
A polynomial extension of a problem ofDiophantusKatalin Gyarmati∗
AbstratThe following extension of a problem of Diophantus is studied: For�nite sets A,B of positive integers and a �xed polynomial p, how manypairs (a, b) (a ∈ A, b ∈ B) an be given so that the produt ab is �near�to p(x) for some positive integer x.2000 AMS Mathematis subjet lassi�ation number : 11D45.Key words and phrases: bipartite graphs, polynomial, problem of Dio-phantus.1 IntrodutionThe Greek mathematiian Diophantus of Alexandria noted that the ratio-nal numbers 1
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have the following property: the produt ofany two of them inreased by 1 is a square of a rational number. Later Fermat
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found a set of four positive integers with the above property: {1, 3, 8, 120}(see [5℄). A �nite set A of integers is alled a Diophantine n-tuple if |A| = nand aa′ + 1 is a perfet square for all di�erent elements a and a′ of A. The�rst absolute upper bound for the size of Diophantine tuples was given byA. Dujella [4℄, [6℄ and very reently he proved that there is no Diophantine6-tuple, and there are only �nitely many Diophantine 5-tuples [7℄. YannBugeaud and A. Dujella [2℄ extended the problem for higher power.In [3℄ the following related problem was studied: for an arbitrary set Aat most how many pairs (a, a′) exist with a, a′ ∈ A, a 6= a′, aa′ + 1 = xn.It is lear that if the number of these pairs is less than |A|2 − |A| than thisimplies that A is not a Diophantine |A|-tuple. Indeed, there we were able toprove the following upper bound: For n ≥ 2, A,B ⊆ N, |A| ≥ |B| let
S = |{(a, b) : a ∈ A, b ∈ B ab + 1 = xn, x ∈ N}| ,then

a) if n = 2 and A = B then S ≤ 0.8 |A|2,
b) if n = 3 then S ≤ 16.27 |A| |B|2/3

c) if n ≥ 4 then S ≤ 11.93 |A| |B|1/2In partiular, if |A| = |B| then we obtain that the number of pairs (a, b) suhthat ab + 1 is a k-th power for a �xed k ≥ 4 is ≤ 11.93 |A|3/2.In the present paper we will study the ase of general polynomials p(x) inthe plae of xn, and give an upper bound for the number of pairs (a, b) where
ab is �around� p(x) for a positive integer x. (Another polynomial extensionof the problem was studied by A. Dujella and F. Lua [8℄) This questionwas studied by H. Iwanie and A. Sárközy [14℄ from the opposite side. They2



proved that for all positive onstant c1 there exists a onstant c2 (dependingon c1) suh that if A ⊆ {N, N + 1, . . . , 2N}, B ⊆ {N, N + 1, . . . , 2N} with
|A| ≥ c1N , |B| ≥ c1N , then there exist integers a, b, x with a ∈ A, b ∈ B and
|ab − x2| ≤ c2(x log x)1/2, so that ab is �near square�. Wen-Guang Zhai [18℄extended the problem to k sequenes and k-th powers.When p(x) = cxk, there exist sets A and B (e.g. A = {yk : y ∈ N}, B =

{czk : z ∈ N}) suh that ab is always of the form of p(x), x ∈ N. Thereforein this ase it is not possible to give any non-trivial upper bound for thenumber of the pairs. However, under ertain onditions on p(x) we will beable to give an upper bound.Theorem 1 Let p(x) = rnx
n + rmxm + · · · + r0 ∈ R[x] be a polynomialwith rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0. Suppose that α ∈ Q, s ∈ Zwith s ≤ min{m − 2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2, A,B ⊆

{N, N + 1, . . . , 2N}, and let
S = |{(a, b) : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .Then

S ≪ |A| |B|1/2 + |B|always holds.Throughout the paper we use the notations ≪,≫,≍ and O in the sensethat the implied onstant fator may depend only on the polynomial p andthe real numbers K and α de�ned in Theorem 1 and 2. More exatly wesay that f ≪ g or f = O(g) if there exists a positive onstant c3 suh that
|f | < c3 |g|, and we say that f ≍ g, if there exist two positive onstants c43



and c5 suh that c4f ≤ g ≤ c5f , where the onstants c3, c4, c5 depend onlyon the polynomial p and the real numbers K and α, but nothing else (theseonstants does not depend on the sets A and B or the integers N and Mwhere A ⊆ {N, N + 1, . . . , }, B ⊆ {M, M + 1, . . .}). Moreover, throughoutthe paper c6, c7, c8 . . . will also denote positive onstants whose value maydepend only on the polynomial p and the real numbers K and α but nothingelse.The following two examples show that the onditions s ≤ n/2 and A,B ⊆

[N, N + 1, . . . , 2N ] are neessary. First onsider the ase s > n/2. Let
y, x ∈ N, y2 = p(x) and A = B = {a : |a − y| ≤ cyǫ, a ∈ N}. Then for
a ∈ A, b ∈ B we have

|ab − p(x)| =
∣

∣ab − y2
∣

∣ ≤ c2y2ǫ + 2cy1+ǫ ≪ xsif ǫ is small enough and s > n/2. Thus
S = |A| |B| .So, indeed, the ondition s ≤ n/2 is neessary.On the other hand assume that s ≤ n/2, v and 0 ≤ ℓ ≤ v are �xedintegers, p(x) ∈ Q[x], c6, c7 are positive onstants, A = {p(x)/v : x ∈

N, c6 < x < c7 (v/ℓ)1/(n−s) , v | p(x)}, B = {v, v + 1, . . . , v + ℓ}. If theonstant c6 is large enough then p(x) ≍ xn, and in this ase for small enoughonstant c7 we get S = |A| |B| and A ⊆ [1, 2, . . . v], B ⊆ [v, v + 1, . . . , 2v].Thus in Theorem 1 the onditionA,B ⊆ [N, N+1, . . . , 2N ] is also important.In this example, it is very di�ult question to give estimates for the size of
A, however the onjeture is that there exists a polynomial p for whih the4



ardinality of A is large. Considering the possible values of the polynomial
p(x) whih are around ab in our example: x ∈ N and there exist a ∈ A,
b ∈ B suh that |ab − p(x)| < Kxs, we see that the number of these x's is
|A|. Thus the values of the polynomial p(x) with integer x, around a produt
ab, is muh less than the number of all pairs (a, b) with a ∈ A, b ∈ B whihis |A| |B|. Generally, we will prove the following:Theorem 2 Let p(x) = rnx

n + rmxm + · · · + r0 ∈ R[x] be a polynomialwith rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0. Suppose that α ∈ Q, s ∈ Z with
s ≤ min{m− 2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2, A,B ⊆ N, and let

S ′ = |x : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .If one of the following 3 onditions holdsa) A ⊆ {N, N + 1, . . . , 2N}, B ⊆ {M, M + 1, . . . , 2M},b) m ≤ n − 3 and A ⊆ {N, N + 1, . . . , N2}, B ⊆ {M, M + 1, . . . , M2},) n ≥ 4, m < n/αn, where αn = max{ 3n−2
2(n−3)

, 2(n−1)
n−2

}, |A| ≥ |B|,then S ′ ≪ |A| |B|1/2 + |B| .Unfortunately we have not been able to prove an upper bound for everypolynomial without restritions of the size of the sets A and B. However, oneof a) and b) holds for every polynomial, sine all polynomials an be writtenin the form rn(x + α)n + rn−2(x + α)n−2 + rn−3(x + α)n−3 + · · ·+ r0.In Corollary 1 we study the number of produts ab whih are of the formof p(x) exatly, and this result will follow from the proofs of Theorems 1 and2. 5



Corollary 1 Suppose that the onditions of Theorem 2 hold and let
S = |{(a, b) : a ∈ A, b ∈ B, ab = p(x) for an x with x + α ∈ N}| .Then we have

S ≪ |A| |B|1/2 + |B| .

Throughout this paper, for a graph G, v(G) denotes the number of theverties, e(G) the number of the edges of G. Ck denotes the yle of length
k, Kr,t is the omplete bipartite graph with r and t verties in its lasses.2 LemmasTheorems 1, 2 and Corollary 1 are based on graph theory. In the nextsetion we will de�ne graphs whose verties are the elements of A, B, andtwo verties a ∈ A, b ∈ B are joined if ab is around p(x) for an x + α ∈ N.We will give an upper bound for the number of the edges using the fat thatthese graphs do not ontain �large� bipartite omplete subgraph.In this setion, we study the ase when the graph ontains a yle oflength 4. More exatly, we suppose that there exist 4 integers a, b, c, d asdesribed in Hypothesis 1.Hypothesis 1 Let p(x) = rnxn + rmxm + rm−1x

m−1 + · · · + r0 ∈ R[x] be apolynomial with rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0 and let α ∈ Q, s ∈ Z with
s ≤ min{m−2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2. Suppose that there6



exist 4 integers a < b, c < d with
|ac − p(x)| ≤ Kxs, |ad − p(v)| ≤ Kvs,

|bc − p(z)| ≤ Kzs, |bd − p(y)| ≤ Kys,for some x + α, y + α, z + α, v + α ∈ N.Throughout this setion we use the notation of Hypothesis 1. Using that
x + α, y + α, z + α, v + α are integers we will prove the following two lemmaswhih are the main result of the setion.Lemma 1 There exist onstants c8 > 1, c9 suh that if a, b, c, d are largeenough (depending on p(x), K, α) and xy − vz 6= 0 then we havea) c8ac < bd if m = n − 2,b) c9(ac)n−m−1 < bd if m ≤ n − 3.Lemma 2 There exists a onstant c10 suh that if a, b, c, d are large enough,
xy − vz = 0 and one of the following 3 ondition holdsa) s < 0,b) s < n/2, 2b > c and 2d > a,) s = n/2, K ≤ r

1/n
n /6, 2b > c and 2d > a,then we have

c10(ac)m−s < bd.

First we need estimates for the exat value of x, y, z, v.Lemma 3 Let p(x) = rnx
n + rmxm + rm−1x

m−1 + · · · + r0 ∈ R[x] be apolynomial with rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0 and let K ∈ R, s ∈ Z with7



s ≤ m. Then there exist a onstant c11 and a−1, an−m−1, an−m, . . . , an−s−2suh that if y > c11, x > 0 and
|y − p(x)| < Kxs (1)then we have

x = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ · · ·+

an−s−2

y(n−s−2)/n
+ O(

1

y(n−s−1)/n
) (2)with a−1 = 1

r
1/n
n

.Proof of Lemma 3. If y is large enough then from (1) we get
x = O(y1/n). (3)Then

∣

∣

∣

∣

x −
y1/n

r
1/n
n

∣

∣

∣

∣

=

∣

∣

∣
xn − y

rn

∣

∣

∣

∣

∣

∣
xn−1 + xn−2 y1/n

r
1/n
n

+ · · ·+ y(n−1)/n

r
(n−1)/n
n

∣

∣

∣

≤
|rnx

n − y|

rnxn−1
. (4)By the triangle-inequality we have

|rnx
n − y| ≤ |rnx

n − p(x)| + |p(x) − y| = O(xm) + O(xs) = O(xm).From this, (3) and (4) we obtain
∣

∣

∣

∣

x −
y1/n

r
1/n
n

∣

∣

∣

∣

= O(
1

xn−m−1
) = O(

1

y(n−m−1)/n
). (5)From the Taylor-formula, by indution on the number of the onstants (whihis m−s+1), it is easy to prove that there exist onstants a−1, an−m−1, . . . , an−s−2suh that if

x0 = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ · · ·+

an−s−2

y(n−s−2)/n
(6)8



then
p(x0) = y + O(ys/n).On the other hand if (1) holds then by (3) we have

p(x) = y + O(xs) = y + O(ys/n).Using the Lagrange theorem we get
O(ys/n) = |p(x) − p(x0)| = p′(ξ) |x − x0| (7)for some ξ ∈ [x, x0]. By (5) and (6) we have

ξ =
y1/n

r
1/n
n

+ O(
1

y(n−m−1)/n
).Thus p′(ξ) ≫ y(n−1)/n. From (7) we obtain:

O(ys/n) ≫ y(n−1)/n |x − x0| .Then:
|x − x0| = O(

1

y(n−s−1)/n
)whih ompletes the proof of Lemma 3.By Lemma 3 we have that there exist onstants a−1, an−m−1, . . . , an−s−2

9



(whih may depend on the oe�ients of p(x)) suh that
x = a−1(ac)1/n +

an−m−1

(ac)(n−m−1)/n
+

an−m

(ac)(n−m)/n
+ · · · +

an−s−2

(ac)(n−s−2)/n

+ O(
1

(ac)(n−s−1)/n
),

v = a−1(ad)1/n +
an−m−1

(ad)(n−m−1)/n
+

an−m

(ad)(n−m)/n
+ · · · +

an−s−2

(ad)(n−s−2)/n

+ O(
1

(ad)(n−s−1)/n
),

z = a−1(bc)
1/n +

an−m−1

(bc)(n−m−1)/n
+

an−m

(bc)(n−m)/n
+ · · · +

an−s−2

(bc)(n−s−2)/n

+ O(
1

(bc)(n−s−1)/n
),

y = a−1(bd)1/n +
an−m−1

(bd)(n−m−1)/n
+

an−m

(bd)(n−m)/n
+ · · · +

an−s−2

(bd)(n−s−2)/n

+ O(
1

(bd)(n−s−1)/n
). (8)Thus

xy − vz =
∑

i<j∈{−1/n,(n−m−1)/n,
(n−m)/n,...,(n−s−2)/n}

aiaj

(

b−ia−j − b−ja−i
) (

d−ic−j − d−jc−i
)

+ O(
(bd)1/n

(ac)(n−s−1)/n
).Then we haveLemma 4

|xy − vz| ≪

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
, (9)

10



and there exists a onstant c12 suh that
|xy − vz| ≫

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
. (10)

Before proving Lemma 4, we remark that the main tool in the proofsof Lemma 1 and Lemma 2 is the fat that xy − zv is a rational number.More preisely, let α = r/q where r, q ∈ Z, (r, q) = 1. x, y, z, v ∈ N + αtherefore q2 |xy − vz| is an integer, however onsidering (9) we would thinkthat if a, b, c, d are large enough (depending on p(x), K, α), then q2 |xy − vz|is usually smaller than 1.Proof of Lemma 4. Using that a < b, by studying the derivatives we obtainthat the funtion x 7→ b−xa−j − b−ja−x in [−∞, j − 1/n] and the funtion
x 7→ b−ia−x − b−xa−i in [i+1/n,∞] are dereasing. Thus the largest numberof the set {b−ia−j−b−ja−i : i < j ∈ {−1/n, (n−m−1)/n, . . . , (n−s−2)/n}}is b1/n

a(n−m−1)/n − a1/n

b(n−m−1)/n and the seond largest is b1/n

a(n−m)/n − a1/n

b(n−m)/n . So wehave
|xy − vz| = a−1an−m−1

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+ O(

(

b1/n

a(n−m)/n
−

a1/n

b(n−m)/n

) (

d1/n

c(n−m)/n
−

c1/n

d(n−m)/n

)

)

+ O(
(bd)1/n

(ac)(n−s−1)/n
) (11)Next we laim that

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

)

≥
a1/n

2

(

b1/n

a(n−m)/n
−

a1/n

b(n−m)/n

) (12)11



whene, sine this statement is also true for c < d in plae of a < b, Lemma4 follows trivially from (11). Let us see the proof of (12). Indeed, by a < bwe have
a1/n

2(b1/n − a1/n/2)
>

(a

b

)2/n

≥
(a

b

)(n−m+1)/n

,whih is equivalent with (12). Thus we have proved Lemma 4.Proof of Lemma 1By Lemma 4 we have
1 ≤ q2 |xy − vz| ≪

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
=

(bd)1/n

(ac)(n−m−1)/n
+

(ac)1/n

(bd)(n−m−1)/n

−
(ad)1/n

(bc)(n−m−1)/n
−

(bc)1/n

(ad)(n−m−1)/n
+

(bd)1/n

(ac)(n−s−1)/n
.Sine

(ac)1/n

(bd)(n−m−1)/n
≤ min{

(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n
},

1

(abcd)(n−m−2)/2n
≤ max{

(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n
},we have

1 ≤ c13

(

(bd)1/n

(ac)(n−m−1)/n
−

1

(abcd)(n−m−2)/2n
+

(bd)1/n

(ac)(n−s−1)/n

)

.for some onstant c13. Thus if ac is large enough then
(ac)(n−m−1)/n + c13

(ac)(n−m)/n

(bd)(n−m−2)/2n
≤ c13(bd)1/n + O(

(bd)1/n

(ac)(m−s)/n
)

≤ (c13 + 1/2) (bd)1/n.12



Thus if m = n − 2 we get
(

c13 + 1

c13 + 1/2

)n

ac ≤ bd,and when m ≤ n − 3 we get
(ac)n−m−1 < (c13 + 1/2)n bd,whih ompletes the proof of Lemma 1.Proof of Lemma 2In order to prove Lemma 2 we need the following lemma.Lemma 5 There exists a onstant c14 suh that if a, b, c, d are large enough,

c14(ac)m−s ≥ bd and xy − vz = 0, then {x, y} = {z, v}.Proof of Lemma 5 By Lemma 4 there exists a onstant c12 suh that for
a < b, c < d we have
0 = |xy − vz| ≫

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n

≫
1

(ac)(n−m−1)/n
(b1/n − a1/n)(d1/n − c1/n) − c12

(bd)1/n

(ac)(n−s−1)/n
.Sine

|x + y − v − z| = (b1/n − a1/n)(d1/n − c1/n) + O(
1

(ac)(n−m−1)/n
)we obtain that there exists a onstant c15 suh that

0 = |xy − vz| ≫
1

(ac)(n−m−1)/n

(

|x + y − v − z| − c15
1

(ac)(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
. 13



Whene by m ≤ n−2, s ≤ m−2 and bd ≤ c14(ac)m−s with suitable onstant
c14 we obtain

q |x + y − v − z| < O(
(bd)1/n

(ac)(m−s)/n
) < 1.

q |x + y − v − z| is an integer so if a and c are large enough, we have
x + y − v − z = 0.

xy = zv, x+y = z+v thus x, y and v, z are the roots of the same polynomialof degree 2 whih ompletes the proof of Lemma 5.Now we return to the proof of Lemma 2. Suppose that ontrary to thestatement c14(ac)m−s ≥ bd. Then by Lemma 5 we have {x, y} = {z, v}. Bysymmetry reasons we may suppose that x = v and y = z. By (8) we have
y = z = 1

r
1/n
n

(bc)1/n + O((bc)(n−m−1)/n), so
|bc − p(y)| < Kys <

2K

r
1/n
n

(bc)s/n,

|bd − p(y)| < Kys <
2K

r
1/n
n

(bc)s/n,From the triangle-inequality
|b| ≤ |bd − bc| ≤

4K

r
1/n
n

(bc)s/n (13)If s < 0 and b, c are large enough then |b| ≤ 1/2 whih proves part a). Inorder to prove parts b) and c) from (13) we obtain:
1 ≤ |d − c| ≤

4K

r
1/n
n

(c

b

)(n−s)/n

c−(n−2s)/n. (14)If s < n/2 and c is large enough we have
1 ≤

1

2

(c

b

)(n−s)/n14



whih ontradits the ondition 2b > c thus we have also proved part b).Finally if s = n/2 and K ≤ r
1/n
n /6 then we have

1 ≤
4K

r
1/n
n

(c

b

)1/2

≤
2

3

(c

b

)1/2whih ompletes the proof of Lemma 2.3 Completions of the proofs of the theorems.Proof of Theorem 1. We over the interval [N, N + 1, . . . , 2N ] by disjointsubintervals of the form [z, c
1/2
16 z]. Then we have less than ⌈2 log 2/ log c16⌉subintervals. De�ne the bipartite graph G in the following way:Consider two arbitrary subintervals I1 = [z1, c

1/2
16 z1] and I2 = [z2, c

1/2
16 z2].Graph G has two lasses, one ontains as verties the elements of A ∩ I1,while the others ontains the elements of B ∩ I2. There is an edge betweenthe verties a ∈ A ∩ I1 and c ∈ B ∩ I2 if and only if there exist x + α ∈ Nsuh that

|ac − p(x)| ≤ Kxs.By Lemma 1 and Lemma 2 b) and c) if this graph ontains a C4, whoseverties are a, b, c, d, then in both ases xy − zv = 0 or xy − zv 6= 0, we have
c16ac < bd for c16

def
= min{c8, c9, c10}. But this ontradits a, b,∈ I1, c, d ∈ I2sine c16ac ≥ c16z

2 ≥ bd. Thus this graph does not ontain C4. We will needthe following lemma.Lemma 6 There exists a onstant c17 suh that if G(X, Y ) is a bipartitegraph with |X| = m, |Y | = n without C4, then for the number of the edges15



we have
e(G) ≤ c17mn1/2 + n.

Proof of Lemma 6. See in [9℄ and [10℄.Thus by Lemma 6, G has less edges than |A| |B|1/2 + |B| whih proves theassertation for
|{(a, b) : a ∈ A ∩ I1, b ∈ B ∩ I2, |ab − p(x)| ≤ Kxs for an x + α ∈ N}|We have at least ⌈2 log 2/ log c16⌉ subintervals Ij and this ompletes the proof.Proof of Theorem 2. If ondition a) holds in Theorem 2 we over theintervals [N, N + 1, . . . , 2N ], [M, M + 1, . . . , 2M ] by disjoint subintervals ofthe form [z, c

1/2
17 z]. When ondition b) holds we over the intervals [N, N +

1, . . . , N2], [M, M + 1, . . . , M2] by disjoint subintervals of the form [z, z3/2].In ase c) we have only two subintervals I1 = I2 = N. For given subintervals
I1, I2 we de�ne the graph G as in the proof of Theorem 1. We onstrut agraph G0 from G by removing ertain edges of G so that for eah x suh thatthere are a ∈ A, b ∈ B with

|ab − p(x)| ≤ Kxs. (15)there will be exatly one edge (a, b) left with this property. Suppose again G0ontains a C4, whose verties are a, b, c, d. By Lemma 5 if xy− zv = 0, then,sine x, y, z, v are di�erent numbers, thus we have c14(ac)m−s < bd. Usingthis and Lemma 1 in ase a) and b) we obtain that G0 does not ontain C4so as in the proof of Theorem 1 we get the statement.16



Now onsider the ase c). We will prove that there exists a onstant
r suh that graph G0 does not ontain a K2,r whose lasses are {a, b} and
{d1, d2 . . . , dr} where a < b < d1 < · · · < dr.

adi = p(x) + O(xs), bdi = p(v) + O(vs).Then by the triangle inequality we have
|bp(x) − ap(y)| = O(max{bxs, ays}),

|bxn − ayn| = O(max{bxm, aym}).Lemma 7 If a, b and n are positive integers with n ≥ 3 and c is a positivereal number, then the inequality
|axn − byn| ≤ chas at most one positive integral solution (x, y) with

max{|axn| , |byn|} > βnc
αn ,where αn and βn are e�etively omputable positive onstants satisfying

α3 = 9, αn = max

{

3n − 2

2(n − 3)
,
2(n − 1)

n − 2

} for n ≥ 4and
β3 = 1152.2, β4 = 98.53, βn < n2 for n ≥ 5.

Proof of Lemma 7. This is Theorem 2.1 of [12℄.By Lemma 7 there are only one x and y suh that
max{|bxn| , |avn|} > βn (max{|bxm| , |avm|})αn .17



When this does not hold:
xn ≤ max{xn, vn} < βnbαnxαnm or vn ≤ max{xn, vn} < βna

αnvαnm,whene we get for all di with one exeption:
di < max{adi, bdi} ≪ max{xn, vn} < (βnbαn)n/(n−αnm) .Let adi+1 = p(z) + O(zs), bdi+1 = p(y) + O(ys). Then a, b, di, di+1 form a C4in G0, and sine x, y, z, v are di�erent, by Lemma 5 if xy − zv = 0 we have

c14(adi)
m−s < bdi+1. Using Lemma 1 we get c9(adi)

n−m−1 < bdi+1. Thus
c18(adi)

min{m−s,n−m−1} < bdi+1always holds so if b < di and a are large enough we have
d

min{m−s,n−m−1}
i < di+1.Thus

d
(r−1)(min{m−s,n−m−1})
1 < dr−1 < (βnb

αn)n/(n−αnm) < (βnd1)
n/(n−αnm)whih proves that the graph G0 does not ontain K2,r in the ase c). Usingthe following lemma we will get the statement of Theorem 2.Lemma 8 Assume that G(X, Y ) is a bipartite graph with |X| = m ≤ |Y | =

n, and the verties are labeled by positive real numbers. Suppose that G(X, Y )does not ontain a Kr,t subgraph G0 for whih
G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a's belong to V1 and the
b's belong to V2 or vie versa). Then G has at most

e(G) ≤ 2(t − 1)1/rnm1−1/r + 2(r − 1)nedges.Proof of Lemma 8. See in [3℄.Proof of Corollary 1. Consider the same graph G again (but we do notremove the edges). Using Lemma 1 we an omplete the proof of the orollaryin the same way as in Theorem 2.Referenes[1℄ B. Bollobás. Extremal Graph Theory. Aademi Press, London-NewYork 1978.[2℄ Y. Bugeaud, A. Dujella, On a problem of Diophantus for higher powers,Math. Pro. Cambridge Philos. So., 135 (2003), 1-10.[3℄ Y. Bugeaud, K. Gyarmati, On generalizations of a problem of Diophan-tus, submitted.[4℄ A. Dujella, An absolute bound for the size of Diophantine m-tuples, J.Number Theory 89 (2001), 126-150.[5℄ A. Dujella, On Diophantine quintuples, Ata Arith. 81 (1997), 69-79.[6℄ A. Dujella, On the size of Diophantine m-tuples, Math. Pro. CambridgePhilos. So. 132 (2002) 23-33. 19



[7℄ A. Dujella, There are only �nitely many Diophantine quintuples, J. reineangew. Math., to appear.[8℄ A. Dujella and F. Lua, On a problem of Diophantus with polynomials,Roky Mountain J. Math., to appear.[9℄ P. Erd®s, On sequenes of integers no one of whih divides the produtof two others and on some related problems, Tomsk. Gos. Univ. UenZap., 2 (1938), 74-82.[10℄ P. Erd®s, On some appliations of graph theory to number theoreti prob-lems, Publ. Ramanujan Inst., 1 (1969), 131-136.[11℄ P. Erd®s, Quelques problèmes de la théorie des nombres, in: Monograph.Enseign. Math. 6, Geneva, 1963, 81-135.[12℄ J.H. Evertse, Upper bounds for the number of solutions of diophantineequations, MCT 168, Mathematish Centrum, Amsterdam, 1983.[13℄ K. Gyarmati, On a problem of Diophantus, Ata Arith. 97.1 (2001),53-65.[14℄ H. Iwanie, A. Sárközy, On a multipliative hybrid problem, J. NumberTheory 26, No. 1 (1987), 89-95.[15℄ T. K®vári, V.T. Sós, P. Turán On a problem of K. Zarankiewiz, Collo-quium Math. 3 (1954), 50-57.[16℄ J. Rivat, A. Sárközy, C.L. Stewart, Congruene properties of the Ω-funtion on sumsets, Illinois J. Math. 43 (1999), no. 1, 1-18.20
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