On a fast version of a pseudorandom

generator
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Abstract

In an earlier paper I constructed a large family of pseu-
dorandom sequences by using the discrete logarithm. While
the sequences in this construction have strong pseudorandom
properties, they can be generated very slowly since no fast al-
gorithm is known to compute ind n. The purpose of this paper
is to modify this family slightly so that the members of the new
family can be generated much faster, and they have almost as
good pseudorandom properties as the sequences in the original

family.

1 Introduction

In this work T will continue the work initiated in [5]. C. Mauduit

and A. Sarkozy [9, pp. 367-370] introduced the following measures of
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pseudorandomness:
For a finite binary sequence Ey = {ej,es,...,exy} € {—1,+1}V
write

U(En,t,a,b) Zeaﬂb

and, for D = (dy, ..., d;) with non-negative integers d; < --- < d,

V(EN, M, D) = Z €n+d1€n+d2, Ce €n+dk-

Then the well-distribution measure of Ey is defined as

-1

E €a+jb

7=0

9

W(Ey) = mIE}X|U(EN(t a,b)| = max

where the maximum is taken over all a,b,t such that a,b,t € N and
1<a<a+ (t—1)b< N. The correlation measure of order k of Ey

is defined as

M
Cr(EyN) ::5%%§|x/(ﬁzv,A4;1))|:: ma }E;en+dlen+d2,...en+dk ,
where the maximum is taken over all D = (dy,ds, ..., d;) and M such

that M + d, < N. In [6] I introduced a further measure: Let

[(6—a)/2)—1
H<EN7G’7 b) = Z €a+j€b,j,

J=0

and then the symmetry measure of Ey is defined as

[(b—a)/2]-1
S(E) = 1§T<%§N [H(Ex, a,b)| = 15%};1\7 Zo Catj®—j -
]:

A sequence Ey is considered as a “good” pseudorandom sequence

if each of these measures W(Ey), Cr(Ey) (at least for small k) and
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S(Ey) is “small” in terms of N (in particular all are o(N) as N —
o0). Indeed, it was proved in [3, Theorem 1, 2| and in [6, Theorem 1,
2| that for a truly random sequence Ex C {—1,+1}" each of these
measures is < /Nlog N and > v/N.

Throughout the paper we will use the following notations: | = ||
is the distance of x from the closest integer, e(a) = e>™ F, is the
algebraic closured of the field F,. Finally, if p is a prime, o and m are
natural numbers we say that p® || m if p® | m but p*™! { m.

Numerous binary sequences have been tested for pseudorandom-
ness by J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkozy.
The sequences with the strongest pseudorandom properties have been
constructed in [4], [5], [9], [11] and [13]. As concerning the strength of
the pseudorandom properties these constructions are nearly equally
good. But in the construction given by A. Sarkézy in [13] and ex-
tended by me in [5], the generation of the sequences in question is
much more slowly than in the other constructions. Indeed Sarkozy’s
construction is the following:

Let p be an odd prime, N = p—1 and define Ey = {e1,...,en} C

{=1,+1}" by

+1 if 1 <indn < B2,
En = (1)
-1 ifp—;rlgindngp—l.

Here ind n denotes the index or discrete logarithm of n modulo p,

defined as the unique integer with

g""=n (mod p), (2)



and 1 <ind n < p—1, where ¢ is a fixed primitive root modulo p. In
[5] T extended this construction to a large family of binary sequences
with strong pseudorandom properties by replacing n by a polynomial
f(n) in (1) (in the same way as the Legendre symbol construction in
[9] was extended in [4].)

Indeed in [5] T proved for the generalized sequence:

Theorem A For all f € F,[z] with k = deg f we have
W (E,_1) < 38kp"/*(log p)?.

Moreover if one of the following conditions holds:

a) f is irreducible;

b) If f has the factorization f = o' @5* ... %, where o; € N and
the ¢;’s are irreducible over Fy,, then there exists a 3 such that

exactly one or two w;’s have the degree [3;
c) (=2;
d) (40)F <p or (4k)* < p.

Then

Co(E,_1) < 10ke4p'?(log p)*+1.

Finally, if f(x) # f(t —x) for allt € Z,, then
S(E, 1) < 88kp'/?(log p)®.

As we pointed out earlier these constructions are nearly as good

as the others, but the problem is that it is slow to compute e, since
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no fast algorithm is known to compute ind n. The Diffie-Hellman
key-exchange system utilizes the difficulty of computing ind n.
In this paper my goal is to improve on the construction in Theorem

A by replacing the sequence

+1 if 1 <ind f(n) < &,
En = (3)
—1 if 2 <ind f(n)<p—1lorp| f(n)

by a sequence which can be generated faster. T will show that this
is possible at the price of giving slightly weaker upper bounds for
the pseudorandom measures. Throughout this paper we will use the
following:

Notation Let p be an odd prime, g be a primitive root modulo p.
Define ind n by (2). Let f € F,[z] be a polynomial of degree k > 1,
and f = ch® where ¢ € F, and h € F,[z] is not a perfect power of a

polynomial over IF,[x]. Moreover let
m|p—1

with m € N, and let x be relative prime to m: (x,m) = 1.

The crucial idea of the construction is to reduce ind n modulo m:

Construction 1 Let ind*n denote the following function: For all 1 <
n<p-—1

ind n =z -ind*n  (mod m)

(ind*n exists since (x,m) = 1.) Define the sequence E, , =



{e1,...,ep—1} by

+1 if 1 <ind*f(n) < 7, @
en =
=1 if ¥ <ind"f(n) <m orp| f(n).

Note that this construction also generalizes the Legendre symbol
construction described in [4] and [9]. Indeed in the special case m =

2, = =1 the sequence e, defined in (4) becomes

o (fm) _
41 1f<p>_ 1,

-1 if (@) =1lorp]| f(n).

€n =

(In the special case m = p—1, x = 1 we obtain the original construc-
tion given in (3)).

We will show that the construction presented above has good pseu-
dorandom properties, each of the measures W(E,_1), Ci(E,—1) is
small under certain conditions on the polynomial f. In the case of

the well-distribution measure we can control the situation completely.
Theorem 1 If m/(m,d) is even we have
W(E, 1) < 36kp'/*logplog(m + 1).
While in the other case, when m/(m,d) is odd we have:
W(E,_1) = % + O(kp'/*1log plog(m + 1)).

In the case of the correlation measures the situation is slightly
more difficult. When the order of the correlation measure is odd we

have:



Theorem 2 If f € F,, k = deg f and { are odd integers while m is

an even integer, then we have
Co(Bp1) < 9ke4'p'*(log p)“+.

Otherwise we need the same conditions on the polynomial f as
in [5] in the original construction. If the degree of the polynomial is
small depending on m, the same upper bound holds as in [5], while in

the general case I will prove a slightly weaker result.

Theorem 3 i) Suppose that m is even or m is odd with 2m | p — 1,

and at least one of the following 4 conditions holds:
a) f is irreducible;

b) If f has the factorization f = ¢ p5* ... @0 where o; € N and
the ¢;’s are irreducible over Fy,, then there exists a 3 such that

exactly one or two v;’s have the degree [3;
c) (=2;
d) (40)F <p or (4k)* < p.

Then
f!ké(ZJrl)

Co(Ey-1) < 9ke4"p'*(log ) + p (5)

mt

ii) Moreover if we also have 2° || m and k = deg f < 2° then

Co(By_1) < 9ke4'p'*(log p)“+.



For fixed m by Heath-Brown’s work on Linnik’s theorem [7] the
least prime number p with m | p — 1 is less than ¢m®5. Thus the
condition deg f < 2% || m | p — 1 is not too restrictive.

If m?* > p holds, then the first term majorizes the second term
in (5), thus the upper bound becomes O (p'/*(logp)*™!) where the
implied constant factor may depend on k and /.

The study of the symmetry measure also considered in [5] would
lead to further complications and I could control it only under the
further assumption deg f < 2°+2 where 3 is defined by 27 || m. Thus,
I do not go into the details of this here.

In applications one should balance between the strength of the
upper bounds and the speed of the generation of the sequence de-
pending on our priorities. By the Pohlig-Hellman [12] algorithm we
will show in section 3 that the sequence described in (4), in particu-
lar ind * f(n), can be computed faster than the original construction.
Indeed, if the prime factors of m are smaller than logp then ind”* f(n)
can be computed by O((logp)®) bit operations.

In [2] R. Ahlswede, L.H. Khachatrian, C. Mauduit and A. Sarkozy
introduced the notion of f-complexity of families of binary sequences

as a measure of applicability of the constructions in cryptography.

Definition 1 The complexity C(F) of a family F of binary sequence
Ex € {—1,+1}" is defined as the greatest integer j so that for any

1<i; <ig<---<i; <N, and for ey, eq,...,€5, we have at least one



En ={ey,...,en} € F for which

€i; = €1, €y 2827---7€i]~ =&j.

We will see that the f-complexity of the family constructed in (4)
is high.

Theorem 4 Consider all the polynomials f € F,[x] with
0<deg f <K.

For each of these polynomials f, consider the binary sequence E,_; =
E,_1(f) defined by (4), and let F denote the family of all binary se-

quences obtained in this way. Then we have
C(F) > K.

In [10] C. Mauduit and A. Sarkozy proved an inequality involving
the pseudorandom measures W and C5. The following is a general-

ization of their inequality:
Theorem 5 For all Ey € {—1,+1}", 3(> < N we have
W (Ey) < 3(NYYC (Cyp(By)) VY

Here the constant factor 3¢ could be improved by using a more
difficult argument, I will return to this in a subsequent paper.

In section 4 we will prove Theorem 5 and using Theorems 1,2
and 3 we will show that Construction 1 provides a natural example

for that the inequality in Theorem 5 is the best possible apart from



a constant factor. Moreover, Construction 1 gives us a sequence for
which the correlation measures of small order are small while the well-

distribution measure is possibly large.

2 Proofs

2.1 Proof of Theorem 1.

First we note that the sequence defined in (4) by the polynomial
f = h? and the modulus m, remains the same sequence if we replace
in Construction 1 the polynomial f = h? by the polynomial A% (™)
and the modulus m by the modulus m/(m, d). Thus in order to prove
this theorem it is sufficient to study the case when (m,d) = 1.

The proof of the theorem is very similar to the proof of Theorem

1 in [6]. By the formula

1 . 1 ifm|ind a —ind b,
=Y V(@b =
xixm=1 0 if m¢tind a —ind b,
we obtain
2 i .
en =2 > I-1==%" > X(m)x(g"™) -1
1<j<m/2 1<j<m/2 xx"=1

jz=ind f(n) (mod m)

Thus

W= 3 Y XA +

1<5<m/2 x#xo:x"=1
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Assume now that 1 <a <a+ (t —1)b < N. Then we have

t—1 [m/2]

wEnan =[5 S (Sxvwem) (3 ve)
X#xo0:xm=1 \i=0 j=1

(v~

+ 2m

(7)

We will prove the following:

If m is even we obtain the statement of Theorem 1 immediately from

(7) and (8). If m is odd using the triangle inequality we get
t
|U(EP—17 l,a, b)| = E + O(kpl/Q(lng)z)

which completes the proof of Theorem 1. Thus in order to prove
Theorem 1, we have to verify (8).

We will use the following lemma:

Lemma 1 Suppose that p is a prime, x is a non-principal character
modulo p of order z, f € F,[x] has s distinct roots in F,, and it is not
a constant multiple of a z-th power of a polynomial over F,. Let y be

a real number with 0 <y < p. Then for any x € R:

1/2

> x(f(n)

rz<nlz+y

< 9sp*/“logp.

Poof of Lemma 1
This is a trivial consequence of Lemma 1 in [1]. Indeed, there this

result is deduced from Weil theorem, see [14].
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Consider S/ X (f(a + b)) in (7), and here, let the order of y be
z. Since ™ = 1 we have z | m. On the other hand f = ch? is not
a constant multiple of a z-th power of a polynomial over [F,, since
1 = (m,d) = (z,d) (because of z | m) and h is not a perfect power of
any polynomial over [F),.

Using Lemma 1 we have:

—_

t—

X(f(a+1ib))| < 9kp'/*logp

I
o

and thus by (8)

[m/2

9kp/? 1o -
§<=E B0 SIS

m .
x#xo:xm=1| j=1

Lemma 2
[m/2] . 9
Z Z X](gl") S Z m < 2mlog(m + 1).
x#xo:x™m=1| j=1 X#X0:x™=1

Proof of Lemma 2 This is Lemma 3 in [5] with m in place of d, m /2
in place of (p — 1)/2 and ¢* in place of g, respectively, and it can be
proved in the same way.

Using Lemma 2 we obtain
S < 18kp'/*log plog(m + 1)

which proves (8) and this completes the proof of Theorem 1.

2.2 Proof of Theorem 2 and 3

In this section we may suppose that m is even: In Theorem 2 m

cannot be odd. If m is odd in Theorem 3, then considering 2m in
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place of m and f? in place of f in Construction 1 we generate the
same sequence; however in this case we have (2m,2d) > 1.

To prove Theorems 2 and 3, consider any D = {d;,ds, ..., d,} with
non-negative integers d; < dy < --- < dy and positive integers M with
M +dy < p—1. Then arguing as in [13, p. 382] with f(n + d;) in
place of n+d;, m in place of p — 1, and ¢” in place of ¢ from (6) and
since m is even we obtain:

V(B M D) < 25 30 S S (4 d) xS do)

X17X0 XeZ£Xxo |n=1

m/2
< TT1D_xi(a™)] - (9)

=1
Now let x be a modulo p character of order m; for simplicity we
will choose x as the character uniquely defined by x(g) = e (%) where

zz* =1 (mod m). Then

)= (). (10)

m

Let x, = X% for u =1,2,...,¢, whence by x1 # X0, .-, Xe # Xo, We

may take
1 <9, <m.
Thus in (9) we have
> xa(f(ntdh)) . oxe(f(n+ de))
= Zx‘sl(f(n+d1))---X5Z(f(n+d5))|
— S (it dy) . o+ de)].




If for(n+dy)--- f%(n+dy) is not a perfect m-th power, then this sum

can be estimated by Lemma 1, whence

M
Z X(f (n+dy) - fo(n+dp))| < 9stp'* log p.
n=1

Therefore by (9) and the triangle-inequality we get:

2! Sy —
\V(Ey, M, D)| < — Z Z 9s0pt?log p H Zxéj(g &)
X1EX0  Xe#AXo =1 \[;=1
xr'=1 xgt=l
2@ Vi m/2
+ = > =TT D x(g™)
1<61,..., dp<m, 7j=1 lj:1

FO1(ndy)--- £ (n+dy) is
a perfect m-th power

=> > (11)

From Lemma 2 the same way as in [13, p.384] we have

Zl < kL4 p? (log p) . (12)

It remains to estimate ) ,. First we claim that in Theorem 2 and in
Theorem 3 (ii) we have ., = 0.

Indeed in these cases I will show that if fo'(n+dy)... f%(n + dy)
is a perfect m-th power, then there exists a ¢; which is even. Then, if

d; is even, by (10) and m 1 0; (1 < ; < m — 1) we have

m/2 m/2

. 5,2

0 ( xl i
E X" (g J)ZE e( fj)ZO,
£;=1 £;=1 m/2

which means that in ), the product is 0, whence >, = 0. From this,
(11) and (12) Theorem 2 and 3 (ii) follows.
Let us see the proof of those cases for which all §;’s are odd. In

the case of Theorem 2 if f1(n + dy)--- f%(n + dy) is a perfect m-th
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power, then m divides the degree of f%'(n 4 dy)--- f%(n + dy) which
is k(014 --+9;). If k and ¢ are also odd we get that k(d; + - - -+ d,) is
odd, which contradicts 2 | m | k(01 +- - -+ 6,). In the case of Theorem
3 (ii) we will use the following lemma, which is Lemma 5 of [5] with

m in place of p — 1.

Lemma 3 Suppose that the conditions of Theorem 3 hold. Then if
1<61,...,00 <m—1, and fo*(n+dy)--- fo(n+dy) is a perfect m-th
power, then there is a §; (1 <1 < /() and an integer 1 < a < k such

that m | ;.

By Lemma 3 we have

By the conditions of Theorem 3 we have 2° || m and k < 2°. Thus
(m,a) < a < k < 2°. Therefore 2 | Gy Whence 0; is even. This
completes the proof of Theorem 2 and Theorem 3 (ii).

In order to prove Theorem 3 (i) we need a generalization of Lemma

3. This is the following:

Lemma 4 Suppose that the conditions of Theorem 8 (i) hold. If 1 <
81,00 < m—1 and fo(n+dy)--- f%(n + dy) is a perfect m-th
power, then there is a permutation (p1, ..., pe) of (01,...,9.) such that

for all 1 < i < { there exists an o; with 1 < o; < k* and
m | a;p;.

15



We postpone the proof of Lemma 4. Now, from this lemma we

QLD

verify that ) , < *——p. Consider a fixed (-tuple (dy,...,6,) for

which f°'(n + dy)... f%(n + dy) is a perfect m-th power. We will

prove that
¢ |m/2 0(0+1)/2
— ELe+1)/
I1[> v < 52 (13
j=11 ¢

Indeed, by Lemma 4 we have a permutation (py,. .., pg) of (d1,...,0.)

such that for all 1 < ¢ < ¢ there exists an a; with 1 < o; < k' and
m | a;p;.
By this, 0 < a;p; < cym and «o; < k' we get

m < a;p; < (o — 1)m,

Lop, L
a; m a;
1 ‘ pi
k7 a; — llm
By this, (10) and |1 — e(«)| > 4]|a|| we have
m/2 .
2 2 1 K
ij<gzéj) < —— = < < —.
Z],Z:l [1=xP(g")] L —=elp;/m)| = 2{lps/ml| — 2
(14)

Taking the term-wise product in (14) for j = 1,...,¢ we obtain (13).

Thus
k5(2+1)/2
Sy )
1<81,...,0p<m,

For(ntdy) O (ntdy) s
a perfect m-th power

Next we give an upper bound for

r 3 1. (16)

1<61,..,0¢<m,

SOty S0 (nkdy) s
a perfect m-th power
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The number of different permutations (p1,...,p¢) of (d1,...,0,) is £

Consider a fixed permutation (p1, ..., p). Then by Lemma 4 we have

m

m | a;p; where 1 < o; < k', Thus iy | pi- Since 1 < p; < m we

have that p; may assume (m, a;) < o; < k' values. Therefore

¢
r< O]k = 02, (17)
i=1
By (15), (16) and (17) we have
ké(éJrl)
¢

ZQ§£! ——p

which proves Theorem 3 (i). It remains to prove Lemma 4.

Proof of Lemma 4

We will need the following definition and lemma:

Definition 2 Let A and B be multi-sets of the elements of Z,. If
A+ B represents every element of Z, with multiplicity divisible by m,

i.e., for all c € Z,, the number of solutions of
a+b=c a€ A beB

(the a’s and b’s are counted with their multiplicities) is divisible by m,

then the sum A+ B is said to have property P.

Lemma 5 Let A = {(ll, as, ..., ar}, D = {dl, dg, cey dg} - Zp. If
one of the following two conditions holds
(i) min{r, ¢} <2 and max{r,{} <p-—1,

(it) (40)" < p or (4r)" < p,
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then there exist cy,...,ce € Z, and a permutation (qi,...,q) of

(dy,...,dy) such that for all 1 <i<{
a+d=¢ a€c€A deD

has at least one solution, and the number of solutions is less than 1.
Moreover for all solution a € A, d € D we have d € {q1,q2...,q},

and d = ¢;, a = ¢; — q; s always a solution.

Proof of Lemma 5
We will prove Lemma 5 by induction on i. It was proved in [4,
Theorem 2| that for all sets A and D with the conditions of Lemma

5, we have a ¢ € Z, such that
a+d=c a€A deD

has exactly one solution.

This proves Lemma 5 in the case ¢ = 1. Suppose that Lemma
5 holds for ¢ = 5. Then we will prove that it also holds for
i = j + 1. By the induction hypothesis we have c;,...,c; and a
permutation (¢i,...,q;) of (di,...,d;) according to Lemma 5. Let
D' =D\ {q,...q;}. Since Lemma 5 is true for ¢ = 1 we have that

there exists c;41 € Z, such that
atd=cj;1 acA deD

has exactly one solution. Let this unique solution be a@ = «;,; and

d = gj11. Then for the solution of

a+d=cjy1 a€A deD
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we have d € {¢1,¢2, ..., ¢j+1} which completes the proof of Lemma 5.

Now we return to the proof of Lemma 4. The following equivalence
relation was defined in [4] and also used in [5]: We will say that the
polynomials ¢(x), ¢ (z) € F,[z] are equivalent, ¢ ~ 1), if there is an
a € F, such that ¢(z) = ¢(z + a). Clearly, this is an equivalence
relation.

Write f as the product of irreducible polynomials over F,. Let
us group these factors so that in each group the equivalent irreducible
factors are collected. Consider a typical group p(z+ay),...,¢(x+a,).
Then f is of the form f(z) = ¢**(x+aq) ... (z+a,)g(x) where g(x)
has no irreducible factors equivalent with any ¢(x + a;) (1 <i <r).

Let h(n) = fo'(n+dy) - - f%(n+dy) be a perfect m-th power where
1 <4d1,...,0; < m. Then writing h(x) as the product of irreducible
polynomials over IF,,, all the polynomials ¢(z+a; +d;) with 1 <i <r,
1 < j < /{ occur amongst the factors. All these polynomials are equiv-
alent, and no other irreducible factor belonging to this equivalence
class will occur amongst the irreducible factors of h(z).

Since distinct irreducible polynomials cannot have a common zero,
each of the zeros of h is of multiplicity divisible by m, if and only if in
each group, formed by equivalent irreducible factors p(x + a; + d;) of
h(z), every polynomial of form ¢(z + ¢) occurs with multiplicity di-
visible by m. In other words writing A = {ay,...,a1,...,a,,...,a,},
D ={dy,...,dy,...,dy,...,ds} where a; has the multiplicity «; in A

(a; is the exponent of ¢(z + ;) in the factorization of f(z)) and d;
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has the multiplicity &; in D (where h(n) = fo(n +d;)--- fo(n + d;)
is a perfect m-th power), then for each group A + D must possess
property P.

Let A" and D’ be the simple set version of A and D, more exactly,
let A = {ay,...,a,} and D' = {dy,...,d,}. A" and D’ satisfy the
conditions of Lemma 5. So by Lemma 5 for the sets A and D we

have the following: There exist ¢i,...,¢, € Z, and a permutation

<Q17 e ,Qg) = (dj17 e 7d.7l) of (dh Cey dg) such that if

at+d=c¢ acA, deD,
then we have

de{q, - a}={dj,....d;}
and d = ¢;, a = ¢; — ¢; is a solution. Here (ji,...,J,) is a permutation
of (1,...,¢). Define p;’s by p; = 6;, (so (p1,...,pe) = (0j,,...,0;,) is
the same permutation of (dy,...,d,) as the permutation (qq,...,q) =

(dj,,...,dj,) of (dy,...,ds)). Returning to the multi-set case, using

these notation we get that the number of the solutions
a+d=c¢ a€A deD
is of the form
€i,106,101 T €20 202+« + €, iP5

where ¢; ; € {0,1}, a;; € {aq,..., o} for 1 <j<iande¢,; =1 (We
study the number of the solutions by multiplicity since A and D are

multi-sets).

20



Since A + D posses property P we have that for all 1 <7 < /¢
m | €1051p1 + €20 2P0 + -+ + €04 pi. (18)
By induction on ¢ we will prove that
m|oq1009,. .., 00 (19)

Indeed, for i = 1 by (18) and €;; = 1 we get m | a3 1p1. We will prove
that if (19) holds for i < j — 1, then it also holds for i = j.

By the induction hypothesis we have
m|aiipr, m|aioo2pe, .., m|ogiazs. .. i1 -1p5-1. (20)
Multiplying (18) for i = j by aq1...aj_1,;-1 we get:
M |€105100 1 .. 01 j-1P1 + €205 200 1 - .. Q1 j—1P2 + - ..
+ €50 5001 - Q1 105
From this using (20) and ¢;; = 1 we get
m|aig...o;p;

which was to be proved.
i, ..., 05 € {ag, ..., o} where o;'s are exponents of irreducible
factors of f, thus 1 < a;; < deg f = k. Therefore oy 1009...;; < k'

and by (19) this completes the proof of Lemma 4.

2.3 Proof of Theorem 4

The proof is exactly the same as in |2, Theorem 1], the only dif-
ference is in the definitions of ¢ and r: now we choose ¢, r as integers

with (¢,p) = (r,p) =1 and 1 <ind*q < %, < ind"r < m.
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3 Time analysis

Construction 1 depends on the key ¢g* where g is a primitive root
and (z,m) = 1. We only need ¢”, it is not necessary to know the value
of g or z. First we prove that it is easy to find a key ¢”.

Suppose that the factorization of m is known: m = p{'...p2
where pq,...,p, are primes. The condition (z,m) = 1 is equivalent
with that y = ¢” is not a perfect p;-th power for any 1 <7 <rin F,.

In other words, using Fermat’s theorem we have that
y®= /P =1 (mod p) (21)

does not hold for all 1 <+ < r. By using the iterated squaring method
to check (21), it takes O ((log p)®) bit operations (see e.g. in [8]).
We will choose a random y € Z,, and by (21) we check that y = ¢*

weather satisfies (x,m) = 1 or not. For a fix primitive root g, the

number of z’s with this property is go(m)z”—;1 > bgfogp. Thus after
cloglog p attempts we will find a suitable key g* with high probability.

Next by the Pohlig-Hellman [12] we prove that ind*n can be com-
puted fast. Indeed, first we determine ind*n modulo prime power
divisor ¢* of m by O (ag(logp)?) bit operations. If we know ind*n
modulo p;* for all 1 < «; < r where m = pi"...pS", then using
the Chinese Remainder theorem we have determined the value ind*n
modulo m, which gives ind*n because of 1 < ind*n < m. Thus to
compute ind*n we use O((logm)* + (logp)®*(cup1 + -+ + avp,)) <
O((logm)* + (logp)*(ar + -+ + &) max p;) < O((logp)" max p;) bit

operations.
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Let us see the proof of that ind*n can be computed modulo prime
power divisors ¢® of m by O(ag(logp)?) bit operations. We will prove
this by induction on . When o = 0 the statement is trivial. Suppose

that we already know ind*n modulo ¢':
indn=s (mod ¢*).

From this we compute ind*n modulo ¢"™! by O(q(logp)?) bit opera-
tions if ¢! | m. In order to prove this statement we will use the
following lemma, which is a trivial consequence of the properties of

the primitive roots and Fermat’s theorem.

Lemma 6 ¢* | m. Then
ind'n=s (mod ¢%)
holds if and only if
n/g* is a perfect ¢®-th power modulo p
which is equivalent with
(n/g*")®= /%" =1 (mod p). (22)

By Lemma 6 we have that n/¢*® is a perfect ¢’-th power. By

Lemma 6, using (22), we check that which of the numbers

(s+2¢%)z s+(g—1)q'z

(s+qi)x, n/g ey m/g

n/g*, n/g

is a perfect ¢""!'-th power. This takes O (¢(logp)?) bit operations.

There is surely one which is a perfect ¢"*!-th power, because s, s +
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q', ..., s+(q—1)¢" run over the residue classes modulo ¢"*! which are
congruent to s modulo ¢'. By Lemma 6, n/g*t77"* is a perfect p't!-th
power if and only if ind*n = s + j¢'z (mod ¢**1). This completes the

proof of the statement.

4 An extension of an inequality of Mauduit
and Sarkozy

C. Mauduit and A. Sarkozy [10] expressed the connection between
the well-distribution measure and the correlation measure of order 2

in a quantitative form: For all Ey € {—1,+1}"
W(Ey) < 3V NCy(Ey). (23)

They also gave a construction for which W(Ey) > /NCs(Ey).
Their result shows that (23) is sharp apart from a constant factor.
The following theorem generalizes (23) for the correlation measures of
higher order:

Theorem 5 For all Exy € {—1,+1}", 302> < N we have

W (Ey) < 3¢N'7VC0 (o (Ey)) 40
By Theorem 3 we get for N =p — 1:

Co(Ey) <4 Wﬂ% (24)

pl/(QZ)

Tlog p) TF 17T We will see that if £ is even, m is odd and small

iftm <

enough, then by Theorem 5 and Theorem 1 we have that the upper
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bound in (24) is sharp apart from a constant factor. Thus in case of
even ¢ and odd m Construction 1 provides a natural example for a
sequence whose correlation measures of small orders are small while
the well-distribution measure is possibly large. Indeed, by Theorem 1

if m < 5-p'/?/(log p)* we have
p
W(E,—1) > .
By Theorem 5 we fixed

% < W(Ey) < €p'=1CD (Coy(Bx)) Y,
which implies
L p

Comparing this with (24) we get that Theorem 5 is sharp apart from a
constant factor. While the construction of A. Sarkézy and C. Mauduit
[10] showing that (23) is sharp used probabilistic methods, Construc-
tion 1 is explicit.
Proof of Theorem 5

The proof is nearly the same as in [10], however we have to handle
larger product of e;’s than in [10].

Let

t—1
W(EN) = Z €atjb = Z €;
j=0

a<i<m
t=a (mod b)
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where m=a+thb< N+b If N<i< N +b, let ¢, =1. Then
-1

(W(EN))% _ < Z €i> 2 < < Z ei)zz

a<i<m 0 a<i<m
i=a (mod b) i=h (mod b)

= E Xr * €€y .. €

r<2l, a<i;<io<---<ip<m
i1=ip==ir (mod b)

=

>
Il

= Z ij * €16y - - 62‘21.. (25)

J<L, a<in <ig<---<igj<m
11=12=""=12; (mod b)

Here r < 2{¢ because originally all the products are in the form of
et . ..epm !t (where o + -+ + oy = 20) but € = 1 if a; is even
and e;" = e; if o; is odd. The sum vy + - - -+ o, 1 = 20 is even, so the
number of odd «a;’s is even. Thus in (25) we may suppose that r = 2j
where 7 € N.

Let s denote the number of 7’s with a < 7 < m and for which i
belongs to a fixed residue class modulo b (here s is the number of the
terms in > g<icm €; for any h, s does not depend on h on the value

i=h (mod b)
of the fixed residue class). Using the multinomial theorem:

Xy = > % < > (20)!.

a1+ tos=2¢ a1+ tos=2¢
ai,...,azj are odd ai,...,az; are odd
Q2j41,..-,Qs are even Q2j41,..-,Qs are even

For1 <i<2jleta; =28;—1and for25+1 <17 <sleta; =208 —2.
Then

s+l—j—1

Xy < (20)! > .1:(%)!( o )
Bit-+Bs=s+L—j

Vi: ;>0

< (E(Q_E)j!)! (s+0—j -7 < @) (s+L—j -1
< (QE)HJ(N + g)ffj — 2€+j€€+j(N _|_g)€*j_ (26)
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By (25) and the triangle-inequality we have

(W(EN)* <) | Xy >

j=0 1<di <d2 <+ <dgj—1<m—a
OEdl EdgE---Ede_l (mod b)

m—l—dgj_l

Z €i€itdy - - - €i+d2171 . (27)

i=a
By the definition of the correlation measure we have:

m—l—dgj_l

Z €iCitdy - - - Citdy;_y| < Cor(En) + 1.

i=a

Thus from (26) and (27) we obtain

¢
(W(ENn)* <) 20 (N + ) > (Coi(En) +1)
Jj=0 1§d1<d2<---<d2j_1<m—a
OEdlEdgEmEdgj_l (mod b)

~

— 2PN + ) I N* 1Oy (Ey) + 1)
j=0

where by definition Cy(Ey) = N. Using that for 1 < j < ¢ -1
Cy;(En) < N we obtain

/-1

(W(ENn))* <) 20 (N 40 + 4 P N> (Coe(Ey) +1). (28)

j=0

By 1+ 2 < e” we have

-1 1
Z QI P (N 4 0)+ = 2LE(N + 0) Zijj(N + 0y
j=0 Jj=0

= 2 (N + 0)'(1 + 20(N + £))!

0\°* 202 + 1\
—_ 226—1 2@—1N2€—1 1 - 1
¢ TN TN

< 226—1£2£—1N2£—1€2£2/N < A1 21
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From this and (28) we obtain
1
(W(EN))QZ < 4€£2€N2€—1(C2Z(EN) + 1+ Z) < 9€€2€N2£—102Z(EN)’

which proves Theorem 5.

I would like to thank to Professor Andras Sarkozy for the valuable
discussions and to the referee Christian Elsholtz for his careful reading

and constructive comments.
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