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Abstract

The following extension of a problem of Diophantus is studied: For
finite sets A, B of positive integers and a fixed polynomial p, how many
pairs (a,b) (a € A,b € B) can be given so that the product ab is “near”
to p(x) for some positive integer x.
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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the ratio-
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any two of them increased by 1 is a square of a rational number. Later Fermat
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found a set of four positive integers with the above property: {1,3,8,120}
(see [5]). A finite set A of integers is called a Diophantine n-tuple if |A| = n
and aa’ + 1 is a perfect square for all different elements a and a’ of A. The
first absolute upper bound for the size of Diophantine tuples was given by
A. Dujella [4], [6] and very recently he proved that there is no Diophantine
6-tuple, and there are only finitely many Diophantine 5-tuples [7]. Yann
Bugeaud and A. Dujella [2] extended the problem for higher power.

In [3] the following related problem was studied: for an arbitrary set A
at most how many pairs (a,a’) exist with a,a’ € A, a # d/, ad' + 1 = 2™
It is clear that if the number of these pairs is less than |.A|* — |.A| than this
implies that A is not a Diophantine |4|-tuple. Indeed, there we were able to

prove the following upper bound: Forn > 2, A,BCN, |A| > |B| let
S=H(a,b): ac A beBab+1=2a", xeN},

then

a) if n =2 and A= B then S < 0.8]Af,

b) if n = 3 then S < 16.27|A| |B|*

¢)if n >4 then S < 11.93|A||B|"?

In particular, if | 4| = |B| then we obtain that the number of pairs (a,b) such
that ab+ 1 is a k-th power for a fixed k > 4 is < 11.93 | A2,

In the present paper we will study the case of general polynomials p(z) in
the place of ™, and give an upper bound for the number of pairs (a, b) where
ab is “around” p(z) for a positive integer z. (Another polynomial extension
of the problem was studied by A. Dujella and F. Luca [8]) This question

was studied by H. Iwaniec and A. Sarkozy [14]| from the opposite side. They
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proved that for all positive constant ¢; there exists a constant ¢, (depending
on ¢p) such that if AC{N,N+1,...,2N}, BC{N,N +1,...,2N} with
|A| > 1N, |B| > ¢1 N, then there exist integers a, b, z with a € A, b € B and
lab — 22| < cy(wlogx)/?, so that ab is “near square”. Wen-Guang Zhai [18]
extended the problem to k sequences and k-th powers.

When p(z) = cz”, there exist sets A and B (e.g. A= {y*: ye N}, B=
{cz¥ : 2z € N}) such that ab is always of the form of p(z), + € N. Therefore
in this case it is not possible to give any non-trivial upper bound for the
number of the pairs. However, under certain conditions on p(x) we will be

able to give an upper bound.

Theorem 1 Let p(x) = rpa"™ + rpx™ + -+ + 19 € Rlz] be a polynomial
with v, > 0, 0 < m < n-—2,r, # 0. Suppose that o € Q, s € Z
with s < min{m — 2,n/2}, K € R with K < nl/n/fi if s =mn/2, A;B C
{N,N+1,...,2N}, and let

S =(a,b): a€ Abe B, |ab—p(x)| < Kz*® for an x with x + «a € N}|.
Then
S < |A1B]'? + |B|

always holds.

Throughout the paper we use the notations <, >, < and O in the sense
that the implied constant factor may depend only on the polynomial p and
the real numbers K and « defined in Theorem 1 and 2. More exactly we
say that f < g or f = O(g) if there exists a positive constant c3 such that

|f| < cs3lg], and we say that f =< g, if there exist two positive constants cy
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and c5 such that csf < g < ¢5f, where the constants cz, ¢4, 5 depend only
on the polynomial p and the real numbers K and «, but nothing else (these
constants does not depend on the sets A and B or the integers N and M
where A C{N,N+1,...,}, BC{M,M +1,...}). Moreover, throughout
the paper cg, c7,cs... will also denote positive constants whose value may
depend only on the polynomial p and the real numbers K and « but nothing
else.

The following two examples show that the conditions s < n/2 and A, B C
[N,N + 1,...,2N] are necessary. First consider the case s > n/2. Let
y,x €N, y> =p(x) and A =B ={a: |a—y| < cy, a € N}. Then for

a€ A, be B we have
lab — p(z)| = |ab — y*| < y* + 2cy' T < 2
if € is small enough and s > n/2. Thus
S =|Al|B|.

So, indeed, the condition s < n/2 is necessary.

On the other hand assume that s < n/2, v and 0 < ¢ < v are fixed
integers, p(x) € Q[z], cg,c7 are positive constants, A = {p(z)/v : x €
N, ¢ <z < cr (/O™ v | p@)}, B={v,uv+1,...,0+ €} If the
constant cg is large enough then p(z) =< 2™, and in this case for small enough
constant ¢; we get S = |A[|B| and A C [1,2,...v], B C [v,v+1,...,20].
Thus in Theorem 1 the condition A, B C [N, N+1,...,2N] is also important.
In this example, it is very difficult question to give estimates for the size of

A, however the conjecture is that there exists a polynomial p for which the
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cardinality of A is large. Considering the possible values of the polynomial
p(x) which are around ab in our example: x € N and there exist a € A,
b € B such that |ab — p(z)| < Kz° we see that the number of these z’s is
| A|. Thus the values of the polynomial p(z) with integer x, around a product
ab, is much less than the number of all pairs (a,b) with a € A, b € B which

is | A| |B|. Generally, we will prove the following:

Theorem 2 Let p(z) = rpz™ + rpa™ + - 4+ rg € Rlz] be a polynomial
with r, > 0,0 < m <n-—2,r, # 0. Suppose that « € Q, s € Z with

s <min{m —2,n/2}, K € R withKSr,ll/n/G if s=mn/2, A,BCN, and let
S'=|z: ae Abe B, |ab— p(x)| < Kz* for an x with x + o € N}|.

If one of the following 3 conditions holds
a) AC{N,N+1,....2N}, BC{M,M+1,...,2M},
b)m<n-—3and AC{N,N+1,...,N*}, BC{M,M +1,..., M?},

¢c)n >4, m<n/a,, where a, = max{Q?EZ:g), 23 Al > 18],

then ' < |A||B]"* +|8B].

Unfortunately we have not been able to prove an upper bound for every
polynomial without restrictions of the size of the sets A and B. However, one
of a) and b) holds for every polynomial, since all polynomials can be written
in the form r,(z + )" + rp_o(x + )" 2 +r_s(x + )" 3+ + 1.

In Corollary 1 we study the number of products ab which are of the form
of p(z) exactly, and this result will follow from the proofs of Theorems 1 and

2.



Corollary 1 Suppose that the conditions of Theorem 2 hold and let
S ={(a,b): a€ A be B, ab=p(x) for an x with x + o € N}|.

Then we have

S < |Al|BIY*+ 8|

Throughout this paper, for a graph G, v(G) denotes the number of the
vertices, e(G) the number of the edges of G. Cj denotes the cycle of length

k, K, is the complete bipartite graph with r and ¢ vertices in its classes.

2 Lemmas

Theorems 1, 2 and Corollary 1 are based on graph theory. In the next
section we will define graphs whose vertices are the elements of A, B, and
two vertices a € A, b € B are joined if ab is around p(z) for an x + a € N.
We will give an upper bound for the number of the edges using the fact that
these graphs do not contain “large” bipartite complete subgraph.

In this section, we study the case when the graph contains a cycle of
length 4. More exactly, we suppose that there exist 4 integers a,b,c,d as

described in Hypothesis 1.

Hypothesis 1 Let p(z) = 72" + rpa™ + rp 2™ 1+ - + 19 € Rlz] be a
polynomial with r, >0, 0 <m <n—2, r, #0 and let « € Q, s € Z with

s <min{m—2,n/2}, K € R with K < ry/"/6 if s = n/2. Suppose that there



exist 4 integers a < b, ¢ < d with

lac = p(z)| < Ka*, |ad — p(v)| < Kv*,

|be — p(2)] < Kz*, [bd — p(y)| < Ky,
for some x +a,y+a,z+ao,v+a €N.

Throughout this section we use the notation of Hypothesis 1. Using that
T+ a,y+a,z+ a,v+ « are integers we will prove the following two lemmas

which are the main result of the section.

Lemma 1 There exist constants cg > 1,cq such that if a,b,c,d are large
enough (depending on p(x), K, o) and xy — vz # 0 then we have
a) cgac < bd if m=n—2,

b) co(ac)" ™1 < bd if m <n— 3.

Lemma 2 There exists a constant cig such that if a,b, c,d are large enough,
xy — vz =0 and one of the following 3 condition holds

a) s <0,

b) s <mn/2,2b>c and 2d > a,

¢)s=n/2, K<ry"/6,2b> c and 2d > a,

then we have

cr0(ac)™* < bd.

First we need estimates for the exact value of z,vy, 2, v.

Lemma 3 Let p(z) = 1,2 + rpa™ + rpp 2™+ -+ 19 € R[] be a

polynomial with r, > 0,0 <m <n—2,r, #0 and let K € R, s € Z with
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s < m. Then there exist a constant c11 and a_1, Qp_m—1,Gpommys - - - » Qp—s—2

such that if y > c11, * > 0 and

ly —p(2)] < Kz® (1)
then we have
o 1/n Ap—m—1 Qp—m . Ap—s5—2 1
r=a-1y + y(n—m—l)/n y(n—m)/n + + y(n—s—Z)/n + O(y(n—s—l)/n) (2)

with a_q1 = %
Tn

Proof of Lemma 3. If y is large enough then from (1) we get

z=0(y"'"). (3)
Then
yl/n " — % Iraz™ — o
v 1/n (n—1)/n rogn—1 (4)
Tn SL’"71+.T"72@:1/”+"'+W n

By the triangle-inequality we have
rna” — y| < |raa” —p()] + [p(z) — y[ = O(z™) + O(2°) = O(z™).

From this, (3) and (4) we obtain
1/n 1 1

Y (W) = O(W)- (5)

1/n
’I“n/

xr —

From the Taylor-formula, by induction on the number of the constants (which
is m—s+1), it is easy to prove that there exist constants a_1, ap—m_1,- - -, s 2

such that if

xo = a_1y'/" +



then
p(z0) =y + O(y”").
On the other hand if (1) holds then by (3) we have
p(x) =y +0(") =y + Oy,

Using the Lagrange theorem we get

O(y*™) = |p(x) — plzo)| = p'(€) | — x0 (7)

for some £ € [z, x0]. By (5) and (6) we have

1/n 1
_y
g o Trlz/n + O<y(n—m—1)/n

).
Thus p'(€) > y™~Y/". From (7) we obtain:
O(y™") > y" =" o — o]

Then:

1

o~ 0] = O(mrmy)

which completes the proof of Lemma 3.

By Lemma 3 we have that there exist constants a_1,a,_m_1,...,0n_s_2



(which may depend on the coefficients of p(z)) such that

T = a—1<ac)1/n =+ ag;j;:ll)/n + a(r;:rjn)/n ot %
(ac) (ac) (ac)
1
+ O((GC)("TW")’
_ 1/n (n—m-1 Gn—m T o B
v=a_(ad)’" + (ad)(n=m=1/n T (ad)(n=m)/n . + (ad)n—s=2)/n
1
+ Ol )
_ 1/n n—m—1 n—m coogInms2
z=a_y(bc) " + (be)(n=m=1)/n + (be)(n=—m)/n Tt (be)(n=s=2)/n

1

+ O(<bc)(n7371)/n)’

_ 1/n An—m-1 Un—m o Ap—s—2
y = a1 (bd) "™ + )7+ Gy T T 2
1
+0( (bd)(m=s—D/n ) (8)

Thus

Ty — vz = Z a;a; (b_ia_j — b_ja_i) (d_ic_j — d_jc_i)
i<je{-1/n,(n—m—1)/n,
(n—m)/n,...,(n—s—2)/n}

(bd)l/n
+ O( (ac)(n—s—l)/n :

Then we have

Lemma 4
bl/n al/n dl/n C1/n
ey —vel < q(n—m=1)/n — pn—m-1)/n cn=m=1)/n "~ g(n—m=1)/n
(bd) '™ 9
m’ )
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and there exists a constant cio such that

bl/n al/n dl/n Cl/n

(bd)! /"

— 12 (CI,C) (n—s—1)/n"

(10)

Before proving Lemma 4, we remark that the main tool in the proofs
of Lemma 1 and Lemma 2 is the fact that zy — zv is a rational number.
More precisely, let « = r/q where r,q € Z, (r,q) = 1. z,y,z,v € N+ «
therefore ¢* |xy — vz| is an integer, however considering (9) we would think
that if a, b, ¢, d are large enough (depending on p(z), K, a), then ¢* |zy — vz|

is usually smaller than 1.

Proof of Lemma 4. Using that a < b, by studying the derivatives we obtain
that the function z — b™%a™7 — b7a™ in [—00,j — 1/n] and the function
x— b"a™® —b"%a""in [i + 1/n, oo] are decreasing. Thus the largest number

of theset {b~"a™7—b7a™": i<je{-1/n,(n—m—1)/n,...,(n—s—2)/n}}

. bl/n al/n . bl/n al/n
IS —==rn7m — joem-pyw and the second largest is =5~ — ;s So we
have

bl/n al/n dl/n Cl/n
‘l’y o UZ| = 0-10n-—m-1 qm—m—1)/n B p(n—m—1)/n cn—m—1)/n B dn—m-1)/n

bl/n al/n dl/n Cl/n
+ O((a(n—m)/n - b(n—m)/n) (C(n—m)/n B d(n—m)/n>)

+O(m (11)

Next we claim that

bl/n al/n al/n bl/n al/n
— > - (12)
q(n—m—1)/n p(n—m—1)/n 2 q(n—m)/n p(n—m)/n

)



whence, since this statement is also true for ¢ < d in place of a < b, Lemma
4 follows trivially from (11). Let us see the proof of (12). Indeed, by a < b

we have

al/n

- (a)?/n S (a)(nm+1)/n
s —amgz) - ) 25 ’

which is equivalent with (12). Thus we have proved Lemma 4.

Proof of Lemma 1

By Lemma 4 we have

) bl/n al/n dl/n Cl/n
I< q |$’y - UZ| < ( (n—m—1)/n o b(nml)/n) (C(nml)/n - d(nml)/n)

( )l/n B (bd)l/n (ac)l/"
+ ( )(n s—1)/ (ac)(n—m—l)/n ( )(n—m—l)/n
B (a )1/n (bc)l/n + (bd)l/"
(bc)(n m— 1)/n (CLd) n—m—1)/ (ac)(n s—1)/n"’
Since
(ac)l/n o (ad)l/n (bc)l/n
(bd)(nfmfl)/n - mln{ (bc)(nfmfl)/n’ (ad)(nfmfl)/n }’
1 (ad)*/™ (be)t/m
(abcd)(nfm72)/2n S maX{ (bc)(nfmfl)/n’ (ad)(nfmfl)/n ’
we have

| < (bd)*/ 1 (bd) 1/
=\ {ae)rm=/n ~ (abed)n—m-2/2n + (ac)—s—D/n

for some constant c;3. Thus if ac is large enough then

(ac) (n—m)/n
(bd) (n—m—2)/2n

(bd)"/

(n—m—1)/n
(CLC) + ci13 (ac) (m—s)/n )

S Clg(bd>1/n + O(

< (c13 +1/2) (bd)'/"™.
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Thus if m =n — 2 we get

(M)nac < bd
013+1/2 - ’

and when m < n — 3 we get
(ac)" ™t < (c13+1/2)" bd,

which completes the proof of Lemma 1.
Proof of Lemma 2

In order to prove Lemma 2 we need the following lemma.

Lemma 5 There exists a constant ci4 such that if a,b, c,d are large enough,

c14(ac)™* > bd and xy — vz = 0, then {z,y} = {z,v}.

Proof of Lemma 5 By Lemma 4 there exists a constant ¢;o such that for

a < b, ¢ < d we have

bl/n al/n dl/n C1/n
0= ‘l’y o UZ| > (a(n—m—l)/n o b(n—m—l)/n) (C(n—m—l)/n o d(n—m—l)/n)
— 2 D /n
(ac)(n s—1)/n
1 (bd)'/™

> bl/n . al/n)(dl/n o Cl/n) — o

(ac)(nfmfl)/n ( (ac)(nfsfl)/n'
Since

1

@y —v—z| = (O —a")(d" =) + Ol

we obtain that there exists a constant ¢;5 such that

1 1
0:|;1:y—vz\ >>m <|$+y—U—Z|—Cl5(aC)(n—m1)/n)
(bd)l/n

12 (ac)(n—s—l)/n ’
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Whence by m <n—2, s < m—2 and bd < ¢14(ac)™ * with suitable constant

c14 we obtain

q|ZL"|“’y—U—Z|<O((aC)(TS)/n)<

q|z +vy — v — z| is an integer so if a and ¢ are large enough, we have
r+y—v—z=0.

xy = zv, x+y = z+v thus z,y and v, z are the roots of the same polynomial
of degree 2 which completes the proof of Lemma 5.

Now we return to the proof of Lemma 2. Suppose that contrary to the
statement c¢14(ac)™* > bd. Then by Lemma 5 we have {z,y} = {z,v}. By

symmetry reasons we may suppose that x = v and y = z. By (8) we have

y =z = = (bc)V/™ + O((be)"—m=D/") 50

7
oK
lbe — p(y)| < Ky* < = (be)*!™,
Tn
2K
[bd —p(y)| < Ky* < =7 (be)*/",
Tn

From the triangle-inequality

4K
1] < o — bel <~ (be)'l" (13)

If s < 0 and b, ¢ are large enough then |b| < 1/2 which proves part a). In

order to prove parts b) and c¢) from (13) we obtain:

4K fexmes)m oo

If s <n/2 and c is large enough we have

1 /7¢\ (n—=s)/n
1<5(5)
2 \b
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which contradicts the condition 2b > ¢ thus we have also proved part b).

Finally if s =n/2 and K < 7“71/"/6 then we have

1 < 4K (c>1/2 < 2 (0)1/2
_T}@/n b — 3\

which completes the proof of Lemma 2.

3 Completions of the proofs of the theorems.

Proof of Theorem 1. We cover the interval [N, N+ 1,...,2N] by disjoint

subintervals of the form [z, C}éQZ].

Then we have less than [21log2/log ¢y ]
subintervals. Define the bipartite graph G in the following way:

Consider two arbitrary subintervals I; = [z, c}ézzl] and Iy = [z, c}éZZQ].
Graph GG has two classes, one contains as vertices the elements of AN Iy,
while the others contains the elements of B N [5. There is an edge between
the vertices a € AN I; and ¢ € BN I, if and only if there exist x + a € N
such that

lac — p(x)| < Ka°.

By Lemma 1 and Lemma 2 b) and c¢) if this graph contains a Cy, whose
vertices are a, b, ¢, d, then in both cases xy — zv = 0 or zy — zv # 0, we have
crgac < bd for cig ot min{cg, cg, c10}. But this contradicts a,b, € I}, ¢,d € I,
since cigac > 122 > bd. Thus this graph does not contain C;. We will need

the following lemma.

Lemma 6 There exists a constant ci1; such that if G(X,Y) is a bipartite

graph with | X| = m, |Y| = n without Cy, then for the number of the edges
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we have

e(G) < crymnt/? + .

Proof of Lemma 6. See in [9] and [10].
Thus by Lemma 6, G has less edges than |.A| |[B|"/? +|B| which proves the

assertation for
H{(a,b): ae ANT, be BN, |ab—p(x)| < Kz® for an v + a € N}|

We have at least [21og 2/ log ¢14] subintervals /; and this completes the proof.
Proof of Theorem 2. If condition a) holds in Theorem 2 we cover the
intervals [N, N + 1,...,2N], [M, M + 1,...,2M] by disjoint subintervals of
the form [z, 01422]. When condition b) holds we cover the intervals [N, N +
1,...,N?, [M,M +1,...,M? by disjoint subintervals of the form [z, z%/2].
In case ¢) we have only two subintervals I; = I, = N. For given subintervals
I, Iy we define the graph G as in the proof of Theorem 1. We construct a
graph G from G by removing certain edges of GG so that for each x such that

there are a € A, b € B with
lab — p(x)| < Ka°. (15)

there will be exactly one edge (a, b) left with this property. Suppose again Gy
contains a Cy, whose vertices are a, b, ¢, d. By Lemma 5 if xy — zv = 0, then,
since z,y, z,v are different numbers, thus we have cj4(ac)™ * < bd. Using
this and Lemma 1 in case a) and b) we obtain that G, does not contain Cj

so as in the proof of Theorem 1 we get the statement.
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Now consider the case ¢). We will prove that there exists a constant
r such that graph G does not contain a K5, whose classes are {a,b} and

{dy,dy...,d,} where a <b<d; <---<d,.
ad; = p(x) + O(x*), bd; = p(v) + O(v®).
Then by the triangle inequality we have

|bp(z) — ap(y)| = O(max{bz®, ay®}),

|bx™ — ay"| = O(max{bz™, ay™}).

Lemma 7 If a,b and n are positive integers with n > 3 and c is a positive

real number, then the inequality
az”™ —by"| < ¢
has at most one positive integral solution (z,y) with
max{|az"|, [by"|} > Bnc,

where oy, and B, are effectively computable positive constants satisfying

3n—2 2(n—1)
2(n—3)" n—2

asg =9, an:max{ }fornzll

and

Bs = 1152.2, B4 = 98.53, B, < n® for n > 5.

Proof of Lemma 7. This is Theorem 2.1 of [12].

By Lemma 7 there are only one x and y such that

max{|bz"|,|av"|} > B, (max{|bz™]|,|av™|})*".
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When this does not hold:
2" <max{z",v"} < B0 ™ or v" < max{z",v"} < B,a"v*"™,
whence we get for all d; with one exception:
d; < max{ad;, bd;} < max{z",v"} < (3,b* )" "™

Let ad;y1 = p(z) + O(2°), bd;+1 = p(y) + O(y®). Then a,b,d;,d;, form a Cy
in GGy, and since x,y, z, v are different, by Lemma 5 if 2y — zv = 0 we have

014((ldi)m78 < bdi+1. USiIlg Lemma 1 we get Cg(a,di)nimil < bdi+1. Thus
C18(adi)min{m—s,n—m—l} < bdi+1

always holds so if b < d; and a are large enough we have

min{m—s,n—m—1
d; { b < dig1.

Thus
dgr—l)(min{m—s,n—m—l}) <dr—1 < (ﬁnban)n/(n—anm) < (ﬁndl)n/(n—anm)

which proves that the graph G does not contain K5, in the case ¢). Using

the following lemma we will get the statement of Theorem 2.

Lemma 8 Assume that G(X,Y) is a bipartite graph with | X|=m < |Y| =
n, and the vertices are labeled by positive real numbers. Suppose that G(X,Y)

does not contain a K, subgraph Gy for which




with a; < b; for all1 <i<r, 1 <j <t (where the a’s belong to Vi and the

b’s belong to Vy or vice versa). Then G has at most
e(G) < 2(t — D)Ym! =Y 4 2(r — 1)n
edges.

Proof of Lemma 8. See in [3].
Proof of Corollary 1. Consider the same graph G again (but we do not
remove the edges). Using Lemma 1 we can complete the proof of the corollary

in the same way as in Theorem 2.
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