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Abstract

C. Mauduit conjectured that Cy(EN)C3(EN) > N€ always holds
with some constant 1/2 < ¢ < 1. This will be proved for ¢ = 2/3, more
exactly if for a sequence Exy C {—1. + 1}V we have Co(Ey) < N?/3
then C5(En) > N2 Indeed, a more general theorem is proved,

involving correlation measures.
Mathematics Subject Classification 2000 (MSC2000): 11K45.

Keywords and phrases: pseudorandom, correlation measure.

1 Introduction

In 1997 Mauduit and Sarkozy [5] initiated the systematic study of finite
binary sequences Eyx = (e1,€a,...,eyn) with ey, es,...,exy € {+1,—1}. They
proposed to use the following measures of pseudorandomness:

The well-distribution measure of Ey is defined as
t—1
Z €a+jb
§=0
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where the maximum is taken over all a,b,t € Nwith 1 <a <a+(t—1)b < N,

while for k£ € N, k > 2 the correlation measure of order k of Ey is defined as

M
Cr(EyNy) = max E €ntdy €n-tds - - - En-tdy
Midy,..od | <
n—=

where the maximum is taken over all M € N and non-negative integers
dy < dy < ---<dg such that M + d, < N.

Since 1997 about 20 papers have been written on this subject. In the
majority of these papers special sequences are constructed and/or tested for
pseudorandomness, while in [1], [2], [3] and [6] the measures of pseudoran-
domness are studied. In particular in [1] Cassaigne, Mauduit and Sarkozy
compared correlations of different order. They asked the following related
question:

Problem 1. For N — oo, are there sequences Ey such that Cy(Ey) =
O(V/'N) and Cs(Ey) = O(1) simultaneously?

Recently, Mauduit [4] asked another closely related question

Problem 2. Is it true that for every Ey € {—1,+1}" we have
CQ(EN)C;J,(EN) > N

or at least

Co(En)Cs(Ey) > N° (1)

with some § < ¢ <17
In this paper I will settle both Problem 1 and Problem 2 in the weaker

form (1). The answers will follow from the main result of this paper:

Theorem 1 Ifk ¢ €N, 2k +1>2(, N €N and N > 67k* + 400, then for



all B, € { —1,+1} we have

2k+1 2k +1\° 1
<17\/k(2€+ 1) C’gg) + (17 2; ) N*-tC2 > §N2k4+1. 2)

If follows trivially that

Corollary 1 Ifk,{ €N, logN > 2k+1>2(, N € N and N > 67k* + 400,

E,e{—1,+1}" and

1
Cor(E < Nl*[/(2k+1)
(B < o5 K20+ 1)

then we have

1 20 bz
() N
Carr1 > 5 <17(2k+ 1))

In particular, for £ = 1,2 and 3 we obtain:

(i) if
N2/3
Cy(E _—
2( N) < 25 /—logNa
then
Cy(Ey), Cs(Ey), - > VN;
(i) if
N3/5
CuFE S
(EN) < e
then
C5(EN), C7(EN), e > \/N;
(1) if
N4/7
Cs(E _—
o(EN) < 3 o
then

Cr(En), Co(Ey), - > VN;
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where the implicit constant may depend on the order of the correlation mea-

sure.

From the first statement of Corollary 1 (which is an immediate conse-

quence of Theorem 1), follows the parts (i), (ii) and (iii) by using the in-

i),
equalities N1=¢/@k+1) > N1-6/(26+1) gpq L > 1

Vk = JflogN/2'

Clearly, (i) in the Corollary answers the question in Problem 1. Moreover,

since we have

Cr(Bx) > 1

for all N > k, thus Problem 2 also follows from (i) with ¢ = 2/3.

By Theorem 1 for N > 467 we have

1
650C; +26NC3 > 3—2N2. (3)

For a “truly random sequence” Ey € {—1,+1}" the left hand side of (3) is
< N3/2 + N? which shows that the second term is the best possible apart
from the constant factor. On the other hand I do not know whether the
exponent 3 in the first term is the best possible. In other words, I have not
been able to settle the following problem.

Problem 3. Does there exist a sequence Ey € {—1, +1} with Cy(Ey) =
O(N?3), C3(Ey) = o(NY?)?

Kohayakawa, Mauduit, Moreira and V. Rédl proved the following for the

correlation measure of even order in [3]:

Theorem 2 If k and N are natural numbers with even k and 2 < k < N,

then
N

Ck(EN) > m



for any Ex € {—1,+1}.

2 Proof of Theorem 1

We may suppose that

Cori1(En) < VN (4)

otherwise the theorem is trivial. The crucial idea of the proof is the following

identity:

Lemma 1 Let
d
51 >
1<dy <-+<dop_1 <N—(2k+1)

E €n1€ni+dy - - - Cnytdop—1Eng - - - Cnotdap—1Cnopr1 Cnogrr+di - -+ Cngpyrtdae—1s
1<n; <---<nak41
<N—dge_1

S, X 3

1<d1 < <dop, N —-2¢

§ €n1€ni+dy - - - Eni+dar CngCnotdy - - - Cngtday EngeCnge+dy - - - Cngptdag s
1<n1<---<nogy
SN —dy,

Then

S, — S, =0 (5)

We will give an upper bound for S; — S5 involving C5, and Cy, 1. But

before this we prove Lemma 1.



Proof of Lemma 1. If a product e, ...en,, , +a,_, Occurs in Sy, then it
also occurs in S; and vice-versa, because for all terms ey, ... €, . +dy_, N

S we have

€n1Cni+dy - - - Cnitdop_1€na - - - Cnotdag_1Cnogyr Cnopprtdr -+ Cnopyitdog1 T
€n.€ng - - - €n2k+1en1+d1€n2+d1 Ce €n2k+1+d1 Ce €n1+d2¢,16n2+d2g,1 e €n2k+1+d%71.

Here
Nig1 — i = M1 +di) — (ni +dy) = (nip1 +do) — (ni+da) = ...
= (g1 +doe1) — (n; + dog—1)

for all 1 <+ < 2k, which proves that this product also occurs in S;. Changing
the role of S7 and S5 we get the inverse statement. Thus indeed S; — S, = 0.

Considering > €ny - - Crgpir+d_, D S1 We see that this is the
1§n1<---<n2k+1
SN—dyg—y

sum of all possible products containing 2k+1 terms from the set eje14q, - . . €144y, -
€2€24dy -+ - €24dyy 11+ -y EN—dpy_EN—dyy_1+d; - - -€N- A similar situation holds

in the case of S;. We will use the following lemma.

Lemma 2 For all j, M € N, j < M there is a polynomial p; y(x) € Qlx]

with the degree j such that if x1,xo,..., oy € {—1,+1} then

pim(z1+- -+ ay) = Z Tiy Ly « - T

1<y <idg--<i; <M

Denote the coefficients of pjar by ¢ ja:
B . -
P () = Cijm®” + ¢y jm®’ ™ 4+ Coju

Then c;jpr =0 if i £ j (mod 2), and (—1)U=9/2¢;; 3y > 0 ifi = j (mod 2).

If 7 1s even we also have:
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Proof of Lemma 2. We will prove this lemma by induction on j. py p(x) =

z trivially. Since z? = 1, po y(2) = 2% — & because
1 M 1
5(x1+~-~+ac1\4)2—7 = 5((x1+~-~+ac1\4)2—x§—~-~—:c§w)
= Z Tilyj.
1<i<j<M
Thus
coim =0, crim=1
cogm = —M/2, cron =0, caon = 1/2. (6)
Suppose that the polynomials pi ar, p2.ar, .- ., pj—1,m exist. From this we
will prove that p; »r also exists.
Using again z? = 1 we get:
1
Z TiyTiy -+ - Tiy = ; Z xilxiQ---.Tij71<.§lI1—|—~-~—|—gj‘M)

1<iy <io<---<i; <M 1<i1<io<---<ij_1<M

M=(j-2)
— j Z Ly Lig « Ty _o-

1<i <ig<-+<ij_o<M

Thus for 7 > 3 we have

1 M= (j—2)

pim(T) = 7 wpj_1,m(T) — r pi—2,m ().

From this we obtain that the following holds for the coefficients c; ; s

1 M—-(j-2)

Cig.M = 5 Cimly=10 r Cij—2,M- (7)

By induction on j, Lemma 2 follows immediately from this recursion. I leave
the details to the reader.
By Lemma 2
S1—85=0



is equivalent with

N—dg_1
E P2k+1,N—dgp_, E EnCntd; - - - Cntdop_y
1<d) <-<dpg_1 <N—(2k+1) n=1
N—day,
- E P2e,N—dyy, E €n€ntdy -« - Cntdoyy | = 0.
1<d1 <+ <dop, <N—-2¢ n=1
So:
N—dgg 1
E ka‘-l-l,N—dgg_l E 6n6n+d1 R en-i-dgg_l
1<dy < +<dgg_1 <N—(2k+1) n=1
N—day,
- E P20, N—dyy, E EnCntdy - - - Entdoy | — C0,2¢,N—dyy
1Sd1<<d2k§N72é n=1
= E €0,2¢,N—doy, -
1<d) <--<dgp <N—2¢
Using the triangle inequality we get:
N—dg_1
E P2k+1,N—dgp_, E €EnCntd; - - - Entdop_
1<di <-<dgg_1 <N—(2k+1) n=1
N—dag
+ E P2t N—doy, E EnCntdy - - - Cntdoy | — C0,20,N—doy
1<d; <--<dop, <N—-2¢ n=1

> Z C0,20,N—doy, | - (8)

1<d1 <+ <dg, KN—-2¢
We will give estimates for both side of (8). In order to estimate the right
hand side of (8), we need upper bounds for the coefficients of the polynomials

DjM-
Definition 1 Let

doys =0, dip=1

d0,2 == 1/2, d172 - 0, d272 - 1/2



Ifi<0orj<iletd;; =0.
For i > 2 let

1
divj = 3 (di—l,j—l + dm‘_g) . (9)
Lemma 3 If j < M then
|Ci,j,M| S dZJM(J*Z)/Q

Proof of Lemma 3. We will prove the lemma by induction on j. For
j =1,2 by (6) the assertion is trivial. If the lemma holds for j < k — 1 then

it also holds for j = k because of triangle-inequality and (7):

1 M — (k—2)
lcikm] < — ‘Cz‘fl,k‘fl,M| + — |Cik—2.] < \Cz Le—1m| +— \Czk 2,M
1 M .
< kdz e MO/ ?dzk o METmD/2 = NE=f2g,

Thus Lemma 3 is proved.

Next we give an upper bound for the polynomial p; ;.

Lemma 4 Let wy d:t:fdo7j*|>d17j+"'+dj7j, j S M
(1) If || gy,v>0,y>,/3(erl and M < N then

()] < (3(v+ 1)) 2wy [yl
(ii) If j is even |x| < VN and M < N then

|pjae(2) — cojnr| < ij(j*2)/2:c2.
Proof of Lemma 4. (i) By Lemma 3

lcijo| < di y,MU=D/2 < d; ;NU-D/2, (10)



Using this and |z| < y we obtain:

]%’,M(x) < dj,jyj + d'717jN1/2yj71 + dj72,jNyj*2 4+ 4 do,ij/2

‘ N1/2 N2\
=y’ <dj,j+dj1,j—y +"'+d07j< ” ) :

By y > % we have

piam(x) < o7 (djy + djr;(3(v+ D)2+ -+ doi(3(v + 1))7/?)

< B+ 1)2(djy + djmrg + -+ dog)y’ = (30 + 1)) Puy’.
which proves (i).
(ii) Since j is even, by Lemma 2 we have ¢ j 5y = 0. Using again (10) we get

pjar(z) — cojm| < dj,jxj + d-,Lle/%j*l 4t dg,jN(j’W?x?

= 1’2 (de-xj*Q + dj,17jN1/2gj‘j73 + e+ d27jN(j*2)/2)
Because of z < N'/2 we have

a1 (x) = cogn| < w; NU=D722,

This completes the proof of Lemma 4.
Using Lemma 4 we are able to estimate the right hand-side of (8). Indeed,
by the definition of the correlation measure and Theorem 2 (which was proved

in [3]) we have

N—dg_1
N
nz::l CnCnidy - - - Cntdy | < Cou(EN), Coyu(EN) > 30T 1)

Thus by Lemma 4 (i) we have

N—dgy 1
p2k+17N—d25_1 E en6n+d1 cee en-i-dgg_l

n=1

< (3(2041)) D200 C2TH(Eyy).
()
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On the other hand by (4) we have

N—day,

E €nCnitdy - - - €n+d2k

n=1

< Coyr1(En) < VN.

Using Lemma 4 (ii) we get

N—dyy,
P20, N—dyy, E EnCntdy - - - Entdyy, | — C0,2¢,N—dyy
n=1

We also have

> 1

1<d1 < <dgg_1 <N—(2k+1)

> 1

1<d1 < <dop, KN—-2¢

N - (2k+ 1)) _ N
20— 1 = (20—1)

N -2/ - N2k
ok = (2k)!

By (8), (11), (12) and (13) we have

N2271 N2k‘+271

(20— 1)

> E C0,20,N—dyy, | -

1<d1 < <dop, KN—-2¢

(3(2€ -+ 1))(2k+1)/2w2k+1 (2]{:)'

The following lemma gives an upper bound for w;.

Lemma 5

Cgfﬂ + way —022k+1(EN)

< w2éNZ7IC22k+1<EN)-

(12)

Proof of Lemma 5. The lemma is true for j = 1,2. We will prove that

if it is true for j < k — 1 then it is also true for j = k. By the recursion (9)

we get

1
Wy, = E(wk—l + wi—2)

11



Thus by the inductive hypothesis we have

LY .
T EN[(k=1)/2)0  [(k=2)/2]t) ~ [k/2]!

which completes the proof of Lemma 5.

Using Lemma 5, from (14) we get:

(3(20 + 1))(2k+1)/2LHC2k+1 + wca (Ex)
k(20 — 1)1 % 0(2k)1 RN
> Z ContN—dy| = L. (15)

1<d1 < <dop, N—-2¢

In order to prove Theorem 1 we need a lower bound for the right hand-side

of (15). By Lemma 2 we have

E C0,2¢,N—doy,

1<d1 < <dop, SN—-2¢

I —

_ 3 ((N —Z%)/Q)

1<d1 < <dop, N—-2¢
N-2¢

S 3 ] ((N—j%)/Q)

dop=2k \ 1<d1<---<dgp_1<dgp—1
B NZ” dog, — 1\ [ (N — doi) /2 (16)
n 2k — 1 / '

dop, =2k

We will use the following lemma
a a’
>
(E) el
a/2 S 1 (a _
¢ )~ e2t\t

Proof of Lemma 6. By a > (> — 1 and 1 + 2 < e we get:
Y 14 ¢
(a) > (a+1-1) _ a - a

14 4 -1\ T (—1 ¢
0(i+24) 01+ mte)

a’ a’

T S el
01+ 1) e

Lemma 6 If a > 2(? then

and

12



On the other hand
a/2 a\  afla—2)...(a—2((—-1))
(f>/(£)_2€a<a—1)...(a_<g_1))- (17)

Bya>202>0*4+/¢—2for1<i</{—1we have

a—2i_2_ a S 9 a 1 (-1 _f—l_ 1
a—i  a—i  a—({-1) ~ a—-(-1)" 52—1_(14-%)'
(18)

By (17) and (18) we have

GIDEE

which completes the proof of Lemma 6.

N—¢
def 1 dop, — 1\ [N — doy,
"=y 2 (%—1)( i ) (19)

dop=N—20241

Let

By Lemma 6 from (16) we obtain

L>Nf2 do — 1\ (N — do) /2 >LNZ%2 do — 1\ (N — doy
- 2k —1 14 — e2t 2k —1 /¢

o =2k o =2k
N—¢
1 dop, — 1\ [N — do
> — — H. 20
— e2t Z (Qk; — 1) < l (20)
dop =2k
Consider how many ways we can choose from the integers 1,2,..., N

exactly 2k + ¢ pieces. This is trivially ( ) On the other hand if we fixed

N
2k+£
the value of the 2k-th largest integer from these 2k + ¢ pieces, let it be dgy,

then the number of the possibilities is (Cg?]f__ll) (N_Kd%). Therefore

(Qk]\i e) = diz; (iz;j__ 11) <N ;d%). (21)

By Lemma 6 we have

N N2k+£
> 22
<2k+€) = e(2k +0)! (22)
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By (20), (21) and (22) we have

N2k+é
> 23
= e220(2k + 1)) (23)
Lemma 7
gL NZ" dow = 1Y (N = da _ _ N*+5
e2! 2k — 1 4 ~ e220(2k + )

dop=N—20241

Proof of Lemma 7. By the Stirling-formula if dy,, > N — 2% + 1 we have:

N — dy, 202 (204t (20?)* '
< < < < (2el)". 24
( 0 )_(6) 0 —(z)é—(e) (24)
On the other hand
dop =1\ _ N0 1 @k O ey B0
2k—1/) = 2k—=1)!  (2k+0)!(2k—1)! - (2k+0)!
(25)
By ¢ <k and 67k < N:
1 (2k + )1 _ 1 2643 _
H< — [202(2el)' 2 N*1 ) < —— k N2
— e2t < (2¢f) (2k +0)! ~ €222k + 1)) <\/§ )
1 2
< N2k‘+—f
=ik ol
which proves Lemma 7.
By Lemma 7, (23) and N > 200 we have
N2k+ 1 N2k
>—[1-— > . 2
= 902k 4 0) ( Nm) = 5 22k 1 0 (26)

From (15) and (26) and 2¢ < 2% < (v/2)%*! we have

otz CE+ 0V opin | 00 QE+O! or 4 o
(3v2(20+ 1)) R T2 e N Ok (Bx)
2k—L+1
N
-9
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Here,

2k+0)! _ (2k + £)2k—2t+2 - (3k)%
k(20 —1)! — k! Tk K

(2k +0)! _ (2k +0)* E\*
0(2k)! ST = (4)° = (8'167) '

(2k+1)/2

< (9¢°k)

Thus

2k+1 2k + 1 ¢ 1
(17\/k(2€+1) C’gg) + (17 2; ) N2k40§k+1 > §N2k4+1’ (27)

which was to be proved.

I would like to thank Professors Julien Cassaigne and Andras Sarkozy for

the valuable discussions.
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