On the correlation of binary sequences

Katalin Gyarmati*

Abstract

C. Mauduit conjectured that $C_{2}\left(E_{N}\right) C_{3}\left(E_{N}\right) \gg N^{c}$ always holds with some constant $1 / 2<c \leq 1$. This will be proved for $c=2 / 3$, more exactly if for a sequence $E_{N} \subseteq\{-1 .+1\}^{N}$ we have $C_{2}\left(E_{N}\right) \ll N^{2 / 3}$ then $C_{3}\left(E_{N}\right) \gg N^{1 / 2}$. Indeed, a more general theorem is proved, involving correlation measures.

Mathematics Subject Classification 2000 (MSC2000): 11K45. Keywords and phrases: pseudorandom, correlation measure.

1 Introduction

In 1997 Mauduit and Sárközy [5] initiated the systematic study of finite binary sequences $E_{N}=\left(e_{1}, e_{2}, \ldots, e_{N}\right)$ with $e_{1}, e_{2}, \ldots, e_{N} \in\{+1,-1\}$. They proposed to use the following measures of pseudorandomness:

The well-distribution measure of E_{N} is defined as

$$
W\left(E_{N}\right)=\max _{a, b, t}\left|\sum_{j=0}^{t-1} e_{a+j b}\right|
$$

[^0]where the maximum is taken over all $a, b, t \in \mathbb{N}$ with $1 \leq a \leq a+(t-1) b \leq N$, while for $k \in \mathbb{N}, k \geq 2$ the correlation measure of order k of E_{N} is defined as
$$
C_{k}\left(E_{N}\right)=\max _{M, d_{1}, \ldots, d_{k}}\left|\sum_{n=1}^{M} e_{n+d_{1}} e_{n+d_{2}} \ldots e_{n+d_{k}}\right|
$$
where the maximum is taken over all $M \in \mathbb{N}$ and non-negative integers $d_{1}<d_{2}<\cdots<d_{k}$ such that $M+d_{k} \leq N$.

Since 1997 about 20 papers have been written on this subject. In the majority of these papers special sequences are constructed and/or tested for pseudorandomness, while in [1], [2], [3] and [6] the measures of pseudorandomness are studied. In particular in [1] Cassaigne, Mauduit and Sárközy compared correlations of different order. They asked the following related question:

Problem 1. For $N \rightarrow \infty$, are there sequences E_{N} such that $C_{2}\left(E_{N}\right)=$ $O(\sqrt{N})$ and $C_{3}\left(E_{N}\right)=O(1)$ simultaneously?

Recently, Mauduit [4] asked another closely related question
Problem 2. Is it true that for every $E_{N} \in\{-1,+1\}^{N}$ we have

$$
C_{2}\left(E_{N}\right) C_{3}\left(E_{N}\right) \gg N
$$

or at least

$$
\begin{equation*}
C_{2}\left(E_{N}\right) C_{3}\left(E_{N}\right) \gg N^{c} \tag{1}
\end{equation*}
$$

with some $\frac{1}{2} \leq c \leq 1$?
In this paper I will settle both Problem 1 and Problem 2 in the weaker form (1). The answers will follow from the main result of this paper:

Theorem 1 If $k, \ell \in \mathbb{N}, 2 k+1>2 \ell, N \in \mathbb{N}$ and $N>67 k^{4}+400$, then for
all $E_{n} \in\{-1,+1\}^{N}$ we have

$$
\begin{equation*}
\left(17 \sqrt{k(2 \ell+1)} C_{2 \ell}\right)^{2 k+1}+\left(17 \frac{2 k+1}{2 \ell}\right)^{\ell} N^{2 k-\ell} C_{2 k+1}^{2} \geq \frac{1}{9} N^{2 k-\ell+1} \tag{2}
\end{equation*}
$$

If follows trivially that
Corollary 1 If $k, \ell \in \mathbb{N}, \log N \geq 2 k+1>2 \ell, N \in \mathbb{N}$ and $N>67 k^{4}+400$, $E_{n} \in\{-1,+1\}^{N}$ and

$$
C_{2 \ell}\left(E_{N}\right)<\frac{1}{20 \sqrt{k(2 \ell+1)}} N^{1-\ell /(2 k+1)}
$$

then we have

$$
C_{2 k+1}>\frac{1}{8}\left(\frac{2 \ell}{17(2 k+1)}\right)^{\ell / 2} N^{1 / 2}
$$

In particular, for $\ell=1,2$ and 3 we obtain:
(i) if

$$
C_{2}\left(E_{N}\right)<\frac{N^{2 / 3}}{25 \sqrt{\log N}}
$$

then

$$
C_{3}\left(E_{N}\right), C_{5}\left(E_{N}\right), \cdots \gg \sqrt{N}
$$

(ii) if

$$
C_{4}\left(E_{N}\right)<\frac{N^{3 / 5}}{32 \sqrt{\log N}}
$$

then

$$
C_{5}\left(E_{N}\right), C_{7}\left(E_{N}\right), \cdots \gg \sqrt{N}
$$

(iii) if

$$
C_{6}\left(E_{N}\right)<\frac{N^{4 / 7}}{37 \sqrt{\log N}}
$$

then

$$
C_{7}\left(E_{N}\right), C_{9}\left(E_{N}\right), \cdots \gg \sqrt{N} ;
$$

where the implicit constant may depend on the order of the correlation measure.

From the first statement of Corollary 1 (which is an immediate consequence of Theorem 1), follows the parts (i), (ii) and (iii) by using the inequalities $N^{1-\ell /(2 k+1)} \geq N^{1-\ell /(2 \ell+1)}$ and $\frac{1}{\sqrt{k}} \geq \frac{1}{\sqrt{\log N / 2}}$.

Clearly, (i) in the Corollary answers the question in Problem 1. Moreover, since we have

$$
C_{k}\left(E_{N}\right) \geq 1
$$

for all $N \geq k$, thus Problem 2 also follows from (i) with $c=2 / 3$.
By Theorem 1 for $N>467$ we have

$$
\begin{equation*}
650 C_{2}^{3}+26 N C_{3}^{2}>\frac{1}{32} N^{2} \tag{3}
\end{equation*}
$$

For a "truly random sequence" $E_{N} \in\{-1,+1\}^{N}$ the left hand side of (3) is $\ll N^{3 / 2}+N^{2}$ which shows that the second term is the best possible apart from the constant factor. On the other hand I do not know whether the exponent 3 in the first term is the best possible. In other words, I have not been able to settle the following problem.

Problem 3. Does there exist a sequence $E_{N} \in\{-1,+1\}^{N}$ with $C_{2}\left(E_{N}\right)=$ $O\left(N^{2 / 3}\right), C_{3}\left(E_{N}\right)=o\left(N^{1 / 2}\right) ?$

Kohayakawa, Mauduit, Moreira and V. Rödl proved the following for the correlation measure of even order in [3]:

Theorem 2 If k and N are natural numbers with even k and $2 \leq k \leq N$, then

$$
C_{k}\left(E_{N}\right)>\sqrt{\frac{N}{3(k+1)}}
$$

for any $E_{N} \in\{-1,+1\}^{N}$.

2 Proof of Theorem 1

We may suppose that

$$
\begin{equation*}
C_{2 k+1}\left(E_{N}\right) \leq \sqrt{N} \tag{4}
\end{equation*}
$$

otherwise the theorem is trivial. The crucial idea of the proof is the following identity:

Lemma 1 Let

$$
\begin{aligned}
& S_{1} \stackrel{\text { def }}{=} \sum_{1 \leq d_{1}<\cdots<d_{2 \ell-1} \leq N-(2 k+1)} \sum_{\substack{1 \leq n_{1}<\cdots<n_{2 k+1} \\
\leq N-d_{2 \ell-1}}} e_{n_{1}} e_{n_{1}+d_{1}} \ldots e_{n_{1}+d_{2 \ell-1}} e_{n_{2}} \ldots e_{n_{2}+d_{2 \ell-1}} e_{n_{2 k+1}} e_{n_{2 k+1}+d_{1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}} \\
& S_{2} \stackrel{d e f}{=} \sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} \\
& \sum_{\substack{ }} e_{n_{1}} e_{n_{1}+d_{1}} \ldots e_{n_{1}+d_{2 k}} e_{n_{2}} e_{n_{2}+d_{1}} \ldots e_{n_{2}+d_{2 k}} e_{n_{2 \ell}} e_{n_{2 \ell}+d_{1}} \ldots e_{n_{2 \ell}+d_{2 k}} \\
& \leq n_{1}<\cdots<n_{2 \ell} \\
& \leq N-d_{2 k}
\end{aligned}
$$

Then

$$
\begin{equation*}
S_{1}-S_{2}=0 \tag{5}
\end{equation*}
$$

We will give an upper bound for $S_{1}-S_{2}$ involving $C_{2 \ell}$ and $C_{2 k+1}$. But before this we prove Lemma 1.

Proof of Lemma 1. If a product $e_{n_{1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}}$ occurs in S_{1}, then it also occurs in S_{2} and vice-versa, because for all terms $e_{n_{1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}}$ in S_{1} we have

$$
\begin{aligned}
& e_{n_{1}} e_{n_{1}+d_{1}} \ldots e_{n_{1}+d_{2 \ell-1}} e_{n_{2}} \ldots e_{n_{2}+d_{2 \ell-1}} e_{n_{2 k+1}} e_{n_{2 k+1}+d_{1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}}= \\
& e_{n_{1}} e_{n_{2}} \ldots e_{n_{2 k+1}} e_{n_{1}+d_{1}} e_{n_{2}+d_{1}} \ldots e_{n_{2 k+1}+d_{1}} \ldots e_{n_{1}+d_{2 \ell-1}} e_{n_{2}+d_{2 \ell-1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}} .
\end{aligned}
$$

Here

$$
\begin{aligned}
n_{i+1}-n_{i} & =\left(n_{i+1}+d_{1}\right)-\left(n_{i}+d_{1}\right)=\left(n_{i+1}+d_{2}\right)-\left(n_{i}+d_{2}\right)=\ldots \\
& =\left(n_{i+1}+d_{2 \ell-1}\right)-\left(n_{i}+d_{2 \ell-1}\right)
\end{aligned}
$$

for all $1 \leq i \leq 2 k$, which proves that this product also occurs in S_{2}. Changing the role of S_{1} and S_{2} we get the inverse statement. Thus indeed $S_{1}-S_{2}=0$.

Considering $\sum_{\substack{1 \leq n_{1}<\cdots<n_{2 k+1} \\ \leq N-d_{2 \ell-1}}} e_{n_{1}} \ldots e_{n_{2 k+1}+d_{2 \ell-1}}$ in S_{1} we see that this is the sum of all possible products containing $2 k+1$ terms from the set $e_{1} e_{1+d_{1}} \ldots e_{1+d_{2 \ell-1}}$, $e_{2} e_{2+d_{1}} \ldots e_{2+d_{2 \ell-1}}, \ldots, e_{N-d_{2 \ell-1}} e_{N-d_{2 \ell-1}+d_{1}} \ldots e_{N}$. A similar situation holds in the case of S_{2}. We will use the following lemma.

Lemma 2 For all $j, M \in \mathbb{N}, j \leq M$ there is a polynomial $p_{j, M}(x) \in \mathbb{Q}[x]$ with the degree j such that if $x_{1}, x_{2}, \ldots, x_{M} \in\{-1,+1\}$ then

$$
p_{j, M}\left(x_{1}+\cdots+x_{M}\right)=\sum_{1 \leq i_{1}<i_{2} \cdots<i_{j} \leq M} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j}} .
$$

Denote the coefficients of $p_{j, M}$ by $c_{i, j, M}$:

$$
p_{j, M}(x)=c_{j, j, M} x^{j}+c_{j-1, j, M} x^{j-1}+\cdots+c_{0, j, M} .
$$

Then $c_{i, j, M}=0$ if $i \not \equiv j(\bmod 2)$, and $(-1)^{(j-i) / 2} c_{i, j, M} \geq 0$ if $i \equiv j(\bmod 2)$.
If j is even we also have:

$$
c_{0, j, M}=(-1)^{j / 2}\binom{M / 2}{j / 2} .
$$

Proof of Lemma 2. We will prove this lemma by induction on $j . p_{1, M}(x)=$ x trivially. Since $x_{i}^{2}=1, p_{2, M}(x)=\frac{1}{2} x^{2}-\frac{M}{2}$ because

$$
\begin{aligned}
\frac{1}{2}\left(x_{1}+\cdots+x_{M}\right)^{2}-\frac{M}{2} & =\frac{1}{2}\left(\left(x_{1}+\cdots+x_{M}\right)^{2}-x_{1}^{2}-\cdots-x_{M}^{2}\right) \\
& =\sum_{1 \leq i<j \leq M} x_{i} x_{j} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& c_{0,1, M}=0, c_{1,1, M}=1 \\
& c_{0,2, M}=-M / 2, c_{1,2, M}=0, c_{2,2, M}=1 / 2 . \tag{6}
\end{align*}
$$

Suppose that the polynomials $p_{1, M}, p_{2, M}, \ldots, p_{j-1, M}$ exist. From this we will prove that $p_{j, M}$ also exists.

Using again $x_{i}^{2}=1$ we get:

$$
\begin{aligned}
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq M} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j}} & =\frac{1}{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j-1} \leq M} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j-1}}\left(x_{1}+\cdots+x_{M}\right) \\
& -\frac{M-(j-2)}{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j-2} \leq M} x_{i_{1}} x_{i_{2}} \ldots x_{i_{j-2}} .
\end{aligned}
$$

Thus for $j \geq 3$ we have

$$
p_{j, M}(x)=\frac{1}{j} x p_{j-1, M}(x)-\frac{M-(j-2)}{j} p_{j-2, M}(x) .
$$

From this we obtain that the following holds for the coefficients $c_{i, j, M}$:

$$
\begin{equation*}
c_{i, j, M}=\frac{1}{j} c_{i-1, j-1, M}-\frac{M-(j-2)}{j} c_{i, j-2, M} . \tag{7}
\end{equation*}
$$

By induction on j, Lemma 2 follows immediately from this recursion. I leave the details to the reader.

By Lemma 2

$$
S_{1}-S_{2}=0
$$

is equivalent with

$$
\begin{aligned}
& \sum_{1 \leq d_{1}<\cdots<d_{2 \ell-1} \leq N-(2 k+1)} p_{2 k+1, N-d_{2 \ell-1}}\left(\sum_{n=1}^{N-d_{2 \ell-1}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 \ell-1}}\right) \\
& -\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} p_{2 \ell, N-d_{2 k}}\left(\sum_{n=1}^{N-d_{2 k}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 k}}\right)=0
\end{aligned}
$$

So:

$$
\begin{aligned}
& \sum_{1 \leq d_{1}<\cdots<d_{2 \ell-1} \leq N-(2 k+1)} p_{2 k+1, N-d_{2 \ell-1}}\left(\sum_{n=1}^{N-d_{2 \ell-1}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 \ell-1}}\right) \\
& -\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell}\left(p_{2 \ell, N-d_{2 k}}\left(\sum_{n=1}^{N-d_{2 k}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 k}}\right)-c_{0,2 \ell, N-d_{2 k}}\right) \\
& =\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} c_{0,2 \ell, N-d_{2 k}} .
\end{aligned}
$$

Using the triangle inequality we get:

$$
\begin{align*}
& \quad \sum_{1 \leq d_{1}<\cdots<d_{2 \ell-1} \leq N-(2 k+1)}\left|p_{2 k+1, N-d_{2 \ell-1}}\left(\sum_{n=1}^{N-d_{2 \ell-1}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 \ell-1}}\right)\right| \\
& +\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell}\left|p_{2 \ell, N-d_{2 k}}\left(\sum_{n=1}^{N-d_{2 k}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 k}}\right)-c_{0,2 \ell, N-d_{2 k}}\right| \\
& \geq\left|\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} c_{0,2 \ell, N-d_{2 k}}\right| . \tag{8}
\end{align*}
$$

We will give estimates for both side of (8). In order to estimate the right hand side of (8), we need upper bounds for the coefficients of the polynomials $p_{j, M}$.

Definition 1 Let

$$
\begin{aligned}
& d_{0,1}=0, d_{1,1}=1 \\
& d_{0,2}=1 / 2, d_{1,2}=0, d_{2,2}=1 / 2
\end{aligned}
$$

If $i<0$ or $j<i$ let $d_{i, j}=0$.
For $i>2$ let

$$
\begin{equation*}
d_{i, j}=\frac{1}{j}\left(d_{i-1, j-1}+d_{i, j-2}\right) . \tag{9}
\end{equation*}
$$

Lemma 3 If $j \leq M$ then

$$
\left|c_{i, j, M}\right| \leq d_{i, j} M^{(j-i) / 2}
$$

Proof of Lemma 3. We will prove the lemma by induction on j. For $j=1,2$ by (6) the assertion is trivial. If the lemma holds for $j \leq k-1$ then it also holds for $j=k$ because of triangle-inequality and (7):

$$
\begin{aligned}
\left|c_{i, k, M}\right| & \leq \frac{1}{k}\left|c_{i-1, k-1, M}\right|+\frac{M-(k-2)}{k}\left|c_{i, k-2, M}\right| \leq \frac{1}{k}\left|c_{i-1, k-1, M}\right|+\frac{M}{k}\left|c_{i, k-2, M}\right| \\
& \leq \frac{1}{k} d_{i-1, k-1} M^{(k-i) / 2}+\frac{M}{k} d_{i, k-2} M^{(k-i-2) / 2}=M^{(k-i) / 2} d_{i, k}
\end{aligned}
$$

Thus Lemma 3 is proved.
Next we give an upper bound for the polynomial $p_{j, M}$.
Lemma 4 Let $w_{j} \stackrel{\text { def }}{=} d_{0, j}+d_{1, j}+\cdots+d_{j, j}, j \leq M$
(i) If $|x| \leq y, v>0, y>\sqrt{\frac{N}{3(v+1)}}$ and $M \leq N$ then

$$
\left|p_{j, M}(x)\right| \leq(3(v+1))^{j / 2} w_{j}|y|^{j}
$$

(ii) If j is even $|x| \leq \sqrt{N}$ and $M \leq N$ then

$$
\left|p_{j, M}(x)-c_{0, j, M}\right| \leq w_{j} N^{(j-2) / 2} x^{2}
$$

Proof of Lemma 4. (i) By Lemma 3

$$
\begin{equation*}
\left|c_{i, j, M}\right| \leq d_{i, j} M^{(j-i) / 2} \leq d_{i, j} N^{(j-i) / 2} \tag{10}
\end{equation*}
$$

Using this and $|x| \leq y$ we obtain:

$$
\begin{aligned}
p_{j, M}(x) & \leq d_{j, j} y^{j}+d_{j-1, j} N^{1 / 2} y^{j-1}+d_{j-2, j} N y^{j-2}+\cdots+d_{0, j} N^{j / 2} \\
& =y^{j}\left(d_{j, j}+d_{j-1, j} \frac{N^{1 / 2}}{y}+\cdots+d_{0, j}\left(\frac{N^{1 / 2}}{y}\right)^{j}\right) .
\end{aligned}
$$

By $y>\sqrt{\frac{N}{3(v+1)}}$ we have

$$
\begin{aligned}
p_{j, M}(x) & \leq y^{j}\left(d_{j, j}+d_{j-1, j}(3(v+1))^{1 / 2}+\cdots+d_{0, j}(3(v+1))^{j / 2}\right) \\
& \leq(3(v+1))^{j / 2}\left(d_{j, j}+d_{j-1, j}+\cdots+d_{0, j}\right) y^{j}=(3(v+1))^{j / 2} w_{j} y^{j} .
\end{aligned}
$$

which proves (i).
(ii) Since j is even, by Lemma 2 we have $c_{1, j, M}=0$. Using again (10) we get

$$
\begin{aligned}
\left|p_{j, M}(x)-c_{0, j, M}\right| & \leq d_{j, j} x^{j}+d_{j-1, j} N^{1 / 2} x^{j-1}+\cdots+d_{2, j} N^{(j-2) / 2} x^{2} \\
& =x^{2}\left(d_{j, j} x^{j-2}+d_{j-1, j} N^{1 / 2} x^{j-3}+\cdots+d_{2, j} N^{(j-2) / 2}\right)
\end{aligned}
$$

Because of $x \leq N^{1 / 2}$ we have

$$
\left|p_{j, M}(x)-c_{0, j, M}\right| \leq w_{j} N^{(j-2) / 2} x^{2}
$$

This completes the proof of Lemma 4.
Using Lemma 4 we are able to estimate the right hand-side of (8). Indeed, by the definition of the correlation measure and Theorem 2 (which was proved in [3]) we have

$$
\left|\sum_{n=1}^{N-d_{2 \ell-1}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 \ell-1}}\right| \leq C_{2 \ell}\left(E_{N}\right), C_{2 \ell}\left(E_{N}\right)>\sqrt{\frac{N}{3(2 \ell+1)}}
$$

Thus by Lemma 4 (i) we have

$$
\begin{equation*}
\left|p_{2 k+1, N-d_{2 \ell-1}}\left(\sum_{n=1}^{N-d_{2 \ell-1}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 \ell-1}}\right)\right| \leq(3(2 \ell+1))^{(2 k+1) / 2} w_{2 k+1} C_{2 \ell}^{2 k+1}\left(E_{N}\right) . \tag{11}
\end{equation*}
$$

On the other hand by (4) we have

$$
\left|\sum_{n=1}^{N-d_{2 k}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 k}}\right| \leq C_{2 k+1}\left(E_{N}\right) \leq \sqrt{N} .
$$

Using Lemma 4 (ii) we get

$$
\begin{equation*}
\left|p_{2 \ell, N-d_{2 k}}\left(\sum_{n=1}^{N-d_{2 k}} e_{n} e_{n+d_{1}} \ldots e_{n+d_{2 k}}\right)-c_{0,2 \ell, N-d_{2 k}}\right| \leq w_{2 \ell} N^{\ell-1} C_{2 k+1}^{2}\left(E_{N}\right) . \tag{12}
\end{equation*}
$$

We also have

$$
\begin{align*}
\sum_{1 \leq d_{1}<\cdots<d_{2 \ell-1} \leq N-(2 k+1)} 1 & =\binom{N-(2 k+1)}{2 \ell-1} \leq \frac{N^{2 \ell-1}}{(2 \ell-1)!}, \\
\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} 1 & =\binom{N-2 \ell}{2 k} \leq \frac{N^{2 k}}{(2 k)!}, \tag{13}
\end{align*}
$$

By (8), (11), (12) and (13) we have

$$
\begin{align*}
& (3(2 \ell+1))^{(2 k+1) / 2} w_{2 k+1} \frac{N^{2 \ell-1}}{(2 \ell-1)!} C_{2 \ell}^{2 k+1}+w_{2 \ell} \frac{N^{2 k+\ell-1}}{(2 k)!} C_{2 k+1}^{2}\left(E_{N}\right) \\
& \geq\left|\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} c_{0,2 \ell, N-d_{2 k}}\right| . \tag{14}
\end{align*}
$$

The following lemma gives an upper bound for w_{j}.

Lemma 5

$$
w_{j} \leq \frac{1}{[j / 2]!} .
$$

Proof of Lemma 5. The lemma is true for $j=1,2$. We will prove that if it is true for $j \leq k-1$ then it is also true for $j=k$. By the recursion (9) we get

$$
w_{k}=\frac{1}{k}\left(w_{k-1}+w_{k-2}\right)
$$

Thus by the inductive hypothesis we have

$$
w_{k} \leq \frac{1}{k}\left(\frac{1}{[(k-1) / 2]!}+\frac{1}{[(k-2) / 2]!}\right) \leq \frac{1}{[k / 2]!}
$$

which completes the proof of Lemma 5.
Using Lemma 5, from (14) we get:

$$
\begin{align*}
& (3(2 \ell+1))^{(2 k+1) / 2} \frac{N^{2 \ell-1}}{k!(2 \ell-1)!} C_{2 \ell}^{2 k+1}+\frac{N^{2 k+\ell-1}}{\ell!(2 k)!} C_{2 k+1}^{2}\left(E_{N}\right) \\
& \geq\left|\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} c_{0,2 \ell, N-d_{2 k}}\right| \stackrel{\text { def }}{=} L . \tag{15}
\end{align*}
$$

In order to prove Theorem 1 we need a lower bound for the right hand-side of (15). By Lemma 2 we have

$$
\begin{align*}
L & =\left|\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell} c_{0,2 \ell, N-d_{2 k}}\right|=\sum_{1 \leq d_{1}<\cdots<d_{2 k} \leq N-2 \ell}\binom{\left(N-d_{2 k}\right) / 2}{\ell} \\
& =\sum_{d_{2 k}=2 k}^{N-2 \ell}\left(\begin{array}{c}
\sum_{1 \leq d_{1}<\cdots<d_{2 k-1} \leq d_{2 k}-1}
\end{array}\right)\binom{\left.N-d_{2 k}\right) / 2}{\ell} \\
& =\sum_{d_{2 k}=2 k}^{N-2 \ell}\binom{d_{2 k}-1}{2 k-1}\binom{\left(N-d_{2 k}\right) / 2}{\ell} . \tag{16}
\end{align*}
$$

We will use the following lemma
Lemma 6 If $a>2 \ell^{2}$ then

$$
\binom{a}{\ell} \geq \frac{a^{\ell}}{e \ell!}
$$

and

$$
\binom{a / 2}{\ell} \geq \frac{1}{e 2^{\ell}}\binom{a}{\ell}
$$

Proof of Lemma 6. By $a \geq \ell^{2}-1$ and $1+x \leq e^{x}$ we get:

$$
\begin{aligned}
\binom{a}{\ell} & \geq \frac{(a+1-\ell)^{\ell}}{\ell!}=\frac{a^{\ell}}{\ell!\left(1+\frac{\ell-1}{a-(\ell-1)}\right)^{\ell}} \geq \frac{a^{\ell}}{\ell!\left(1+\frac{\ell-1}{\left(\ell^{2}-1\right)-(\ell-1)}\right)^{\ell}} \\
& =\frac{a^{\ell}}{\ell!\left(1+\frac{1}{\ell}\right)^{\ell}} \geq \frac{a^{\ell}}{e \ell!} .
\end{aligned}
$$

On the other hand

$$
\begin{equation*}
\binom{a / 2}{\ell} /\binom{a}{\ell}=\frac{a(a-2) \ldots(a-2(\ell-1))}{2^{\ell} a(a-1) \ldots(a-(\ell-1))} . \tag{17}
\end{equation*}
$$

By $a \geq 2 \ell^{2} \geq \ell^{2}+\ell-2$ for $1 \leq i \leq \ell-1$ we have

$$
\begin{equation*}
\frac{a-2 i}{a-i}=2-\frac{a}{a-i} \geq 2-\frac{a}{a-(\ell-1)}=1-\frac{\ell-1}{a-(\ell-1)} \geq 1-\frac{\ell-1}{\ell^{2}-1}=\frac{1}{\left(1+\frac{1}{\ell}\right)} . \tag{18}
\end{equation*}
$$

By (17) and (18) we have

$$
\binom{a / 2}{\ell} /\binom{a}{\ell} \geq \frac{1}{2^{\ell}\left(1+\frac{1}{\ell}\right)^{\ell}} \geq \frac{1}{e 2^{\ell}}
$$

which completes the proof of Lemma 6.
Let

$$
\begin{equation*}
H \stackrel{\text { def }}{=} \frac{1}{e 2^{\ell}} \sum_{d_{2 k}=N-2 \ell^{2}+1}^{N-\ell}\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell} \tag{19}
\end{equation*}
$$

By Lemma 6 from (16) we obtain

$$
\begin{align*}
L & \geq \sum_{d_{2 k}=2 k}^{N-2 \ell^{2}}\binom{d_{2 k}-1}{2 k-1}\binom{\left(N-d_{2 k}\right) / 2}{\ell} \geq \frac{1}{e 2^{\ell}} \sum_{d_{2 k}=2 k}^{N-2 \ell^{2}}\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell} \\
& \geq \frac{1}{e 2^{\ell}} \sum_{d_{2 k}=2 k}^{N-\ell}\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell}-H \tag{20}
\end{align*}
$$

Consider how many ways we can choose from the integers $1,2, \ldots, N$ exactly $2 k+\ell$ pieces. This is trivially $\binom{N}{2 k+\ell}$. On the other hand if we fixed the value of the $2 k$-th largest integer from these $2 k+\ell$ pieces, let it be $d_{2 k}$, then the number of the possibilities is $\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell}$. Therefore

$$
\begin{equation*}
\binom{N}{2 k+\ell}=\sum_{d_{2 k}=2 k}^{N-\ell}\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell} . \tag{21}
\end{equation*}
$$

By Lemma 6 we have

$$
\begin{equation*}
\binom{N}{2 k+\ell} \geq \frac{N^{2 k+\ell}}{e(2 k+\ell)!} . \tag{22}
\end{equation*}
$$

By (20), (21) and (22) we have

$$
\begin{equation*}
L \geq \frac{N^{2 k+\ell}}{e^{2} 2^{\ell}(2 k+\ell)!}-H \tag{23}
\end{equation*}
$$

Lemma 7

$$
H=\frac{1}{e 2^{\ell}} \sum_{d_{2 k}=N-2 \ell^{2}+1}^{N-\ell}\binom{d_{2 k}-1}{2 k-1}\binom{N-d_{2 k}}{\ell} \leq \frac{N^{2 k+\frac{2}{3} \ell}}{e^{2} 2^{\ell}(2 k+\ell)!} .
$$

Proof of Lemma 7. By the Stirling-formula if $d_{2 k} \geq N-2 \ell^{2}+1$ we have:

$$
\begin{equation*}
\binom{N-d_{2 k}}{\ell} \leq\binom{ 2 \ell^{2}}{\ell}<\frac{\left(2 \ell^{2}\right)^{\ell}}{\ell!} \leq \frac{\left(2 \ell^{2}\right)^{\ell}}{\left(\frac{\ell}{e}\right)^{\ell}} \leq(2 e \ell)^{\ell} \tag{24}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\binom{d_{2 k}-1}{2 k-1} \leq \frac{N^{2 k-1}}{(2 k-1)!}=\frac{1}{(2 k+\ell)!} \frac{(2 k+\ell)!}{(2 k-1)!} N^{2 k-1} \leq \frac{(2 k+\ell)^{\ell+1}}{(2 k+\ell)!} N^{2 k-1} . \tag{25}
\end{equation*}
$$

By $\ell \leq k$ and $67 k^{3} \leq N:$

$$
\begin{aligned}
H & \leq \frac{1}{e 2^{\ell}}\left(2 \ell^{2}(2 e \ell)^{\ell} \frac{(2 k+\ell)^{\ell+1}}{(2 k+\ell)!} N^{2 k-1}\right) \leq \frac{1}{e^{2} 2^{\ell}(2 k+\ell)!}(\sqrt{6} e k)^{2 \ell+3} N^{2 k-1} \\
& \leq \frac{1}{e^{2} 2^{\ell}(2 k+\ell)!} N^{2 k+\frac{2}{3} \ell}
\end{aligned}
$$

which proves Lemma 7.
By Lemma $7,(23)$ and $N>200$ we have

$$
\begin{equation*}
L \geq \frac{N^{2 k+\ell}}{e^{2} 2^{\ell}(2 k+\ell)!}\left(1-\frac{1}{N^{\ell / 3}}\right) \geq \frac{N^{2 k+\ell}}{9 \cdot 2^{\ell}(2 k+\ell)!} . \tag{26}
\end{equation*}
$$

From (15) and (26) and $2^{\ell} \leq 2^{k} \leq(\sqrt{2})^{2 k+1}$ we have

$$
\begin{aligned}
& (3 \sqrt{2}(2 \ell+1))^{(2 k+1) / 2} \frac{(2 k+\ell)!}{k!(2 \ell-1)!} C_{2 \ell}^{2 k+1}+2^{\ell} \frac{(2 k+\ell)!}{\ell!(2 k)!} N^{2 k-\ell} C_{2 k+1}^{2}\left(E_{N}\right) \\
& \geq \frac{N^{2 k-\ell+1}}{9}
\end{aligned}
$$

Here,

$$
\begin{aligned}
& \frac{(2 k+\ell)!}{k!(2 \ell-1)!} \leq \frac{(2 k+\ell)^{2 k-2 \ell+2}}{k!} \leq \frac{(3 k)^{2 k}}{\left(\frac{k}{e}\right)^{k}} \leq\left(9 e^{2} k\right)^{(2 k+1) / 2} \\
& \frac{(2 k+\ell)!}{\ell!(2 k)!} \leq \frac{(2 k+\ell)^{\ell}}{\ell!} \leq \frac{(3 k)^{\ell}}{\left(\frac{\ell}{e}\right)^{\ell}} \leq\left(8.16 \frac{k}{\ell}\right)^{\ell}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(17 \sqrt{k(2 \ell+1)} C_{2 \ell}\right)^{2 k+1}+\left(17 \frac{2 k+1}{2 \ell}\right)^{\ell} N^{2 k-\ell} C_{2 k+1}^{2} \geq \frac{1}{9} N^{2 k-\ell+1} \tag{27}
\end{equation*}
$$

which was to be proved.

I would like to thank Professors Julien Cassaigne and András Sárközy for the valuable discussions.

References

[1] J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences VII: The measures of pseudorandomness, Acta Arith. 103 (2002), 97-118.
[2] K. Gyarmati, On a family of pseudorandom binary sequences, Periodica Math. Hungar., to appear.
[3] Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Measures of pseudorandomness for finie sequences: minimum and typical values, submitted to J. London Math. Soc.
[4] C. Mauduit, Construction of pseudorandom finite sequences, unpublished lecture notes to the conference, Information Theory and Some Friendly Neighbours- ein Wunschkonzert, Bielefeld, 2003.
[5] C. Mauduit and A. Sárközy, On finite pseudorandom sequences, I. Measures of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365-377.
[6] C. Mauduit and A. Sárközy, On the measures of pseudorandomness of binary sequences, Discrete Math., to appear

[^0]: *Research partially supported by Hungarian Scientific Research Grants OTKA T043623 and T043631.

