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1 IntrodutionIn a series of papers C. Mauduit and A. Sárközy (partly with oauthors)studied �nite pseudorandom binary sequenesEN = fe1; e2; : : : ; eNg 2 f�1;+1gN :In partiular, in part I [6℄ �rst they introdued the following measures ofpseudorandomness:Write U(EN ; t; a; b) = t�1Xj=0 ea+jband, for D = (d1; : : : ; dk; ) with non-negative integers d1 < � � � < dk,V (EN ;M;D) = MXn=1 en+d1en+d2 ; : : : en+dk :Then the well-distribution measure of EN is de�ned asW (EN) = maxa;b;t jU(EN (t; a; b)j = maxa;b;t ����� t�1Xj=0 ea+jb����� :where the maximum is taken over all a; b; t suh that a; b; t 2 N and 1 � a �a + (t � 1)b � N , while the orrelation measure of order k of EN is de�nedas Ck(EN) = maxM;D jV (EN ;M;D)j = maxM;D ����� MXn=1 en+d1en+d2; : : : en+dk �����where the maximum is taken over all D = (d1; d2; : : : ; dk) and M suh thatM + dk � N .Then the sequene EN is onsidered as a �good� pseudorandom sequeneif both these measures W (EN) and Ck(EN) (at least for small k) are �small�in terms of N (in partiular, both are o(N) as N !1).2



Moreover it was shown in [6℄ that the Legendre symbol forms a �good�pseudorandom sequene. More exatly, let p be an odd prime, andN = p� 1; en = �np� ; EN = feq; : : : ; eNg: (1)Then by Theorem 1 in [6℄ we haveW (EN)� p1=2 log p� N1=2 logNand Ck(EN )� kp1=2 log p� kN1=2 logN:In [5℄ was introdued the symmetry measure of EN :S(EN) = maxa<b ������[(b�a)=2℄�1Xj=0 ea+jeb�j������ = maxa<b jH(EN ; a; b)j :In [5℄ it was also shown that for the half of the Legendre symbol sequene,i.e., for the sequeneE(p�1)=2 = ��1p� ;�2p� ; : : : ;�(p� 1)=2p �� ;where p is an odd prime, we haveS(E(p�1)=2) � 18p1=2 log p:Numerous other binary sequene have been tested for pseudorandom-ness by J. Cassaigne, S. Ferenzi, C. Mauduit, J. Rivat and A. Sárközy.However, these onstrutions produe only �few� pseudorandom sequenes,while in many appliations, e.g., in ryptography one needs �large� families of�good� pseudorandom sequenes. Very reently L. Goubin, C. Mauduit, A.Sárközy [4℄ sueeded in onstruting large families of pseudorandom binary3



sequenes, generalizing the onstrution (1). Their most important resultsan be summarized as follows:Theorem 1 If p is a prime number, f(x) 2 Fp[x℄ (Fp being the �eld of themodulo p residue lasses) has degree k > 0 and no multiple zero in Fp (=thealgebrai losure of Fp), and the binary sequene Ep = feq; : : : ; epg is de�nedby en = 8><>: �f(n)p � for (f(n); p) = 1+1 for p j f(n); (2)then we have W (Ep) < 10kp1=2 log p:Moreover, assume that for ` 2 N one of the following assumption holds:(i) ` = 2;(ii) ` < p and 2 is a primitive root modulo p;(iii) (4k)` < p.Then we also have C`(Ep) < 10k`p1=2 log p:This theorem generates �large� families of �good� pseudorandom binary se-quenes. However, in most appliations it is also very important that the�large� family F of �good� pseudorandom sequenes had a �omplex� stru-ture, there are many �independent� sequenes in it. In [1℄ a quantitativemeasure for this property of families of binary sequenes was introdued.De�nition 1 The omplexity C(F) of a family F of binary sequene EN 2f�1;+1gN is de�ned as the greatest integer j so that for any 1 � i1 <4



i2 < � � � < ij � N , and for "1; "2; : : : ; "j 2 f�1;+1gj, we have at least oneEN = fe1; : : : ; eNg 2 F for whihei1 = "1; ei2 = "2; : : : ; eij = "j:It is lear from De�nition 1 that for j < C(F), there exist at least 2C(F)�jsequene EN 2 F withei1 = "1; ei2 = "2; : : : ; eij = "j:In [1℄ it was also proved that the omplexity measure of the family of thesequene Ep de�ned by (2) is large. More preisely: onsider all the polyno-mials f(x) 2 Fp[x℄ with 0 < deg f(x) � K(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zeroin Fp. For eah of these polynomials f(x), onsider the binary sequeneEp = Ep(f) = fe1 : : : ; epg 2 f�1;+1gp de�ned by (2), and let F denote thefamily of all binary sequenes obtained in this way. Then we haveC(F) > K:In this paper, extending a onstrution given by A. Sárközy in [9℄, we willgenerate a large family of pseudorandom sequenes based on the notion ofthe index (disrete logarithm). The following pseudorandom sequene wasintrodued and studied in [9℄.If p is a �xed prime and g is a �xed primitive root modulo p, and (a; p) = 1,then let ind a denote the (modulo p) index of a (to the base g) so thatgind a � a (mod p);5



and to make the value of index unique, we may add the ondition1 � ind a � p� 1:Write N = p� 1 and de�ne the sequene EN = fe; : : : ; eNg byen = 8><>: +1 if 1 � ind n � (p� 1)=2�1 if (p + 1)=2 � ind n � p� 1:Then we have W (Ep) < 4p1=2(log p)2 < 20N1=2 (logN)2and, for all k 2 N , k < p,Ck(EN) < 9k4kp1=2(log p)k+1 < 27k8kN1=2 (logN)k+1 :We will generate a large family of pseudorandom sequenes analogouslyto Theorem 1, i.e. replaing n by f(n).De�nition 2 Let p be an odd prime, g a primitive root modulo p. De�neind n, by 1 � ind n � p � 1 and n � gind n (mod p). Let f(x) 2 F [p℄ be apolynomial of the degree k. Then de�ne the sequene Ep�1 = fe1; : : : ; ep�1gby en = 8><>: +1 if 1 � ind f(n) � (p� 1)=2�1 if (p+ 1)=2 � ind f(n) � p� 1 or p j f(n): (3)This paper is devoted to the study of family desribed in De�nition 2.Throughout this paper we will use these notations: the numbers p; k; g thepolynomial f and the sequene Ep�1 will be de�ned as in De�nition 2. Firstwe give estimates for the well-distribution measure, the orrelation measureand the symmetry measure of the sequene Ep�1.6



Theorem 2 For all f(x) 2 Fp[x℄ we haveW (Ep�1) < 38kp1=2(log p)2:Unlike the orresponding part of Theorem 1, here in Theorem 2 there is noondition on the roots of the polynomial f(x). The ase of the orrelationmeasure will be slightly more di�ult. As in Theorem 1, the upper boundholds under ertain assumptions. The last two onditions are very similarto the onditions of Theorem 1, sine these theorems are based on a similaraddition lemma.Theorem 3 Suppose that at least one of the following 4 ondition holds:a) f is irreduible.b) If f has the fatorization f = '�11 '�22 : : : ; '�uu where �i 2 N and 'i isirreduible over Fp, then there exists a � suh that exatly one or two'i's have the degree �;) ` = 2;d) (4`)k < p or (4k)` < p.Then C`(Ep�1) < 10k`4`p1=2(log p)`+1.Clearly, ondition b) implies ondition a); however, the proof in ase a)is simpler, and all the other ases will follow from it in several steps.Next we will study the symmetry measure.Theorem 4 Let f(x) = akxk + ak�1xk�1 + � � �+ a0, ak 6� 0 (mod p), k < p,and de�ne t by kakt � �2ak�1 (mod p):7



Let E 0v�u+1 = feu; eu+1; : : : ; evg � Epwhere ei was de�ned in De�nition 2. If t < 2u or t > 2v or f(x) 6� �f(t�x),then S(E 0v�u+1) < 88kp1=2(log p)3:Suppose that f(x) � �f(t0 � x) for some t0. Considering the oe�ients ofxk and xk�1 in f(x) and f(t0 � x) we getkt0ak � �2ak�1 (mod p):Thus it follows from f(x) � �f(t0 � x) (mod p) that t0 � t (mod p).It is trivial from the de�nition of the ei-s, that in the ase of f(x) ��f(t� x) (mod p) we haveH(E 0v�u+1; u; t� u) = d(t� 2u)=2e if t � u+ v;and H(E 0v�u+1; t� v; v) = d(2v � t)=2e if t > u+ v:Therefore S(E 0v�u+1)� minft�2u; 2v�tg. So the ondition of Theorem 4 isneessary apart from an additional term O(p1=2 (log p)3), i.e., the onlusionof the theorem fails if the inequalities t < 2u, t > v are replaed by t <2u+1p1=2(log p)3, t > 2v�1p1=2(log p)3, where 1 is a large enough onstant.Remark 1 All these theorems are trivial if k � p1=2, thus throughout thepaper we will assume that k < p1=2.Finally we will study the omplexity measure of the family of pseudoran-dom sequenes de�ned by (3). 8



Theorem 5 Consider all the polynomials f(x) 2 Fp[x℄ with0 < deg f(x) � KFor eah of these polynomials f(x), onsider the binary sequene Ep = Ep(f)de�ned by (3), and let F denote the family of all binary sequenes obtainedin this way. Then we have C(F) > K:2 ProofsProof of Theorem 1.We will need the following lemmas:Lemma 1 Let f(x) be a polynomial in Fp[x℄, and let d be a divisor of p� 1.The following 3 onditions are equivalent:(i) f(x) = b (z(x))d with b 2 Fp, z(x) 2 Fp[x℄,(ii) f(x) = (h(x))d with h(x) 2 F p[x℄,(iii) f(x) = b(x � x1)�1(x � x2)�2 : : : (x � xs)�s with xi 2 F p and d j(�1; �2; : : : ; �s).Proof of Lemma 1.See in [10, p. 51℄.Lemma 2 Suppose that p is a prime, � is a non-prinipal harater modulop of order d, f(x) 2 Fp[x℄ has s distint roots in F p, and it is not a onstant9



multiple of a d-th power of a polynomial over Fp. Let y be a real number with0 < y � p. Then for any x 2 R:����� Xx<n�x+y�(f(n))����� < 9sp1=2 log p:Poof of Lemma 2This is a trivial onsequene of Lemma 1 and Lemma 2 in [2℄. Indeed,there this result is dedued from Weil's theorem [11℄.Now, we will prove Theorem 1. Let f(x) = b(x�x1)�1 : : : (x�xs)�s wherexi 6= xj. By Lemma 1, there exists a polynomial z(x) with f(x) = b(z(x))dwhere d = (�1; : : : ; �s). It is also obvious from Lemma 1 that f(x) is not aonstant multiple of any d0-th power for any d0 j d. Assume now that1 � a � a + (t� 1)b � p� 1:The following omputations and inequalities an be obtained in the sameway as in [9℄, replaing a + jb there by f(a+ jb).jU(EN ; t; a; b)j = 2p� 1 ������X� 6=�0 t�1Xj=0 �(f(a+ jb)!0�(p�1)=2Xk=0 �k(g)1A������ :By the triangle inequality we havejU(EN ; t; a; b)j � 2p� 1 ������X�d 6=1 t�1Xj=0 �(f(a+ jb)!0�(p�1)=2Xk=1 �k(g)1A������+ 2p� 1 ��������X� 6=�0�d=1 t�1Xj=0 �(f(a+ jb))!0�(p�1)=2Xk=1 �k(g)1A��������=X1 +X2 : (4)10



Next we give an upper bound for P1 in the same way as in [9℄. If weonsider a typial term in P1: �Pt�1j=0 �(f(a+ jb))��P(p�1)=2k=0 �k(g)� thenthe order of � does not divide d beause �d 6= 1. Let the order of � be d0.d0 - d so f(x) is not a onstant multiple of a d0-th power. Thus we may useLemma 2: ����� t�1Xj=0 �(f(a+ jb))����� � 9sp1=2 log p: (5)We need an upper bound for P�d 6=1 ���P(p�1)=2k=1 �k(g)���.Lemma 3 Let 1 � d � p� 1 and d j p� 1. ThenX� 6=�0�d=1 ������(p�1)=2Xk=1 �k(g)������ � X� 6=�0�d=1 2j1� �(g)j < 2d log(d+ 1):Proof of Lemma 3.The proof is nearly the same as in [10, p. 380-381℄. The only di�ereneis in [10, p. 381℄ at (10), where now we have:X� 6=�0�d=1 1j1� �(g)j = d�1Xn=1 1j1� e(n=d)j � 14 d�1Xn=1 1k n=d k � 12 [d=2℄Xn=1 1k n=d k= 12 [d=2℄Xn=1 dn < 12d(1 + log(d=2)) < d log(d+ 1)whih ompletes the proof.Sine � is a multipliative harater of order p�1, thus we have �p�1 = 1.Applying Lemma 3 with d = p� 1 we get:X� 6=�0 ������(p�1)=2Xk=1 �k(g)������ � X� 6=�0 2j1� �(g)j < 2(p� 1) log(p):11



It follows that 2p� 1X1 � 36sp1=2(log p)2: (6)Finally we give an upper bound for P2:2p� 1X2 = 2p� 1 ��������X� 6=�0�d=1 t�1Xj=0 �(bgd(a+ jb))!0�(p�1)=2Xk=1 �k(g)1A��������= 2p� 1 ��������X� 6=�0�d=1 t�1Xj=0 �d(z(a + jb))!0�(p�1)=2Xk=1 �k(g)1A��������� 2p� 1 X� 6=�0 t ������(p�1)=2Xk=1 �k(g)������ :Using Lemma 3 we get:2p� 1X2 � 4p� 1td log d < 4d log d:Using that d is less than the degree of f , whih is k, and k < p1=2 we get2p� 1X2 � 4k log k < 2p1=2 log p: (7)From (4), (6) and (7) we getjU(EN ; t; a; b)j � 38kp1=2(log p)2:Proof of Theorem 2.We will use addition theorems as in [4℄. First we need the followingde�nition:De�nition 3 Let A and B be multi-sets of the elements of Zp. If A + Brepresents every element of Zp with multipliity divisible by p�1, i.e., for all12



 2 Zp, the number of solutions ofa+ b =  a 2 A; b 2 B(the a's and b's are ounted with their multipliities) is divisible by p-1, thenthe sum A+ B is said to have property P.Lemma 4 Let A = fa1; : : : ; a1; : : : ; ar : : : ; arg and D = fd1; : : : ; d1; : : : ; d`; : : : ; d`gbe multi-sets of the elements of Zp where the multipliity of ai is �i in A andthe multipliity of di is Æi in D. If one of the following two onditions holds:(i) minfr; `g � 2 and maxfr; `g � p� 1,(ii) (4`)r � p or (4r)` � p,then there exists  2 Zp suh thata+ d =  a 2 A; d 2 Dhas exatly �iÆj solutions for some 1 � i � r, 1 � j � ` (i.e. the solution isunique apart from the multipliities).Proof of Lemma 4.Consider the simple sets A0 = fa1; a2; : : : ; arg, D0 = fd1; d2; : : : ; drg. Itwas proved in [4, Theorem 2℄ that under any of these onditions there is a 2 Zp suh that a + d =  a 2 A0; d 2 D0has exatly one solution. The statement of the lemma follows easily fromthis. 13



To prove Theorem 2, onsider any D = (d1; d2; : : : ; d`) with non-negativeintegers d1 < d2 < � � � < d` and positive integers M with M + d` � N . Thenarguing as in [9, p. 382℄ with f(x+ dj) in plae of n + dj, we havejV (EN ;M;D)j � 2`(p� 1)` X�1 6=�0 � � � X�` 6=�0 ����� MXx=1 �1(f(x+ d1)) � � ��`(f(x+ d`))������Y������(p�1)=2X̀j=1 �j(g`j)������ : (8)Now, let � be a generator of the group modulo p haraters, e.g. � an behosen as the harater � uniquely de�ned by �(g) = e� 1p�1�. The order of� is p� 1. Let �u = �Æu for u = 1; 2; : : : ; `where, by �1 6= �0; : : : ; �` 6= �0, we may take1 � Æu < p� 1 for u = 1; 2; : : : ; `:Thus in (8) we have����� MXx=1 �1(f(x+ d1) : : : �`f(x+ d`)����� = ����� MXx=1 �Æ1(f(x+ d1) : : : �Æ`f(x+ d`)�����= ����� MXx=1 �(f Æ1(x+ d1) � � �f Æ`(x + d`))�����If f Æ1(x + d1) � � �f Æ`(x + d`) is not a perfet p � 1-th power, then this suman be estimated by Lemma 3, whene����� MXx=1 �(f Æ1(x+ d1) � � �f Æ`(x + d`))����� � 9s`p1=2 log p:
14



Therefore by (8) and the triangle-inequality we get:jV (EN ;M;D)j � 2`(p� 1)` ������ X�1 6=�0 � � � X�` 6=�0 9s`p1=2 log pỲj=10�(p�1)=2Xlj=1 �Æj (g`j)1A������+ 2`(p� 1)` ����� X1�Æ1;:::;Æ`�p�2;fÆ1 (x+d1)���fÆ` (x+d`) isa perfet p� 1-th power (p� 1)Ỳj=10�(p�1)=2Xlj=1 �Æj (g`j)1A�����= 2`(p� 1)` X1 + 2`(p� 1)` X2 : (9)By [9, p.384℄ we have 2`(p� 1)` X1 � 9s`4`p1=2(log p)`+1: (10)It remains give an upper bound for P2. If f is irreduible it is obviousthat f Æ1(x + d1) : : : f Æ`(x + d`) is a perfet p � 1-th power if and only ifp�1 j Æ1; : : : ; Æ`. But inP2 we have 1 � Æ1; : : : ; Æ` � p�2, thereforeP2 = 0whih proves theorem 2 in ase a). In ase b), ), d) we will prove that P2is small. We need the following lemma to estimate P2.Lemma 5 For all 1 � Æ1; : : : ; Æ` � p� 2 suh that f Æ1(x+ d1) : : : f Æ`(x+ d`)is a perfet p�1-th power, there is a Æi (1 � i � `) and an integer 1 � � � k(where k is the degree of the polynomial f(x)) suh that p� 1 j �Æi.We will prove lemma 5 later. Now, from this lemma we verify that2`(p� 1)` X2 � k(k + 1)` 22`�1(log p)`�1:Consider a �xed `-tuples fÆ1; : : : ; Æ`g for whih f Æ1(x+ d1) : : : f Æ`(x+ d`)is a perfet p � 1-th power and 1 � Æ1; : : : ; Æ` � p � 2. By Lemma 5, thenthere exits a Æi with p� 1 j Æi�:15



But 0 < �Æi < �(p� 1) and � � k:p� 1 � Æi� � (�� 1)(p� 1)1� � Æip� 1 � 1� 1�1k � 1� �  Æip� 1 :By j1� e(�)j � 4 k � k we have2j1� �Æi(g)j = 2j1� e(Æi=(p� 1))j � 12 kÆi=(p� 1)k < k2 : (11)By Lemma 5, we have X2 � (p� 1)X̀i=1 X2;i (12)where X2;i = X1�Æ1;:::;Æ`�p�2;fÆ1 (x+d1)���fÆ` (x+d`) isa perfet p� 1-th power,9 1���k; p�1j�Æi Ỳj=1 ������(p�1)=2X̀j=1 �Æj (g`j)������ :By (11) and ���P(p�1)=2`j=1 �Æj (g`j)��� � 2j1��Æj (g)j we get:X2;i � k2 X1�Æ1;:::;Æi�1;Æi+1;:::;Æ`�p�2Yj 6=i 2j1� �Æj (g)j X1�Æi�p�2;fÆ1 (x+d1)���fÆ` (x+d`) isa perfet p� 1-th power 1: (13)Next we give an upper bound forX1�Æi�p�2;fÆ1 (x+d1)���fÆ` (x+d`) isa perfet p� 1-th power 1 def= r:For �xed Æ1; : : : ; Æi�1; Æi+1; : : : ; Æ` let 1 � x1 < x2 < � � � < xr � p � 2denote the numbers for whih f Æ1(x+d1) � � � f Æi�1(x+di�1)fxj(x+di)f Æi+1(x+16



di+1) � � � f Æ`(x + d`) is a perfet p� 1-th power. It is lear that the quotientof two polynomials of this form is a p� 1-th power, sofxj�xj�1(x+ di) (for j = 2; 3; : : : ; r)is a perfet p � 1-th power. The degree of fxj�xj�1(x + di) is (xj � xj�1)k,ant this degree is divisible by p� 1, thereforexj � xj�1 � p� 1k :So p� 1 > xr > rXj=2(xj � xj�1) � (r � 1)p� 1k :By this: X1�Æi�p�2;fÆ1 (x+d1)���fÆ`(x+d`) isa perfet p� 1-th power 1 = r � k + 1:Thus we get from (13):X2;i � k(k + 1)2 X1�Æ1;:::;Æi�1;Æi+1;:::;Æ`�p�2Yj 6=i 2j1� �Æj (g)j= k(k + 1)2 2`�1 X� 6=�0 1j1� �(g)j!`�1 :By Lemma 3 we haveX2;i � k(k + 1)2 2`�1(p� 1)`�1(log p)`�1:From this and (12):X2 � k(k + 1)` 2`�2(p� 1)`(log p)`�1:By this, (9), (10) and k < p1=2 � 1, we get the statement of Theorem 2. Itremains to prove Lemma 5. 17



Proof of Lemma 5.The following equivalene relation was de�ned in [4℄: We will say thatthe polynomials '(x);  (x) 2 Fp[x℄ are equivalent, if there is an a 2 Fp suhthat  (x) = �(x+ a). Clearly, this is an equivalene relation.Write f(x) as the produts of irreduible polynomials over Fp. Let usgroup these fators so that in eah group the equivalent irreduible fatorsare olleted. Consider a typial group �(x + a1); : : : ; �(x+ ar). Then f(x)is of the form f(x) = '�1(x + a1) : : : '�r(x + ar)z(xr) where z(x) has noirreduible fators equivalent with any '(x+ ai) (1 � i � r).Let h(x) = f Æ1(x + d1) � � � f Æ`(x + d`): be a perfet p� 1-th power where1 � Æ1; : : : Æ` � p � 2. Then writing h(x) as the produt of irreduiblepolynomials over Fp, all the polynomials '(x + ai + dj) wit 1 � i � r,1 � i � r, 1 � j � ` our amongst the fators. All these polynomials areequivalent, and no other irreduible fator belonging to this equivalene lasswill our amongst the irreduible fators of h(x).Sine distint irreduible polynomials annot have a ommon zero inthe algebrai losured of Fp, therefore eah of the zeros of h is of multi-pliity divisible by p � 1, if and only if in eah group, formed by equiv-alent irreduible fators '(x + ai + dj) of h(x), every polynomial of form'(x + ) ours with multipliity divisible by p� 1. In other words writingA = fa1; : : : ; a1; : : : ; ar; : : : ; arg, D = fd1; : : : ; d1; : : : ; d`; : : : ; d`g where ai hasthe multipliity �i in A (�i is the exponent of '(x + ai) in the fatorizationof f(x)) and di has the multipliity Æi in D, then for eah group A+D mustpossess property P . 18



If ondition b) holds in Theorem 2, then onsidering the degrees of theirreduible fators of f(x), we see that there exists a group for whih r � 2,i.e., A ontains at most two distint elements. So if one of the onditions ofTheorem 2 holds then there exists a group for whih the multi-sets A and Dsatisfy the onditions of Lemma 4, we get that there exists a  suh thata+ d =  a 2 A; d 2 Dhas exatly �iÆj solution for some 1 � i � r and 1 � j � `. But A + Dpossess property P, therefore p� 1 j �iÆj. Beause �i is the exponent of anirreduible fator in f(x), we also have 1 � �i � k. Whih ompletes theproof of Lemma 5.Proof of Theorem 3.We will use the following lemma.Lemma 6 If f(x) � �f(t � x) mod p, then there exists a permutationfx1 : : : ; xsg of the distint roots of f(x) suh thatt � x1 + xs � x2 + xs�1 � � � � � xds=2e + xs+1�dss=2eand denoting the multipliity of the root xi by �i (1 � i � s) we also have�i = �s+1�i.Proof of Lemma 6.This is a onsequene of the fat every polynomial has unique fatorizationover Fp. Now we an return to the proof of Theorem 3.
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In the same way as the estimates of the orrelation measure we obtain:H(EN ; a; b) � 4(p� 1)2 X�1 6=�0 X�2 6=�0 18sp1=2 log p 2Yj=1 ������(p�1)=2Xlj=1 �j(glj)������+ 4(p� 1)2 X1�Æ1;Æ2�p�2;fÆ1 (a+x)fÆ2 (b�x) is aperfet p� 1-th power (p� 1) 2Yj=1 ������(p�1)=2Xlj=1 �j(glj)������= 4(p� 1)2 X1 + 4(p� 1)2 X2 : (14)Again as in [9, p. 384℄ we have4(p� 1)2 X1 � 72kp1=2(log p)3: (15)To give an upper bound for P2 we have to handle the ase when the poly-nomial f Æ1(a + x)f Æ2(b� x) is a perfet p� 1-th power. Suppose that thereis no permutation fx1 : : : ; xsg witht � x1 + xs � x2 + xs�1 � � � � � xds=2e + xs+1�dss=2e:Then there exists a root of f(a + x) whih is not the root of f(b � x) (x isthe variable). Denote this root by xi � a and let �i the multipliity of theroot xi � a in f(a + x). Then p � 1 j �iÆ1 beause f Æ1(a + x)f Æ2(b � x) is aperfet p � 1-th power. But also 1 � �i � k, so in this speial ase in thesame way as we get the result of Theorem 2 from Lemma 5, we obtain:4(p� 1)2 X2 � 16k(k + 1)(log p)3:From this, (14), (15) we getH(EN ; a; b) � 88kp1=2(log p)3:20



The ase whent � x1 + xs � x2 + xs�1 � � � � � xds=2e + xs+1�dss=2e:holds is slightly more di�ult. Considering the multipliity of the roots xi�a � b�xs+1�i, xs+1�i�a � b�xi mod p in the polynomial f Æ1(a+x)f Æ2(b�x)we get: p� 1 j Æ1�i + Æ2�s+1�i;p� 1 j Æ1�s+1�i + Æ2�iTaking the sum and the di�erene we obtainp� 1 j (Æ1 � Æ2)(�i � �s+1�i);p� 1 j (Æ1 + Æ2)(�i + �s+1�i) (1 � i � s): (16)By Lemma 6 we know that there exists an i for whih �i 6= �s+1�i. By1 � j�i � �s+1�ij � k, 1 � j�i + �s+1�ij � 2k and (16), we obtain that bothÆ1�Æ2 and Æ1+Æ2 may assume at most 2k di�erent values. Therefore at most(2k)2 pairs fÆ1; Æ2g exist for whih f Æ1(a + x)f Æ2(b� x) is a perfet p� 1-thpower.By j1� e(�)j � 4 k � k, �i = �Æi , we have:2Yj=1 ������(p�1)=2X̀j=1 �j(g`j)������ � 4j1� �Æ1(g)j j1� �Æ2(g)j � 14 k Æ1p�1k k Æ2p�1k : (17)Next we will prove: 1k Æ1p�1k k Æ2p�1k � 2pk: (18)Lemma 7 If x; y 2 N ; y 6= 0; p � 1 j xy, but p � 1 - x then we havek xp�1k � 1y . 21



Proof of Lemma 7.Let x = r(p� 1) + q where 1 � q � p� 2. Thenr(p� 1)y < xy < (r + 1)(p� 1)y:But p� 1 j xy, so:(p� 1)(ry + 1) � xy � (p� 1)(ry + y � 1);r + 1y � xp� 1 � r + 1� 1y ; xp� 1 � 1ywhih was to be proved.If p � 1 j Æ1 � Æ2 and p � 1 j Æ1 + Æ2 then by 1 � Æ1; Æ2 � p � 2 we haveÆ1 = Æ2 = p�12 and (18) is trivial. We may suppose that at least one of Æ1�Æ2,Æ1+Æ2 is not divisible by p�1. If p�1 - Æ1�Æ2 then p�1 j (Æ1�Æ2)(�i��s+1�i),and using Lemma 8 we get:Æ1 � Æ2p� 1  � 1j�i � �s+1�ij � 1k :If p� 1 - Æ1 + Æ2 then p� 1 j (Æ1 + Æ2)(�i + �s+1�i), and using again Lemma8 we get: Æ1 + Æ2p� 1  � 1j�i + �s+1�ij � 12k :By the triangle-inequality in both ases we have: Æ1p� 1 +  Æ2p� 1 � Æ1 � Æ2p� 1  � 12k :But 1p�1 � k Æ1p�1k, k Æ2p�1k, so trivially Æ1p� 1  Æ2p� 1 � 12k(p� 1) � 12kp;22



from whih (18) follows. By (17), (18), and sine there are at least (2k)2pairs for whih f Æ1(a+ x)f Æ2(b� x) is a perfet p� 1-th power, we haveX2 � X1�Æ1;Æ2�p�2;fÆ1 (a+x)fÆ2 (b�x) is aperfet p� 1-th power (p� 1)12pk � 12(p� 1)pk(2k)2 = 2(p� 1)pk3:(19)From (14), (15) and (19) we getH(EN ; a; b) � 88kp1=2(log p)3whih proves the theorem.Proof of Theorem 4. The proof is exatly the same as in [1, Theorem1℄, the only di�erene is in the de�nitions of q and r: now we hoose q; r asintegers with (q; p) = (r; p) = 1 and 1 � ind q � p�12 , p�12 < ind r � p� 1.3 Numerial CalulationsIn this hapter our goal is to arry out numerial alulations. Partlyto see how far our theoretial estimates are from the probable truth, partlyto gather numerial data in ases when we annot prove any theoretialestimates (linear omplexity and the orrelation measure of higher order). Inpartiular, one might like to gather information on the linear omplexity (see,e.g. [8℄) whih is another harateristi losely related to pseudorandomness.The linear omplexity is de�ned as it follows.De�nition 4 The linear omplexity of a �nite binary sequene fs0; : : : ; sN�1g 2f0; 1gN is the smallest integer L for whih there exist numbers 1; : : : ; L�1 223



f0; 1g suh thatsn � 1sn�1 + 2sn�2 + � � �+ L�1sn�(L�1) + sn�L mod 2 for all n � L:We onstrut a sequene fs0; : : : ; sp�2g 2 f0; 1gp�1 from our sequeneEp�1 = fe1; : : : ; ep�1g 2 f�1;+1gp�1 in the following way: si = 12 (1� ei+1)for all 0 � i � p � 2. One might like to study the linear omplexity ofthis sequene. Unfortunately we haven't been able to prove any non-trivialtheoretial result. Thus all we an do in this diretion is, again, to arry outnumerial omputations; we will use the Berlekamp-Massey algorithm [3℄,[7℄(L denotes the linear omplexity).p prime pp polynomial W C2 C3 C4 S L1009 31.764 x3 + 1 38 98 132 152 72 503x4+511x2+123x+851 45 102 138 157 68 504122x4 + 1000x3 +22x2 + 626x+ 500 37 88 126 158 75 505212x20 + 567x13 +333x8 + 9x+ 12 60 96 130 146 72 5041013 31.827 x3 + 1 38 123 129 151 84 507x4+511x2+123x+851 40 104 136 146 67 508122x4 + 1000x3 +22x2 + 626x+ 500 42 102 128 165 77 506212x20 + 567x13 +333x8 + 9x+ 12 59 103 144 150 72 508
24



p prime pp polynomial W C2 S L100069 316.336 x3 + 1 623 1284 923 50036x4 + 75638x2 + 54322x+81512 689 1348 1150 50034x4 +34879x3 +98537x2 +12378x+ 68921 402 1373 861 50034x100 + 45623x89 +98254x63 + 74563x30 +78346x17 445 1365 963 50033100237 316.602 x3 + 1 885 1392 919 50117x4 + 5433x2 + 5432x+23789 383 1297 859 50118x4 + 50000x3 +28657x2 + 112211x+ 854 410 1367 975 50118x100 + x84 + 456789x73 +x72 + 8789x4 + 4 614 1315 970 50119The data above seem to point to the diretion that our ondition on kand ` an be relaxed onsiderably, and that the orrelation of not very highorder tends to be relatively small also for k, ` values not overed by Theorem2. Perhaps this data also indiate that the dependene on the degree of thepolynomial in the upper bounds for the pseudorandom measures need not beas strong as in our theorems. Most of the time the linear omplexity seemsto be around p=2 as it would happen for truly random sequenes, so that our25



sequene also satis�es the requirement of high linear omplexity.4 ConlusionBy using the notion of index (disrete logarithm) we have onstrutedlarge families of binary sequenes with strong pseudorandom properties.However, the weak point of this onstrution is that the generation of thesesequenes is very slow (sine there is no fast algorithm for omputing the dis-rete logarithm). One might like to improve on this onstrution by trying tomodify the onstrution so that we should obtain sequenes whih still haverelatively good pseudorandom properties, however, they an be generatedmuh faster. I will return to this problem in a subsequent paper.I would like to thank Professors Julien Cassaigne, Joël Rivat, AndrásSárközy for the valuable disussions.Referenes[1℄ R. Ahlswede, L.H. Khahatrian, C. Mauduit, A. Sárközy, A omplexitymeasure for families of binary sequenes, Periodia Math. Hungar., toappear.[2℄ R. Ahlswede, C. Mauduit, A. Sárközy, Large families of pseudorandomsequenes of k symbols and their omplexity, Part I, II., Proeedings onGeneral Theory of Information Transfer and Combinatoris, to appear.
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