exists A ⊆ Zp so that |A| ≥ 1
6 log 3

log p and
aa′ + 1 is a square (i.e., quadrati
 residue or 0) mod p for all a, a′ ∈ A,
a 6= a′. 2



Next we will give an upper bound for |A| |B| for sets A, B with theproperty that ab+1 is a square mod p for all a ∈ A, b ∈ B. The proof willbe based on the following theorem of Vinogradov:Theorem 5 If A,B ⊆ Zp and S =
∑

a∈A

∑

b∈B

(

ab+1
p

) then |S| ≤
√

2p |A| |B|.From this it is easy to dedu
e:Theorem 6 If p is a prime, A,B ⊆ {1, 2, 3, . . . , p − 1} and for all a ∈ A,
b ∈ B the number ab + 1 is quadrati
 residue or 0 (mod p) then
|A| |B| ≤

(√
2p + 1

)2.In order to see that the same holds in the general 
ase where ab + 1 is a
kth power for all a ∈ A, b ∈ B or a+ b is a kth power for all a ∈ A, b ∈ B wehave to use multipli
ative 
hara
ters. χ0 will denote the prin
ipal 
hara
ter.Part a) of the next theorem generalizes Vinogradov's Theorem 5, while partb) is due to Erd®s and Shapiro:Theorem 7 Let A, B ⊆ {1, 2, . . . , p − 1} and χ 6= χ0 be a multipli
ative
hara
ter mod p. Then we havea)

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(ab + 1)

∣

∣

∣

∣

∣

≤
√

p |A| |B|,b)
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(a + b)

∣

∣

∣

∣

∣

≤
√

p |A| |B|.Using this theorem we will getTheorem 8 Let k ∈ N. If p is a prime, (p − 1, k) 6= 1, A,B ⊆{1, 2, . . . ,
p − 1} anda) for all a ∈ A, b ∈ B, there exists an integer x su
h that ab + 1 ≡ xk

(mod p) orb) for all a ∈ A, b ∈ B, there exists an integer x su
h that a + b ≡ xk

(mod p) then we have
|A| |B| ≤ (

√
p + 3)2.3



The importan
e of the 
ondition (p − 1, k) 6= 1 lies in the fa
t that if
(p−1, k) = 1 then the 
ongruen
e xk ≡ a (mod p) has pre
isely 1 solutionfor all a ∈ N and thus there is no non-trivial upper bound for |A| |B|.Next we extend the additive analog of the problem of Diophantus to the
ase of two di�erent sequen
es and k ≥ 2. The proof is like that in the
ase of a single set A and k = 2 (see [13℄). The interesting feature of theseresults is that the proofs are based on a sieve result.Theorem 9 For any integer k > 1, there is a real number N0 su
h that if
N ≥ N0, A,B ⊆ {1, 2, . . . , N} and a + b is a kth power for all a ∈ A, b ∈ Bthen we have min (|A| , |B|) ≤ 4k log N .Finally we will generalize the problems further by repla
ing xk by apolynomial h(x).Theorem 10 Let h(x) ∈ Fp[x] where the degree of h(x) is n > 1. Let p be aprime and p > n, A, B ⊆ {1, 2, . . . , p− 1} and |A| |B| ≥ p

(

p−1
p−n

)2

(n− 1)2.a) If for all d > 1, d|p− 1, the polynomial h(x) is not the 
onstant multipleof a dth power of a ploynomial mod p then there exist a ∈ A, b ∈ B su
hthat the 
ongruen
e ab ≡ h(x) (mod p) is solvable and, indeed, denotingthe number of solutions of the 
ongruen
e in a ∈ A, b ∈ B, x ∈ Fp by N ,we have
|N − |A| |B|| <

n

p − 1
|A| |B| + (n − 1)

√

p |A| |B|.b) There exist a ∈ A, b ∈ B su
h that the 
ongruen
e a+b ≡ h(x) (mod p)is solvable, and denoting the number of solution of the 
ongruen
e (in a, b,x) by M , we have
|M − |A| |B|| < (n − 1)

√

p |A| |B|.The starting point in our proof will be the Weil's Theorem. Is the
ondition that for all d|p−1 h(x) is not the 
onstant multiple of a dth powerne
essary? Suppose that there are 
onstants c, d and h′(x) ∈ Fp[x] su
hthat d|p − 1 and h(x) = c (h′[x])d. Let m be a number whi
h is not a dthpower mod p and A = {xd : x ∈ Fp, x 6= 0}, B = {cmxd : x ∈ Fp, x 6= 0}.Then for all a ∈ A, b ∈ B there are no x ∈ Fp su
h that ab = cxd thereforethe 
ongruen
e ab ≡ h(x) (mod p) is not solvable in Fp. Spe
ializing thisTheorem we obtain a generalization of the Fermat 
ongruen
e.4



Corollary Let n ∈ N f(x), g(x), h(x) ∈ Fp[x] su
h that the degree ofea
h of f(x), g(x), h(x) is ≤ n. Let p be a prime and p > n4.a) Suppose that, for all d > 1, d|p − 1, neither of f(x), g(x), h(x) is the
onstant multiple of a dth power of a polynomial mod p. Then the 
ongruen
e
f(x)g(y) ≡ h(z) (mod p) is solvable.b) The 
ongruen
e f(x) + g(y) ≡ h(z) (mod p) is solvable.This result is not new (see [10, pp. 97-98℄); the point is that it is obtainedhere as a very spe
ial 
ase of a general result involving general sequen
es.3 ProofsProof of Theorem 1Let x, y ∈ A, x < y and c, d ∈ B, c < d. Then (y − x)(d − c) > 0.From this:

(xc + 1)(yd + 1) > (xd + 1)(yc + 1).

(xc + 1)(yd + 1) is a kth power and k
√

(xd + 1)(yc + 1) is an integer thus:
xycd + xc + yd + 1 ≥

(

k
√

(xd + 1)(yc + 1) + 1
)k

.So:
xycd + xc + yd + 1 ≥ xycd + xd + yc + 1 + k(xycd)

k−1

k .Using that xd + yc > xc we get: yd > kk(xc)k−1.Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn} where a1 < a2 < . . . < amand b1 < b2 < . . . < bn. For simpli
ity we shall assume that m ≤ n. In the
ase k = 2 we get a1b1 ≥ 4 or a2b2 ≥ 16 be
ause aibj + 1 is a perfe
t squarefor all 1 ≤ i ≤ j ≤ 2. From this:
N2 ≥ ambm > 4am−1bm−1 > . . . > 4m.So: m ≤ 1

log 2
log N .Similar result holds in the 
ase k > 2. Then we have at+1bt+1 > (atbt)

k−1for 1 ≤ t ≤ m. Using that a1b1 > 2k−1 we get:
N2 ≥ ambm > (am−1bm−1)

k−1 > . . . > 2(k−1)m

.5



Then:
m ≤ 1

log(k − 1)
log log N + 1whi
h 
ompletes the proof of Theorem 1.Proof of Theorem 2Let B = {b1, b2, . . . , bn} where b1 < b2 < . . . < bn. We have proved that

a2bt+1 > 4a1bt for 1 ≤ t ≤ n − 1. 2a1 ≥ a2 so we have bt+1 > 2bt. Therefore
N ≥ 2m when
e the statement of the theorem follows.Proof of Theorem 3Let x1 = 5, x2 = 29 and xn = 6xn−1−xn−2 for n ≥ 3. Then xn ≤ 6xn−1.From this: xn < 6n. Let B = {xi

2 − 1 : xi <
√

N}.It remains to prove that |B| ≥ [ 1
log 36

log N
] and for all a ∈ A, b ∈ B thenumber ab + 1 is a perfe
t square. If 6i ≤

√
N then xi

2 − 1 ∈ B.So |B| ≥
[

1
log 36

log N
]. We write:

yn =
1

2
xn+1 −

3

2
xn.Then:

yn+1 =
1

2
(6xn+1 − xn) − 3

2
xn+1 = 4xn + 3

(

1

2
xn+1 −

3

2
xn

)

= 4xn + 3yn.So we have:
yn+1 = 3yn + 4xn,

xn+1 = 2yn + 3xn.Therefore the numbers yn, xn satisfy the Pell equation y2 − 2x2 = −1 sin
ethe numbers 3,2 form the smallest solution of the Pell equation y2−2x2 = 1.Therefore both (xi
2 − 1) + 1 = xi

2 and 2 (xi
2 − 1) + 1 = yi

2 are perfe
tsquares. This 
ompletes the proof of Theorem 3.Theorem 4 will follow from the following Ramsey type result:Lemma 1 If s1, s2, s3 are non-negative integers then there exists an integerr with the following property: If G is a 
omplete graph, |G| ≥ r and C is any3-
olouring of the edges of G with 
olours c1, c2, c3, then for some 1 ≤ i ≤ 36



the graph G has a subgraph G' whi
h is mono
hromati
 with 
olour ci and
|G′| ≥ si.Furthermore, denoting the least integer r with this property by R (s1, s2, s3)we have:

R (s1, s2, s3) ≤
(s1 + s2 + s3)!

s1!s2!s3!
.Proof of Lemma 1If any of the numbers s1, s2, s3 is 0 then the lemma is trivial be
ause

R (s1, s2, s3) = 0. We may assume that s1, s2, s3 > 0. The following inequal-ity is well-known [9, p. 75℄:
R (s1, s2, s3) ≤ R (s1 − 1, s2, s3) + R (s1, s2 − 1, s3) + R (s1, s2, s3 − 1)for s1, s2, s3 > 0. Using indu
tion we get: R (s1, s2, s3) ≤ (s1+s2+s3)!

s1!s2!s3!
.Proof of Theorem 4Consider the graph whose verti
es are the residue 
lasses modulo p. Sin
e

p is a prime of the form 4k + 1 there exists an integer i su
h that i2 ≡ −1
(mod p).Let the edge e join the 
lasses a and b. We 
olour e with c1 if (ab+1

p

)

= 1or 0. Furthermore we 
olour e with c2 if (−ab+1
p

)

= 1 or 0 and (ab+1
p

)

= −1.Finally we 
olour e with c3 if (−a2b2+1
p

)

= 1 or 0 and (ab+1
p

)

=
(

−ab+1
p

)

=

= −1 (we set (0
p

)

= 0). We 
olour all edges be
ause otherwise:
(

ab + 1

p

)

=

(−ab + 1

p

)

=

(−a2b2 + 1

p

)

= −1.So:
−1 =

(

(ab + 1) (−ab + 1) (−a2b2 + 1)

p

)

=

(

(a2b2 − 1)
2

p

)

.But this 
ontradi
ts the obvious fa
t that ((a2b2−1)
2

p

)

= 1 or 0.Take c =
[

1
3 log 3

log p
]

+ 1. Applying the lemma we obtain:
R(c, c, c) ≤ (3c)!

c!c!c!
.7



By Stirling formula, for c → ∞ we have:
(3c)!

c!c!c!
≤ (1 + o(1))

(

3c
e

)3c√
2π3c

((

c
e

)c√
2πc
)3 ≤ 33c−3 ≤ p.Thus if p is large enough then R(c, c, c) ≤ p. Therefore the graph has asubgraph X whi
h is mono
hromati
 cj for some 1 ≤ j ≤ 3 and |X| ≥ c.Let A be X if we 
oloured the edges of X with c1. Let A be {ix : x ∈ X}if we 
oloured the edges of X with c2. Let A be {ix2 : x ∈ X} if we 
olouredthe edges of X with c3.Now |A| ≥ 1

2
|X|. Using the de�nition of 
olouring, we obtain that theprodu
t of any two elements of A in
reased by 1 is a quadrati
 residue or 0mod p.Proof of Theorem 5See [17, 
h.5, problem 8℄.Proof of Theorem 6We may assume that |A| ≤ |B|. Using the 
ondition of the theorem thatfor all a ∈ A, b ∈ B we have (ab+1

p

)

= 1 or 0, it follows from Theorem 5that
|A| |B| −

√

|A| |B| ≤ |A| (|B| − 1) ≤
∑

a∈A

∑

b∈B

(

ab + 1

p

)

≤
√

2p |A| |B|.But this is equvivalent with the assertion.Proof of Theorem 7Erd®s and Shapiro proved Theorem 7b in [6℄. Later Friedlander andIwanie
 [8℄ studied similar questions. They proved that if A ⊆ (M, M +A),
B ⊆ (M, M +B), AB ≤ p and B ≤ A then for any integer r ≥ 1 and ε > 0,we have

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(a + b)

∣

∣

∣

∣

∣

≪ A
1

2 |A|
1

2 |B|





(

A + p
1

2r B
)

B

A2 |B|2





1

4r

p
1

8r
+ε+

+ |A|
1

2 |B|
1

2

(

A + p
1

2r B
)

1

2

,8



the implied 
onstant depending on r and ε.In order to prove Theorem 7a, we will use Gaussian sums let:
τ (χ) =

n
∑

m=1

χ(m)e

(

m

q

)

,where χ is a primitive 
hara
ter. Then |τ(χ)| =
√

p; the proof 
an be foundin [2, p. 66℄ We shall need the following lemmas.Lemma 2 If χ is a primitive 
hara
ter mod p then we have:
χ(n) =

1

τ (χ)

p
∑

h=1

χ(h)e

(

hn

p

)

.Proof of Lemma 2See [2, p.68℄.The following lemma is well-known and very simple.Lemma 3 If T (α) =
∑p

n=1 cne(nα) then
p
∑

h=1

∣

∣

∣

∣

T

(

h

p

)∣

∣

∣

∣

2

= p

p
∑

n=1

|cn|2 .By Lemma 2 we get:
S =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

χ(ab + 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

τ (χ)

∑

a∈A

∑

b∈B

p
∑

h=1

χ(h)e

(

(ab + 1)h

p

)

∣

∣

∣

∣

∣

.We repla
e h = lb−1 and use the fa
t that |τ(χ)| =
√

p:
S =

1√
p

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p
∑

l=1

χ(lb−1)e

(

(al + lb−1)

p

)

∣

∣

∣

∣

∣

.Let B′ = {b−1 : b ∈ B}. It is trivial that |B′| = |B|. Furthermore:9



S =
1√
p

∣

∣

∣

∣

∣

p
∑

l=1

χ(l)
∑

a∈A

e

(

al

p

)

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

≤

≤ 1√
p

p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

.Using the inequality Cau
hy-S
hwarz we get:
S ≤ 1√

p

√

√

√

√

p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

2 p
∑

l=1

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

2

.Applying Lemma 3 with cn = 0 if n /∈ A and cn = 1 if n ∈ A we get:
p
∑

l=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

al

p

)

∣

∣

∣

∣

∣

2

= p |A|Similary writing cn = 0 if n /∈ B′ and cn = χ(n) if n ∈ B′, by Lemma 3 weget:
p
∑

l=1

∣

∣

∣

∣

∣

∑

b∈B′

χ(b)e

(

bl

p

)

∣

∣

∣

∣

∣

2

= p |B| .Then:
S ≤ √

p
√

|A| |B|.Proof of Theorem 8Let f(a, b) be ab+1 in 
ase a) and a+b in 
ase b). It will be su�
ient toprove that Theorem 8 holds when k is a prime. Indeed, in the general 
asewe know that (k, p − 1) 6= 1, thus k has a k0 prime divisor whi
h divides
p − 1. Then f(a, b) is a perfe
t kth

0 power mod p for all a ∈ A, b ∈ B.So 
onsider the 
ase when k is a prime and thus k|p − 1. Without lossof generality we may assume that |A| ≤ |B|. We will using the followingsimple statement: for (x, p) = 1 we have
∑

χ:χk=χ0

χ(x) =

{

k if x is a kth power mod p and x 6≡ 0 mod p,
0 if x is not a kth power mod p or x ≡ 0 mod p.10



By this and Theorem 7, for |A| ≤ |B| we get:
k
(

|A| |B| −
√

|A| |B|
)

≤ k |A| (|B| − 1) ≤

≤
∑

a∈A

∑

b∈B

f(a,b)6=0

∑

χ:χk=χ0

χ (f(a, b)) ≤

≤ |A| |B| +
∑

χ:χk=χ0

χ 6=χ0

∑

a∈A

∑

b∈B

χ (f(a, b)) ≤ |A| |B| + (k − 1)
√

p
√

|A| |B|.It follows that
|A| |B| ≤

(√
p +

2k − 1

k − 1

)2

.In order to prove Theorem 9, we shall need the following lemma.Lemma 4 (Gallagher) Let X be a set of integers in the interval [M +1, M +
N ]. For ea
h prime p let νX(p) denote the number of residue 
lasses modulop that 
ontain an element of X. Then for any �nite set of primes P wehave

|X| ≤

∑

p∈P

log p − log N

∑

p∈P

log p

νX(p)
− log Nprovided that the denominator is positive.Proof of Lemma 4This is Gallagher's "larger sieve" (see [13℄).Proof of Theorem 9Let A′ and B′ denote the sets of integers r su
h that r ∈ {1, 2 . . . p − 1}and there is at least one a ∈ A resp. b ∈ B 
ongruent to r modulo p. Thenusing Theorem 8 with A′ and B′, respe
tively, we get:

min{νA (p) , νB (p)} ≤ √
p + 4.11



Let P = {p : p is a prime, p ≡ 1 mod k, p ≤ 4 (ϕ(k) log N)2}. Divide theset P into two parts:
PA = {p ∈ P : min{νA (p) , νB (p)} = νA (p)},

PB = {p ∈ P : min{νA (p) , νB (p)} 6= νA (p)}.It follows from Lemma 4 that either of the following inequalities is true ifits denominator is positive:
|A| ≤

∑

p∈PA

log p − log N

∑

p∈PA

log p

νA(p)
− log N

,

|B| ≤

∑

p∈PB

log p − log N

∑

p∈PB

log p

νB(p)
− log N

.We may assume that ∑

p∈PA

log p

νA(p)
− log N ≥

∑

p∈PB

log p

νB(p)
− log N . Then byMertens's theorem and the prime number theorem of arithmeti
 progressionof small moduli we have:

W = 2

(

∑

p∈PA

log p

νA (p)
− log N

)

≥
∑

p∈PA

log p

νA (p)
− log N +

∑

p∈PB

log p

νB (p)
− log N =

=
∑

p∈P

log p

min (νA (p) , νB (p))
− 2 log N ≥

∑

p∈P

log p√
p + 4

− 2 log N =

= (2 + o(1)) log Nwhen
e
|A| ≤

∑

p∈P

log p − log N

(1 + o(1)) log N
≤ 4k log N.This 
ompletes the proof of Theorem 9.Proof of Theorem 10a) We shall need the following lemmas:12



Lemma 5
∑

χ

∣

∣

∣

∣

∣

p−1
∑

n=1

cnχ(n)

∣

∣

∣

∣

∣

2

= (p − 1)

p−1
∑

n=1

c2
n.This lemma is well-known and easy to prove.Lemma 6 Suppose χ is a modulo p 
hara
ter of order d > 1. Suppose

f(x) ∈ Fp[x] has m distin
t roots over the algebrai
 
losure of Fp, and it isnot the 
onstant multiple of the dth power of a polynomial over Fp. Then:
∣

∣

∣

∣

∣

∣

∑

x∈Fp

χ (f(x))

∣

∣

∣

∣

∣

∣

≤ (m − 1)
√

p.Proof of Lemma 6This Lemma was proved by A. Weil (see [15, p. 43℄).If ab ≡ h(x) (mod p) then ∑

χ

χ (a−1b−1h(x)) = p − 1otherwise ∑
χ

χ (a−1b−1h(x)) = 0. It is 
lear that there exist a ∈ A, b ∈ Bsu
h that the 
ongruen
e ab ≡ h(x) (mod p) is solvable if and only if
0 < (p − 1)N =

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ

χ
(

a−1b−1h(x)
)

.Let H denote the number of distin
t zeros of h(x). Then:
|(p − H) |A| |B| − (p − 1)N | =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ 6=χ0

χ
(

a−1b−1h(x)
)

∣

∣

∣

∣

∣

.Using the Cau
hy-S
hwarz inequality, Lemma 5 and Lemma 6 we have:
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

∑

χ 6=χ0

χ
(

a−1b−1h(x)
)

∣

∣

∣

∣

∣

≤13



≤
∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

a∈A

χ(a−1)
∑

b∈B

χ(b−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

x=0

χ (h(x))

∣

∣

∣

∣

∣

≤

≤

√

√

√

√

∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

a∈A

χ(a−1)

∣

∣

∣

∣

∣

2
√

√

√

√

∑

χ 6=χ0

∣

∣

∣

∣

∣

∑

b∈B

χ(b−1)

∣

∣

∣

∣

∣

2

(H − 1)
√

p ≤

≤ (H − 1)(p − 1)
√

p |A| |B|.If |A| |B| ≥ p
(

p−1
p−H

)2

(H − 1)2 then ∑
a∈A

∑

b∈B

p−1
∑

x=0

∑

χ

χ (a−1b−1h(x)) > 0.Furthermore:
(H − 1)

√

p |A| |B| >

∣

∣

∣

∣

N − p − H

p − 1
|A| |B|

∣

∣

∣

∣

≥ |N − |A| |B|| − H

p − 1
|A| |B| .Thus Theorem 10a is proved.b) We will use the following lemma:Lemma 7 Suppose p is a prime. Suppose g(x) = anx

n + . . . + a0 is apolynomial with integer 
oe�
ients, 0 < n < p and p 6 |an Then:
∣

∣

∣

∣

∣

p−1
∑

x=0

e

(

g(x)

p

)

∣

∣

∣

∣

∣

≤ (n − 1)
√

p.Proof of Lemma 7A. Weil proved this lemma in [15, p. 45℄.If a + b ≡ h(x) (mod p) then p−1
∑

k=0

e
(

k(h(x)−a−b)
p

)

= p otherwise
p−1
∑

k=0

e
(

k(h(x)−a−b)
p

)

= 0. It is 
lear that there exist a ∈ A, b ∈ B su
h thatthe 
ongruen
e a + b ≡ h(x) (mod p) is solvable if and only if
0 < pN =

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=0

e

(

k (h(x) − a − b)

p

)

.Then:
|p |A| |B| − pN | =

∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e

(

k (h(x) − a − b)

p

)

∣

∣

∣

∣

∣

.14



Using the Cau
hy-S
hwarz inequality, Lemma 3 and Lemma 7 we have:
∣

∣

∣

∣

∣

∑

a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e

(

k (h(x) − a − b)

p

)

∣

∣

∣

∣

∣

=

=

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

−ka

p

)

∑

b∈B

e

(

−kb

p

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

x=0

e

(

kh(x)

p

)

∣

∣

∣

∣

∣

≤

≤

√

√

√

√

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

a∈A

e

(

−ka

p

)

∣

∣

∣

∣

∣

2
√

√

√

√

p−1
∑

k=1

∣

∣

∣

∣

∣

∑

b∈B

e

(

−kb

p

)

∣

∣

∣

∣

∣

2

(n − 1)
√

p ≤

≤ (n − 1)p
√

p |A| |B|.If |A| |B| > p(n− 1)2 then ∑
a∈A

∑

b∈B

p−1
∑

x=0

p−1
∑

k=1

e
(

k(h(x)−a−b)
p

)

> 0. Thus Theorem10 is proved.Proof of CorollaryIn part a) it will be su�
ient prove that the statement holds in the 
asewhen for all d|p− 1 h(x) is not the 
onstant multiple of a dth power. Let
A = {f(x) : x ∈ Fp}, B = {g(y) : y ∈ Fp}. Then |A|, |B| ≥ p−1

n
be
ausethe 
ongruen
es f(x) ≡ a (mod p), g(y) ≡ a (mod p) have at most nsolutions. So |A| |B| > p

(

p−1
p−n

)2

(n − 1)2. Using Theorem 10 we get thestatement of Corollary.I would like to thank Professor András Sárközy for the valuable advi
e.
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