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Abstract
Generalizing earlier results, it is shown that if A, B, C, D are “large”
subsets of a finite field F,, then the equations
a+b=cd,
resp.
ab+1=cd

can be solved with a € A, b € B, ¢ € C, d € D. Other algebraic equations
with solutions restricted to “large” subsets of F, are also studied. The
proofs are based on character sum estimates proved in Part I of the paper.
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1 Introduction

In [4] and [5] Sarkoézy proved that if A, B, C, D are “large” (but otherwise un-
specified) subsets of Z,, more precisely, |A| |B||C||D| > p?, then the equations

(1.1) a+b=cd,
resp.
(1.2) ab+1=cd

can be solved with a € A, b € B, c € C, d € D, while in [1] Gyarmati studied
the solvability of

(1.3) a+b=f(z), a€ A, beB,
resp.
(1.4) ab=f(x), a€A beB

for “large” subsets A, B C Zp, and f(x) € Zy[z]. In this paper we will generalize
the results on the solvability of (1.1) and (1.2) to finite fields F,. We will also
study the solvability of other algebraic equations with solutions restricted to
“large” subsets of IF;. The proofs will be based on the character sums estimates
given in Part I [2]. (In Part III we will study “hybrid” problems which also
involve special sets like equations (1.3) and (1.4).)

Throughout this paper we will use the following notations: We consider finite
fields F, with order ¢ = p". We write F; =T, \ {0}. ¢ denotes an additive, x a
multiplicative character of F,. We set x(0) = 0. The trivial additive character is
denoted by )y, the trivial (principal) multiplicative character is denoted by xo-

We write e2™® = ¢(a) and e (%) = e,(n). N denotes the set of the positive
integers and Z is the set of the integers.
We will need the following character sum estimates proved in [2]:

Theorem A. If A,B CT, and % is a nontrivial additive character of Fy, then

we have
> vta)| < (141 1810)"”

acEAbEB

Indeed, this is Corollary 1 in [2].

Theorem B. If A,B C F, and x is a nontrivial multiplicative character of
F,, then we have

> > xlab+ 1>\ < (IA12 +1) (1Bl)”.

acEAbEB



This is a special case of Theorem 3’ and Corollary 5 in [2].

In the next two theorems the generalizations of the double sums in Theo-
rems A and B are studied, but the price paid for the much greater generality is
that the upper bounds obtained are weaker.

Theorem C. Assume that a(z), B(x) are complex valued functions on Fy, ¢
is a nontrivial additive character of ¥y, f(x,y) € Fy[x,y], and f(x,y) is not of
the form g(x) + h(y):

(1.5) f(z,y) # 9(x) + hy)  (with g(z), h(z) € F,[z]).
Write f(z,y) in the form

(1.6) fla,y) =D gry)at
k=0

(with gr(y) € Fqly]), and let K denote the greatest k wvalue with the prop-
erty that gi(y) is not identically constant: gk (y) Z ¢ and either K = n or
9x+1(Y), 9 +2(Y), - - -, gn(y) are identically constant so that, by (1.5),

K > 0.

Denote the degree of the polynomial gk (y) by D so that

D >0,

and assume that
(1.7) (K,q) =1.
Write

S=3 Y a@B)v(f(zy),

z€F, y€F,
X=Y la@} ad Y=Y B
z€F, y€F,

Then we have
S| < (XYq(D + (K — 1)¢"/?))"*.

This is Theorem 4 in [2]. Note that, as we explained in [2], conditions (1.5)
and (1.7) are necessary, however, in the important special case r = 1, i.e.,
g = p" = p = prime condition (1.7) can be dropped.

Before presenting the next theorem, we need some definitions from Part I.

Definition 1. A polynomial

F(z,y) =Y Gi(y)s' =) Hij(z)y’ € Fy[z,y]
=0 7=0

is said to be primitive in z if (Go(y),...,Gn(y)) = 1, and it is said to be
primitive in y if (Ho(z),..., Hp(z)) = 1.



Definition 2. Every polynomial f(x,y) € F,[z,y] can be written in form

(1.8) f(z,y) = F(z)G(y)H (2,y)

where H(z,y) € Flz,y] is primitive in both z and y, and apart from constant
factors, this representation is unique. The polynomial H(z,y) (uniquely deter-
mined apart from a constant factor) is called the primitive kernel of f(z,y).

Theorem D. Assume that a(x), B(x) are complex valued functions on Fy, x
is a nontrivial multiplicative character of Ty of order d, f(z,y) € F,[z,y], the

primitive kernel H(z,y) of f(z,y) is not of the form c(K(w,y))d:

(1.9) H(z,y) # c¢(K(2,9))" for c€F,, K(z,y) € Fy[z,y],

and f(x,y) is of degree n and m in x, resp. y. Then, writing

z€F, yeF,
X=3 la@P, Y=73 |6
z€F, y€EF,
and
B = max|B(y)l;
we have

IS] < (X (2nY¢*? + SB2nmq2))1/2.
This is Theorem 5 in [2].

2 Sums and products

First we will study equation (1.1):

Theorem 1. If q is a prime power, A,B,C,D C F,, and the number of solutions
of

(2.1) a+b=cd, a€ A beB, ceC,deD
is denoted by N, then we have

_ ALB[ICl D]
q

1/2
N < (14/|B|[c||D])"*q"/2.

Corollary 1. If g is a prime power, A,B,C,D C F; and
(2.2) 18] [c] D] > ¢,

then (2.1) can be solved.



Note that the ¢ = p = prime special case of Theorem 1 and Corollary 1 above
is Theorem 1 resp. Corollary 1 in [4]. These results above have similar conse-
quences as Theorem 1 and Corollary 1 in [4]; e.g., it follows from Corollary 1
that for £ € N and large subsets A, B of F,, the equation

a+b=z" ac€A beB, zel,
can be solved, and for m,n,k € N, ¢ > go(m,n, k) the equation
g™+ y" = 2% ayz #£0, =z,y,z €T,

in particular,
b 4y =2% zyz#0, 2,y,2€F,

is also solvable (the latter is, of course, the generalization of Schur’s theorem [6]).
Proof of Theorem 1. For every a,b,c,d € F; we have

1 1 if =
—Zzﬁ(a%—b—cd): Ta+b od
74 0 fa+b#cd

(where 1 runs over the additive characters of ;) so that

ZZZZZ¢ (a+b—cd).
aG.A beB ceCdeD o
Separating the ¥ = 1y term we obtain

N — IAIIBIICIIDI ZZZZZ¢a+b—0d

1 7o ac A beB ceC deD

_ w 42 Y (T ) (T vw) (X X v-a)

Y#Po “a€A cEC deD
.
‘N ~ MALBlel DI ‘ -1 p) (;w(@) (bezgw(w) (ZC desz(cd)) <
NI N
w¢¢o a€A beB c€C deD

By using Theorem A and Cauchy’s inequality, it follows that

D
‘N_|A||B|q|C|| |‘Slz Z‘/’ Z¢ (¢ 1Dlq) 1/2:

PY#Po aEA beB




() Z /g

Zw(b)‘ <

PY#Po aEA beB
1/2 2\ 1/2 2\ 1/2
< (2 (Z 3 4(a) ) (2 S ) )
q Y la€A ¥ 'beA

whence, by the identity

(2.4) >

¥

2
=q) |l

heF,

> znip(h)

heF,

(for any complex numbers z;, € C),

Al|B|c]|D c||p|\ "
- HAlBLEl |‘S(| PO ) i) = (18111 191a)

which completes the proof of Theorem 1. O

Proof of Corollary 1. By Theorem 1, it follows from (2.2) that
Al |B||C| |D 1/2
Nz HUBLERL 4y 5y g ) 27 =

/2
4]18][c| D))" .
- ; L (s el o) - ) o

3 Products and shifted products

We will generalize Theorem 1 and Corollary 1 in [5] by proving:

Theorem 2. If q is a prime power, A,B,C,D C F,, and the number of solutions
of the equation

(3.1) ab+1=cd, a€ A beB,ceC,deD

is denoted by N, then we have

< 8(4/[Bl[c] D)) *¢/? + ag?.

52 v _ MBIl
q

Corollary 2. If q is a prime power, A,B,C,D C Z4 and
(33) |A[[B|[c||D| > 100¢°,

then (3.1) can be solved.



Proof of Theorem 2. Write

Ny =|{(a,b,c,d) :ab+1=cd #0, a € A b€ B,ceC,de D}

and

Ny = |{(a,b,c,d):ab+1=cd=0, a € A,b€ B,ce(,de D}
so that
(3.4) N =Ny + N.

Then, by x(0) = 0, we have

65) M= XY TS xab+ D) =

X a€AbEB cEC deD

- q_%(z S5 S xo((ab+ Ved)+

a€AbeEB ceC deD

Y333 x(ab+ 1)y(cd)) =

X#Xo a€AbEB ceC deD

1
= ——(Ny + Vo)

where

(36) Ny=> >SS xo((ab+1)ed) =

a€AbEB c€C dED
= {(a,b,c,d): a€ AbeB,ceC,deD}|-
- |{(a,b,c,d): (ab+1)ed=0, a€ A, beB,ceC,deD}| =
= |A[|B][C| D] — Ns
with
N5 = |{(a,b,c,d): (ab+1)ed=0, a€ A, beB,ceC,de D}

and

N=Y (z ™ xlab + 1)) (z ) y(cd)).

x#Xo ‘a€AbEB ceC deD

It remains to estimate N2, Ny and N5. N2 and N5 can be estimated easily
in exactly the same way as in [5], and we obtain

(3.7) |Na| < A[(IC] + D)) < 2¢°
and

1/2
(38)  INs| < |A|[C] D]+ |A|[BI D] + 4] 1B] c] < 3(14][B| c] D)) /*¢*/2.



The crucial part of the proof is the estimate of Ny which will be based on
Theorem B. Indeed, by Theorem B and Cauchy’s inequality we have

IN < DYDY xtab+1)| D Oox(@)] D x(@)] £
X#Xo aEADEB ceC deD
< (14172 +1)(1B19)'* 3= [3x(©) ZX“”‘ .
X#Xxo ' ceEC deD

> x(0)

ceC

> x(

deD

< (AP + 1) (80 (X

X

o\ 1/2
0 )

(s

X

whence, by the identity

(3.9) >

X

Z znx(h)

heF;

=(g-1) ) |l

=

(for any complex numbers z; € C),
(310)  [Na| < (142 +1)(1Bl9)"* (e — DIe)* (e — DIP)* =
= (= (A +1)(IB[C[[Dlg) "
It follows from (3.4), (3.5), (3.6), (3.7), (3.8) and (3.10) that

‘N_ |Al|B] ICIIDI‘ _
1 Al|Bl|C||D
= | (Z5 A8l el - No) + ) + ) — UELELP) <
< AIBICID] | = = 1] 4 L (Vs 4 |Na]) + || <
< ANBIICH D] [ = = o] + - (sl + [Na]) + Vel <
AllBlIC||D
< HUSCEIPL s (aigticl D) (607 + 24°17) + 2 <
< 8(14/[B][c| [Plq)"/* + 4¢°
which completes the proof of Theorem 2. O

Proof of Corollary 2. By Theorem 2, it follows from (3.3) that

Al |B||C||D 1/2
> ALBLELPL g1 1 e 21) V742 - 44 =

D2
= (|A| 1B |C| |D|)1/2((|A| |B| |Z| | |) _ 8q1/2) 4 >

1/2
> (JA]1B][c| D) /* (107> — 8¢"/?) — 4> >
> 10¢%/% - 2¢'? — 4¢%> = 164> > 0

whence the result follows. O



4 General equations involving sums

Now we will show that Theorem 1 can be generalized considerably at the expense
of replacing the upper bound in the inequality by a much weaker one. Besides
the proof of Theorem 1 was based on Theorem A which is elementary, while
here we will apply Theorem C whose proof uses Weil’s deep theorem [7].

Theorem 3. Assume that q is a prime power, f(z,y) € Fy[z,y], f(z,y) is not
of the form g(x)+h(y), i.e., (1.5) holds. Define K and D as in Theorem C, and
assume that (1.7) also holds. If A, B, C, D C F,, and the number of solutions
of

(4.1) a+b= f(c,d), ac A, beB,ceC,deD

is denoted by N, then we have
Al |B||C||D 1/2
a2 | - B < (g pia(o + o - 1))

Corollary 3. If q, f(z,y),K and D are defined as above, and A,B,C,D C I,
satisfy

(4.3) JALIBI[C] D] > ¢* (D + (K - 1)¢'/?),
then equation (4.1) can be solved.

Note that in the f(z,y) = xy special case we have D = K = 1 so that we
obtain exactly Theorem 1, resp. Corollary 1 (but there we proved the result
elementarily, without using Weil’s theorem in the proof). On the other hand, if
D, K are fixed and K > 1, then the lower bound in Corollary 3 is < ¢7/? which
is worse than the one in Corollary 1 by a factor ¢'/2.

Proof of Theorem 3. We start in the same way as in the proof of Theorem 1
(with f(c,d) in place of ed), and as in (2.3), we obtain that

" 4(a) Z@b(b)‘ S S F (e d)].

acA beB ceC deD

‘N— |A||B||C||D|‘S} )
1 1 42y
0

Now we use Theorem C and Cauchy’s inequality:
-

D

Y#o

|A[1Bl[C] D] ‘ <
q

IA

> ¢(a)

acA

wa)\ (1C1 Dlg(D + (K - 1)g"?))"* <

) (=

IA

2) 1/2

(IC|1Dlg(D + (K — 1))/ <Z

¥

> 4(a)

a€A

> (b)

beB

1
q



whence, again by identity (2.4),

_ ALBlC] D]
q

N < L1l Dla(D + (6~ 1¢) " (g A) 7 (a5

which proves (4.2) and this completes the proof of Theorem 3. O
Proof of Corollary 3. By Theorem 3, it follows from (4.3) that

Al |Bl|IC||D
N> W — (JAlIBI (€] IDlg(D + (K - 1)g/2)"/” =

AlBlIc| D) "?
= LAIBLELPD (v 1) = — 4772(D + (1 1)) %) > 0
whence the result follows. O

5 General equations involving shifted products

We will prove the multiplicative analog of Theorem 3, i.e., we will generalize
Theorem 2 considerably at the expense of giving a weaker estimate and using
Theorem D whose proof is based on Weil’s theorem.

Theorem 4. Assume that q is a prime power, f(z,y) € Fy[z,y], the primitive

kernel H(x,y) of f(z,y) is not of the form c(K(w,y))d, i.e. (1.8) holds, and
in representation (1.8) of f(x,y), F(x) is of degree r, G(x) is of degree s, and
f(z,y) is of degree n and m in z, resp. y. If A,B,C,D CTF,, and the number
of solutions of

(5.1) ab= f(c,d), a€ A beB,ceC,deD
s denoted by N, then we have

o - ALK |D|‘ 3

1/2

< 4n' A (LA |BIICI D) + 7 (r + 5+ 1+ (nm)!/2) g2,

Corollary 4. If g, f(z,y), n and m are defined as above, and A,B,C,D CF,
satisfy

(5.3) |A| 1B]|C||D] > 64(r + s +n + (nm)'/?)q7/2,
then equation (5.1) can be solved.

Note that while Theorem 4 and Corollary 4 are much more general than
Theorem 2, resp. Corollary 2, the price paid for this greater generality is that
inequality (5.2) in Theorem 4 is weaker and the lower bound in (5.3) in Corol-
lary 4 is greater than in Theorem 2, resp. Corollary 2. Indeed, in the special

10



case f(x,y) = xy — 1 Corollary 4 gives Corollary 2 with a lower bound > ¢7/?
for |A||B||C||D| which is worse by a factor ¢'/2 than the one in Corollary 2.
(Besides the proof of Theorem 2 is elementary, while the proof of Theorem 4
uses Theorem D whose proof is based on Weil’s theorem.)

Proof of Theorem 4. As in the proof of Theorem 2 we have

(5.4) N = (MBI ICID] - Ns) + N3) + N,

with
Ny = [{(a,b,c,d) :ab= f(c,d) =0, a€ A, be B, ceC, de D},
= 3 (T S (T S xtre))

i X#xo ‘eEAbEB ceC deD

Ny = |{(a,b,c,d) sabf(e,d)=0,a€ A, beB,ceC,de 'D}|
First we will estimate N5. If
ab= f(c,d) =0,

then either a or b is 0, and then b, resp. a can be chosen in at most |B|, resp.
|A| ways, so that the pair (a,b) can be chosen in at most |A| + |B| ways. If

(5.5) f(e,d) = F(e)G(d)H (c,d) =0,
then

(5.6) F(e) =0,

(5.7) Gd)=0

or

(5.8) H(c,d) = 0.

The number of pairs (¢, d) satisfying (5.6) or (5.7) is at most rq + sq. Moreover,
since H(x,y) is primitive in z, thus H(z,d) is never identically 0, so that for
every d € D, ¢ in (5.8) can be chosen in at most n ways. It follows that (5.5)
has at most rq + sq + n|D| solutions so that

(5.9) N» < (JA| +1B|) (rg + sq +n|D|) < 2q(rq + sq + ng) = 2(r + s +n)g>.
To estimate Ny we use Theorem D, Cauchy’s inequality and (3.9):
(5.10)

N[ < )

X#X0

> x(a)

acA

Zx(b)‘(lcl(%lquW"’ +5nmg?)) " <
beEB

11



o\ 1/2
< ([cl(2n|DIg** + 5nmg?))"? (Z > x(a) ) <

X 'a€A
< (g—1)(14]18| |c|(2n|D|¢*? + 5nmg?)) />

> x(b)

beB

) (=

Finally, if (a,b,c,d) is counted in Ny then

(5.11) ab =0
or
(5.12) f(c,d)=0.

As the estimate of No shows, the number of the quadruples (a, b, ¢, d) satisfying
(5.11) and (5.12) is at most (|A| + |B|)|C||D|, resp. |A||B|(rq + sq + n|D|) <
|A| |B|(r + s + n)g, so that

(5.13) INs| < (Il +[B])[CI D] + A BI(r + 5 + n)q.

It follows from (5.4), (5.9), (5.10) and (5.13) that

‘N_ A]1B][c] |D|‘ .
q
<14 BlIeI Pl | —— = L+ L (V5] + [Na]) + [N <
-~ q—]. q q—]. 5 4 2
1 (Al IB)ED] . q
<|Al|B|[C]|D + Al|B|(r+s+n)+
Al1BI[€] 1P| — - _ LAl 1BI( )

+ (JA1B]|C|(2n|D|g*2 + 5nmg®))? + 2(r + 5 + n)g?
whence, by the inequality

(a+b)'2 <a/? 4 b1/? for a,b>0,

v MUBLElDl|
q
/2, 4\1/2 2 2¢° 2
< (HIBIICIID) (@) 5+ = + 20+ s )+
1/2
+ (1411BI c] [DI)'* (2n)*2¢*/ + (1Al |B| c])
< (JAI1BI 1] D))/ (2+2n1/26*/) +¢2 (4+4(r+5+n)) +(¢*) /23 (nm) /2q <
<4nt g4 (JAIBIICI D)) + (4 -+ 4(r + 5 + ) + 3(nm)/2)¢*/2 <

< '@ (|AlBI(C| D) + 7(r + 5 +n + (nm)Y/2) g/

V2 3(nm) 2 q+2(r+s+n)g? <

which completes the proof of Theorem 4. O

12



Proof of Corollary 4. By Theorem 4, it follows from (5.3) that

/2
w2 ( (Al1Bl[c| D)’
N>(MH&WHM)/<( ; ) g -

—7(r + s +n+ (nm)/?)¢*?* >

1/2
12 1 (14118 1c| 12"
2 q

> (4118l [c][D])

_ ALBlIClID] _
2q
> 25(r + s +n+ (nm)/?)¢>? > 0

—7(r+s+n+ (nm)/2)¢*/? =

7(r+s+n+ (nm)/?)¢** >

which proves the result. O

6 “Good” polynomials and their size

Each of Theorems 1-4 can be formulated in the following way: a certain poly-
nomial f(z1,2,z3,24) € Fylx1,22,23,24] is given, and the conclusion of the
theorem is that if A, B,C,D C F, and | A| |B||C| |D|is “large”, then the equation

fla,b,e,d)=0, a€ A, beB,ceC,deD

can be solved. More generally, we may say that a polynomial f(z1,z2,...,z,) €
F, is “good” if for all “large” A;, As,..., A, C F, the equation

flx1,...,2,) =0, z1 € A1,...,2, € Ay

can be solved; here “large” means that for some positive absolute constants
¢1,c2 we have
|A1| . |.An| > c1q™ 2.

By Theorems 1-4, there are many “good” polynomials with n = 4. It is a
natural question to ask what is the minimal number n of the variables of “good”
polynomials? Trivially, n cannot be 1. We will also show that n = 2 is not
possible either:

Theorem 5. Let q be a prime, let f(z,y) € Fy[z,y] be of degree u and v in z
and y, resp., and assume that

q
(6.1) u,v < 5.
Then there are A,B C T, with
q q
. > 2 =|=
(6.2) =g 1Bl= |

so that
fla,b)=0, a€ A beB

13



cannot be solved.
Note that for fized u,v and ¢ — +o0, by (6.2) we have

1
={—+o0(1)) ¢ >
A8l = 35+ o)) & >
Proof of Theorem 5. Write f(z,y) in form

flz,y) = g0z + 1()a" " + - -+ gu(y) with go(y), 91 (1), - ., 9u(y) € Fy[y]-

Then by the definition of v and v the polynomial go(y) is not identically 0
and its degree is at most v, thus it has at most v zeros in F;, so that writing
R={r: reF,, go(r) #0}, we have

[R| = [Fyg \ {r:r € Fy,90(r) = 0} > g —v

whence, by (6.1),
q
|R| > 5

Now let B be any subset of R with
- [Z
(6.3) B| = [QU] .
For any b € B write
Sb)={s: seF,, f(s,b)=0}

so that, by B C R and the definition of R, we have

(6.4) |S(b)| <u for every b€ B.
Define A by
(6.5) A=TF,\ | S®).

beB

Then clearly,
fla,b) #0 for a€ A, be B,

and it follows from (6.3), (6.4) and (6.5) that

66) A2 q- YISO 2q-Y u=q—|Bu=q—|[;-|u>1

beB beB
so that, by (6.3) and (6.6), (6.2) also holds and this completes the proof of
Theorem 5. O

Thus a “good” polynomial must have at least 3 variables, and it can have 4
variables, but we have not been able to settle the following problem:

Problem 1. Are there “good” polynomials f(z1,z2,z3) € Fyl21,22,23] of 3
variables?

14



7 “Bad” polynomials with many variables

Perhaps, inspired by the discussion in the previous section, one may guess that
if n € N is large enough then every polynomial f(z1,...,2,) € Fy[z1,...,z5] is
“good”. This is not so and, indeed, we will present two large families of “bad”
polynomials with many variables. Note that there will be a close connection
between the structure of these polynomials and conditions (1.5) and (1.9).

Theorem 6. Letn € N, n > 2, dy,...,d, € N and € > 0. Then there is
a po = po(n,di,...,dy),e so that if p is a prime with p > po and fi(x) €
Fplx],..., fn(x) € Fylz] are polynomials of degree di,...,dy, resp., then there
are subsets Ai,..., A, of F, so that

(7.1) | Ai| > (%—E)p fori=1,2,...,n,
and
(7.2)  gla1,...,an) = fi(a1) +---+ fnlan) =0, a1 € A1,...,an € Ay

has no solution.

We remark that this theorem could be extended from F, to F, (with ¢ = p").
However, in the ¢ = p special case there is a result (Lemma 1 below) at hand
ready to use from which Theorem 6 can be deduced in a few lines, while in the
general case one would need first the extension of Lemma 1 from F, to Fg; this
can be done (we will return to this at the end of the proof of the theorem) but
this would make the proof much longer, thus we present here only the ¢ = p
special case.

Moreover, we remark that, e.g., in the special case fi(z) = --- = f,(z) = z*
the equation

fi(z) 4+ -+ fa(zn) =0

has nontrivial (nonzero) solution for n > k by Chevalley’s theorem which to-
gether with Theorem 6 shows that the solvability of an algebraic equation in
general, resp. in large subsets can be very much different matters.

Proof of Theorem 6. The proof will be based on the following lemma:

Lemma 1. Assume that p is a prime number, f(x) € Fy[z] is of degree d > 1,
letreZ,seN, s<p/2. Define R C {1,2,...,p} by

meRifIne{r,r+1,...,r+s—1} with f(m) =h (modp)
and

m ¢ R otherwise.

Then we have
|IR| —s| <1+ dp'/?(1 + log p).
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Proof of Lemma 1. For d =1 this is trivial (for (a,p) =1, f(m) =am +b=h
(mod p) has exactly one solution), while for d > 2 this is a part (see formula
(2.1)) of Theorem 1 in [3] (which was proved there by using Weil’s theorem [7]).
Note that there p > pg is also assumed but this is needed only in the proofs of
other parts of the theorem.

By using Lemma 1, we may complete the proof of Theorem 6 in the following
way (we will identify the elements of F, with the modulo p residue classes, and
we will not distinguish between the integer a and the modulo p residue class
represented by a): Define A; by

Ai={m: 0<m<p, EIhe{l,Q,...,[%]} with fi(m)zh(modp)}.

Then for p > n we have

0< fi(m) < [%] <% for all m € A;

whence

0<f1(a1)+---+fn(an)<n-i—)=p for all a; € Ay,...,a, € A,

so that, indeed, (7.2) has no solution. Moreover, by Lemma 1 we have
p 1/2 1
|Ai| > [E] - (1 +dip/ (1 —I—logp)) > L, E)P

for all ¢ and p large enough which proves (7.1) and this completes the proof of
Theorem 6. O

To extend Theorem 6 from F, to IF;, one would need the generalization of
the following type of Lemma, 1:

Consider F, (as always, ¢ = p") as a linear vectorspace over F,. This can
be written as the direct sum of its prime field, IF,, and an r — 1 dimensional
subspace, say V:

F, =F, & V.

Then every u € F, has a unique representation in the form
u=w+v with welF,, ve,

denote this w by w(u), v by v(u). Then

Lemma 1°. Assume that q is a prime power, f(x) € Fy[z] is of degree d > 1,
letr € Z,s €N, s <p/2. Define R CF, by

meR ifIhe{r,r+1,...,r+s—1} withw(f(m)) = h (modp)
and
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m ¢ R otherwise.

Then we have
[[R| = sp" ™| = 0(p")
for fized d and p — +oc.

Such a lemma can be proved by using additive characters of I, and Weil’s
theorem; see [8] for a related result.

Now we will prove the multiplicative analog of Theorem 6 (but this time
with Fy in place of F,).

Theorem 7. Letn € N, di,...,d, € N and € > 0. Then there is a qo =
qgo(n,d,...,dn,€) so that if q is a prime power such that ¢ > qo and dy ¢t
g—1,...,dp t ¢ —1 and fi(z) € Fylz],..., fo(x) € Fylz] are polynomials of
degree di,...,dy, resp., then there are subsets Ai,..., A, of F, so that

1
(7.3) |Ai|>(ﬁ—5)q for i=1,2,...,n,
and

(74)  glat,...,an) = fi(@r) ... falan) =1=0, a1 € Ay,...,an € Ay
has no solution.

Proof of Theorem 7. The proof will be based on the following lemma:

Lemma 2. Assume that q is a prime power, f(z) € F,[x] is of degree d > 1,

and, if d | g — 1, then f(x) is not of the form f(z) = c(g(x))d with ¢ € Fy,
g(z) € Fylz]. Letr €N, s €N, s <(¢g—1)/2, and let g be a primitive element
of Fy. Define R C IF, by

meR FAhe{r,r+1,...,r+5—1} with f(m) = g"
and
m ¢ R otherwise.

Then we have
[IR| - 5| < 3dg'/?(1 + log q).

Proof of Lemma 2. We have

= Y X m)x(e") = {1 i 7m) =t

g—1 0 otherwise

(where )~ denotes summation over the multiplicative characters of F;) so that

r+s—1
RI= 3 Y =5 Ealrm)xe") =
meF, h=r X
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r+s—1

x meF, h=r

whence, separating the contribution of the trivial character,

(7.5)
1 r4+s—1 b
[IR] - 5] (—1 > xo(fm) D (x(9)) —s>+
meF, h=r
r4+s—1
+% 3 3 x(fm) Y (x9)"| <
4 X#X0 mEF, h—r
1 r4+s—1 N
< Tl( 2 1)5—8 —1 2| 2 xUm)| | X (k@)
' fomy L, e
m)#0

Now we use the following form of Weil’s theorem [7]:

Lemma 3. Suppose x is a multiplicative character of order D > 1 of F,.
Suppose f(z) € Fy[z] has t distinct zeros over the algebraic closure of ¥y, and
it is not the constant multiple of the D-th power of a polynomial over IF,. Then

> X(f(w))‘ < (t—1)g'/2.

z€F,

Using Lemma 2 (which can be used for every x # xo by our assumptions
on f(z)) and the fact that if g is a primitive element of F; and x runs over the
nontrivial characters of Fy, then x(g) runs over the ¢ — 1-st roots of unity, we
obtain from (7.5) that

[IR| —s| < %(q— Z 1)s—s+
- meF,
f(m)=0
1/2| 9))s| <
%Eo xS
- > 1+— —1)g'? Y -
B B fT(nE)qu X¢XO| N
S
< d+1)+ ——(d—1)¢'/?
S Z|1—eJ/q—1))|

whence, by the inequality
11 —e(a)| > 4llall
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(where ||a|| denotes the distance of « from the nearest integer),

5]
11/2 2 1/2 1
R|l—s|<==d+1)+ ——=dg'*-2 — <
IR = sl < g+ D+ = 2 G
< d(2+¢"*(1 +logq)) < 3dg"/*(1 +log q)
which completes the proof of Lemma 2.

By using Lemma 2, the proof of Theorem 7 can be completed in the following
way: Define A; by

Ai:{m: mel, Ihe {1,2,...,[%1] —1} with fi(m):gh}.

Then for a; € Ai,...,a, € A, there exist hy,...,h, € {1,2,...,[Z2] —1}
with f;(a;) = g" for i = 1,...,n. Then we have

fi(ar) ... falan) =gh. . ghn = gt tha
with . .
0<h1+---+hn§n([%] —1) <n-ds—g-1

whence
fi(ar) ... fu(an) = gh1+'~-+hn # P =1

which proves that, indeed, (7.4) has no solution. Moreover, by Lemma 2 we

have ) )
[A;| > ([%] - 1) — 3diq"*(1 + log q) > (ﬁ —5) q

for all ¢ and ¢ large enough which proves (7.3) and this completes the proof of
Theorem 7. O

(We remark that in [5] two further examples were given for “bad” polyno-
mials of n = 4 variables.)

8 Unsolved problems

At the end of Section 6 we mentioned an unsolved problem (one of the most
important ones that we have not been able to settle). In this section we will
present some further open problems.

Problem 2. Find elementary-algebraic proofs for Theorems 1 and 2. Proofs of
this type might help to understand these results better and to extend them in
various directions.
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Problem 3. In what other rings are the analogs of Theorems 1 and 2 true? (It
was pointed out in [4] that the analog of Theorem 1 is not true in Z,, if m is
composite, and it is easy to see that the analog of Theorem 2 is not true either
in this case.)

Problem 4. Are there any infinite fields where theorems of similar flavour can
be proved?

Problem 5. f A=B=C=D={n: n €N, nisodd}, then equations (1.1)
and (1.2) are not solvable with a € A, b € B, ¢ € C, d € D. This shows that it
is not enough to take large subsets A, B,C,D C N to guarantee the solvability
of (1.1), resp. (1.2) with elements belonging to the given sets. Does it help to
consider k-colorings of N instead of large subsets of it? More exactly, does there
exist a k € N so that for any k-coloring of N, (1.1) (to avoid trivialities, one
should add the restriction a # b), resp. ab+ 8 = ¢d (modulo 8 discussion shows
that 1 in (1.2) must be replaced by, say, 8) has a monochromatic solution? If
yes, then what is the greatest k with this property? If the answer is negative,
then what weaker statements can be proved on the coloring of the solutions of
(1.1) and (1.2)?

Problem 6. Does it help if we have a lower bound for min{|A|, |B|, |C|, |D|}
instead of | A| |B||C||D| when studying the solvability of (1.1), resp. (1.2)? More
precisely, does there exist a § > 0 so that if ¢ > qo, A,B,C,D C F,; and
min{| A, |B], [C], |D|} > g%~ then (1.1), resp. (1.2) can be solved with a, b, ¢, d
belonging to the given subsets?

Problem 7. Can one extend and sharpen Theorem 1 in the following way: for
every k € N there are ¢ = ¢(k) > 0 and go = qo(k) so that if ¢ > qo, A,B,C,D C
F,, |A||B||C||D] > ¢*~¢ then there are a1,...,ar € A, b,...,b, € B with
a;+b;€CD (for 1 <i,j <k)?

Problem 8. Can one extend and sharpen Theorem 2 in the following way: for
every k € N there are ¢ = ¢(k) > 0 and g9 = go(k) so that if ¢ > qo, A,B,C,D C
F,, |Al|B||C||D| > ¢* ¢, then there are ai,...,ar € A, b1,...,br € B with
abj +1€CD (for 1 <4,j <k)?

Problem 9. How large can a subset A C F, be so that there is no arithmetic
progression of 3 terms in A- A (= {aa’: a € A, a' € A})?
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