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1 Introduction

P. Erdds and A. Sarkozy |1] studied the following question: how large can
|A| be if A C {1,2,...,N} and a + d' is squarefree for all a € A, o' € A?
G. N. Sarkozy [7] extended the problem to the case of two different sequences
and k™ -power-free sums. He proved the following result: let k and N > Ny (k)
be positive integers, A, B C {1,2,...,N}. If | A||B| > ¢(k)N* %, then there

exists a prime p such that p* < v/N and p* | a + b for some a € A, b € B.
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He also gave a lower bound: there exist sequences A, B C {1,2,..., N} such

that p* { a + b for every prime p, a € A, b € B, and

(k—1)N(log N)* 1
65¢t(3k)EL

|A[[B] >

(See [2], [3] and [4] for other somewhat related results.)
A. Sarkozy (6] asked the multiplicative analog of the problem: how large
set A can be selected from {1,2,... N} so that aa’ + 1 is squarefree for all

a € A,d € A7 In this paper we will prove the following:

Theorem 1 If A, B C {1,2,...,N} and ab + 1 is squarefree for all a € A,
b € B then we have:

|A| |B| < N2 (log N)2.

The proof will use the large sieve. Next we will give a lower bound in the

case |A| = |B].
Theorem 2 a) There exist sequences A, B C {1,2,..., N} such that
Al = [B| > (log N)*

and a+b is squarefree for all a € A, b € B.

b) There exist sequences A, B C {1,2,...,N} such that
|A| = |B| > (log N)*
and ab-+1 is squarefree for alla € A, b € B.

In the special case A = B we will prove



Theorem 3 a) There exists a sequence A C {1,2,..., N} such that
|A| > log N

and a + d' is squarefree for all a € A, d' € A.

b) There exists a sequence A C {1,2,..., N} such that
|A| > log N
and ad' + 1 is squarefree for alla € A, d' € A.

Theorem 3a) is not new and, indeed, it is due to P. Erdés and A. Sarkozy
[1]. We will give another proof for this fact. The interesting feature of these
theorems is that the proofs are based on graph theory.

Throughout the paper the following notations will be used: A(n) is the
Mangoldt function, 7(z) is the number of prime numbers not exceeding z,
7(x) is the number of positive divisors of z, and K, is the complete bipartite

graph with vertex sets of cardinality r.

2 Proofs

Proof of Theorem 1

Let us assume that for a positive integer m there are f(m) residue classes
mod m which contain no element of A and there are g(m) residue classes mod
m which contain no element of B. Denote by p(m) the number of residue
classes mod m which contain an element of A. We shall need the following

lemma:



Lemma 1 There exists at most one prime p such that {*/g <p< /N and

log| A|—log 2

p(p?) < p¢ where ¢ = 2 g N

Proof of Lemma 1
Assume that there exist two primes: p;, pe, which satisfy the condition
of Lemma 1. It follows from the Chinese Remainder Theorem that there are

at most p(p?)p(p3) residue classes mod p?p3 which contain an element of A.
Using this and / % < p < VN we get:
2 2 N 2 2 c <
A< p(p)p(p2) | 725 | < 2000)p(p2) < 2(p1p)” < 2N = |A].
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But this is a contradiction.

To prove Theorem 1 we may assume that |A| > 2v/N(log N)? and |B| >
2v/N(log N)? because otherwise the theorem is trivial. Let ¢; > 0 be a
constant, we will specify its value later. Let N > et +1. If </§ <p<+v/N
then we have:

Jlog| A —log2 21°g (\/N(logN)2) _ 4 Hoglog N
log N - log N B logN —

> 14 log ¢; S log(pcl)‘

- — lo
log {‘/g &P

Using Lemma 1 we get that there is at most one prime p4, such that
v/ 5 <pa < VN and p(p?) < cipa. Therefore if {‘/g < p < +/N is a prime

and p # p4 then we have f(p?) < p? — ¢;p. We can prove similarly: there is

at most one prime pg, such that if {*/g < p < VN is a prime and p # pg

then we have g(p®) < p* — c1p.



f(®*) + g(p?) > p? — p for all primes p because if z is a residue class mod
p? which contains an element of A and (z,p?) = 1 then the residue class z*
where zz* = —1 mod p? contains no element of B. Therefore p(p?)—p < g(p?)
so p* — f(p*) —p < g(p?).

G. N. Sarkozy [7] (see especially formula (3) on p. 274) proved the follow-
ing variant of the large sieve: if A,BC {1,2,...,N}, M C {1,2,...,[VN]}

such that the elements of M are pairwise coprime, then we have

A< e 1Bl <
m%:./\/[ m—f(m) m;M m—g(m)
Multiplying these equations:
4N*?
|A[1B| < : (1)
D f(m) 3 g(m)
icig I m) Lo m—g(m)

Let M = {p*: /5 <p < VN, pprime, p# p4 and p # ps}.
In order to estimate the denominator of the right hand side of inequality

(1) we shall need two lemmas.

Lemma 2 If f,g > 1 and f + g > p*> — p then
1 1 2
. 9 . > (P ).
P-f p+1)\p*—9g p+1 p+1

Lemma 3 If0< f,g < p? — c1p then

Proof of Lemma 2



Let a = '~ and b = {.So:é’%:f,ﬁ:g.Byf—i-gZpQ—pwe

p’—f p’—g b+1
have
a—LIL—1+b—?-1 zppl'
From this:
sab+a+b>L"Lab+atbt1),

which is equivalent to

This completes the proof of the lemma.

Proof of Lemma 3

f 9 =-2+p’ Ly b yc2
P—f p’—g P

Thus the lemma is proved.

Now we are ready to complete the proof of Theorem 1. The denominator

of the right hand side of inequality (1) is:

def f(m) gm) f(*) 1\ _
S= 2. m — f(m) 2 m— g(m) ( : M<p2—f(p2)+p+1)

meM meM ple

e 9(p°) ! >_ L>_
p%APJrl)(p;A(pz—g(p?)erH pgpﬂ B
B (%) 1 ) ( 9(p*) 1 )_
_pgezM 7)1 o \PP=g(@?)  p+1




Then for N > N, we have:

E— 1 .
Fou Pt VT /N o/N log VN

p prime

Using the Cauchy-Schwarz inequality and Lemma 2 we have:

2 (p2 {(1}2()192) " ler 1) 2 <p2 g—(lj()p?) N ler 1>

p2eM pZeM

v

> S VG ot) (50 o)

p2eM

3/ ¥ <p< VT,

DF#PA;PB, P prime

By Lemma 3:
YN
) ) 2 1 1 log\/ﬁ

Z ( gf(p)z + 29(p)2)§ “p= +o(1) / 2z logxdr =
Sou \PP =[P —9(?)) T e a
P
log{/g

It follows that

1 oy 1 VN
S>{[1={/=)] == [1-4/2] +0(1) | ————.
( 2) cl( 2) <log{4/ﬁ)

2(1v/3) JE
Now we fix the value of ¢; so that ¢; > (1_4 %)2. Then S > (o2 \“/ﬁ)2'

Therefore |A| |B| < N2 (log N)?. This completes the proof.



Let p; denote the i-th prime number. Let N be a large positive integer,

define the positive integer K by
K-1 K
1
[[ri<Ns <]]ps (2)
i=1 i=1

K
and put P = [] p;. Then by the prime number theorem we have
i=1

K
log P = Zlogpz- ~ Z A(n) ~ px (3)
=1

n<pr

so that, in view of (2), for large N

=
=

Ne < P < Ns.

(4)

Let f(a,b) be a+ b in case a) and ab + 1 in case b) in the proof of Theorem

2 and Theorem 3.
Proof of Theorem 2

Lemma 4 Assume that the simple graph G with n vertices and m edges

contains no K, .. Then:

om < /r—1-n>" + (r—1)n.

Proof of Lemma 4
See |5, ch.10, problem 37].

We will need the following consequence of the lemma:

Lemma 5 There exists an ng such that if n > ng and G is a graph with n

. . ")—m 2
vertices and m edges and r < min {2m (2) nlogn 3l079"}, then G

w7 a((5)-m)

contains a K, ,.



Proof of Lemma 5

Assume that the statement is not true. By Lemma 4 we have:
om < /r—1-n% + (r — 1)n.
Using 7 < 22 we obtain:

2m —(r —Dn)" < (r—1)n* "

From thisand r —1 < \/(2)_m”217°g”) gné, rn < (Z) —mand1+z <e*

no7((G)m

we get:

nt <

it
<
]S
—
N
/N
[N}
3
|
’?3{0
|
=
3
N——
-
Il
/N
—_
_I_
3
o
I N
—~
N | —~
~[z
—~
w§|
N—r
1S
3+
BE
<
3
N——
S

Therefore:
n’logn  3logn

n <r,
(G -m) 7
which is a contradiction.

In order to prove Theorem 2 we consider the graph G whose vertices are
1,2P+1,4P+1,..., [25] 2P+ 1. Let the edge e join the vertices = and y if
and only if f(z,y) is squarefree. If 7,y € {1,2P+1,4P+1,..., [2=!] 2P+1},
then assign the value f(z,y) to the pair (z,y).

By the definition of P, there is no pair (z,y) whose value is divisible by
a prime square ¢*> < p%. The number of pairs whose value is divisible by a

prime square g% > p% is

[%55] [ (%] /v N-172 | [N-1
Z 1< Z ([2{1—1;} +1> _ [W] +[W]+[1\£P1]+1_

1=0
¢?|f(2Pk+1,2Pl+1)



Since x +y < 2N in case a) there is no pair (z,y) whose value has a

N2

divisor greater than ;.

In case b) at most (m(N) — (%)) P* < P2N numbers zy + 1 exist
which have a prime square divisor exceeding ]IX—;. By Wigert’s theorem [9]
if N is large enough and zy + 1 is given then x can take at most 7(zy) <

2 2
. 1
max 7(m) < Niesles¥ numbers. Therefore in case b) at most P2N'" ioglog &
m<N
< -

pairs (z,y) exist whose value is divisible by a prime square greater than ;.

2
By (4) we have P2N'" il < %.

Thus by (3), (4) and (5) the number of pairs (z,y) whose value is not
squarefree is less than

v B, [N =1]) £
— 3 < 2P
P210gN+ Z ( q? * [ 2P ] - leogN+ Z q(q—1)+

Pr4154a< %
q prime

N-1] (N G vl MG
+3[ 2P }W(F> <<P210gN+pK+1_1<<10g[%]'

From this we get that the graph G has n = [%} + 1 vertices and

2 .
m > (g) — Clgﬂ edges where c is a constant. Now we remove some edges

until the graph G has exactly [(’2‘) - c%] + 1 edges. Using Lemma 5 we
get that G contains K, for r = [%]. Finally we choose A and B as the

two vertex sets of K ,, which completes the proof of Theorem 2.
Proof of Theorem 3
We consider the graph G whose vertices are
N -1

{QZP +1: f(2lP +1,2IP 4 1) is squarefree, 1 <[ < [7] } .
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The edges are the same as in the proof of Theorem 2. It is easy to see

that in case a) the number of vertices of the graph G is n > [ZZ]. In

order to see that the same also holds in case b) we will study how many
numbers [ exist where (2IP + 1) + 1 is not squarefree. We distinguish two
cases depending on whether (2/P +1)%+1 has a prime square divisor greater

than (%)2 or not.

Let p be a prime. If p* < p% there is no integer 1 < I < [2=] such

that p® | (21P +1)> + 1. If pj < p” there are at most T,z + 2 integers

1 <1< [H5!] where p? | (2lP +1)? + 1. From this we get that at most

N, N-1 N-1 N-1 _ N 2N _N
6P ' piP ' pi, P p%.,P " 6P PlogP 5P

integers 1 < | < [2=!] exist such that (2/P + 1) + 1 has a prime square

divisor not greater than (%)2. In the other case when (2P +1)?2+1 has a

N

2
T P) we have

prime square divisor p? > (
(2lP+1)>+1=p’D

for some D < (Ql(P ;1))2;1 < (N;J’)IQ < 150P2. For a fixed D the number of
28 28

solutions of the Pell equation a? — p?’D = —1ina € {1,2,...,N}, p € Nis

log N

log2 - Therefore the number of solutions of

less than

(2lP +1)*> = p’D = —1

in 2lP+1¢€{1,2,...,N}, D € {1,2,...150P?} is less than 15()1321;;%;2V <

500P%log N. So there are at most 5% + 500P?log N < % [%] integers

1 <1< [231] such that (20P +1)? + 1 is not squarefree. From this we get

that the number of vertices of the graph G is n > [%]

11



By the proof of Theorem 2 we get that the number of edges of the graph

2

Gism> (}) — Cogn Where ¢ is a constant. By using Turdn’s theorem [8] in

place of Lemma 4 we obtain the statement of Theorem 3.

I am grateful to Professor Andras Sarkozy for the useful comments and

suggestions.
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