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Abstract

Recently, numerous constructions have been given for finite pseu-
dorandom binary sequences. However, in many applications, e.g., in
cryptography one needs “large” families of “good” pseudorandom se-
quences. Very Recently L. Goubin, C. Mauduit, A. Sarkézy succeeded
in constructing large families of pseudorandom binary sequences based
on the Legendre symbol. In this paper we will generate another type of
large family of pseudorandom sequences by using the notion of index

(discrete logarithm).
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1 Introduction

In a series of papers C. Mauduit and A. Sarkozy (partly with coauthors)

studied finite pseudorandom binary sequences
EN = {61, €a,..., €N} € {—1, +1}N

In particular, in part I [6] first they introduced the following measures of

pseudorandomness:
Write
t—1
U(En,t,a,b) = eass
§=0
and, for D = (dy, ..., dg,) with non-negative integers d; < --- < d,

V(EN, M, D) = Z €n+di Cntday - - - en+dk-

Then the well-distribution measure of Ey is defined as

E €a+jb| -

where the maximum is taken over all a, b, t such that a,b,t € Nand 1 <a <

W(Ey) = max \U(EN(t a,b)| = max

a,b,t

a+ (t —1)b < N, while the correlation measure of order k of Ey is defined

as Ny
Ci(Ex) = max |V (Ex, M, D)| = max Z Cntds Cntdes - - - Entdy

where the maximum is taken over all D = (dy,ds,...,d;) and M such that

M +d, < N.

Then the sequence Ey is considered as a “good” pseudorandom sequence
if both these measures W(Ey) and Cy(Ey) (at least for small k) are “small”

in terms of N (in particular, both are o(N) as N — o0).

2



Moreover it was shown in [6] that the Legendre symbol forms a “good”

pseudorandom sequence. More exactly, let p be an odd prime, and

n

N=p-1, en:<5>,EN:{eq,...,eN}. (1)
Then by Theorem 1 in [6] we have
W(Ey) < p*?logp < N'?log N

and

Ci(En) < kp'?logp < ENY?log N.

In [5] was introduced the symmetry measure of Ey:

[(b—a)/2]-1
S(Ey) = max z% Catjes—j| = max |H(Ey, a,b)].
‘]:

In [5] it was also shown that for the half of the Legendre symbol sequence,

i.e., for the sequence

foon ()G (F570) )

where p is an odd prime, we have
S(Ep-1y2) < 18p'/*logp.

Numerous other binary sequence have been tested for pseudorandom-
ness by J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkozy.
However, these constructions produce only “few” pseudorandom sequences,
while in many applications, e.g., in cryptography one needs “large” families of
“good” pseudorandom sequences. Very recently L. Goubin, C. Mauduit, A.

Sarkozy [4] succeeded in constructing large families of pseudorandom binary
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sequences, generalizing the construction (1). Their most important results

can be summarized as follows:

Theorem 1 If p is a prime number, f(z) € F,lz| (F, being the field of the
modulo p residue classes) has degree k > 0 and no multiple zero in F, (=the

algebraic closure of F,), and the binary sequence E, = {e,, ..., e,} is defined

by
(£22) for (f(n).p) =1
+1 for p | f(n),

(2)

€np =

then we have

W(E,) < 10kp'/*1og p.

Moreover, assume that for £ € N one of the following assumption holds:
(i) 0 =2;

(i) ¢ < p and 2 is a primitive root modulo p;

(iii) (4k)¢ < p.

Then we also have

Cy(E,) < 10kfp'/?log p.

This theorem generates “large” families of “good” pseudorandom binary se-
quences. However, in most applications it is also very important that the
“large” family F of “good” pseudorandom sequences had a “complex” struc-
ture, there are many “independent” sequences in it. In [1] a quantitative

measure for this property of families of binary sequences was introduced.

Definition 1 The complezity C(F) of a family F of binary sequence Ey €

{=1,+1}" is defined as the greatest integer j so that for any 1 < iy <



iy < -++ < i; <N, and for e1,9,...,6; € {—1,+1}, we have at least one

Exy ={e1,...,en} € F for which
€, = €1, €4y 282,...,61‘j =£&j.

It is clear from Definition 1 that for j < C(F), there exist at least 2¢(%)~J

sequence Ey € F with

€y = €1, €jy =E2,...,6;,

]:€j.

In [1] it was also proved that the complexity measure of the family of the
sequence E, defined by (2) is large. More precisely: consider all the polyno-
mials f(x) € Fp[zr] with

0<degf(z) <K

(where deg f(z) denotes the degree of f(x)) and f(z) has no multiple zero
in F,. For each of these polynomials f(x), consider the binary sequence
E,=E,(f)={e1...,e,} € {—1,+1}? defined by (2), and let F denote the

family of all binary sequences obtained in this way. Then we have
C(F) > K.

In this paper, extending a construction given by A. Sarkozy in [9], we will
generate a large family of pseudorandom sequences based on the notion of
the index (discrete logarithm). The following pseudorandom sequence was
introduced and studied in [9].

If p is a fixed prime and g is a fixed primitive root modulo p, and (a,p) = 1,

then let ind a denote the (modulo p) index of a (to the base g) so that

ind a

g =a (mod p),



and to make the value of index unique, we may add the condition
1<inda<p-1.
Write N = p — 1 and define the sequence Ey = {e ...,en} by

+1 if1< indn<(p—1)/2
en =

-1 if (p+1)/2< indn<p-—1

Then we have
W (E,) < 4p'?(logp)? < 20N'/? (log N)?
and, for all k € N, k£ < p,
Ci(Ey) < 9k4%p'?(log p)**' < 27k8*N'/? (log N)* .

We will generate a large family of pseudorandom sequences analogously

to Theorem 1, i.e. replacing n by f(n).

Definition 2 Let p be an odd prime, g a primitive root modulo p. Define
indn, byl <indn <p-1andn=g¢g"" (mod p). Let f(x) € F[p] be a
polynomial of the degree k. Then define the sequence E,_1 = {e1,...,e,_1}

by
+1 if1 < ind f(n) < (p—1)/2
en = (3)
-1 if (p+1)/2< ind f(n) <p—1orp]| f(n).
This paper is devoted to the study of family described in Definition 2.
Throughout this paper we will use these notations: the numbers p, k, g the
polynomial f and the sequence E,_; will be defined as in Definition 2. First

we give estimates for the well-distribution measure, the correlation measure

and the symmetry measure of the sequence E,_;.
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Theorem 2 For all f(z) € F,[z] we have
W(E, 1) < 38kp'/*(logp)?.

Unlike the corresponding part of Theorem 1, here in Theorem 2 there is no
condition on the roots of the polynomial f(x). The case of the correlation
measure will be slightly more difficult. As in Theorem 1, the upper bound
holds under certain assumptions. The last two conditions are very similar
to the conditions of Theorem 1, since these theorems are based on a similar

addition lemma.
Theorem 3 Suppose that at least one of the following 4 condition holds:

a) f is irreducible.
b) If f has the factorization f = ¢ w3* ..., % where a; € N and y; is

irreducible over F,, then there exists a 3 such that exactly one or two

©;’s have the degree 3;
c) (=2
d) (40)F < p or (4k)* < p.
Then Cy(E,_1) < 10k4p'/2(log p)**!.

Clearly, condition b) implies condition a); however, the proof in case a)
is simpler, and all the other cases will follow from it in several steps.

Next we will study the symmetry measure.

Theorem 4 Let f(z) = apa® +a, 12* '+ -+ ag, ar Z0 (mod p), k < p,
and define t by

kat = —2a,1  (mod p).

7



Let

Ey w1 ={ew €us1,-- e} CEy
where e; was defined in Definition 2. Ift < 2u ort > 2v or f(x) £ +f(t—x),
then

S(Ey_y1) < 88kp'/*(log p)®.

Suppose that f(z) = +f(t' — x) for some t'. Considering the coefficients of

zF and 281 in f(z) and f(#' — x) we get
kt'ay = —2ax_y (mod p).

Thus it follows from f(z) = £f(¢' — z) (mod p) that ¢’ =t (mod p).

It is trivial from the definition of the e;-s, that in the case of f(x)

+f(t — ) (mod p) we have

H(E. .t —u)=[(t—2u)/2] ift <u+o,
and

H(E, ,.,t—v,v)=[Q2v—1)/2] ift>u+wv.

Therefore S(E]_, ;) > min{t—2u, 2v—t}. So the condition of Theorem 4 is
necessary apart from an additional term O(p'/2 (logp)®), i.e., the conclusion
of the theorem fails if the inequalities ¢ < 2u, t > v are replaced by t <

2u+cip'/?(logp)?, t > 2v—cip'/?(log p)?, where ¢, is a large enough constant.

Remark 1 All these theorems are trivial if k > p'/2, thus throughout the

paper we will assume that k < p'/?.

Finally we will study the complexity measure of the family of pseudoran-

dom sequences defined by (3).



Theorem 5 Consider all the polynomials f(x) € Fylz] with
0<degf(z) <K

For each of these polynomials f(x), consider the binary sequence E, = E,(f)
defined by (3), and let F denote the family of all binary sequences obtained
in this way. Then we have

C(F)> K.

2 Proofs

Proof of Theorem 1.

We will need the following lemmas:

Lemma 1 Let f(z) be a polynomial in F,[x], and let d be a divisor of p— 1.

The following 3 conditions are equivalent:
(i) f(z) =0b(2(z))" with b € F,, z(x) € F,[x],
(ii) f(z) = (h(x))* with h(z) € Fyla],

(iii) f(z) = blx — x1)* (v — 22)°2 ... (z — 24)* with x; € F, and d |

(al,a2,...,as).

Proof of Lemma 1.

See in [10, p. 51].

Lemma 2 Suppose that p is a prime, x is a non-principal character modulo

p of order d, f(x) € F,[x] has s distinct roots in F,, and it is not a constant



multiple of a d-th power of a polynomial over F,. Let y be a real number with

0 <y <p. Then for any x € R:

> x(f(n)

z<n<z+y

< 9sp'/? log p.

Poof of Lemma 2

This is a trivial consequence of Lemma 1 and Lemma 2 in [2|. Indeed,
there this result is deduced from Weil’s theorem [11].

Now, we will prove Theorem 1. Let f(x) = b(z—xz1)* ... (z—xs)* where
z; # zj. By Lemma 1, there exists a polynomial z(z) with f(z) = b(z(z))?
where d = (aq,...,a4). Tt is also obvious from Lemma 1 that f(x) is not a

constant multiple of any d'-th power for any d’ | d. Assume now that
I<a<a+(t-1)b<p-1.

The following computations and inequalities can be obtained in the same

way as in [9], replacing a + jb there by f(a + jb).

t-1 (p—1)/2
U(Es.tah) = - Z( Y(f(aﬂb)) ()

X7X0

By the triangle inequality we have

t=1 (p—1)/2
Ut b) < = Z( Y(f(aﬂb)) (0

x4#1
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Next we give an upper bound for )", in the same way as in [9]. If we
consider a typical term in ) ;: (Z;;}) X(f(a +jb))> ( I(cz;fol)ﬂ Xk(9)> then
the order of y does not divide d because x¢ # 1. Let the order of x be d'.
d' {dso f(x) is not a constant multiple of a d’-th power. Thus we may use

Lemma 2:

o~
|
—

X(f(a+jb))| < 9sp*/?log p. (5)

0

J

k)|

We need an upper bound for Zxd;él

Lemma 3 Let 1 <d<p-—1andd|p—1. Then

(p—1)/2 9
k
E E ——— < 2dlog(d + 1).
X#XO k=1 X7X0
x?=1 x?=1

Proof of Lemma 3.
The proof is nearly the same as in [10, p. 380-381]. The only difference

is in [10, p. 381] at (10), where now we have:

d—1 1 1 d—1 1 [d/2]
- < Z < =
%ﬂu— ;1—e(n/d)|‘4nz::||n/dl‘2z::||n/d||
X d—1
1[d/2}d 1
=3 > — < Sd(1+log(d/2)) < dlog(d +1)
n=1

which completes the proof.
Since y is a multiplicative character of order p—1, thus we have x?~! = 1.
Applying Lemma 3 with d = p — 1 we get:

—1)/2

(»
> 2 K Zu— < 2(p — 1) log(p).

X#xo | k=1 X7X0
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It follows that
2

F 21 < 368p1/2(10gp)2. (6)

Finally we give an upper bound for ) ,:

9 9 i—1 (p—1)/2
T2 51 Z ( y(bgd(a+jb))> Z X" (9)
p p x#xo \j=0 k=1

xi=1
9 t—1 (p—1)/2
] Z yd(z(a+jb))> x"(9)
p x#xo \j=0 k=1
xi=1
9 (p—1)/2
<=t X (9)] -
p X7FX0 k=1

Using Lemma 3 we get:

2 4
—— >, < ——tdlogd < 4dlogd.
p— p—

Using that d is less than the degree of f, which is k, and k < p'/? we get

2

p— 22 < 4klogk < 2p'*logp. (7)

From (4), (6) and (7) we get
[U(Ew,t,a,b)| < 38kp'/*(log p)*.

Proof of Theorem 2.

We will use addition theorems as in [4]. First we need the following

definition:

Definition 3 Let A and B be multi-sets of the elements of Z,. If A+ B

represents every element of Z, with multiplicity divisible by p—1, i.e., for all
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¢ € Zy, the number of solutions of
a+b=c a€ A beB

(the a’s and b’s are counted with their multiplicities) is divisible by p-1, then

the sum A + B is said to have property P.

Lemma 4 Let A= {ay,...,a1,...,0,...,0,} andD ={dy,...,dy,...,dy,...,do}
be multi-sets of the elements of Z, where the multiplicity of a; is o, in A and

the multiplicity of d; is 0; in D. If one of the following two conditions holds:
(i) min{r, ¢} <2 and max{r,{} <p—1,

(ii) (40)" <p or (47) < p,

then there exists c € Z, such that

a+d=c ac€ A deD

has exactly ;0 solutions for some 1 <i <r, 1< j </ (i.e. the solution is

unique apart from the multiplicities).

Proof of Lemma 4.

Consider the simple sets A" = {ay,as,...,a,}, D' = {dy,ds,...,d.}. Tt
was proved in [4, Theorem 2| that under any of these conditions there is a
¢ € Z, such that

a+d=c ac A, deD

has exactly one solution. The statement of the lemma follows easily from

this.
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To prove Theorem 2, consider any D = (dy, ds, .. ., d,) with non-negative
integers dy < dy < --- < d; and positive integers M with M +d, < N. Then

arguing as in [9, p. 382] with f(z + d;) in place of n + d;, we have

VBN M DS g D D

X17X0 Xe#X0
(p-1)/2

><H Z : (8)

=1

ZXl (x+di)) - xel f(@+dy))

z=1

Now, let x be a generator of the group modulo p characters, e.g. x can be
chosen as the character x uniquely defined by x(g) = e (p%l) The order of

xisp—1. Let

Yu = X foru=1,2,...,/

where, by x1 # Xo,---, X¢ # Xo, we may take
1<éd, <p-—-1 foru=1,2,... 0.

Thus in (8) we have

(x+dy)...xef (x+ dp) X' f(z + dy)

Yf(z+dy) ...
( )

Xf(s1 T+ dy

>
> X

--f‘”(iEere))‘

If for(x +dy) - fox + dy) is not a perfect p — 1-th power, then this sum

can be estimated by Lemma 3, whence

< 9slp'/? log p.

S OX @+ dy) - f w4 de))

14



Therefore by (8) and the triangle-inequality we get:

ot ¢ [(p—1)/2 o
V(EN,M,D)| < oD Z Z 9slp'/? long X% (%)
b X17£X0  XeFXo j=1 =1
ot ¢ [(p—1)/2
+ ( _1)3 Z (p_]')H X(sj(géj)
p 1<81 0000 <p—2, j=1 \ ;=1

Fo1 (@dy)- [l (z+dy) s
a perfect p — 1-th power

2! 2¢
" 2 1y e ®

By [9, p.384| we have
2[

(p—1)°

It remains give an upper bound for ) ,. If f is irreducible it is obvious

Zl < 9504°p' % (log )+, (10)

that fo'(x + dy)... f%(z + dy) is a perfect p — 1-th power if and only if
p—11]0d,...,0, Butin ) , we have 1 < §y,...,d; < p—2, therefore >, =0
which proves theorem 2 in case a). In case b), ¢), d) we will prove that ),

is small. We need the following lemma to estimate > _,.

Lemma 5 For all1 < 6y,...,8, < p—2 such that fo'(x +d,) ... fo(x + dy)
is a perfect p— 1-th power, there is a §; (1 < i < {) and an integer 1 < a < k

(where k is the degree of the polynomial f(z)) such that p —1 | ad;.

We will prove lemma 5 later. Now, from this lemma we verify that

2€
m ZQ S k(k + ].)g 22£_1(10gp)£_1.

Consider a fixed (-tuples {01, ...,d,} for which fo(x +d;)... fo(x + dy)
is a perfect p — 1-th power and 1 < 4q,...,0, < p — 2. By Lemma 5, then
there exits a d; with

p—1|5iOé.
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But 0 < ad; < a(p—1) and a < k:

p—1<da<(a—1)(p-1)
1 .
—< 0; Sl—l
a p-—1 o

1 1< 0

kE~—a  |lp—1

By |1 —e(a)| >4 || « || we have

(11)

P _ P _ 1 _k
1=x%(g)] [1—e(/(p—1))] = 2[6;/(p—=1)|| 2

By Lemma 5, we have

D>, <=1 >0 (12)

where

1<01,...,0p<p—2, Jj=1| ¢;=1
Fo1 (w4dy)- fOU (z+dy) is
a perfect p — 1-th power,
3 1<a<k, p—1jad;

By (11) and ‘Ze - X% (g%)| <

—hwam
> < > || Eresvron

1<619 50i— 1961,+19 961<p 2 j#i

we get:

pl > 1. (13)

1<6;<p-2,
FO1(zdr) fOU (+dy) is
a perfect p — 1-th power

Mlpv

\—x

Next we give an upper bound for

Z 1%,

1<6;<p-2,
Fo1 (@4dy)- fo (z+dy) s
a perfect p — 1-th power

For fixed 61,...,61‘_1,62'_1_1,...,6[ let 1 < 2y < 29 < -0+ < T, < p— 2

denote the numbers for which fo'(x+d,) - fo-1(z+d; 1) f% (x+d;) foi+ (x+
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diy1) -+ f(x + dy) is a perfect p — 1-th power. It is clear that the quotient

of two polynomials of this form is a p — 1-th power, so
fr%-Y(x + d;) (for j =2,3,...,71)

is a perfect p — 1-th power. The degree of % %i-1(x + d;) is (v; — x;-1)k,

ant this degree is divisible by p — 1, therefore

So

By this:

Z l=r<k+1.

1<6;<p-2,
Fo1(z4dr)- fO (z+dy) is
a perfect p — 1-th power

Thus we get from (13):

k(k+1
Z2,i§ (2+) Z H\l

1<61; 0i— 1561+15 961<p 2 j#i

k(k+1241(z )“
1-x '

X7X0

By Lemma 3 we have

From this and (12):

>, < k(k+1)02%(p— 1) (logp) .

By this, (9), (10) and k& < p'/? — 1, we get the statement of Theorem 2. It

remains to prove Lemma 5.
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Proof of Lemma 5.

The following equivalence relation was defined in [4]: We will say that
the polynomials p(x), ¢ (x) € F,[z] are equivalent, if there is an a € F), such
that ¢ (z) = ¢(z + a). Clearly, this is an equivalence relation.

Write f(z) as the products of irreducible polynomials over F,. Let us
group these factors so that in each group the equivalent irreducible factors
are collected. Consider a typical group ¢(x + a1),...,¢(x + a,). Then f(z)
is of the form f(z) = ¢®(z + a1)...9* (z + a,)z(x,) where z(z) has no
irreducible factors equivalent with any ¢(x + a;) (1 <7 <r).

Let h(z) = fo'(z +dy)--- fO(z + dy). be a perfect p — 1-th power where
1 < 6y,...0; < p—2. Then writing h(z) as the product of irreducible
polynomials over F,, all the polynomials ¢(x + a; + d;) wit 1 < i < r,
1 <i<r, 1<j</occur amongst the factors. All these polynomials are
equivalent, and no other irreducible factor belonging to this equivalence class
will occur amongst the irreducible factors of h(z).

Since distinct irreducible polynomials cannot have a common zero in
the algebraic closured of F),, therefore each of the zeros of h is of multi-
plicity divisible by p — 1, if and only if in each group, formed by equiv-
alent irreducible factors ¢(x + a; + d;) of h(x), every polynomial of form
¢(x + ¢) occurs with multiplicity divisible by p — 1. In other words writing
A={a,...,a1,...,a,,...,0.},D={dy,...,dy1,...,dy,...,d¢} where a; has
the multiplicity a; in A (o is the exponent of p(z + a;) in the factorization
of f(x)) and d; has the multiplicity ¢; in D, then for each group A+ D must

possess property P.
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If condition b) holds in Theorem 2, then considering the degrees of the
irreducible factors of f(x), we see that there exists a group for which r < 2,
i.e., A contains at most two distinct elements. So if one of the conditions of
Theorem 2 holds then there exists a group for which the multi-sets A and D

satisfy the conditions of Lemma 4, we get that there exists a ¢ such that
a+d=c a€ A deD

has exactly o;d; solution for some 1 <7 <rand 1< j </{. But A+D
possess property P, therefore p — 1 | a;0,;. Because «; is the exponent of an
irreducible factor in f(z), we also have 1 < «a; < k. Which completes the
proof of Lemma 5.

Proof of Theorem 3.

We will use the following lemma.

Lemma 6 If f(x) = +f(t — z) mod p, then there exists a permutation

{xy ..., 25} of the distinct roots of f(x) such that
L=+ 25 =T+ 251 =+ = T[gy2] + Tsp1-[ss/2]

and denoting the multiplicity of the root x; by o; (1 < i < s) we also have

O = Qg1

Proof of Lemma 6.
This is a consequence of the fact every polynomial has unique factorization

over F,. Now we can return to the proof of Theorem 3.
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In the same way as the estimates of the correlation measure we obtain:

(p—1)/2
H(Ey,a,b) g Z Z 185p1/210ng Z
Xl?on X27X0 lj=1
A 2 |(p—1)/2
+ (p—1)2 Z (p_l)H Xj(gl )
1<681,02<p—2, j=1| ;=1

o1 (a+a)fo2 (b—2) is a
perfect p — 1-th power

4 4
T 1) 2, HOERE 2. (14
Again as in [9, p. 384] we have

4
(p— 1)

To give an upper bound for ), we have to handle the case when the poly-

> < 2kp'P(logp)’. (15)

nomial o (a + ) f%(b — x) is a perfect p — 1-th power. Suppose that there

is no permutation {z; ..., z,} with
=01+ 2 =T+ X510 =+ = T[g/2] + Tsp1-[ss/2]

Then there exists a root of f(a + x) which is not the root of f(b— z) (x is
the variable). Denote this root by x; — a and let «; the multiplicity of the
root #; — a in f(a +z). Then p — 1 | ;d; because fo (a + x)f%2(b— x) is a
perfect p — 1-th power. But also 1 < «; < k, so in this special case in the

same way as we get the result of Theorem 2 from Lemma 5, we obtain:

ﬁ >, < 16k(k +1)(logp)*.

From this, (14), (15) we get

H(Ey,a,b) < 88kp'/*(logp)®.
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The case when
=01+ 25 =T+ X510 =+ = T[g/2] + Tsp1-[ss/2]

holds is slightly more difficult. Considering the multiplicity of the roots x; —
a=b—T4s1 i, Tey1 i—a = b—x; mod p in the polynomial fO' (a+x) f%2(b—2x)

we get:

p—1]010; + dotsi1-i,

p—1]d0as1 i+ da;
Taking the sum and the difference we obtain

p—11](01 = d)(ai — asy14),

D — 1 ‘ ((51 + 52)(&1' + Oés+1,i) (1 S 1 S S). (16)

By Lemma 6 we know that there exists an ¢ for which o; # as;1 ;. By
1 <oy —aspi—il <k, 1< ]oj+ agi1—;] <2k and (16), we obtain that both
01 — 02 and 9, + d; may assume at most 2k different values. Therefore at most
(2k)? pairs {81, 89} exist for which fo'(a + x)f% (b — z) is a perfect p — 1-th
power.

By [1—e(a) > 4| al. xi = x", we have:

2 |(p—1)/2 . 4
[T X 6| < e < Tamer O
Next we will prove:
ﬁ < 2pk. (18)
EER

Lemma 7 If 2,y € N, y # 0, p—1 | xy, but p — 1 1 = then we have
=
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Proof of Lemma 7.

Let z =r(p—1)+ g where 1 < ¢ <p—2. Then
rip=1y <zy <(r+1)(p-1y.
But p — 1 | xy, so:

(p—Dry+1) <ay<(p-1)(ry+y—1),

1 x 1
r+-< ——<r+4+1--,
y p—1 y

2 _

p—1 Y

which was to be proved.

Ifp—1]d6 —dy and p— 118 + dy then by 1 < §;,09 < p— 2 we have
0 = 0y = ”2;1 and (18) is trivial. We may suppose that at least one of §; — ds,
81+ is not divisible by p—1. If p—11 §; —ds then p—1 | (61 —02) (i —s11-4),

and using Lemma 8 we get:

If p— 1168 + 09 then p— 1| (67 + 2)(a; + as41-i), and using again Lemma

01 — 09
p—1

1

N ‘ai - as+17i‘

1
> —.
Tk

8 we get:
‘614—62 > 1 > j;‘
p— 1 ‘Oéi + 0454_1_1“ 2k
By the triangle-inequality in both cases we have:
4]
1 4 62 > 61 + 62 S i
p—1 p—1| || p—11| — 2k

But zﬁ < ||p‘5—1 ||, 50 trivially

2l M52

01 92 1 1
> >
p—1| |[p—=1| ~ 2k(p—1) — 2kp
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from which (18) follows. By (17), (18), and since there are at least (2k)?
pairs for which f°(a + x)f%(b — ) is a perfect p — 1-th power, we have

S5 (- gpk < S0 DR = 20— )k

2
1§51,52§p—2,
o1 (a+a)fo2 (b—z) is a
perfect p — 1-th power

(19)

From (14), (15) and (19) we get
H(Ey, a,b) < 88kp'/*(logp)’

which proves the theorem.
Proof of Theorem 4. The proof is exactly the same as in [1, Theorem
1], the only difference is in the definitions of ¢ and r: now we choose ¢, r as

. . . -1 -1 .
integers with (¢,p) = (r,p) =1 and 1 <ind ¢ < 51, 220 <ind r < p— 1.

3 Numerical Calculations

In this chapter our goal is to carry out numerical calculations. Partly
to see how far our theoretical estimates are from the probable truth, partly
to gather numerical data in cases when we cannot prove any theoretical
estimates (linear complexity and the correlation measure of higher order). In
particular, one might like to gather information on the linear complexity (see,
e.g. [8]) which is another characteristic closely related to pseudorandomness.

The linear complexity is defined as it follows.

Definition 4 The linear complezity of a finite binary sequence {sg,...,Sny_1} €

{0, 1}V is the smallest integer L for which there exist numbers cy,...,c; | €
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{0,1} such that

Sp = C18p—1 + C28p—92 + -+ + CL—1Sp—(1.—1) + Sp—r, mod 2

We construct a sequence {sy,..

Ep_1 = {61, ..

for allm > L.

ep_1} € {=1,+1}P"! in the following way: s; =

. 8p2r € {0,1}P7" from our sequence

s (1—eip1)

for all 0 < 7 < p — 2. One might like to study the linear complexity of

this sequence. Unfortunately we haven’t been able to prove any non-trivial

theoretical result. Thus all we can do in this direction is, again, to carry out

numerical computations; we will use the Berlekamp-Massey algorithm [3],[7]

(L denotes the linear complexity).

p prime VP polynomial WI| C | C3 | Cy | S| L
1009 | 31.764 2341 38 | 98 | 132|152 | 72 | 503
2445112241232 4851 | 45 | 102 | 138 | 157 | 68 | 504

1222* + 100023 +
37| 88 | 126 | 158 | 75 | 505

2222 + 6262 + 500

212220 4+ 567x'3 +
60 | 96 | 130 | 146 | 72 | 504

33328 + 92 + 12
1013 | 31.827 2341 38 1123|129 | 151 | 84 | 507
24 4511224+1232+851 | 40 | 104 | 136 | 146 | 67 | 508

1222* + 100023 +
42 1102 | 128 | 165 | 77 | 506

2222 + 6262 + 500

212220 4+ 567x'3 +
59 | 103 | 144 | 150 | 72 | 508

33328 4+ 92 + 12
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p prime VP polynomial W Gy S L

100069 | 316.336 341 623 | 1284 | 923 | 50036

x* + 7563822 + 54322x +
689 | 1348 | 1150 | 50034

81512

2 + 3487923 + 9853722 +

402 | 1373 | 861 | 50034
12378z + 68921
2190 4 45623289 +
08254263 + 74563230 + | 445 | 1365 | 963 | 50033
78346217

100237 | 316.602 2341 885 | 1392 | 919 | 50117

x* 4+ 543322 + 54321 +
383 | 1297 | 859 | 50118

23789
x* 4+ 5000023 +

410 | 1367 | 975 | 50118

2865712 + 112211z + 854

2100 4 284 4 45678927 +
614 | 1315 | 970 | 50119

x4+ 8789z* + 4

The data above seem to point to the direction that our condition on k

and ¢ can be relaxed considerably, and that the correlation of not very high

order tends to be relatively small also for &, ¢ values not covered by Theorem

2. Perhaps this data also indicate that the dependence on the degree of the

polynomial in the upper bounds for the pseudorandom measures need not be

as strong as in our theorems. Most of the time the linear complexity seems

to be around p/2 as it would happen for truly random sequences, so that our
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sequence also satisfies the requirement of high linear complexity.

4 Conclusion

By using the notion of index (discrete logarithm) we have constructed
large families of binary sequences with strong pseudorandom properties.
However, the weak point of this construction is that the generation of these
sequences is very slow (since there is no fast algorithm for computing the dis-
crete logarithm). One might like to improve on this construction by trying to
modify the construction so that we should obtain sequences which still have
relatively good pseudorandom properties, however, they can be generated
much faster. I will return to this problem in a subsequent paper.

I would like to thank Professors Julien Cassaigne, Joél Rivat, Andras

Sarkdzy for the valuable discussions.
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