
On a fast version of a pseudorandomgeneratorKatalin Gyarmati∗
Abstra
tIn an earlier paper I 
onstru
ted a large family of pseu-dorandom sequen
es by using the dis
rete logarithm. Whilethe sequen
es in this 
onstru
tion have strong pseudorandomproperties, they 
an be generated very slowly sin
e no fast al-gorithm is known to 
ompute ind n. The purpose of this paperis to modify this family slightly so that the members of the newfamily 
an be generated mu
h faster, and they have almost asgood pseudorandom properties as the sequen
es in the originalfamily.1 Introdu
tionIn this work I will 
ontinue the work initiated in [5℄. C. Mauduitand A. Sárközy [9, pp. 367-370℄ introdu
ed the following measures of
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pseudorandomness:For a �nite binary sequen
e EN = {e1, e2, . . . , eN} ∈ {−1,+1}Nwrite
U(EN , t, a, b) =

t−1
∑

j=0

ea+jband, for D = (d1, . . . , dk) with non-negative integers d1 < · · · < dk,
V (EN ,M,D) =

M
∑

n=1

en+d1en+d2 , . . . en+dk
.Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN (t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,where the maximum is taken over all a, b, t su
h that a, b, t ∈ N and
1 ≤ a ≤ a + (t− 1)b ≤ N . The 
orrelation measure of order k of ENis de�ned as
Ck(EN) = max

M,D
|V (EN ,M,D)| = max

M,D
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∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 , . . . en+dk

∣

∣

∣

∣

∣

,where the maximum is taken over all D = (d1, d2, . . . , dk) and M su
hthat M + dk ≤ N . In [6℄ I introdu
ed a further measure: Let
H(EN , a, b) =

[(b−a)/2]−1
∑

j=0

ea+jeb−j ,and then the symmetry measure of EN is de�ned as
S(EN) = max

1≤a<b≤N
|H(EN , a, b)| = max

1≤a<b≤N

∣

∣

∣
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∣

∣

[(b−a)/2]−1
∑

j=0

ea+jeb−j

∣

∣

∣

∣

∣

∣

.A sequen
e EN is 
onsidered as a �good� pseudorandom sequen
eif ea
h of these measures W (EN), Ck(EN) (at least for small k) and2



S(EN ) is �small� in terms of N (in parti
ular all are o(N) as N −→

∞). Indeed, it was proved in [3, Theorem 1, 2℄ and in [6, Theorem 1,2℄ that for a truly random sequen
e EN ⊆ {−1,+1}N ea
h of thesemeasures is ≪ √
N logN and ≫

√
N .Throughout the paper we will use the following notations: ‖ x ‖is the distan
e of x from the 
losest integer, e(α) = e2πiα, Fp is thealgebrai
 
losured of the �eld Fp. Finally, if p is a prime, α and m arenatural numbers we say that pα ‖ m if pα | m but pα+1 ∤ m.Numerous binary sequen
es have been tested for pseudorandom-ness by J. Cassaigne, S. Feren
zi, C. Mauduit, J. Rivat and A. Sárközy.The sequen
es with the strongest pseudorandom properties have been
onstru
ted in [4℄, [5℄, [9℄, [11℄ and [13℄. As 
on
erning the strength ofthe pseudorandom properties these 
onstru
tions are nearly equallygood. But in the 
onstru
tion given by A. Sárközy in [13℄ and ex-tended by me in [5℄, the generation of the sequen
es in question ismu
h more slowly than in the other 
onstru
tions. Indeed Sárközy's
onstru
tion is the following:Let p be an odd prime, N = p−1 and de�ne EN = {e1, . . . , eN} ⊆

{−1,+1}N by
en =











+1 if 1 ≤ ind n ≤ p−1
2
,

−1 if p+1
2

≤ ind n ≤ p− 1.
(1)Here ind n denotes the index or dis
rete logarithm of n modulo p,de�ned as the unique integer with

gind n ≡ n (mod p), (2)3



and 1 ≤ ind n ≤ p− 1, where g is a �xed primitive root modulo p. In[5℄ I extended this 
onstru
tion to a large family of binary sequen
eswith strong pseudorandom properties by repla
ing n by a polynomial
f(n) in (1) (in the same way as the Legendre symbol 
onstru
tion in[9℄ was extended in [4℄.)Indeed in [5℄ I proved for the generalized sequen
e:Theorem A For all f ∈ Fp[x] with k = deg f we have

W (Ep−1) ≤ 38kp1/2(log p)2.Moreover if one of the following 
onditions holds:a) f is irredu
ible;b) If f has the fa
torization f = ϕα1
1 ϕ

α2
2 . . . ϕαu

u , where αi ∈ N andthe ϕi's are irredu
ible over Fp, then there exists a β su
h thatexa
tly one or two ϕi's have the degree β;
) ℓ = 2;d) (4ℓ)k < p or (4k)ℓ < p.Then
Cℓ(Ep−1) < 10kℓ4ℓp1/2(log p)ℓ+1.Finally, if f(x) 6≡ f(t− x) for all t ∈ Zp, then
S(Ep−1) < 88kp1/2(log p)3.As we pointed out earlier these 
onstru
tions are nearly as goodas the others, but the problem is that it is slow to 
ompute en sin
e4



no fast algorithm is known to 
ompute ind n. The Di�e-Hellmankey-ex
hange system utilizes the di�
ulty of 
omputing ind n.In this paper my goal is to improve on the 
onstru
tion in TheoremA by repla
ing the sequen
e
en =











+1 if 1 ≤ ind f(n) ≤ p−1
2
,

−1 if p+1
2

≤ ind f(n) ≤ p− 1 or p | f(n)
(3)by a sequen
e whi
h 
an be generated faster. I will show that thisis possible at the pri
e of giving slightly weaker upper bounds forthe pseudorandom measures. Throughout this paper we will use thefollowing:Notation Let p be an odd prime, g be a primitive root modulo p.De�ne ind n by (2). Let f ∈ Fp[x] be a polynomial of degree k ≥ 1,and f = chd where c ∈ Fp and h ∈ Fp[x] is not a perfe
t power of apolynomial over Fp[x]. Moreover let

m | p− 1with m ∈ N, and let x be relative prime to m: (x,m) = 1.The 
ru
ial idea of the 
onstru
tion is to redu
e ind n modulo m:Constru
tion 1 Let ind∗n denote the following fun
tion: For all 1 ≤

n ≤ p− 1 ind n ≡ x · ind∗n (mod m)(ind∗n exists sin
e (x,m) = 1.) De�ne the sequen
e Ep−1 =

5



{e1, . . . , ep−1} by
en =











+1 if 1 ≤ ind∗f(n) ≤ m
2
,

−1 if m
2
< ind∗f(n) ≤ m or p | f(n).

(4)Note that this 
onstru
tion also generalizes the Legendre symbol
onstru
tion des
ribed in [4℄ and [9℄. Indeed in the spe
ial 
ase m =

2, x = 1 the sequen
e en de�ned in (4) be
omes
en =











+1 if (f(n)
p

)

= −1,

−1 if (f(n)
p

)

= 1 or p | f(n).(In the spe
ial 
ase m = p− 1, x = 1 we obtain the original 
onstru
-tion given in (3)).We will show that the 
onstru
tion presented above has good pseu-dorandom properties, ea
h of the measures W (Ep−1), Ck(Ep−1) issmall under 
ertain 
onditions on the polynomial f . In the 
ase ofthe well-distribution measure we 
an 
ontrol the situation 
ompletely.Theorem 1 If m/(m, d) is even we have
W (Ep−1) ≤ 36kp1/2 log p log(m+ 1).While in the other 
ase, when m/(m, d) is odd we have:

W (Ep−1) =
p− 1

m
+O(kp1/2 log p log(m+ 1)).In the 
ase of the 
orrelation measures the situation is slightlymore di�
ult. When the order of the 
orrelation measure is odd wehave: 6



Theorem 2 If f ∈ Fp, k = deg f and ℓ are odd integers while m isan even integer, then we have
Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1.Otherwise we need the same 
onditions on the polynomial f asin [5℄ in the original 
onstru
tion. If the degree of the polynomial issmall depending on m, the same upper bound holds as in [5℄, while inthe general 
ase I will prove a slightly weaker result.Theorem 3 i) Suppose that m is even or m is odd with 2m | p − 1,and at least one of the following 4 
onditions holds:a) f is irredu
ible;b) If f has the fa
torization f = ϕα1

1 ϕ
α2
2 . . . ϕαu

u where αi ∈ N andthe ϕi's are irredu
ible over Fp, then there exists a β su
h thatexa
tly one or two ϕi's have the degree β;
) ℓ = 2;d) (4ℓ)k < p or (4k)ℓ < p.Then
Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1 +

ℓ!kℓ(ℓ+1)

mℓ
p. (5)ii) Moreover if we also have 2β ‖ m and k = deg f < 2β then

Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1.

7



For �xed m by Heath-Brown's work on Linnik's theorem [7℄ theleast prime number p with m | p − 1 is less than cm5.5. Thus the
ondition deg f < 2β ‖ m | p− 1 is not too restri
tive.If m2ℓ ≫ p holds, then the �rst term majorizes the se
ond termin (5), thus the upper bound be
omes O (p1/2(log p)ℓ+1
) where theimplied 
onstant fa
tor may depend on k and ℓ.The study of the symmetry measure also 
onsidered in [5℄ wouldlead to further 
ompli
ations and I 
ould 
ontrol it only under thefurther assumption deg f ≤ 2β+2 where β is de�ned by 2β ‖ m. Thus,I do not go into the details of this here.In appli
ations one should balan
e between the strength of theupper bounds and the speed of the generation of the sequen
e de-pending on our priorities. By the Pohlig-Hellman [12℄ algorithm wewill show in se
tion 3 that the sequen
e des
ribed in (4), in parti
u-lar ind ∗f(n), 
an be 
omputed faster than the original 
onstru
tion.Indeed, if the prime fa
tors of m are smaller than log p then ind∗f(n)
an be 
omputed by O((log p)6) bit operations.In [2℄ R. Ahlswede, L.H. Kha
hatrian, C. Mauduit and A. Sárközyintrodu
ed the notion of f -
omplexity of families of binary sequen
esas a measure of appli
ability of the 
onstru
tions in 
ryptography.De�nition 1 The 
omplexity C(F) of a family F of binary sequen
e

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any
1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj, we have at least one

8



EN = {e1, . . . , eN} ∈ F for whi
h
ei1 = ε1, ei2 = ε2, . . . , eij = εj.We will see that the f -
omplexity of the family 
onstru
ted in (4)is high.Theorem 4 Consider all the polynomials f ∈ Fp[x] with

0 < deg f ≤ K.For ea
h of these polynomials f , 
onsider the binary sequen
e Ep−1 =

Ep−1(f) de�ned by (4), and let F denote the family of all binary se-quen
es obtained in this way. Then we have
C(F) > K.In [10℄ C. Mauduit and A. Sárközy proved an inequality involvingthe pseudorandom measures W and C2. The following is a general-ization of their inequality:Theorem 5 For all EN ∈ {−1,+1}N , 3ℓ2 ≤ N we have

W (EN) ≤ 3ℓN1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) .Here the 
onstant fa
tor 3ℓ 
ould be improved by using a moredi�
ult argument, I will return to this in a subsequent paper.In se
tion 4 we will prove Theorem 5 and using Theorems 1,2and 3 we will show that Constru
tion 1 provides a natural examplefor that the inequality in Theorem 5 is the best possible apart from9



a 
onstant fa
tor. Moreover, Constru
tion 1 gives us a sequen
e forwhi
h the 
orrelation measures of small order are small while the well-distribution measure is possibly large.2 Proofs2.1 Proof of Theorem 1.First we note that the sequen
e de�ned in (4) by the polynomial
f = hd and the modulus m, remains the same sequen
e if we repla
ein Constru
tion 1 the polynomial f = hd by the polynomial hd/(m,d)and the modulus m by the modulus m/(m, d). Thus in order to provethis theorem it is su�
ient to study the 
ase when (m, d) = 1.The proof of the theorem is very similar to the proof of Theorem1 in [6℄. By the formula

1

m

∑

χ:χm=1

χj(a)χ(b) =











1 if m | ind a− ind b,
0 if m ∤ ind a− ind b,we obtain

en = 2
∑

1≤j≤m/2
jx≡ind f(n) (mod m)

1 − 1 =
2

m

∑

1≤j≤m/2

∑

χ:χm=1

χ(f(n))χ(gjx) − 1.Thus
en =

2

m

∑

1≤j≤m/2

∑

χ 6=χ0:χm=1

χ(f(n))χ(gxj) +
(−1)m − 1

2m
. (6)

10



Assume now that 1 ≤ a ≤ a + (t− 1)b ≤ N . Then we have
|U(Ep−1, t, a, b)| =

∣

∣

∣

∣

∣

2

m

∑

χ 6=χ0:χm=1

(

t−1
∑

i=0

χ(f(a+ ib))

)





[m/2]
∑

j=1

χj(gx)





+
((−1)m − 1)t

2m

∣

∣

∣

∣

∣

. (7)We will prove the following:
S

def
=

∣

∣

∣

∣

∣

∣

1

m

∑

χ 6=χ0:χm=1

(

t−1
∑

i=0

χ(f(a+ ib))

)





[m/2]
∑

j=1

χj(gx)





∣

∣

∣

∣

∣

∣

≤ 18kp1/2(log p)2. (8)If m is even we obtain the statement of Theorem 1 immediately from(7) and (8). If m is odd using the triangle inequality we get
|U(Ep−1, t, a, b)| =

t

m
+O(kp1/2(log p)2)whi
h 
ompletes the proof of Theorem 1. Thus in order to proveTheorem 1, we have to verify (8).We will use the following lemma:Lemma 1 Suppose that p is a prime, χ is a non-prin
ipal 
hara
termodulo p of order z, f ∈ Fp[x] has s distin
t roots in F p, and it is nota 
onstant multiple of a z-th power of a polynomial over Fp. Let y bea real number with 0 < y ≤ p. Then for any x ∈ R:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.Poof of Lemma 1This is a trivial 
onsequen
e of Lemma 1 in [1℄. Indeed, there thisresult is dedu
ed from Weil theorem, see [14℄.11



Consider ∑t−1
i=0 χ(f(a+ ib)) in (7), and here, let the order of χ be

z. Sin
e χm = 1 we have z | m. On the other hand f = chd is nota 
onstant multiple of a z-th power of a polynomial over Fp, sin
e
1 = (m, d) = (z, d) (be
ause of z | m) and h is not a perfe
t power ofany polynomial over Fp.Using Lemma 1 we have:

∣

∣

∣

∣

∣

t−1
∑

i=0

χ(f(a+ ib))

∣

∣

∣

∣

∣

≤ 9kp1/2 log pand thus by (8)
S ≤ 9kp1/2 log p

m

∑

χ 6=χ0:χm=1

∣

∣

∣

∣

∣

∣

[m/2]
∑

j=1

χj(gx)

∣

∣

∣

∣

∣

∣

.Lemma 2
∑

χ 6=χ0:χm=1

∣

∣

∣

∣

∣

∣

[m/2]
∑

j=1

χj(gx)

∣

∣

∣

∣

∣

∣

≤
∑

χ 6=χ0:χm=1

2

|1 − χ(gx)| < 2m log(m+ 1).Proof of Lemma 2 This is Lemma 3 in [5℄ with m in pla
e of d, m/2in pla
e of (p − 1)/2 and gx in pla
e of g, respe
tively, and it 
an beproved in the same way.Using Lemma 2 we obtain
S < 18kp1/2 log p log(m+ 1)whi
h proves (8) and this 
ompletes the proof of Theorem 1.2.2 Proof of Theorem 2 and 3In this se
tion we may suppose that m is even: In Theorem 2 m
annot be odd. If m is odd in Theorem 3, then 
onsidering 2m in12



pla
e of m and f 2 in pla
e of f in Constru
tion 1 we generate thesame sequen
e; however in this 
ase we have (2m, 2d) > 1.To prove Theorems 2 and 3, 
onsider any D = {d1, d2, . . . , dℓ} withnon-negative integers d1 < d2 < · · · < dℓ and positive integersM with
M + dℓ ≤ p − 1. Then arguing as in [13, p. 382℄ with f(n + dj) inpla
e of n+ dj, m in pla
e of p− 1, and gx in pla
e of g from (6) andsin
e m is even we obtain:
|V (EN ,M,D)| ≤ 2ℓ

mℓ

∑

χ1 6=χ0
χm

1 =1

· · ·
∑

χℓ 6=χ0
χm

ℓ =1

∣

∣

∣

∣

∣

M
∑

n=1

χ1(f(n+ d1)) · · ·χℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

×
∏

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj=1

χj(g
xℓj)

∣

∣

∣

∣

∣

∣

. (9)Now let χ be a modulo p 
hara
ter of order m; for simpli
ity wewill 
hoose χ as the 
hara
ter uniquely de�ned by χ(g) = e
(

x∗

m

) where
xx∗ ≡ 1 (mod m). Then

χ(gx) = e

(

1

m

)

. (10)Let χu = χδu for u = 1, 2, . . . , ℓ, when
e by χ1 6= χ0, . . . , χℓ 6= χ0, wemay take
1 ≤ δu < m.Thus in (9) we have

∣

∣

∣

∣

∣

M
∑

n=1

χ1(f(n+ d1)) . . . χℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

n=1

χδ1(f(n+ d1)) . . . χ
δℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

n=1

χ
(

f δ1(n+ d1) . . . f
δℓ(n+ dℓ)

)

∣

∣

∣

∣

∣

.13



If f δ1(n+d1) · · ·f δℓ(n+dℓ) is not a perfe
t m-th power, then this sum
an be estimated by Lemma 1, when
e
∣

∣

∣

∣

∣

M
∑

n=1

χ(f δ1(n+ d1) · · · f δℓ(n+ dℓ))

∣

∣

∣

∣

∣

≤ 9sℓp1/2 log p.Therefore by (9) and the triangle-inequality we get:
|V (EN ,M,D)| ≤ 2ℓ

mℓ

∑

χ1 6=χ0
χm

1 =1

· · ·
∑

χℓ 6=χ0
χm

ℓ =1

9sℓp1/2 log p

∣

∣

∣

∣

∣

∣

ℓ
∏

j=1





m/2
∑

lj=1

χδj (gxℓj)





∣

∣

∣

∣

∣

∣

+
2ℓ

mℓ

∑

1≤δ1,...,δℓ<m,
fδ1 (n+d1)···fδℓ(n+dℓ) isa perfe
t m-th power (p− 1)

∣

∣

∣

∣

∣

ℓ
∏

j=1





m/2
∑

lj=1

χδj (gxℓj)





∣

∣

∣

∣

∣

=
∑

1
+
∑

2
. (11)From Lemma 2 the same way as in [13, p.384℄ we have

∑

1
≤ 9kℓ4ℓp1/2(log p)ℓ+1. (12)It remains to estimate ∑2. First we 
laim that in Theorem 2 and inTheorem 3 (ii) we have ∑2 = 0.Indeed in these 
ases I will show that if f δ1(n+ d1) . . . f

δℓ(n+ dℓ)is a perfe
t m-th power, then there exists a δi whi
h is even. Then, if
δi is even, by (10) and m ∤ δi (1 ≤ δi ≤ m− 1) we have

m/2
∑

ℓj=1

χδi(gxℓj) =

m/2
∑

ℓj=1

e

(

δi/2

m/2
ℓj

)

= 0,whi
h means that in∑2 the produ
t is 0, when
e∑2 = 0. From this,(11) and (12) Theorem 2 and 3 (ii) follows.Let us see the proof of those 
ases for whi
h all δi's are odd. Inthe 
ase of Theorem 2 if f δ1(n + d1) · · · f δℓ(n + dℓ) is a perfe
t m-th14



power, then m divides the degree of f δ1(n + d1) · · ·f δℓ(n + dℓ) whi
his k(δ1 + · · ·+ δℓ). If k and ℓ are also odd we get that k(δ1 + · · ·+ δℓ) isodd, whi
h 
ontradi
ts 2 | m | k(δ1 + · · ·+ δℓ). In the 
ase of Theorem3 (ii) we will use the following lemma, whi
h is Lemma 5 of [5℄ with
m in pla
e of p− 1.Lemma 3 Suppose that the 
onditions of Theorem 3 hold. Then if
1 ≤ δ1, . . . , δℓ ≤ m−1, and f δ1(n+d1) · · ·f δℓ(n+dℓ) is a perfe
t m-thpower, then there is a δi (1 ≤ i ≤ ℓ) and an integer 1 ≤ α ≤ k su
hthat m | αδi.By Lemma 3 we have

m | αδi,
m

(m,α)
| δi.By the 
onditions of Theorem 3 we have 2β ‖ m and k < 2β. Thus

(m,α) ≤ α ≤ k < 2β. Therefore 2 | m
(m,α)

, when
e δi is even. This
ompletes the proof of Theorem 2 and Theorem 3 (ii).In order to prove Theorem 3 (i) we need a generalization of Lemma3. This is the following:Lemma 4 Suppose that the 
onditions of Theorem 3 (i) hold. If 1 ≤

δ1, . . . , δℓ ≤ m − 1 and f δ1(n + d1) · · ·f δℓ(n + dℓ) is a perfe
t m-thpower, then there is a permutation (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ) su
h thatfor all 1 ≤ i ≤ ℓ there exists an αi with 1 ≤ αi ≤ ki and
m | αiρi.15



We postpone the proof of Lemma 4. Now, from this lemma weverify that ∑2 ≤ ℓ!kℓ(ℓ+1)

mℓ p. Consider a �xed ℓ-tuple (δ1, . . . , δℓ) forwhi
h f δ1(n + d1) . . . f
δℓ(n + dℓ) is a perfe
t m-th power. We willprove that

ℓ
∏

j=1

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj

χδj (gxℓj)

∣

∣

∣

∣

∣

∣

≤ kℓ(ℓ+1)/2

2ℓ
. (13)Indeed, by Lemma 4 we have a permutation (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ)su
h that for all 1 ≤ i ≤ ℓ there exists an αi with 1 ≤ αi ≤ ki and

m | αiρi.By this, 0 < αiρi < αim and αi ≤ ki we get
m ≤ αiρi ≤ (αi − 1)m,

1

αi
≤ ρi

m
≤ 1 − 1

αi
,

1

ki
≤ 1

αi
≤
∣

∣

∣

∣

∣

∣

ρi

m

∣

∣

∣

∣

∣

∣
.By this, (10) and |1 − e(α)| ≥ 4 ||α|| we have

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj=1

χρj(gxℓj)

∣

∣

∣

∣

∣

∣

≤ 2

|1 − χρj (gx)| =
2

|1 − e(ρj/m)| ≤
1

2 ||ρj/m|| ≤
kj

2
.(14)Taking the term-wise produ
t in (14) for j = 1, . . . , ℓ we obtain (13).Thus

∑

2
≤ p

kℓ(ℓ+1)/2

mℓ

∑

1≤δ1,...,δℓ≤m,
fδ1 (n+d1)···fδℓ (n+dℓ) isa perfe
t m-th power 1. (15)Next we give an upper bound for

r
def
=

∑

1≤δ1,...,δℓ≤m,
fδ1 (n+d1)···fδℓ (n+dℓ) isa perfe
t m-th power 1. (16)16



The number of di�erent permutations (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ) is ℓ!.Consider a �xed permutation (ρ1, . . . , ρℓ). Then by Lemma 4 we have
m | αiρi where 1 ≤ αi ≤ ki. Thus m

(m,αi)
| ρi. Sin
e 1 ≤ ρi ≤ m wehave that ρi may assume (m,αi) ≤ αi ≤ ki values. Therefore

r ≤ ℓ!
ℓ
∏

i=1

ki = ℓ!kℓ(ℓ+1)/2. (17)By (15), (16) and (17) we have
∑

2
≤ ℓ!

kℓ(ℓ+1)

mℓ
pwhi
h proves Theorem 3 (i). It remains to prove Lemma 4.Proof of Lemma 4We will need the following de�nition and lemma:De�nition 2 Let A and B be multi-sets of the elements of Zp. If

A+B represents every element of Zp with multipli
ity divisible by m,i.e., for all c ∈ Zp, the number of solutions of
a + b = c a ∈ A, b ∈ B(the a's and b's are 
ounted with their multipli
ities) is divisible by m,then the sum A + B is said to have property P.Lemma 5 Let A = {a1, a2, . . . , ar}, D = {d1, d2, . . . , dℓ} ⊆ Zp. Ifone of the following two 
onditions holds(i) min{r, ℓ} ≤ 2 and max{r, ℓ} ≤ p− 1,(ii) (4ℓ)r ≤ p or (4r)ℓ ≤ p, 17



then there exist c1, . . . , cℓ ∈ Zp and a permutation (q1, . . . , qℓ) of
(d1, . . . , dℓ) su
h that for all 1 ≤ i ≤ ℓ

a+ d = ci a ∈ A, d ∈ Dhas at least one solution, and the number of solutions is less than i.Moreover for all solution a ∈ A, d ∈ D we have d ∈ {q1, q2 . . . , qi},and d = qi, a = ci − qi is always a solution.Proof of Lemma 5We will prove Lemma 5 by indu
tion on i. It was proved in [4,Theorem 2℄ that for all sets A and D with the 
onditions of Lemma5, we have a c ∈ Zp su
h that
a+ d = c a ∈ A, d ∈ Dhas exa
tly one solution.This proves Lemma 5 in the 
ase i = 1. Suppose that Lemma5 holds for i = j. Then we will prove that it also holds for

i = j + 1. By the indu
tion hypothesis we have c1, . . . , cj and apermutation (q1, . . . , qj) of (d1, . . . , dj) a

ording to Lemma 5. Let
D′ = D \ {q1, . . . qj}. Sin
e Lemma 5 is true for i = 1 we have thatthere exists cj+1 ∈ Zp su
h that

a+ d = cj+1 a ∈ A, d ∈ D′has exa
tly one solution. Let this unique solution be α = αi+1 and
d = qj+1. Then for the solution of

a + d = cj+1 a ∈ A, d ∈ D18



we have d ∈ {q1, q2, . . . , qj+1} whi
h 
ompletes the proof of Lemma 5.Now we return to the proof of Lemma 4. The following equivalen
erelation was de�ned in [4℄ and also used in [5℄: We will say that thepolynomials ϕ(x), ψ(x) ∈ Fp[x] are equivalent, ϕ ∼ ψ, if there is an
a ∈ Fp su
h that ψ(x) = ϕ(x + a). Clearly, this is an equivalen
erelation.Write f as the produ
t of irredu
ible polynomials over Fp. Letus group these fa
tors so that in ea
h group the equivalent irredu
iblefa
tors are 
olle
ted. Consider a typi
al group ϕ(x+a1), . . . , ϕ(x+ar).Then f is of the form f(x) = ϕα1(x+a1) . . . ϕ

αr(x+ar)g(x) where g(x)has no irredu
ible fa
tors equivalent with any ϕ(x+ ai) (1 ≤ i ≤ r).Let h(n) = f δ1(n+d1) · · · f δℓ(n+dℓ) be a perfe
tm-th power where
1 ≤ δ1, . . . , δℓ < m. Then writing h(x) as the produ
t of irredu
iblepolynomials over Fp, all the polynomials ϕ(x+ai +dj) with 1 ≤ i ≤ r,
1 ≤ j ≤ ℓ o

ur amongst the fa
tors. All these polynomials are equiv-alent, and no other irredu
ible fa
tor belonging to this equivalen
e
lass will o

ur amongst the irredu
ible fa
tors of h(x).Sin
e distin
t irredu
ible polynomials 
annot have a 
ommon zero,ea
h of the zeros of h is of multipli
ity divisible by m, if and only if inea
h group, formed by equivalent irredu
ible fa
tors ϕ(x+ ai + dj) of
h(x), every polynomial of form ϕ(x + c) o

urs with multipli
ity di-visible by m. In other words writing A = {a1, . . . , a1, . . . , ar, . . . , ar},
D = {d1, . . . , d1, . . . , dℓ, . . . , dℓ} where ai has the multipli
ity αi in A(αi is the exponent of ϕ(x + ai) in the fa
torization of f(x)) and di19



has the multipli
ity δi in D (where h(n) = f δ1(n + d1) · · ·f δℓ(n + dℓ)is a perfe
t m-th power), then for ea
h group A + D must possessproperty P .Let A′ and D′ be the simple set version of A and D, more exa
tly,let A′ = {a1, . . . , ar} and D′ = {d1, . . . , dℓ}. A′ and D′ satisfy the
onditions of Lemma 5. So by Lemma 5 for the sets A and D wehave the following: There exist c1, . . . , cℓ ∈ Zp and a permutation
(q1, . . . , qℓ) = (dj1, . . . , djℓ

) of (d1, . . . , dℓ) su
h that if
a+ d = ci a ∈ A′, d ∈ D′,then we have
d ∈ {q1, . . . , qi} = {dj1, . . . , dji

}and d = qi, a = ci − qi is a solution. Here (j1, . . . , jℓ) is a permutationof (1, . . . , ℓ). De�ne ρi's by ρi = δji
(so (ρ1, . . . , ρℓ) = (δj1 , . . . , δjℓ

) isthe same permutation of (δ1, . . . , δℓ) as the permutation (q1, . . . , qℓ) =

(dj1, . . . , djℓ
) of (d1, . . . , dℓ)). Returning to the multi-set 
ase, usingthese notation we get that the number of the solutions

a+ d = ci a ∈ A, d ∈ Dis of the form
ǫi,1αi,1ρ1 + ǫi,2αi,2ρ2 + · · ·+ ǫi,iαi,iρiwhere ǫi,j ∈ {0, 1}, αi,j ∈ {α1, . . . , αr} for 1 ≤ j ≤ i and ǫi,i = 1. (Westudy the number of the solutions by multipli
ity sin
e A and D aremulti-sets). 20



Sin
e A + D posses property P we have that for all 1 ≤ i ≤ ℓ

m | ǫi,1αi,1ρ1 + ǫi,2αi,2ρ2 + · · · + ǫi,iαi,iρi. (18)By indu
tion on i we will prove that
m | α1,1α2,2, . . . , αi,iρi. (19)Indeed, for i = 1 by (18) and ǫ1,1 = 1 we get m | α1,1ρ1. We will provethat if (19) holds for i ≤ j − 1, then it also holds for i = j.By the indu
tion hypothesis we have

m | α1,1ρ1, m | α1,1α2,2ρ2, . . . , m | α1,1α2,2 . . . , αj−1,j−1ρj−1. (20)Multiplying (18) for i = j by α1,1 . . . αj−1,j−1 we get:
m |ǫj,1αj,1α1,1 . . . αj−1,j−1ρ1 + ǫj,2αj,2α1,1 . . . αj−1,j−1ρ2 + . . .

+ ǫj,jαj,jα1,1 . . . αj−1,j−1ρi.From this using (20) and ǫj,j = 1 we get
m | α1,1 . . . αj,jρjwhi
h was to be proved.

α1,1, . . . , αi,i ∈ {α1, . . . , αr} where αi's are exponents of irredu
iblefa
tors of f , thus 1 ≤ αi,i ≤ deg f = k. Therefore α1,1α2,2 . . . αi,i ≤ kiand by (19) this 
ompletes the proof of Lemma 4.2.3 Proof of Theorem 4The proof is exa
tly the same as in [2, Theorem 1℄, the only dif-feren
e is in the de�nitions of q and r: now we 
hoose q, r as integerswith (q, p) = (r, p) = 1 and 1 ≤ ind∗q ≤ m
2
, m

2
< ind∗r ≤ m.21



3 Time analysisConstru
tion 1 depends on the key gx where g is a primitive rootand (x,m) = 1. We only need gx, it is not ne
essary to know the valueof g or x. First we prove that it is easy to �nd a key gx.Suppose that the fa
torization of m is known: m = pα1
1 . . . pαr

rwhere p1, . . . , pr are primes. The 
ondition (x,m) = 1 is equivalentwith that y = gx is not a perfe
t pi-th power for any 1 ≤ i ≤ r in Fp.In other words, using Fermat's theorem we have that
y(p−1)/pi ≡ 1 (mod p) (21)does not hold for all 1 ≤ i ≤ r. By using the iterated squaring methodto 
he
k (21), it takes O ((log p)3) bit operations (see e.g. in [8℄).We will 
hoose a random y ∈ Zp, and by (21) we 
he
k that y = gxweather satis�es (x,m) = 1 or not. For a �x primitive root g, thenumber of x's with this property is ϕ(m)p−1

m
≫ p

log log p
. Thus after

c log log p attempts we will �nd a suitable key gx with high probability.Next by the Pohlig-Hellman [12℄ we prove that ind∗n 
an be 
om-puted fast. Indeed, �rst we determine ind∗n modulo prime powerdivisor qα of m by O (αq(log p)3) bit operations. If we know ind∗nmodulo pαi
i for all 1 ≤ αi ≤ r where m = pα1

1 . . . pαr
r , then usingthe Chinese Remainder theorem we have determined the value ind∗nmodulo m, whi
h gives ind∗n be
ause of 1 ≤ ind∗n ≤ m. Thus to
ompute ind∗n we use O((logm)4 + (log p)3(α1p1 + · · · + αrpr)) ≤

O((logm)4 + (log p)3(α1 + · · · + αr) max
1≤i≤r

pi) ≤ O((log p)4 max
1≤i≤r

pi) bitoperations. 22



Let us see the proof of that ind∗n 
an be 
omputed modulo primepower divisors qα of m by O(αq(log p)3) bit operations. We will provethis by indu
tion on α. When α = 0 the statement is trivial. Supposethat we already know ind∗n modulo qi:ind∗n ≡ s (mod qi).From this we 
ompute ind∗n modulo qi+1 by O(q(log p)3) bit opera-tions if qi+1 | m. In order to prove this statement we will use thefollowing lemma, whi
h is a trivial 
onsequen
e of the properties ofthe primitive roots and Fermat's theorem.Lemma 6 qα | m. Thenind∗n ≡ s (mod qα)holds if and only if
n/gsx is a perfe
t qα-th power modulo pwhi
h is equivalent with

(n/gsx)(p−1)/qα ≡ 1 (mod p). (22)By Lemma 6 we have that n/gsx is a perfe
t qi-th power. ByLemma 6, using (22), we 
he
k that whi
h of the numbers
n/gsx, n/g(s+qi)x, n/g(s+2qi)x, . . . , n/gs+(q−1)qixis a perfe
t qi+1-th power. This takes O (q(log p)3) bit operations.There is surely one whi
h is a perfe
t qi+1-th power, be
ause s, s +23



qi, . . . , s+(q−1)qi run over the residue 
lasses modulo qi+1 whi
h are
ongruent to s modulo qi. By Lemma 6, n/gs+jpix is a perfe
t pi+1-thpower if and only if ind∗n ≡ s+ jqix (mod qi+1). This 
ompletes theproof of the statement.4 An extension of an inequality of Mauduitand SárközyC. Mauduit and A. Sárközy [10℄ expressed the 
onne
tion betweenthe well-distribution measure and the 
orrelation measure of order 2in a quantitative form: For all EN ∈ {−1,+1}N

W (EN) ≤ 3
√

NC2(EN). (23)They also gave a 
onstru
tion for whi
h W (EN) ≫
√

NC2(EN ).Their result shows that (23) is sharp apart from a 
onstant fa
tor.The following theorem generalizes (23) for the 
orrelation measures ofhigher order:Theorem 5 For all EN ∈ {−1,+1}N , 3ℓ2 ≤ N we have
W (EN) ≤ 3ℓN1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) .By Theorem 3 we get for N = p− 1:

Cℓ(EN ) ≪ℓ k
ℓ(ℓ+1) p

mℓ
(24)if m < p1/(2ℓ)

(log p)1+1/ℓ . We will see that if ℓ is even, m is odd and smallenough, then by Theorem 5 and Theorem 1 we have that the upper24



bound in (24) is sharp apart from a 
onstant fa
tor. Thus in 
ase ofeven ℓ and odd m Constru
tion 1 provides a natural example for asequen
e whose 
orrelation measures of small orders are small whilethe well-distribution measure is possibly large. Indeed, by Theorem 1if m < 1
2k
p1/2/(log p)2 we have

W (Ep−1) ≫
p

m
.By Theorem 5 we �xed

p

m
≪ W (EN) ≪ ℓp1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) ,whi
h implies

1

ℓ2ℓ

p

m2ℓ
≪ C2ℓ(EN).Comparing this with (24) we get that Theorem 5 is sharp apart from a
onstant fa
tor. While the 
onstru
tion of A. Sárközy and C. Mauduit[10℄ showing that (23) is sharp used probabilisti
 methods, Constru
-tion 1 is expli
it.Proof of Theorem 5The proof is nearly the same as in [10℄, however we have to handlelarger produ
t of ei's than in [10℄.Let

W (EN) =

t−1
∑

j=0

ea+jb =
∑

a≤i<m
i≡a (mod b)

ei

25



where m = a+ tb ≤ N + b. If N < i ≤ N + b, let ei = 1. Then
(W (EN))2ℓ =

(

∑

a≤i<m
i≡a (mod b)

ei

)2ℓ

≤
b−1
∑

h=0

(

∑

a≤i<m
i≡h (mod b)

ei

)2ℓ

=
∑

r≤2ℓ, a≤i1<i2<···<ir<m
i1≡i2≡···≡ir (mod b)

Xr · ei1ei2 . . . eir

=
∑

j≤ℓ, a≤i1<i2<···<i2j<m
i1≡i2≡···≡i2j (mod b)

X2j · ei1ei2 . . . ei2j
. (25)Here r ≤ 2ℓ be
ause originally all the produ
ts are in the form of

eα1
1 . . . e

αm−1

m−1 (where α1 + · · · + αm−1 = 2ℓ) but eαi
i = 1 if αi is evenand eαi

i = ei if αi is odd. The sum α1 + · · ·+αm−1 = 2ℓ is even, so thenumber of odd αi's is even. Thus in (25) we may suppose that r = 2jwhere j ∈ N.Let s denote the number of i's with a ≤ i < m and for whi
h ibelongs to a �xed residue 
lass modulo b (here s is the number of theterms in∑ a≤i<m
i≡h (mod b)

ei for any h, s does not depend on h on the valueof the �xed residue 
lass). Using the multinomial theorem:
X2j =

∑

α1+···+αs=2ℓ
α1,...,α2j are odd

α2j+1,...,αs are even (2ℓ)!

α1! . . . αs!
≤

∑

α1+···+αs=2ℓ
α1,...,α2j are odd

α2j+1,...,αs are even(2ℓ)!.For 1 ≤ i ≤ 2j let αi = 2βi −1 and for 2j+1 ≤ i ≤ s let αi = 2βi −2.Then
X2j ≤ (2ℓ)!

∑

β1+···+βs=s+ℓ−j
∀i: βi>0

1 = (2ℓ)!

(

s+ ℓ− j − 1

s− 1

)

≤ (2ℓ)!

(ℓ− j)!
(s+ ℓ− j − 1)ℓ−j ≤ (2ℓ)ℓ+j(s+ ℓ− j − 1)ℓ−j

≤ (2ℓ)ℓ+j(N + ℓ)ℓ−j = 2ℓ+jℓℓ+j(N + ℓ)ℓ−j. (26)26



By (25) and the triangle-inequality we have
(W (EN))2ℓ ≤

ℓ
∑

j=0

|X2j |
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)

∣

∣

∣

∣

∣

∣

m−1−d2j−1
∑

i=a

eiei+d1 . . . ei+d2j−1

∣

∣

∣

∣

∣

∣

. (27)By the de�nition of the 
orrelation measure we have:
∣

∣

∣

∣

∣

∣

m−1−d2j−1
∑

i=a

eiei+d1 . . . ei+d2j−1

∣

∣

∣

∣

∣

∣

≤ C2ℓ(EN) + 1.Thus from (26) and (27) we obtain
(W (EN))2ℓ ≤

ℓ
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ−j
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)

(C2j(EN ) + 1)

=

ℓ
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ−jN2j−1(C2j(EN ) + 1)where by de�nition C0(EN ) = N . Using that for 1 ≤ j ≤ ℓ − 1

C2j(EN) ≤ N we obtain
(W (EN))2ℓ ≤

ℓ−1
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ+j +4ℓℓ2ℓN2ℓ−1(C2ℓ(EN)+1). (28)By 1 + x ≤ ex we have
ℓ−1
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ+j = 2ℓℓℓ(N + ℓ)ℓ
ℓ−1
∑

j=0

2jℓj(N + ℓ)j

= 2ℓℓℓ(N + ℓ)ℓ(1 + 2ℓ(N + ℓ))ℓ−1

= 22ℓ−1ℓ2ℓ−1N2ℓ−1

(

1 +
ℓ

N

)ℓ(

1 +
2ℓ2 + 1

2ℓN

)ℓ−1

≤ 22ℓ−1ℓ2ℓ−1N2ℓ−1e2ℓ2/N ≤ 4ℓℓ2ℓ−1N2ℓ−1.27



From this and (28) we obtain
(W (EN))2ℓ ≤ 4ℓℓ2ℓN2ℓ−1(C2ℓ(EN) + 1 +

1

ℓ
) ≤ 9ℓℓ2ℓN2ℓ−1C2ℓ(EN),whi
h proves Theorem 5.I would like to thank to Professor András Sárközy for the valuabledis
ussions and to the referee Christian Elsholtz for his 
areful readingand 
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