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Abstract
In earlier papers, for “large” (but otherwise unspecified) subsets
A, B of Z, and for h(z) € Zy[z], Gyarmati studied the solvability of
the equations
a+b=h(z),

resp.

ab = h(z)
with a € A, b € B, z € Z,, and for large subsets A, B, C, D of Zj,
Sarkézy showed the solvability of the equations

a+b=cd,

resp.

ab+1=-cd

with a € A, b€ B, c € C, d € D. In this series of papers equations
of this type will be studied in finite fields. In particular, in Part I
of the series we will prove the necessary character sum estimates of

independent interest some of which generalize earlier results.
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1 Introduction

In [4] Gyarmati showed that if p is a prime, h(z) € Z,[z], A, B C Z,, and

|A|, |B| are “large” enough in terms of the degree of h(z), more precisely,
|Al[B| > Cp

where C'is a constant depending on the degree of h(z), then there are a € A,
be B, x € Z, with
a+b=h(z), (1.1)

resp.
ab = h(z). (1.2)
(She also studied some further problems of similar flavor.)

In [6] and [7] Sarkozy proved that if p is a prime and A, B, C, D are

“large” subsets of Z,, then the equations
a+b=cd, (1.3)

resp.
ab+1=cd (1.4)

can be solved with a € A, b € B, ¢ € C, d € D; more precisely, if
|AJ|B||C||D| > p? then (1.3) can be solved, and |A||B|[C||D| > 100p®
is needed to ensure the solvability of (1.4).

The common feature of these results is that given an equation

flay, ... ag,...,a,) =0,

we are looking for solutions a4, ..., ay, ..., a, such that some of the a;’s, say,
ai,...,a are restricted to elements of “large” (but otherwise unspecified)
subsets Ay, ..., A of Z,. In this series our goal is to generalize these results
to finite fields (but it was shown in [6] and [7] that they cannot be generalized

to Zm, with composite m), and we will extend them in various directions.
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Our results will be based on certain character sum estimates of indepen-
dent interest which will be collected here in Part I of the series. (In Part
IT, to be submitted soon to this journal, we will study algebraic equations
like (1.3) and (1.4) where each of the variables is restricted to a large sub-
set of I, in the above sense, while in Part III we will study hybrid problems
where some variables are taken from certain special fixed sets.) Some of these
character sum estimates will have the same flavor as the problems described
above in the sense that these sums will involve at least one summation of
form > where A is a “large” but otherwise unspecified subset of F,. Our
charagfg} sum estimates and also other results in Parts IT and III will gen-
eralize several earlier (sometimes classical) results. We will also use some
of these estimates (mostly Theorems 4 and 5) in other papers written on
2-dimensional pseudorandom binary lattices.

Throughout this paper we will use the following notations: We consider
finite fields F, with order ¢ = p". We write F; = F, \ {0}. 1 always
denotes an additive, x a multiplicative character of F,. We set x(0) =
0. The trivial additive character is denoted by )y, the trivial (principal)
multiplicative character by xo. The canonical additive character is denoted
by 1. If x is a multiplicative and v an additive character of I, then G(x;, ¢)

denotes the Gaussian sum

Glx.v) = > x(@)v(x).

z€lfy

We write €2 = e(a) and e (%) = e,(n). N denotes the set of the positive

integers and Z is the set of the integers.



2 Vinogradov’s lemma in finite fields

If meN, a €Zand a(z), () are complex valued functions on

{0,1,...,m — 1}, then by Vinogradov’s lemma we have

mz:mz: Y)em(azy)| < (XYm)H/?
=0 y=0

with

X=Y l@?, v=3 6w

Indeed, this is Lemma 10a in [9], and it plays a crucial role in Vinogradov’s
exponential sum estimates. This lemma can be generalized easily to finite

fields:

Theorem 1 If a(z), f(x) are complex valued functions on F, and (x) is a

nontrivial additive character of By, then writing

S=2 > a@)by)izy),

z€lF, yeFy

X=) la@] ad Y=7) |8y

z€F, (S

we have
S| < (XYq)Y2.

We remark that the ¢ = p, a(x) = B(z) = (%) special case (when this
upper bound is achieved) shows that in general this upper bound cannot be
improved.

If a(x), B(x) are the characteristic functions of the subsets A, B of F,,
then it follows that

Corollary 1 If A, B C T, and ¢ is a nontrivial additive character of F,,

then we have

(A8l a)"*.

DD ) <

acA beB




Proof of Theorem 1. By Cauchy’s inequality we have

2

ISP =1> " al@) Y By)v(wy)

z€ly yeFy
2
<A D le@P | D0 1D Bw)v(y)
z€Fy z€F, |y€el,

=X Z Z 5(y1)mz¢($(y1 —12))

y1€Fg y2€F, z€l,
The last sum is ¢q if y; = y» and 0 otherwise, thus it follows that
ISP <X By g =XYq
yeF,

which completes the proof of Theorem 1.

3 The dual of Vinogradov’s lemma

We will prove:

Theorem 2 If a(x), f(z) are complex valued functions on F, and x is a

nontrivial multiplicative character of ¥, then writing

S=2 > a@byx(=+y),

€l yel,

X=Yla@P ad Y=Y |80,

z€Fy y€ly

we have

S| < (XYq)Y2.

The g = p, a(z) = B(z) =€ (%) special case shows that in general this
upper bound cannot be improved.

If a(z), B(x) are the characteristic functions of the subsets A, B of F,,
then it follows that



Corollary 2 If A, B CF, and x is a nontrivial multiplicative character of

F,, then we have

< (|Al1B] 9)"*.

ZZX (a + )

a€A beB

In the ¢ = p special case this is a result of Erdés and Shapiro [2]. Similar
estimates also occur in [1] and [3].

Another consequence of Theorem 2 is:

Corollary 3 If A, B CF,, x is a nontrivial multiplicative character of F,
f(z) € Fylz] and g(z) € Fy[z] are not identically constant polynomials of
degree F, resp. G, then we have

DD X(f(@)+90)| < (FGIA|[Bla)”*

acA beB

Proof of Corollary 3. Now we use Theorem 2 with a(z), 8(z) defined

afz) ={a:a €A, f(a) =2z}
and

Blz) ={b:be B, g(b) =z}

Then we have

X =) la(@)) <max a(z) }_ a(z) <F|A
z€l, ¢ z€l,

and similarly,

Y <GB,

whence the result follows.
Proof of Theorem 2. Since we defined x(0) by 0 and x # xo is assumed,

thus we have
x(z +y) Z G(x, ¥)Y(z +y).



It follows that

S=- ZZ (1) Y GOu Nl +y)

:CE]Fq y€F, P

€y

(G(X, o) + ) G(x@)) (Z a(x)ww) (Z ﬁ(y)w(y)) :
Y#o z€R, y€F,

By x # xo we have

——ZG (Z a(z)y(z)

N———
VR
i1ng
=
s
<
s
N—

=

G(X: ¢0) =0
and
Nl 12
GOed)|=d"?  if v # .
Thus by Cauchy’s inequality

12 ol

z€R,

S| < = Z G(x. V)]
1/)751,1)0

) D B

S

1
-y

Y#o

> al@)y()

Tl

1
sqm(z

Y#o

> BW)Y(y)

y€ly

) (2

> ale

> a@)y()

z€ly,

S By

IS

9y 1/2
) ) . (3.1)

Here we have

D |2 alepil)

2

<2

b |z€R, b |zel,
XY el - ) =g Y e —aX. @
Y T1€EF; z2€R, z€l,
Similarly
2
D12 Bwe)| <qv. (33)
Y#po |yEly




It follows from (3.1), (3.2) and (3.3) that

S| < (gXY)H2,

4 The multiplicative analog of Theorem 2
We will also need the analog of Theorem 2 with xy 4+ 1 in place of x + y:

Theorem 3 If a(x), f(z) are compler valued functions on F, and x is a

nontrivial multiplicative character of ¥y, then writing

S=) > a@byx(ay+1),

z€lFy yely
X=> la@} ad Y=Y |8,
z€lFy y€F,
we have
S| < (XYq)'2. (4.1)

The ¢ = p, a(z) = x(z e <$T?1)’ Bly) = (%) special case shows
that the upper bound cannot be improved by more than a secondary term
(XY)H2q1/2,

If a(z), B(x) are the characteristic functions of the subsets A C I, B C
[F,, then it follows that

Corollary 4 If ACT,, ,BCTF, and x is a nontrivial multiplicative char-

acter of F,, then we have

ZZX(ab—i— 1)

acA beB

< (1A]|Bla)'".

The ¢ = p special case of this is a variant of Gyarmati’s Theorem 7.a) in
[4], and the ¢ = p, x(n) = <%> (=Legendre symbol) special case occurs in
Vinogradov’s book [10].



We remark that the summation over z € F, in Theorem 3 can be changed
easily at the expense of adding a further term for summation over x € F,.

Indeed, by Theorem 3 we have

) a@)By)x(zy +1)

z€lF, yelfy

3 S a@Bm)xlay + 1|+ 0)] Y [8(y)

zeFy yely S

IN

~—

1/2
<Y +]a(O0)] | D 18 /\ ¢ = (X +[a0)]) ()

y€ly

so that it follows from Theorem 3:

Theorem 3’ Defining o(z), B(z), x, X and Y as in Theorem 8, we have

Z Z a(z)By)x(zy + 1) < (Xl/2 + |a(0)|) (Yq)l/Q .

z€lF, yeFy

In the same way as Corollary 3 follows from Theorem 2, it follows from

Theorem 3’:

Corollary 5 If A,B C F,, x is a nontrivial multiplicative character of Fy,
f(z) € Fy[z] and g(x) € F,[z] are not identically constant polynomials of
degree F, resp. G, then we have

SN X(F(@)g(b) + )| < ((FIADY2 + F) (G Bl g)' .

a€A beB
Proof of Theorem 3. The theorem is nearly equivalent with Theorem
2. Indeed, in Theorem 2 taking «(0) = 0 and for z # 0 replacing a(z) by

a(z™)x(xz!), then substituting z~*

D) alz)B)x(zy +1)

z€Fy yeF,

=z we get

which proves the result (with z in place of x).
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5 A generalization of Vinogradov’s lemma

One might like to generalize Theorems 1, 2 and 3 by estimating double
sums with general term o(z)B(y)¥(f(z,y)) resp. a(x)B8(y)x(f(z,y)) with

f(z,y) € Fy[z,y]. First we will prove such a theorem in case of additive
characters v, i.e., we will generalize Vinogradov’s lemma. However, there will
be a price paid for the greater generality: we will need further assumptions,

we will use Weil’s theorem and the upper bound will be weaker.

Theorem 4 Assume that o(z), B(x) are complex valued functions on Fy, ¢
is a nontrivial additive character of ¥y, f(x,y) € Fy[z,y], and f(z,y) is not
of the form g(x) + h(y):

f(@,y) # g(x) + hly)  (with g(x), h(z) € Fola]). (5.1)

Write f(z,y) in the form

f@y) =) arly)a" (5.2)

(with gx(y) € F,ly]), and let K denote the greatest value k with the prop-
erty that gx(y) is not identically constant: gx(y) #Z ¢ and either K = n or
9x41(Y), 9 12(Y),s - - -, gn(y) are identically constant so that, by (5.1),

K >0, (5.3)
Denote the degree of the polynomial gk (y) by D so that
D >0, (5.4)

and assume that

(K,q) = 1. (5.5)

Write
S=Y "> al@)Bu)v(f(x,y), (5.6)

z€F, yel,
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X =Y la@) ad Y=Y 5@

z€F, yer,
Then we have
1/2

S| < (XYq (D + (K - 1)¢'?)) (5.7)

Remarks. Condition (5.1) is necessary: if f(z,y) = g(x) + h(y), then
taking a(z) = ¥ (—g(z)), B(y) = ¥(—h(y)), every term of the sum (5.6) is 1,
so that in general there is no nontrivial upper bound for the sum (5.6).

Condition (5.5) is an inconvenient one but a condition of this type is also
necessary; we will return to this question after Lemma 1. However, in the
most important special case r = 1, i.e., ¢ = p" = p =prime this condition
can be dropped. Namely, then using 7 = x we may reduce the exponents of

z in (5.2) to exponents less than p, which implies that K < p whence

(K,q) = (K,p) =1

follows so that (5.5) automatically holds. Thus in the ¢ = p special case (5.1)
is the only condition that we need.

Again Theorem 4 could be specified to the case when «(z), 5(x) are the
characteristic functions of subsets A, B of F,, we leave the details to the
reader.

Proof of Theorem 4. By Cauchy’s inequality we have

2

SP= > al@) Y By)e(f(x,v))

< Yo la@ ) [ D2 1D Bwe(f(e,y)

=X Z Z Z B(yl)mw(f(xayl) - f(l',yQ))

T€lfg y1€Fy y2€F,;

=X (5.8)
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where

= Z Z Bly1) By Z (0 (Z 9k (Y1) gk(yz))$k> )

y1€F, y2€F, z€R,

Now we introduce an equivalence relation in F,: we say that y; ~ ys if
9k (Y1) = gk (y2). Then we may write F, as the disjoint union of equivalence
classes: F, = U]_; E;. The polynomial gx(y) may assume any fixed value at
most D times so that

|Ey| < Dfor1<t<T. (5.9)

We split the sum S’ into two parts:

S' =8, +5, (5.10)

where in S; we sum over the pairs (y1,y2) with y; ~ yo and Sy denotes the
sum with y; % yo. In S; we estimate in the trivial way by using [¢(...)] =1
and (5.9):

1Sil < > 1By Bye Zl—qzz > 1B)B(

Y1,y2€R, z€l, t=1 y1€E; y2€F
Y1~Y2
qz > Z (18w)I” + 18(vs)] —QZ\EtIZ\ﬂ
t=1 y1€E; y2€Et yeEE,
< 4D Y 8() = gDV (5.11)
Y€,

To estimate Sy we need the following form of the Weil’s theorem ([11],
see also [5], p. 223):

Lemma 1 Let h(x) € F,[z] be of degree d > 1 with
() =1 (512

and let ¢ be a nontrivial additive character of F,. Then

S w(h(@))| < (d—1)g">.
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We remark that the necessity of condition (5.12) is discussed in [5], p. 223,
and this discussion also shows that condition (5.5) is needed in Theorem 4.

By using Lemma 1 we obtain

1S2l < )0 BBl | ¢ (Z gn (Y1) = gn(2))w )

y1,y2€F, z€R,

Y194y2
)g'"? Z Z (18(ys )* + 1B(y2)] )
y1 €, yzEFq
=Y (K —1)¢*2. (5.13)

It follows from (5.8), (5.10), (5.11) and (5.13) that
[SI* < XYq(D+ (K —1)¢'/?)

which completes the proof of Theorem 4.

6 A general theorem in case of multiplicative

characters

In this section we will prove the analog of Theorem 4 for multiplicative
characters, i.e., we will estimate double sums of form (5.6) with a multi-
plicative character y in place of 1. Before formulating our result, we need a
little preparation. First we will present an analog of the notion of primitive

polynomial used in the study of irreducibility in Z[z]:

Definition 1 A polynomial

ZG ZHj(x)yj € Fy[z, y]

=0

S,

is said to be primitive in x if (Go(y),-..,Gn(y)) = 1, and it is said to be
primitive in y if (Ho(z), ..., Hp(x)) = 1.



Then the analog of Gauss’s lemma (the product of primitive polynomials

is also primitive in Z|[z]) holds.

Lemma 2 If the polynomials

are primitive in x, then the polynomial
H(.’E, y) = F(:E, y)G("E’ y) = CT+S(y)xT+S +eeet CO(y)
18 also primitive in x.

Proof of Lemma 2. The proof is similar to the proof of Gauss’s lemma,
i.e., we prove by contradiction: Assume that H(z,y) is not primitive in z:
(cris(y),---,co(y)) # 1. Then ¢, 4(y), - - -, co(y) have a common zero y, € F,.
Since F(z,y) and G(x,y) are primitive in z, thus there are n and m with
0<n<rand0<m < ssuch that a;(yo) = 0 for 0 < i < n, a,(yo) # 0,
bi(yo) =0 for 0 < j < m, and by, (yo) # 0. Then we have

n+m

Cntm (Y0) = Z @i (Y0)bntm—i (Yo)-

i=0
On the right hand side every term is zero except for the term a,(vo)bm(yo)
which is nonzero, thus the left hand side is also nonzero: ¢, m(yo) 7 0. This
contradicts the definition of 7y, and the proof of Lemma 2 is completed.

Now consider a polynomial

f(z,y) = ar(z)y" + -+ ao(z) € Fyz,y].

Then factoring out the greatest common divisor F'(z) = (a,(x),...,ao(z)),
reordering the terms according to the powers of z, and then factoring out
the greatest common divisor G(y) of the coefficients (which are polynomials

in y), we obtain the representation of f(x,y) in the form
f(z,y) = F(z)G(y)H(z,y) (6.1)

14



where H(z,y) € F,[z,y] is primitive in both z and y, (the primitivity in y
holds trivially since G(y) has been factored out, while the primitivity in
needs a little consideration: a polynomial F'(z,y) € F,[z,y] is primitive in z
if and only if there is no yo € F, such that F(z,y,) € F,[z] is the identically
zero polynomial. Thus by (6.1) there is no yo € F, such that for y = y, the
polynomial G(y)H (x,y) is the identically zero polynomial. Then the same
holds for the polynomial H(z,y), and thus it is primitive in x.) It is easy to

see that apart from constant factors, this representation is unique.

Proposition 1 Every polynomial f(z,y) € F,lz,y] can be written in form
(6.1) where H(x,y) is primitive in both x and y and apart from constant

factors, this representation is unique.

Definition 2 The polynomial H(z,y) in (6.1) (which is determined uniquely

apart from a constant factor) will be called the primitive kernel of f(x,vy).

Theorem 5 Assume that o(z), B(x) are complex valued functions on Fy, x
is a nontrivial multiplicative character of F, of order d, f(x,y) € F,[z,y],

the primitive kernel H(x,y) of f(z,y) is not of the form cK (x,y)%:
H(z,y) # cK(z,y)" for c € F,, K(z,y) € F,[z,y], (6.2)

and f(x,y) is of degree n and m in x, resp. y. Then, writing

§=)_ > al@)Bu)x(f(z.y),

€l y€lfy
X =) la@)? V=) B
z€Fy y€ly
and
B =
max |5(y)]
we have
S| < (X (2nY ¢*? + 5B%nmg?)) /2. (6.3)
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We remark that it is easy to see that the condition (6.2) is also necessary.
Indeed, if this condition does not hold then there exist functions a(x), 3(x)
so that S is large.

Proof of Theorem 5. By Cauchy’s inequality we have

2

1] = D" al@) > Bw)x(f(z,y))

< (Z a(m)Q) (Z > Bw)x(f(x,y)) )

=X (Z > ﬁ(yl)ﬁ(ya)x(f(x,yl))x(f(fv,yz)))

z€F, y1€F, y2€F,
= XS (6.4)

where using representation (6.1) of f(z,y)

S'= > Bu)Bly) Y x(F(z,y)f* (@)

=D > BB D x (FU=)G ()G (y2) H(w, y1) HY (w, 1))
= Z Z ﬁ(yl)@x (G(yl)Gd_l(Zb)) Z X(H(«’fa?/l)Hd_l(xayz))
y1€F, y2€F, F:?%F;O
(6.5)
whence

1<) Y 1Bw)Bw)| | D x(H(z,y)H  (z,52))|.  (6.6)

y1€F, y2€F, T€F,
F(x)#0

Now we introduce the following notations: write

Y= {(ylay2) SIS Fq’ Y2 € Fq}ﬂ
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let Y, denote the set of the elements y, € F, such that H(x,yp) is of form
H(z,yo) = ch®(z) with c € F,, h(z) € F,[z]:

Y={y €F,: Fcel,, h(z) € F,[z] such that H(z,y,) = chd(a:)},

and let Yo denote the set of the pairs (y1,y2) € Y such that y; & Y1, yo & Y1,

and H(z,y;) and H(z,y,) have a common zero or, equivalently,
deg(H(xayl),H(xayQ)) >0 (67)

(note that it follows from y; & Y1, yo & Y1) that H(z,y;) and H(z,y,) are

not identically constant). If

(Y1,92) €Y, 1 €Y1, v2 € Y1, (y1,92) & Yo, (6.8)

then clearly H(z,vy;)H% ' (z,y2) is not of the form ch?(z) with ¢ € F,, h(z) €
F,[z]. Thus we may use Weil’s theorem to estimate the innermost sum in

(6.6):

Lemma 3 Suppose x is a multiplicative character of order d > 1 over F,.
Suppose f(x) € F,lx] has s distinct zeros over the algebraic closure of F,,
and it is not the constant multiple of the d-th power of a polynomial over F,.

Then

D x(f@)] < (s —1)g"2

z€R,

Proof of Lemma 3. This is Weil’s theorem [11] (see also [8, p. 43]).
We will prove that

> x(H(z,y)H* M(x,1))| < 2ng'/” (6.9)
T€R,
F(z)#0

for every pair (yi,y,) satisfying (6.8). Indeed, if n > ¢'/2/2, then (6.9)

trivially holds. For n < ¢'/2/2 we will use the triangle-inequality and Lemma

17



3. Since now both H(z,y;) and H(z,ys) have at most n distinct zeros, thus

we have
> X(H(z,y) H N2, p2))| < D0 x(H(z, y) H (2, 0)) | + 1
z€F, z€F, F(z)=0
F(z)#£0

< (2n —1)¢"% +n < 2ng'/2.

Thus the contribution of the pairs (y1, yo) satisfying (6.8) to the sum (6.6) is

Si= > 1BuBWI| D x(H(z,y)H" (2,92))

(y1,92)€Y\ Y2 z€ly
y1,y2€91 F(z)#0
< Z ?J2 ‘277/(]
(y1,y2)€Y

< 2nq1/2 Z Z \5 Y1 ‘ + [B(y2)] )

y1€F, y2 EFq

= 2nY ¢*/2. (6.10)
If a pair (y1,y2) € Y does not satisfy (6.8) then we use the trivial estimate
BBl | Y X(H(z, 1) H* ™ (z,32))| < Bq

T€R,
F(z)#0

and the number of these pairs is

< Hwi, 1) €Y yr €Y+ Hw, v2) €Y y2 € Ui} + (w1, 42) € Yo
=2q Y] + Y2

so that the total contribution of these pairs to the sum (6.6) is
Sy < (29 [%] + [Yo|) B?q. (6.11)
It remains to estimate |Y;| and |Ys|.
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Lemma 4 Using the notations above, we have
91| < nm+m. (6.12)

Proof of Lemma 4. Write H(z,y) in form

H(z,y) = pn(y)z" + -+ p1(y)z + po(y) (6.13)

(with p;(y) € F,[y] for i =0,1,...,n), and define Y3, Y4 by

Ys={y: yeY, paly) =0}
and
Y={y: yeY, pu(y) #0}

so that
1| = [9s] + |4l (6.14)

The degree of p,(y) is at most m thus clearly we have

Y5 < m. (6.15)
If
Yo € Ya (6.16)
then H(x,vo) is of the form
H(z,y0) = ch’(z). (6.17)

If the coefficient of the highest degree term of h(z) is C, then (6.17) can be
rewritten as
H(z,10) = coC*hi(z)

where ¢yC¢ € F,, ho(z) € F,[z], and the coefficient of the highest degree
term of ho(x) is 1. Thus if y1, ye, ..., yr denote the distinct elements of Yy,

then for s = 1,2,...,T the polynomial H(x,y;) can be written in form
H(z,y;) = ¢;hd(x) with ¢; € F,, hi(x) € F,[a], (6.18)
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where the coefficient of the highest degree term of h;(x) is 1. Then substi-
tuting y = y; in (6.13) and comparing the equation obtained with (6.18), we
get that

¢i = pa(Yi),
so that (6.18) can be rewritten as
H(z,y:) = pa(yo)hi(2), pu(yi) € By, hi(z) € Fyla]. (6.19)
Denote the coefficients of the polynomial h;(z) by a,(3),...,a1(i), ao(i) :
hi(z) = a, ()" + a1 (D)™ + - 4 a1 (i)x + ag () (6.20)

so that

a-(i) =1, a,_;(i) € Fy (for j=1,...,r) and r = (6.21)

a3

Now we will prove

Lemma 5 For every1 <i <T and for j =0,1,...,r the coefficient a,_;(7)

s of form )
(7 — qr—j\Yi
w10 = at)y
where g,—;(y) € F,ly] and deg ¢,—;(y) < jm.

Proof of Lemma 5. We will prove the lemma by induction on j. For 7 =0
the assertion of the lemma holds by (6.21).

Assume now that the assertion of the lemma holds for 0,1,...,7 — 1 in
place of j(> 1), and we will prove that it also holds for j.

The coefficient of ™7 in p,(y;)h¢(z) is

: d! . Ny
Pn(9:) | dar—;(2) + > -1 ()" o (1) ).
tol...tj_1!
0<to,...stj—1
tot-+tj_1=d
t14+2ta+--+(j—1)tj—1=]
Applying the assumption of the induction on a,_(7),...,a,—j_1)(7), we ob-

tain that the coefficient of "7 is of form
. S\Yi
Pu(%3) (dar_]-(z) n L)
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where the degree of the polynomial s(y) € F,[y] is < jm. On the other hand,
by (6.13) and (6.19) this coefficient is the same as the coefficient of "7 in
H(z,y;), i.e., pn—j(y;). Thus we have
: s(ys)
pn—j(yi) = pn(yz) (dar—j(z) + 7)
(Pn(y2))’

whence
i) = PamaWPa )~ — 5(u)
o d(pn(y:))!

which completes the proof of Lemma 5. (Here we have used (d, p) = 1 which

follows from d | ¢ — 1 =p" —1.)
By (6.20) and Lemma 5, for 1 < i < T the polynomial h;(x) is of form
hi(z) = 2" + qT—l(yi)xr—l + q”'—Q(yi)x'r‘—Q q0(ys) def h(z, ;)

(i) w2 T T Galw))
(6.22)

where the degree of the polynomial ¢, ;(y;) € Fy[y] is < jm. It follows from
(6.19) and (6.22) that

H(z,y;) = pa(y:) h(z, y:). (6.23)

By using (6.22), we may deduce that the coefficient of z"~* on the right hand

side of (6.23) is of form
Tn—k(Yi)
(Pn(:))*

where the degree of the polynomial r,_x(y) € F,[y] is < mk. This must
be equal to the coefficient of 2" * on the left hand side of (6.23) which is
Pn—k(yi) by (6.13) so that for every 1 < k < n we have

N Tn—k(yi)
Pelb:) = (Pn(yi))F L

whence

Pk (i) 0n(¥:)* ™" = rn_r(y:) = 0. (6.24)

Now we will prove:
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Lemma 6 There is a k with 1 < k <n so that

Pk (W) (Pa(¥)) " = Ta-i(y) (6.25)
18 not the identically zero polynomaial.

Proof of Lemma 6. We will prove by contradiction: assume that

k-1

Pr—k () (Pn(y))" ™ — rn_k(y) = 0 for every 1 < k < n.

Then it follows from the computation above that (6.23) holds with y in place
of y;:
H(z,y) = pa(y)h*(z, ) (6.26)

where h(z,y) is the rational function defined in (6.22) so that it is of form

h(xay)::

with k(z,y) € F,[z,y]. Ordering k(z,y) according to the powers of = and
factoring out the greatest common divisor a(y) of the coefficients (which are
polynomials in y), we obtain that k(z,y) can be written in form k(z,y) =
a(y)l(z,y) where {(z,y) € F,[z,y] is primitive in z. Then (6.26) can be

rewritten as

a(y)¢(z, y) ) ‘

Hz,y) =) ( (0a ()

whence

(a ()" H (2, y) = (a(y))"(U(z, y))". (6.27)

By our assumption H(x,y) is primitive in x, and by the definition of £(x, y)
and Lemma 2, (¢(z,y))? is primitive in z. It follows that ordering these poly-
nomials according to the powers of x and considering the greatest common
divisor of the coefficients which are polynomials in y, these greatest common

rd—1

divisors are (p,(y)) resp. (a(y))?, and they must be equal apart from a

constant factor:
c(pn()"™" = (a(y))™. (6.28)
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It follows from (6.27) and (6.28) that

H(z,y) = c((z,y))"

which contradicts our assumption on H(z,y) in the theorem, and this com-
pletes the proof of Lemma 6.
Now consider a k with 1 < k < n for which the polynomial (6.25) is not

identically zero. Then clearly, the degree of this polynomial is

< max{(deg pn_x(y) + (k — 1)deg pa(y)), deg rn_(y)} < max{km,mk}

< mn.

By (6.24), each of the distinct elements yy,...,yr € F, is a zero of this

polynomial, thus their number is at most the degree of the polynomial, :
94| =T < mn. (6.29)

(6.12) follows from (6.14), (6.15) and (6.29) and this completes the proof of

Lemma 4.

Lemma 7 Using the notations above, we have
2] < gnm.

Proof. y; in (6.7) can be chosen in at most ¢ ways. If y; is fixed and
(6.7) holds for some ys, then the polynomials H(z,y;) and H(z,ys) have a
common zero £ = «. As we have seen H(z,y;) is not identically zero, and its
degree is at most the degree of H(z,y) in z, i.e., it is < n. Thus the zero «
can be chosen in at most degH (z,y;) < n ways. If y; and « have been fixed,
then y, must be a zero of the polynomial H(«,y). If H(a,y) is identically 0
then z — o | H(z,y) — H(o,y) = H(z,y) which contradicts the primitivity
of H(z,y) in y. Thus H(a,y) is not identically 0, its degree is at most the

degree of H(z,y) in y, i.e., it is < m, so its zero y, can be chosen in at most

23



m ways. We may conclude that (y;,y2) in Yo can be chosen in gnm ways
which completes the proof of the lemma.
Now we can complete the proof of Theorem 5. By (6.4), (6.6), (6.10),

(6.11), Lemma 4 and Lemma 7 we have

ISP < XS = X(S1 + S2) < X (2nY % + (2¢ [%1] + [Y2]) B%q)
< X (2nY ¢** + (2g(nm + m) + gnm) B%q)
<X (2an3/2 + 5B2nmq2)

which completes the proof of Theorem 5.
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