
A polynomial extension of a problem ofDiophantusKatalin Gyarmati∗
Abstra
tThe following extension of a problem of Diophantus is studied: For�nite sets A,B of positive integers and a �xed polynomial p, how manypairs (a, b) (a ∈ A, b ∈ B) 
an be given so that the produ
t ab is �near�to p(x) for some positive integer x.2000 AMS Mathemati
s subje
t 
lassi�
ation number : 11D45.Key words and phrases: bipartite graphs, polynomial, problem of Dio-phantus.1 Introdu
tionThe Greek mathemati
ian Diophantus of Alexandria noted that the ratio-nal numbers 1
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have the following property: the produ
t ofany two of them in
reased by 1 is a square of a rational number. Later Fermat
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found a set of four positive integers with the above property: {1, 3, 8, 120}(see [5℄). A �nite set A of integers is 
alled a Diophantine n-tuple if |A| = nand aa′ + 1 is a perfe
t square for all di�erent elements a and a′ of A. The�rst absolute upper bound for the size of Diophantine tuples was given byA. Dujella [4℄, [6℄ and very re
ently he proved that there is no Diophantine6-tuple, and there are only �nitely many Diophantine 5-tuples [7℄. YannBugeaud and A. Dujella [2℄ extended the problem for higher power.In [3℄ the following related problem was studied: for an arbitrary set Aat most how many pairs (a, a′) exist with a, a′ ∈ A, a 6= a′, aa′ + 1 = xn.It is 
lear that if the number of these pairs is less than |A|2 − |A| than thisimplies that A is not a Diophantine |A|-tuple. Indeed, there we were able toprove the following upper bound: For n ≥ 2, A,B ⊆ N, |A| ≥ |B| let
S = |{(a, b) : a ∈ A, b ∈ B ab + 1 = xn, x ∈ N}| ,then

a) if n = 2 and A = B then S ≤ 0.8 |A|2,
b) if n = 3 then S ≤ 16.27 |A| |B|2/3

c) if n ≥ 4 then S ≤ 11.93 |A| |B|1/2In parti
ular, if |A| = |B| then we obtain that the number of pairs (a, b) su
hthat ab + 1 is a k-th power for a �xed k ≥ 4 is ≤ 11.93 |A|3/2.In the present paper we will study the 
ase of general polynomials p(x) inthe pla
e of xn, and give an upper bound for the number of pairs (a, b) where
ab is �around� p(x) for a positive integer x. (Another polynomial extensionof the problem was studied by A. Dujella and F. Lu
a [8℄) This questionwas studied by H. Iwanie
 and A. Sárközy [14℄ from the opposite side. They2



proved that for all positive 
onstant c1 there exists a 
onstant c2 (dependingon c1) su
h that if A ⊆ {N, N + 1, . . . , 2N}, B ⊆ {N, N + 1, . . . , 2N} with
|A| ≥ c1N , |B| ≥ c1N , then there exist integers a, b, x with a ∈ A, b ∈ B and
|ab − x2| ≤ c2(x log x)1/2, so that ab is �near square�. Wen-Guang Zhai [18℄extended the problem to k sequen
es and k-th powers.When p(x) = cxk, there exist sets A and B (e.g. A = {yk : y ∈ N}, B =

{czk : z ∈ N}) su
h that ab is always of the form of p(x), x ∈ N. Thereforein this 
ase it is not possible to give any non-trivial upper bound for thenumber of the pairs. However, under 
ertain 
onditions on p(x) we will beable to give an upper bound.Theorem 1 Let p(x) = rnx
n + rmxm + · · · + r0 ∈ R[x] be a polynomialwith rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0. Suppose that α ∈ Q, s ∈ Zwith s ≤ min{m − 2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2, A,B ⊆

{N, N + 1, . . . , 2N}, and let
S = |{(a, b) : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .Then

S ≪ |A| |B|1/2 + |B|always holds.Throughout the paper we use the notations ≪,≫,≍ and O in the sensethat the implied 
onstant fa
tor may depend only on the polynomial p andthe real numbers K and α de�ned in Theorem 1 and 2. More exa
tly wesay that f ≪ g or f = O(g) if there exists a positive 
onstant c3 su
h that
|f | < c3 |g|, and we say that f ≍ g, if there exist two positive 
onstants c43



and c5 su
h that c4f ≤ g ≤ c5f , where the 
onstants c3, c4, c5 depend onlyon the polynomial p and the real numbers K and α, but nothing else (these
onstants does not depend on the sets A and B or the integers N and Mwhere A ⊆ {N, N + 1, . . . , }, B ⊆ {M, M + 1, . . .}). Moreover, throughoutthe paper c6, c7, c8 . . . will also denote positive 
onstants whose value maydepend only on the polynomial p and the real numbers K and α but nothingelse.The following two examples show that the 
onditions s ≤ n/2 and A,B ⊆

[N, N + 1, . . . , 2N ] are ne
essary. First 
onsider the 
ase s > n/2. Let
y, x ∈ N, y2 = p(x) and A = B = {a : |a − y| ≤ cyǫ, a ∈ N}. Then for
a ∈ A, b ∈ B we have

|ab − p(x)| =
∣

∣ab − y2
∣

∣ ≤ c2y2ǫ + 2cy1+ǫ ≪ xsif ǫ is small enough and s > n/2. Thus
S = |A| |B| .So, indeed, the 
ondition s ≤ n/2 is ne
essary.On the other hand assume that s ≤ n/2, v and 0 ≤ ℓ ≤ v are �xedintegers, p(x) ∈ Q[x], c6, c7 are positive 
onstants, A = {p(x)/v : x ∈

N, c6 < x < c7 (v/ℓ)1/(n−s) , v | p(x)}, B = {v, v + 1, . . . , v + ℓ}. If the
onstant c6 is large enough then p(x) ≍ xn, and in this 
ase for small enough
onstant c7 we get S = |A| |B| and A ⊆ [1, 2, . . . v], B ⊆ [v, v + 1, . . . , 2v].Thus in Theorem 1 the 
onditionA,B ⊆ [N, N+1, . . . , 2N ] is also important.In this example, it is very di�
ult question to give estimates for the size of
A, however the 
onje
ture is that there exists a polynomial p for whi
h the4




ardinality of A is large. Considering the possible values of the polynomial
p(x) whi
h are around ab in our example: x ∈ N and there exist a ∈ A,
b ∈ B su
h that |ab − p(x)| < Kxs, we see that the number of these x's is
|A|. Thus the values of the polynomial p(x) with integer x, around a produ
t
ab, is mu
h less than the number of all pairs (a, b) with a ∈ A, b ∈ B whi
his |A| |B|. Generally, we will prove the following:Theorem 2 Let p(x) = rnx

n + rmxm + · · · + r0 ∈ R[x] be a polynomialwith rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0. Suppose that α ∈ Q, s ∈ Z with
s ≤ min{m− 2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2, A,B ⊆ N, and let

S ′ = |x : a ∈ A, b ∈ B, |ab − p(x)| ≤ Kxs for an x with x + α ∈ N}| .If one of the following 3 
onditions holdsa) A ⊆ {N, N + 1, . . . , 2N}, B ⊆ {M, M + 1, . . . , 2M},b) m ≤ n − 3 and A ⊆ {N, N + 1, . . . , N2}, B ⊆ {M, M + 1, . . . , M2},
) n ≥ 4, m < n/αn, where αn = max{ 3n−2
2(n−3)

, 2(n−1)
n−2

}, |A| ≥ |B|,then S ′ ≪ |A| |B|1/2 + |B| .Unfortunately we have not been able to prove an upper bound for everypolynomial without restri
tions of the size of the sets A and B. However, oneof a) and b) holds for every polynomial, sin
e all polynomials 
an be writtenin the form rn(x + α)n + rn−2(x + α)n−2 + rn−3(x + α)n−3 + · · ·+ r0.In Corollary 1 we study the number of produ
ts ab whi
h are of the formof p(x) exa
tly, and this result will follow from the proofs of Theorems 1 and2. 5



Corollary 1 Suppose that the 
onditions of Theorem 2 hold and let
S = |{(a, b) : a ∈ A, b ∈ B, ab = p(x) for an x with x + α ∈ N}| .Then we have

S ≪ |A| |B|1/2 + |B| .

Throughout this paper, for a graph G, v(G) denotes the number of theverti
es, e(G) the number of the edges of G. Ck denotes the 
y
le of length
k, Kr,t is the 
omplete bipartite graph with r and t verti
es in its 
lasses.2 LemmasTheorems 1, 2 and Corollary 1 are based on graph theory. In the nextse
tion we will de�ne graphs whose verti
es are the elements of A, B, andtwo verti
es a ∈ A, b ∈ B are joined if ab is around p(x) for an x + α ∈ N.We will give an upper bound for the number of the edges using the fa
t thatthese graphs do not 
ontain �large� bipartite 
omplete subgraph.In this se
tion, we study the 
ase when the graph 
ontains a 
y
le oflength 4. More exa
tly, we suppose that there exist 4 integers a, b, c, d asdes
ribed in Hypothesis 1.Hypothesis 1 Let p(x) = rnxn + rmxm + rm−1x

m−1 + · · · + r0 ∈ R[x] be apolynomial with rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0 and let α ∈ Q, s ∈ Z with
s ≤ min{m−2, n/2}, K ∈ R with K ≤ r

1/n
n /6 if s = n/2. Suppose that there6



exist 4 integers a < b, c < d with
|ac − p(x)| ≤ Kxs, |ad − p(v)| ≤ Kvs,

|bc − p(z)| ≤ Kzs, |bd − p(y)| ≤ Kys,for some x + α, y + α, z + α, v + α ∈ N.Throughout this se
tion we use the notation of Hypothesis 1. Using that
x + α, y + α, z + α, v + α are integers we will prove the following two lemmaswhi
h are the main result of the se
tion.Lemma 1 There exist 
onstants c8 > 1, c9 su
h that if a, b, c, d are largeenough (depending on p(x), K, α) and xy − vz 6= 0 then we havea) c8ac < bd if m = n − 2,b) c9(ac)n−m−1 < bd if m ≤ n − 3.Lemma 2 There exists a 
onstant c10 su
h that if a, b, c, d are large enough,
xy − vz = 0 and one of the following 3 
ondition holdsa) s < 0,b) s < n/2, 2b > c and 2d > a,
) s = n/2, K ≤ r

1/n
n /6, 2b > c and 2d > a,then we have

c10(ac)m−s < bd.

First we need estimates for the exa
t value of x, y, z, v.Lemma 3 Let p(x) = rnx
n + rmxm + rm−1x

m−1 + · · · + r0 ∈ R[x] be apolynomial with rn > 0, 0 ≤ m ≤ n − 2, rm 6= 0 and let K ∈ R, s ∈ Z with7



s ≤ m. Then there exist a 
onstant c11 and a−1, an−m−1, an−m, . . . , an−s−2su
h that if y > c11, x > 0 and
|y − p(x)| < Kxs (1)then we have

x = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ · · ·+

an−s−2

y(n−s−2)/n
+ O(

1

y(n−s−1)/n
) (2)with a−1 = 1

r
1/n
n

.Proof of Lemma 3. If y is large enough then from (1) we get
x = O(y1/n). (3)Then

∣

∣

∣

∣

x −
y1/n

r
1/n
n

∣

∣

∣

∣

=

∣

∣

∣
xn − y

rn

∣

∣

∣

∣

∣

∣
xn−1 + xn−2 y1/n

r
1/n
n

+ · · ·+ y(n−1)/n

r
(n−1)/n
n

∣

∣

∣

≤
|rnx

n − y|

rnxn−1
. (4)By the triangle-inequality we have

|rnx
n − y| ≤ |rnx

n − p(x)| + |p(x) − y| = O(xm) + O(xs) = O(xm).From this, (3) and (4) we obtain
∣

∣

∣

∣

x −
y1/n

r
1/n
n

∣

∣

∣

∣

= O(
1

xn−m−1
) = O(

1

y(n−m−1)/n
). (5)From the Taylor-formula, by indu
tion on the number of the 
onstants (whi
his m−s+1), it is easy to prove that there exist 
onstants a−1, an−m−1, . . . , an−s−2su
h that if

x0 = a−1y
1/n +

an−m−1

y(n−m−1)/n
+

an−m

y(n−m)/n
+ · · ·+

an−s−2

y(n−s−2)/n
(6)8



then
p(x0) = y + O(ys/n).On the other hand if (1) holds then by (3) we have

p(x) = y + O(xs) = y + O(ys/n).Using the Lagrange theorem we get
O(ys/n) = |p(x) − p(x0)| = p′(ξ) |x − x0| (7)for some ξ ∈ [x, x0]. By (5) and (6) we have

ξ =
y1/n

r
1/n
n

+ O(
1

y(n−m−1)/n
).Thus p′(ξ) ≫ y(n−1)/n. From (7) we obtain:

O(ys/n) ≫ y(n−1)/n |x − x0| .Then:
|x − x0| = O(

1

y(n−s−1)/n
)whi
h 
ompletes the proof of Lemma 3.By Lemma 3 we have that there exist 
onstants a−1, an−m−1, . . . , an−s−2

9



(whi
h may depend on the 
oe�
ients of p(x)) su
h that
x = a−1(ac)1/n +

an−m−1

(ac)(n−m−1)/n
+

an−m

(ac)(n−m)/n
+ · · · +

an−s−2

(ac)(n−s−2)/n

+ O(
1

(ac)(n−s−1)/n
),

v = a−1(ad)1/n +
an−m−1

(ad)(n−m−1)/n
+

an−m

(ad)(n−m)/n
+ · · · +

an−s−2

(ad)(n−s−2)/n

+ O(
1

(ad)(n−s−1)/n
),

z = a−1(bc)
1/n +

an−m−1

(bc)(n−m−1)/n
+

an−m

(bc)(n−m)/n
+ · · · +

an−s−2

(bc)(n−s−2)/n

+ O(
1

(bc)(n−s−1)/n
),

y = a−1(bd)1/n +
an−m−1

(bd)(n−m−1)/n
+

an−m

(bd)(n−m)/n
+ · · · +

an−s−2

(bd)(n−s−2)/n

+ O(
1

(bd)(n−s−1)/n
). (8)Thus

xy − vz =
∑

i<j∈{−1/n,(n−m−1)/n,
(n−m)/n,...,(n−s−2)/n}

aiaj

(

b−ia−j − b−ja−i
) (

d−ic−j − d−jc−i
)

+ O(
(bd)1/n

(ac)(n−s−1)/n
).Then we haveLemma 4

|xy − vz| ≪

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
, (9)

10



and there exists a 
onstant c12 su
h that
|xy − vz| ≫

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
. (10)

Before proving Lemma 4, we remark that the main tool in the proofsof Lemma 1 and Lemma 2 is the fa
t that xy − zv is a rational number.More pre
isely, let α = r/q where r, q ∈ Z, (r, q) = 1. x, y, z, v ∈ N + αtherefore q2 |xy − vz| is an integer, however 
onsidering (9) we would thinkthat if a, b, c, d are large enough (depending on p(x), K, α), then q2 |xy − vz|is usually smaller than 1.Proof of Lemma 4. Using that a < b, by studying the derivatives we obtainthat the fun
tion x 7→ b−xa−j − b−ja−x in [−∞, j − 1/n] and the fun
tion
x 7→ b−ia−x − b−xa−i in [i+1/n,∞] are de
reasing. Thus the largest numberof the set {b−ia−j−b−ja−i : i < j ∈ {−1/n, (n−m−1)/n, . . . , (n−s−2)/n}}is b1/n

a(n−m−1)/n − a1/n

b(n−m−1)/n and the se
ond largest is b1/n

a(n−m)/n − a1/n

b(n−m)/n . So wehave
|xy − vz| = a−1an−m−1

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+ O(

(

b1/n

a(n−m)/n
−

a1/n

b(n−m)/n

) (

d1/n

c(n−m)/n
−

c1/n

d(n−m)/n

)

)

+ O(
(bd)1/n

(ac)(n−s−1)/n
) (11)Next we 
laim that

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

)

≥
a1/n

2

(

b1/n

a(n−m)/n
−

a1/n

b(n−m)/n

) (12)11



when
e, sin
e this statement is also true for c < d in pla
e of a < b, Lemma4 follows trivially from (11). Let us see the proof of (12). Indeed, by a < bwe have
a1/n

2(b1/n − a1/n/2)
>

(a

b

)2/n

≥
(a

b

)(n−m+1)/n

,whi
h is equivalent with (12). Thus we have proved Lemma 4.Proof of Lemma 1By Lemma 4 we have
1 ≤ q2 |xy − vz| ≪

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

+
(bd)1/n

(ac)(n−s−1)/n
=

(bd)1/n

(ac)(n−m−1)/n
+

(ac)1/n

(bd)(n−m−1)/n

−
(ad)1/n

(bc)(n−m−1)/n
−

(bc)1/n

(ad)(n−m−1)/n
+

(bd)1/n

(ac)(n−s−1)/n
.Sin
e

(ac)1/n

(bd)(n−m−1)/n
≤ min{

(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n
},

1

(abcd)(n−m−2)/2n
≤ max{

(ad)1/n

(bc)(n−m−1)/n
,

(bc)1/n

(ad)(n−m−1)/n
},we have

1 ≤ c13

(

(bd)1/n

(ac)(n−m−1)/n
−

1

(abcd)(n−m−2)/2n
+

(bd)1/n

(ac)(n−s−1)/n

)

.for some 
onstant c13. Thus if ac is large enough then
(ac)(n−m−1)/n + c13

(ac)(n−m)/n

(bd)(n−m−2)/2n
≤ c13(bd)1/n + O(

(bd)1/n

(ac)(m−s)/n
)

≤ (c13 + 1/2) (bd)1/n.12



Thus if m = n − 2 we get
(

c13 + 1

c13 + 1/2

)n

ac ≤ bd,and when m ≤ n − 3 we get
(ac)n−m−1 < (c13 + 1/2)n bd,whi
h 
ompletes the proof of Lemma 1.Proof of Lemma 2In order to prove Lemma 2 we need the following lemma.Lemma 5 There exists a 
onstant c14 su
h that if a, b, c, d are large enough,

c14(ac)m−s ≥ bd and xy − vz = 0, then {x, y} = {z, v}.Proof of Lemma 5 By Lemma 4 there exists a 
onstant c12 su
h that for
a < b, c < d we have
0 = |xy − vz| ≫

(

b1/n

a(n−m−1)/n
−

a1/n

b(n−m−1)/n

) (

d1/n

c(n−m−1)/n
−

c1/n

d(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n

≫
1

(ac)(n−m−1)/n
(b1/n − a1/n)(d1/n − c1/n) − c12

(bd)1/n

(ac)(n−s−1)/n
.Sin
e

|x + y − v − z| = (b1/n − a1/n)(d1/n − c1/n) + O(
1

(ac)(n−m−1)/n
)we obtain that there exists a 
onstant c15 su
h that

0 = |xy − vz| ≫
1

(ac)(n−m−1)/n

(

|x + y − v − z| − c15
1

(ac)(n−m−1)/n

)

− c12
(bd)1/n

(ac)(n−s−1)/n
. 13



When
e by m ≤ n−2, s ≤ m−2 and bd ≤ c14(ac)m−s with suitable 
onstant
c14 we obtain

q |x + y − v − z| < O(
(bd)1/n

(ac)(m−s)/n
) < 1.

q |x + y − v − z| is an integer so if a and c are large enough, we have
x + y − v − z = 0.

xy = zv, x+y = z+v thus x, y and v, z are the roots of the same polynomialof degree 2 whi
h 
ompletes the proof of Lemma 5.Now we return to the proof of Lemma 2. Suppose that 
ontrary to thestatement c14(ac)m−s ≥ bd. Then by Lemma 5 we have {x, y} = {z, v}. Bysymmetry reasons we may suppose that x = v and y = z. By (8) we have
y = z = 1

r
1/n
n

(bc)1/n + O((bc)(n−m−1)/n), so
|bc − p(y)| < Kys <

2K

r
1/n
n

(bc)s/n,

|bd − p(y)| < Kys <
2K

r
1/n
n

(bc)s/n,From the triangle-inequality
|b| ≤ |bd − bc| ≤

4K

r
1/n
n

(bc)s/n (13)If s < 0 and b, c are large enough then |b| ≤ 1/2 whi
h proves part a). Inorder to prove parts b) and c) from (13) we obtain:
1 ≤ |d − c| ≤

4K

r
1/n
n

(c

b

)(n−s)/n

c−(n−2s)/n. (14)If s < n/2 and c is large enough we have
1 ≤

1

2

(c

b

)(n−s)/n14



whi
h 
ontradi
ts the 
ondition 2b > c thus we have also proved part b).Finally if s = n/2 and K ≤ r
1/n
n /6 then we have

1 ≤
4K

r
1/n
n

(c

b

)1/2

≤
2

3

(c

b

)1/2whi
h 
ompletes the proof of Lemma 2.3 Completions of the proofs of the theorems.Proof of Theorem 1. We 
over the interval [N, N + 1, . . . , 2N ] by disjointsubintervals of the form [z, c
1/2
16 z]. Then we have less than ⌈2 log 2/ log c16⌉subintervals. De�ne the bipartite graph G in the following way:Consider two arbitrary subintervals I1 = [z1, c

1/2
16 z1] and I2 = [z2, c

1/2
16 z2].Graph G has two 
lasses, one 
ontains as verti
es the elements of A ∩ I1,while the others 
ontains the elements of B ∩ I2. There is an edge betweenthe verti
es a ∈ A ∩ I1 and c ∈ B ∩ I2 if and only if there exist x + α ∈ Nsu
h that

|ac − p(x)| ≤ Kxs.By Lemma 1 and Lemma 2 b) and c) if this graph 
ontains a C4, whoseverti
es are a, b, c, d, then in both 
ases xy − zv = 0 or xy − zv 6= 0, we have
c16ac < bd for c16

def
= min{c8, c9, c10}. But this 
ontradi
ts a, b,∈ I1, c, d ∈ I2sin
e c16ac ≥ c16z

2 ≥ bd. Thus this graph does not 
ontain C4. We will needthe following lemma.Lemma 6 There exists a 
onstant c17 su
h that if G(X, Y ) is a bipartitegraph with |X| = m, |Y | = n without C4, then for the number of the edges15



we have
e(G) ≤ c17mn1/2 + n.

Proof of Lemma 6. See in [9℄ and [10℄.Thus by Lemma 6, G has less edges than |A| |B|1/2 + |B| whi
h proves theassertation for
|{(a, b) : a ∈ A ∩ I1, b ∈ B ∩ I2, |ab − p(x)| ≤ Kxs for an x + α ∈ N}|We have at least ⌈2 log 2/ log c16⌉ subintervals Ij and this 
ompletes the proof.Proof of Theorem 2. If 
ondition a) holds in Theorem 2 we 
over theintervals [N, N + 1, . . . , 2N ], [M, M + 1, . . . , 2M ] by disjoint subintervals ofthe form [z, c

1/2
17 z]. When 
ondition b) holds we 
over the intervals [N, N +

1, . . . , N2], [M, M + 1, . . . , M2] by disjoint subintervals of the form [z, z3/2].In 
ase c) we have only two subintervals I1 = I2 = N. For given subintervals
I1, I2 we de�ne the graph G as in the proof of Theorem 1. We 
onstru
t agraph G0 from G by removing 
ertain edges of G so that for ea
h x su
h thatthere are a ∈ A, b ∈ B with

|ab − p(x)| ≤ Kxs. (15)there will be exa
tly one edge (a, b) left with this property. Suppose again G0
ontains a C4, whose verti
es are a, b, c, d. By Lemma 5 if xy− zv = 0, then,sin
e x, y, z, v are di�erent numbers, thus we have c14(ac)m−s < bd. Usingthis and Lemma 1 in 
ase a) and b) we obtain that G0 does not 
ontain C4so as in the proof of Theorem 1 we get the statement.16



Now 
onsider the 
ase c). We will prove that there exists a 
onstant
r su
h that graph G0 does not 
ontain a K2,r whose 
lasses are {a, b} and
{d1, d2 . . . , dr} where a < b < d1 < · · · < dr.

adi = p(x) + O(xs), bdi = p(v) + O(vs).Then by the triangle inequality we have
|bp(x) − ap(y)| = O(max{bxs, ays}),

|bxn − ayn| = O(max{bxm, aym}).Lemma 7 If a, b and n are positive integers with n ≥ 3 and c is a positivereal number, then the inequality
|axn − byn| ≤ chas at most one positive integral solution (x, y) with

max{|axn| , |byn|} > βnc
αn ,where αn and βn are e�e
tively 
omputable positive 
onstants satisfying

α3 = 9, αn = max

{

3n − 2

2(n − 3)
,
2(n − 1)

n − 2

} for n ≥ 4and
β3 = 1152.2, β4 = 98.53, βn < n2 for n ≥ 5.

Proof of Lemma 7. This is Theorem 2.1 of [12℄.By Lemma 7 there are only one x and y su
h that
max{|bxn| , |avn|} > βn (max{|bxm| , |avm|})αn .17



When this does not hold:
xn ≤ max{xn, vn} < βnbαnxαnm or vn ≤ max{xn, vn} < βna

αnvαnm,when
e we get for all di with one ex
eption:
di < max{adi, bdi} ≪ max{xn, vn} < (βnbαn)n/(n−αnm) .Let adi+1 = p(z) + O(zs), bdi+1 = p(y) + O(ys). Then a, b, di, di+1 form a C4in G0, and sin
e x, y, z, v are di�erent, by Lemma 5 if xy − zv = 0 we have

c14(adi)
m−s < bdi+1. Using Lemma 1 we get c9(adi)

n−m−1 < bdi+1. Thus
c18(adi)

min{m−s,n−m−1} < bdi+1always holds so if b < di and a are large enough we have
d

min{m−s,n−m−1}
i < di+1.Thus

d
(r−1)(min{m−s,n−m−1})
1 < dr−1 < (βnb

αn)n/(n−αnm) < (βnd1)
n/(n−αnm)whi
h proves that the graph G0 does not 
ontain K2,r in the 
ase c). Usingthe following lemma we will get the statement of Theorem 2.Lemma 8 Assume that G(X, Y ) is a bipartite graph with |X| = m ≤ |Y | =

n, and the verti
es are labeled by positive real numbers. Suppose that G(X, Y )does not 
ontain a Kr,t subgraph G0 for whi
h
G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a's belong to V1 and the
b's belong to V2 or vi
e versa). Then G has at most

e(G) ≤ 2(t − 1)1/rnm1−1/r + 2(r − 1)nedges.Proof of Lemma 8. See in [3℄.Proof of Corollary 1. Consider the same graph G again (but we do notremove the edges). Using Lemma 1 we 
an 
omplete the proof of the 
orollaryin the same way as in Theorem 2.Referen
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