
On a fast version of a pseudorandomgeneratorKatalin Gyarmati∗
AbstratIn an earlier paper I onstruted a large family of pseu-dorandom sequenes by using the disrete logarithm. Whilethe sequenes in this onstrution have strong pseudorandomproperties, they an be generated very slowly sine no fast al-gorithm is known to ompute ind n. The purpose of this paperis to modify this family slightly so that the members of the newfamily an be generated muh faster, and they have almost asgood pseudorandom properties as the sequenes in the originalfamily.1 IntrodutionIn this work I will ontinue the work initiated in [5℄. C. Mauduitand A. Sárközy [9, pp. 367-370℄ introdued the following measures of
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pseudorandomness:For a �nite binary sequene EN = {e1, e2, . . . , eN} ∈ {−1,+1}Nwrite
U(EN , t, a, b) =

t−1
∑

j=0

ea+jband, for D = (d1, . . . , dk) with non-negative integers d1 < · · · < dk,
V (EN ,M,D) =

M
∑

n=1

en+d1en+d2 , . . . en+dk
.Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN (t, a, b)| = max
a,b,t

∣
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∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,where the maximum is taken over all a, b, t suh that a, b, t ∈ N and
1 ≤ a ≤ a + (t− 1)b ≤ N . The orrelation measure of order k of ENis de�ned as
Ck(EN) = max

M,D
|V (EN ,M,D)| = max

M,D
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∣

M
∑

n=1

en+d1en+d2 , . . . en+dk
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∣

∣

∣

,where the maximum is taken over all D = (d1, d2, . . . , dk) and M suhthat M + dk ≤ N . In [6℄ I introdued a further measure: Let
H(EN , a, b) =

[(b−a)/2]−1
∑

j=0

ea+jeb−j ,and then the symmetry measure of EN is de�ned as
S(EN) = max

1≤a<b≤N
|H(EN , a, b)| = max

1≤a<b≤N
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[(b−a)/2]−1
∑

j=0

ea+jeb−j
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∣

∣
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∣
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.A sequene EN is onsidered as a �good� pseudorandom sequeneif eah of these measures W (EN), Ck(EN) (at least for small k) and2



S(EN ) is �small� in terms of N (in partiular all are o(N) as N −→

∞). Indeed, it was proved in [3, Theorem 1, 2℄ and in [6, Theorem 1,2℄ that for a truly random sequene EN ⊆ {−1,+1}N eah of thesemeasures is ≪ √
N logN and ≫

√
N .Throughout the paper we will use the following notations: ‖ x ‖is the distane of x from the losest integer, e(α) = e2πiα, Fp is thealgebrai losured of the �eld Fp. Finally, if p is a prime, α and m arenatural numbers we say that pα ‖ m if pα | m but pα+1 ∤ m.Numerous binary sequenes have been tested for pseudorandom-ness by J. Cassaigne, S. Ferenzi, C. Mauduit, J. Rivat and A. Sárközy.The sequenes with the strongest pseudorandom properties have beenonstruted in [4℄, [5℄, [9℄, [11℄ and [13℄. As onerning the strength ofthe pseudorandom properties these onstrutions are nearly equallygood. But in the onstrution given by A. Sárközy in [13℄ and ex-tended by me in [5℄, the generation of the sequenes in question ismuh more slowly than in the other onstrutions. Indeed Sárközy'sonstrution is the following:Let p be an odd prime, N = p−1 and de�ne EN = {e1, . . . , eN} ⊆

{−1,+1}N by
en =











+1 if 1 ≤ ind n ≤ p−1
2
,

−1 if p+1
2

≤ ind n ≤ p− 1.
(1)Here ind n denotes the index or disrete logarithm of n modulo p,de�ned as the unique integer with

gind n ≡ n (mod p), (2)3



and 1 ≤ ind n ≤ p− 1, where g is a �xed primitive root modulo p. In[5℄ I extended this onstrution to a large family of binary sequeneswith strong pseudorandom properties by replaing n by a polynomial
f(n) in (1) (in the same way as the Legendre symbol onstrution in[9℄ was extended in [4℄.)Indeed in [5℄ I proved for the generalized sequene:Theorem A For all f ∈ Fp[x] with k = deg f we have

W (Ep−1) ≤ 38kp1/2(log p)2.Moreover if one of the following onditions holds:a) f is irreduible;b) If f has the fatorization f = ϕα1
1 ϕ

α2
2 . . . ϕαu

u , where αi ∈ N andthe ϕi's are irreduible over Fp, then there exists a β suh thatexatly one or two ϕi's have the degree β;) ℓ = 2;d) (4ℓ)k < p or (4k)ℓ < p.Then
Cℓ(Ep−1) < 10kℓ4ℓp1/2(log p)ℓ+1.Finally, if f(x) 6≡ f(t− x) for all t ∈ Zp, then
S(Ep−1) < 88kp1/2(log p)3.As we pointed out earlier these onstrutions are nearly as goodas the others, but the problem is that it is slow to ompute en sine4



no fast algorithm is known to ompute ind n. The Di�e-Hellmankey-exhange system utilizes the di�ulty of omputing ind n.In this paper my goal is to improve on the onstrution in TheoremA by replaing the sequene
en =











+1 if 1 ≤ ind f(n) ≤ p−1
2
,

−1 if p+1
2

≤ ind f(n) ≤ p− 1 or p | f(n)
(3)by a sequene whih an be generated faster. I will show that thisis possible at the prie of giving slightly weaker upper bounds forthe pseudorandom measures. Throughout this paper we will use thefollowing:Notation Let p be an odd prime, g be a primitive root modulo p.De�ne ind n by (2). Let f ∈ Fp[x] be a polynomial of degree k ≥ 1,and f = chd where c ∈ Fp and h ∈ Fp[x] is not a perfet power of apolynomial over Fp[x]. Moreover let

m | p− 1with m ∈ N, and let x be relative prime to m: (x,m) = 1.The ruial idea of the onstrution is to redue ind n modulo m:Constrution 1 Let ind∗n denote the following funtion: For all 1 ≤

n ≤ p− 1 ind n ≡ x · ind∗n (mod m)(ind∗n exists sine (x,m) = 1.) De�ne the sequene Ep−1 =

5



{e1, . . . , ep−1} by
en =











+1 if 1 ≤ ind∗f(n) ≤ m
2
,

−1 if m
2
< ind∗f(n) ≤ m or p | f(n).

(4)Note that this onstrution also generalizes the Legendre symbolonstrution desribed in [4℄ and [9℄. Indeed in the speial ase m =

2, x = 1 the sequene en de�ned in (4) beomes
en =











+1 if (f(n)
p

)

= −1,

−1 if (f(n)
p

)

= 1 or p | f(n).(In the speial ase m = p− 1, x = 1 we obtain the original onstru-tion given in (3)).We will show that the onstrution presented above has good pseu-dorandom properties, eah of the measures W (Ep−1), Ck(Ep−1) issmall under ertain onditions on the polynomial f . In the ase ofthe well-distribution measure we an ontrol the situation ompletely.Theorem 1 If m/(m, d) is even we have
W (Ep−1) ≤ 36kp1/2 log p log(m+ 1).While in the other ase, when m/(m, d) is odd we have:

W (Ep−1) =
p− 1

m
+O(kp1/2 log p log(m+ 1)).In the ase of the orrelation measures the situation is slightlymore di�ult. When the order of the orrelation measure is odd wehave: 6



Theorem 2 If f ∈ Fp, k = deg f and ℓ are odd integers while m isan even integer, then we have
Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1.Otherwise we need the same onditions on the polynomial f asin [5℄ in the original onstrution. If the degree of the polynomial issmall depending on m, the same upper bound holds as in [5℄, while inthe general ase I will prove a slightly weaker result.Theorem 3 i) Suppose that m is even or m is odd with 2m | p − 1,and at least one of the following 4 onditions holds:a) f is irreduible;b) If f has the fatorization f = ϕα1

1 ϕ
α2
2 . . . ϕαu

u where αi ∈ N andthe ϕi's are irreduible over Fp, then there exists a β suh thatexatly one or two ϕi's have the degree β;) ℓ = 2;d) (4ℓ)k < p or (4k)ℓ < p.Then
Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1 +

ℓ!kℓ(ℓ+1)

mℓ
p. (5)ii) Moreover if we also have 2β ‖ m and k = deg f < 2β then

Cℓ(Ep−1) < 9kℓ4ℓp1/2(log p)ℓ+1.

7



For �xed m by Heath-Brown's work on Linnik's theorem [7℄ theleast prime number p with m | p − 1 is less than cm5.5. Thus theondition deg f < 2β ‖ m | p− 1 is not too restritive.If m2ℓ ≫ p holds, then the �rst term majorizes the seond termin (5), thus the upper bound beomes O (p1/2(log p)ℓ+1
) where theimplied onstant fator may depend on k and ℓ.The study of the symmetry measure also onsidered in [5℄ wouldlead to further ompliations and I ould ontrol it only under thefurther assumption deg f ≤ 2β+2 where β is de�ned by 2β ‖ m. Thus,I do not go into the details of this here.In appliations one should balane between the strength of theupper bounds and the speed of the generation of the sequene de-pending on our priorities. By the Pohlig-Hellman [12℄ algorithm wewill show in setion 3 that the sequene desribed in (4), in partiu-lar ind ∗f(n), an be omputed faster than the original onstrution.Indeed, if the prime fators of m are smaller than log p then ind∗f(n)an be omputed by O((log p)6) bit operations.In [2℄ R. Ahlswede, L.H. Khahatrian, C. Mauduit and A. Sárközyintrodued the notion of f -omplexity of families of binary sequenesas a measure of appliability of the onstrutions in ryptography.De�nition 1 The omplexity C(F) of a family F of binary sequene

EN ∈ {−1,+1}N is de�ned as the greatest integer j so that for any
1 ≤ i1 < i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj, we have at least one

8



EN = {e1, . . . , eN} ∈ F for whih
ei1 = ε1, ei2 = ε2, . . . , eij = εj.We will see that the f -omplexity of the family onstruted in (4)is high.Theorem 4 Consider all the polynomials f ∈ Fp[x] with

0 < deg f ≤ K.For eah of these polynomials f , onsider the binary sequene Ep−1 =

Ep−1(f) de�ned by (4), and let F denote the family of all binary se-quenes obtained in this way. Then we have
C(F) > K.In [10℄ C. Mauduit and A. Sárközy proved an inequality involvingthe pseudorandom measures W and C2. The following is a general-ization of their inequality:Theorem 5 For all EN ∈ {−1,+1}N , 3ℓ2 ≤ N we have

W (EN) ≤ 3ℓN1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) .Here the onstant fator 3ℓ ould be improved by using a moredi�ult argument, I will return to this in a subsequent paper.In setion 4 we will prove Theorem 5 and using Theorems 1,2and 3 we will show that Constrution 1 provides a natural examplefor that the inequality in Theorem 5 is the best possible apart from9



a onstant fator. Moreover, Constrution 1 gives us a sequene forwhih the orrelation measures of small order are small while the well-distribution measure is possibly large.2 Proofs2.1 Proof of Theorem 1.First we note that the sequene de�ned in (4) by the polynomial
f = hd and the modulus m, remains the same sequene if we replaein Constrution 1 the polynomial f = hd by the polynomial hd/(m,d)and the modulus m by the modulus m/(m, d). Thus in order to provethis theorem it is su�ient to study the ase when (m, d) = 1.The proof of the theorem is very similar to the proof of Theorem1 in [6℄. By the formula

1

m

∑

χ:χm=1

χj(a)χ(b) =











1 if m | ind a− ind b,
0 if m ∤ ind a− ind b,we obtain

en = 2
∑

1≤j≤m/2
jx≡ind f(n) (mod m)

1 − 1 =
2

m

∑

1≤j≤m/2

∑

χ:χm=1

χ(f(n))χ(gjx) − 1.Thus
en =

2

m

∑

1≤j≤m/2

∑

χ 6=χ0:χm=1

χ(f(n))χ(gxj) +
(−1)m − 1

2m
. (6)

10



Assume now that 1 ≤ a ≤ a + (t− 1)b ≤ N . Then we have
|U(Ep−1, t, a, b)| =

∣

∣

∣

∣

∣

2

m

∑

χ 6=χ0:χm=1

(

t−1
∑

i=0

χ(f(a+ ib))

)





[m/2]
∑

j=1

χj(gx)





+
((−1)m − 1)t

2m

∣

∣

∣

∣

∣

. (7)We will prove the following:
S

def
=

∣

∣

∣

∣

∣

∣

1

m

∑

χ 6=χ0:χm=1

(

t−1
∑

i=0

χ(f(a+ ib))

)





[m/2]
∑

j=1

χj(gx)





∣

∣

∣

∣

∣

∣

≤ 18kp1/2(log p)2. (8)If m is even we obtain the statement of Theorem 1 immediately from(7) and (8). If m is odd using the triangle inequality we get
|U(Ep−1, t, a, b)| =

t

m
+O(kp1/2(log p)2)whih ompletes the proof of Theorem 1. Thus in order to proveTheorem 1, we have to verify (8).We will use the following lemma:Lemma 1 Suppose that p is a prime, χ is a non-prinipal haratermodulo p of order z, f ∈ Fp[x] has s distint roots in F p, and it is nota onstant multiple of a z-th power of a polynomial over Fp. Let y bea real number with 0 < y ≤ p. Then for any x ∈ R:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.Poof of Lemma 1This is a trivial onsequene of Lemma 1 in [1℄. Indeed, there thisresult is dedued from Weil theorem, see [14℄.11



Consider ∑t−1
i=0 χ(f(a+ ib)) in (7), and here, let the order of χ be

z. Sine χm = 1 we have z | m. On the other hand f = chd is nota onstant multiple of a z-th power of a polynomial over Fp, sine
1 = (m, d) = (z, d) (beause of z | m) and h is not a perfet power ofany polynomial over Fp.Using Lemma 1 we have:

∣

∣

∣

∣

∣

t−1
∑

i=0

χ(f(a+ ib))

∣

∣

∣

∣

∣

≤ 9kp1/2 log pand thus by (8)
S ≤ 9kp1/2 log p

m

∑

χ 6=χ0:χm=1

∣

∣

∣

∣

∣

∣

[m/2]
∑

j=1

χj(gx)

∣

∣

∣

∣

∣

∣

.Lemma 2
∑

χ 6=χ0:χm=1

∣

∣

∣

∣

∣

∣

[m/2]
∑

j=1

χj(gx)

∣

∣

∣

∣

∣

∣

≤
∑

χ 6=χ0:χm=1

2

|1 − χ(gx)| < 2m log(m+ 1).Proof of Lemma 2 This is Lemma 3 in [5℄ with m in plae of d, m/2in plae of (p − 1)/2 and gx in plae of g, respetively, and it an beproved in the same way.Using Lemma 2 we obtain
S < 18kp1/2 log p log(m+ 1)whih proves (8) and this ompletes the proof of Theorem 1.2.2 Proof of Theorem 2 and 3In this setion we may suppose that m is even: In Theorem 2 mannot be odd. If m is odd in Theorem 3, then onsidering 2m in12



plae of m and f 2 in plae of f in Constrution 1 we generate thesame sequene; however in this ase we have (2m, 2d) > 1.To prove Theorems 2 and 3, onsider any D = {d1, d2, . . . , dℓ} withnon-negative integers d1 < d2 < · · · < dℓ and positive integersM with
M + dℓ ≤ p − 1. Then arguing as in [13, p. 382℄ with f(n + dj) inplae of n+ dj, m in plae of p− 1, and gx in plae of g from (6) andsine m is even we obtain:
|V (EN ,M,D)| ≤ 2ℓ

mℓ

∑

χ1 6=χ0
χm

1 =1

· · ·
∑

χℓ 6=χ0
χm

ℓ =1

∣

∣

∣

∣

∣

M
∑

n=1

χ1(f(n+ d1)) · · ·χℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

×
∏

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj=1

χj(g
xℓj)

∣

∣

∣

∣

∣

∣

. (9)Now let χ be a modulo p harater of order m; for simpliity wewill hoose χ as the harater uniquely de�ned by χ(g) = e
(

x∗

m

) where
xx∗ ≡ 1 (mod m). Then

χ(gx) = e

(

1

m

)

. (10)Let χu = χδu for u = 1, 2, . . . , ℓ, whene by χ1 6= χ0, . . . , χℓ 6= χ0, wemay take
1 ≤ δu < m.Thus in (9) we have

∣

∣

∣

∣

∣

M
∑

n=1

χ1(f(n+ d1)) . . . χℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

n=1

χδ1(f(n+ d1)) . . . χ
δℓ(f(n+ dℓ))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

n=1

χ
(

f δ1(n+ d1) . . . f
δℓ(n+ dℓ)

)

∣

∣

∣

∣

∣

.13



If f δ1(n+d1) · · ·f δℓ(n+dℓ) is not a perfet m-th power, then this suman be estimated by Lemma 1, whene
∣

∣

∣

∣

∣

M
∑

n=1

χ(f δ1(n+ d1) · · · f δℓ(n+ dℓ))

∣

∣

∣

∣

∣

≤ 9sℓp1/2 log p.Therefore by (9) and the triangle-inequality we get:
|V (EN ,M,D)| ≤ 2ℓ

mℓ

∑

χ1 6=χ0
χm

1 =1

· · ·
∑

χℓ 6=χ0
χm

ℓ =1

9sℓp1/2 log p

∣

∣

∣

∣

∣

∣

ℓ
∏

j=1





m/2
∑

lj=1

χδj (gxℓj)





∣

∣

∣

∣

∣

∣

+
2ℓ

mℓ

∑

1≤δ1,...,δℓ<m,
fδ1 (n+d1)···fδℓ(n+dℓ) isa perfet m-th power (p− 1)

∣

∣

∣

∣

∣

ℓ
∏

j=1





m/2
∑

lj=1

χδj (gxℓj)





∣

∣

∣

∣

∣

=
∑

1
+
∑

2
. (11)From Lemma 2 the same way as in [13, p.384℄ we have

∑

1
≤ 9kℓ4ℓp1/2(log p)ℓ+1. (12)It remains to estimate ∑2. First we laim that in Theorem 2 and inTheorem 3 (ii) we have ∑2 = 0.Indeed in these ases I will show that if f δ1(n+ d1) . . . f

δℓ(n+ dℓ)is a perfet m-th power, then there exists a δi whih is even. Then, if
δi is even, by (10) and m ∤ δi (1 ≤ δi ≤ m− 1) we have

m/2
∑

ℓj=1

χδi(gxℓj) =

m/2
∑

ℓj=1

e

(

δi/2

m/2
ℓj

)

= 0,whih means that in∑2 the produt is 0, whene∑2 = 0. From this,(11) and (12) Theorem 2 and 3 (ii) follows.Let us see the proof of those ases for whih all δi's are odd. Inthe ase of Theorem 2 if f δ1(n + d1) · · · f δℓ(n + dℓ) is a perfet m-th14



power, then m divides the degree of f δ1(n + d1) · · ·f δℓ(n + dℓ) whihis k(δ1 + · · ·+ δℓ). If k and ℓ are also odd we get that k(δ1 + · · ·+ δℓ) isodd, whih ontradits 2 | m | k(δ1 + · · ·+ δℓ). In the ase of Theorem3 (ii) we will use the following lemma, whih is Lemma 5 of [5℄ with
m in plae of p− 1.Lemma 3 Suppose that the onditions of Theorem 3 hold. Then if
1 ≤ δ1, . . . , δℓ ≤ m−1, and f δ1(n+d1) · · ·f δℓ(n+dℓ) is a perfet m-thpower, then there is a δi (1 ≤ i ≤ ℓ) and an integer 1 ≤ α ≤ k suhthat m | αδi.By Lemma 3 we have

m | αδi,
m

(m,α)
| δi.By the onditions of Theorem 3 we have 2β ‖ m and k < 2β. Thus

(m,α) ≤ α ≤ k < 2β. Therefore 2 | m
(m,α)

, whene δi is even. Thisompletes the proof of Theorem 2 and Theorem 3 (ii).In order to prove Theorem 3 (i) we need a generalization of Lemma3. This is the following:Lemma 4 Suppose that the onditions of Theorem 3 (i) hold. If 1 ≤

δ1, . . . , δℓ ≤ m − 1 and f δ1(n + d1) · · ·f δℓ(n + dℓ) is a perfet m-thpower, then there is a permutation (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ) suh thatfor all 1 ≤ i ≤ ℓ there exists an αi with 1 ≤ αi ≤ ki and
m | αiρi.15



We postpone the proof of Lemma 4. Now, from this lemma weverify that ∑2 ≤ ℓ!kℓ(ℓ+1)

mℓ p. Consider a �xed ℓ-tuple (δ1, . . . , δℓ) forwhih f δ1(n + d1) . . . f
δℓ(n + dℓ) is a perfet m-th power. We willprove that

ℓ
∏

j=1

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj

χδj (gxℓj)

∣

∣

∣

∣

∣

∣

≤ kℓ(ℓ+1)/2

2ℓ
. (13)Indeed, by Lemma 4 we have a permutation (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ)suh that for all 1 ≤ i ≤ ℓ there exists an αi with 1 ≤ αi ≤ ki and

m | αiρi.By this, 0 < αiρi < αim and αi ≤ ki we get
m ≤ αiρi ≤ (αi − 1)m,

1

αi
≤ ρi

m
≤ 1 − 1

αi
,

1

ki
≤ 1

αi
≤
∣

∣

∣

∣

∣

∣

ρi

m

∣

∣

∣

∣

∣

∣
.By this, (10) and |1 − e(α)| ≥ 4 ||α|| we have

∣

∣

∣

∣

∣

∣

m/2
∑

ℓj=1

χρj(gxℓj)

∣

∣

∣

∣

∣

∣

≤ 2

|1 − χρj (gx)| =
2

|1 − e(ρj/m)| ≤
1

2 ||ρj/m|| ≤
kj

2
.(14)Taking the term-wise produt in (14) for j = 1, . . . , ℓ we obtain (13).Thus

∑

2
≤ p

kℓ(ℓ+1)/2

mℓ

∑

1≤δ1,...,δℓ≤m,
fδ1 (n+d1)···fδℓ (n+dℓ) isa perfet m-th power 1. (15)Next we give an upper bound for

r
def
=

∑

1≤δ1,...,δℓ≤m,
fδ1 (n+d1)···fδℓ (n+dℓ) isa perfet m-th power 1. (16)16



The number of di�erent permutations (ρ1, . . . , ρℓ) of (δ1, . . . , δℓ) is ℓ!.Consider a �xed permutation (ρ1, . . . , ρℓ). Then by Lemma 4 we have
m | αiρi where 1 ≤ αi ≤ ki. Thus m

(m,αi)
| ρi. Sine 1 ≤ ρi ≤ m wehave that ρi may assume (m,αi) ≤ αi ≤ ki values. Therefore

r ≤ ℓ!
ℓ
∏

i=1

ki = ℓ!kℓ(ℓ+1)/2. (17)By (15), (16) and (17) we have
∑

2
≤ ℓ!

kℓ(ℓ+1)

mℓ
pwhih proves Theorem 3 (i). It remains to prove Lemma 4.Proof of Lemma 4We will need the following de�nition and lemma:De�nition 2 Let A and B be multi-sets of the elements of Zp. If

A+B represents every element of Zp with multipliity divisible by m,i.e., for all c ∈ Zp, the number of solutions of
a + b = c a ∈ A, b ∈ B(the a's and b's are ounted with their multipliities) is divisible by m,then the sum A + B is said to have property P.Lemma 5 Let A = {a1, a2, . . . , ar}, D = {d1, d2, . . . , dℓ} ⊆ Zp. Ifone of the following two onditions holds(i) min{r, ℓ} ≤ 2 and max{r, ℓ} ≤ p− 1,(ii) (4ℓ)r ≤ p or (4r)ℓ ≤ p, 17



then there exist c1, . . . , cℓ ∈ Zp and a permutation (q1, . . . , qℓ) of
(d1, . . . , dℓ) suh that for all 1 ≤ i ≤ ℓ

a+ d = ci a ∈ A, d ∈ Dhas at least one solution, and the number of solutions is less than i.Moreover for all solution a ∈ A, d ∈ D we have d ∈ {q1, q2 . . . , qi},and d = qi, a = ci − qi is always a solution.Proof of Lemma 5We will prove Lemma 5 by indution on i. It was proved in [4,Theorem 2℄ that for all sets A and D with the onditions of Lemma5, we have a c ∈ Zp suh that
a+ d = c a ∈ A, d ∈ Dhas exatly one solution.This proves Lemma 5 in the ase i = 1. Suppose that Lemma5 holds for i = j. Then we will prove that it also holds for

i = j + 1. By the indution hypothesis we have c1, . . . , cj and apermutation (q1, . . . , qj) of (d1, . . . , dj) aording to Lemma 5. Let
D′ = D \ {q1, . . . qj}. Sine Lemma 5 is true for i = 1 we have thatthere exists cj+1 ∈ Zp suh that

a+ d = cj+1 a ∈ A, d ∈ D′has exatly one solution. Let this unique solution be α = αi+1 and
d = qj+1. Then for the solution of

a + d = cj+1 a ∈ A, d ∈ D18



we have d ∈ {q1, q2, . . . , qj+1} whih ompletes the proof of Lemma 5.Now we return to the proof of Lemma 4. The following equivalenerelation was de�ned in [4℄ and also used in [5℄: We will say that thepolynomials ϕ(x), ψ(x) ∈ Fp[x] are equivalent, ϕ ∼ ψ, if there is an
a ∈ Fp suh that ψ(x) = ϕ(x + a). Clearly, this is an equivalenerelation.Write f as the produt of irreduible polynomials over Fp. Letus group these fators so that in eah group the equivalent irreduiblefators are olleted. Consider a typial group ϕ(x+a1), . . . , ϕ(x+ar).Then f is of the form f(x) = ϕα1(x+a1) . . . ϕ

αr(x+ar)g(x) where g(x)has no irreduible fators equivalent with any ϕ(x+ ai) (1 ≤ i ≤ r).Let h(n) = f δ1(n+d1) · · · f δℓ(n+dℓ) be a perfetm-th power where
1 ≤ δ1, . . . , δℓ < m. Then writing h(x) as the produt of irreduiblepolynomials over Fp, all the polynomials ϕ(x+ai +dj) with 1 ≤ i ≤ r,
1 ≤ j ≤ ℓ our amongst the fators. All these polynomials are equiv-alent, and no other irreduible fator belonging to this equivalenelass will our amongst the irreduible fators of h(x).Sine distint irreduible polynomials annot have a ommon zero,eah of the zeros of h is of multipliity divisible by m, if and only if ineah group, formed by equivalent irreduible fators ϕ(x+ ai + dj) of
h(x), every polynomial of form ϕ(x + c) ours with multipliity di-visible by m. In other words writing A = {a1, . . . , a1, . . . , ar, . . . , ar},
D = {d1, . . . , d1, . . . , dℓ, . . . , dℓ} where ai has the multipliity αi in A(αi is the exponent of ϕ(x + ai) in the fatorization of f(x)) and di19



has the multipliity δi in D (where h(n) = f δ1(n + d1) · · ·f δℓ(n + dℓ)is a perfet m-th power), then for eah group A + D must possessproperty P .Let A′ and D′ be the simple set version of A and D, more exatly,let A′ = {a1, . . . , ar} and D′ = {d1, . . . , dℓ}. A′ and D′ satisfy theonditions of Lemma 5. So by Lemma 5 for the sets A and D wehave the following: There exist c1, . . . , cℓ ∈ Zp and a permutation
(q1, . . . , qℓ) = (dj1, . . . , djℓ

) of (d1, . . . , dℓ) suh that if
a+ d = ci a ∈ A′, d ∈ D′,then we have
d ∈ {q1, . . . , qi} = {dj1, . . . , dji

}and d = qi, a = ci − qi is a solution. Here (j1, . . . , jℓ) is a permutationof (1, . . . , ℓ). De�ne ρi's by ρi = δji
(so (ρ1, . . . , ρℓ) = (δj1 , . . . , δjℓ

) isthe same permutation of (δ1, . . . , δℓ) as the permutation (q1, . . . , qℓ) =

(dj1, . . . , djℓ
) of (d1, . . . , dℓ)). Returning to the multi-set ase, usingthese notation we get that the number of the solutions

a+ d = ci a ∈ A, d ∈ Dis of the form
ǫi,1αi,1ρ1 + ǫi,2αi,2ρ2 + · · ·+ ǫi,iαi,iρiwhere ǫi,j ∈ {0, 1}, αi,j ∈ {α1, . . . , αr} for 1 ≤ j ≤ i and ǫi,i = 1. (Westudy the number of the solutions by multipliity sine A and D aremulti-sets). 20



Sine A + D posses property P we have that for all 1 ≤ i ≤ ℓ

m | ǫi,1αi,1ρ1 + ǫi,2αi,2ρ2 + · · · + ǫi,iαi,iρi. (18)By indution on i we will prove that
m | α1,1α2,2, . . . , αi,iρi. (19)Indeed, for i = 1 by (18) and ǫ1,1 = 1 we get m | α1,1ρ1. We will provethat if (19) holds for i ≤ j − 1, then it also holds for i = j.By the indution hypothesis we have

m | α1,1ρ1, m | α1,1α2,2ρ2, . . . , m | α1,1α2,2 . . . , αj−1,j−1ρj−1. (20)Multiplying (18) for i = j by α1,1 . . . αj−1,j−1 we get:
m |ǫj,1αj,1α1,1 . . . αj−1,j−1ρ1 + ǫj,2αj,2α1,1 . . . αj−1,j−1ρ2 + . . .

+ ǫj,jαj,jα1,1 . . . αj−1,j−1ρi.From this using (20) and ǫj,j = 1 we get
m | α1,1 . . . αj,jρjwhih was to be proved.

α1,1, . . . , αi,i ∈ {α1, . . . , αr} where αi's are exponents of irreduiblefators of f , thus 1 ≤ αi,i ≤ deg f = k. Therefore α1,1α2,2 . . . αi,i ≤ kiand by (19) this ompletes the proof of Lemma 4.2.3 Proof of Theorem 4The proof is exatly the same as in [2, Theorem 1℄, the only dif-ferene is in the de�nitions of q and r: now we hoose q, r as integerswith (q, p) = (r, p) = 1 and 1 ≤ ind∗q ≤ m
2
, m

2
< ind∗r ≤ m.21



3 Time analysisConstrution 1 depends on the key gx where g is a primitive rootand (x,m) = 1. We only need gx, it is not neessary to know the valueof g or x. First we prove that it is easy to �nd a key gx.Suppose that the fatorization of m is known: m = pα1
1 . . . pαr

rwhere p1, . . . , pr are primes. The ondition (x,m) = 1 is equivalentwith that y = gx is not a perfet pi-th power for any 1 ≤ i ≤ r in Fp.In other words, using Fermat's theorem we have that
y(p−1)/pi ≡ 1 (mod p) (21)does not hold for all 1 ≤ i ≤ r. By using the iterated squaring methodto hek (21), it takes O ((log p)3) bit operations (see e.g. in [8℄).We will hoose a random y ∈ Zp, and by (21) we hek that y = gxweather satis�es (x,m) = 1 or not. For a �x primitive root g, thenumber of x's with this property is ϕ(m)p−1

m
≫ p

log log p
. Thus after

c log log p attempts we will �nd a suitable key gx with high probability.Next by the Pohlig-Hellman [12℄ we prove that ind∗n an be om-puted fast. Indeed, �rst we determine ind∗n modulo prime powerdivisor qα of m by O (αq(log p)3) bit operations. If we know ind∗nmodulo pαi
i for all 1 ≤ αi ≤ r where m = pα1

1 . . . pαr
r , then usingthe Chinese Remainder theorem we have determined the value ind∗nmodulo m, whih gives ind∗n beause of 1 ≤ ind∗n ≤ m. Thus toompute ind∗n we use O((logm)4 + (log p)3(α1p1 + · · · + αrpr)) ≤

O((logm)4 + (log p)3(α1 + · · · + αr) max
1≤i≤r

pi) ≤ O((log p)4 max
1≤i≤r

pi) bitoperations. 22



Let us see the proof of that ind∗n an be omputed modulo primepower divisors qα of m by O(αq(log p)3) bit operations. We will provethis by indution on α. When α = 0 the statement is trivial. Supposethat we already know ind∗n modulo qi:ind∗n ≡ s (mod qi).From this we ompute ind∗n modulo qi+1 by O(q(log p)3) bit opera-tions if qi+1 | m. In order to prove this statement we will use thefollowing lemma, whih is a trivial onsequene of the properties ofthe primitive roots and Fermat's theorem.Lemma 6 qα | m. Thenind∗n ≡ s (mod qα)holds if and only if
n/gsx is a perfet qα-th power modulo pwhih is equivalent with

(n/gsx)(p−1)/qα ≡ 1 (mod p). (22)By Lemma 6 we have that n/gsx is a perfet qi-th power. ByLemma 6, using (22), we hek that whih of the numbers
n/gsx, n/g(s+qi)x, n/g(s+2qi)x, . . . , n/gs+(q−1)qixis a perfet qi+1-th power. This takes O (q(log p)3) bit operations.There is surely one whih is a perfet qi+1-th power, beause s, s +23



qi, . . . , s+(q−1)qi run over the residue lasses modulo qi+1 whih areongruent to s modulo qi. By Lemma 6, n/gs+jpix is a perfet pi+1-thpower if and only if ind∗n ≡ s+ jqix (mod qi+1). This ompletes theproof of the statement.4 An extension of an inequality of Mauduitand SárközyC. Mauduit and A. Sárközy [10℄ expressed the onnetion betweenthe well-distribution measure and the orrelation measure of order 2in a quantitative form: For all EN ∈ {−1,+1}N

W (EN) ≤ 3
√

NC2(EN). (23)They also gave a onstrution for whih W (EN) ≫
√

NC2(EN ).Their result shows that (23) is sharp apart from a onstant fator.The following theorem generalizes (23) for the orrelation measures ofhigher order:Theorem 5 For all EN ∈ {−1,+1}N , 3ℓ2 ≤ N we have
W (EN) ≤ 3ℓN1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) .By Theorem 3 we get for N = p− 1:

Cℓ(EN ) ≪ℓ k
ℓ(ℓ+1) p

mℓ
(24)if m < p1/(2ℓ)

(log p)1+1/ℓ . We will see that if ℓ is even, m is odd and smallenough, then by Theorem 5 and Theorem 1 we have that the upper24



bound in (24) is sharp apart from a onstant fator. Thus in ase ofeven ℓ and odd m Constrution 1 provides a natural example for asequene whose orrelation measures of small orders are small whilethe well-distribution measure is possibly large. Indeed, by Theorem 1if m < 1
2k
p1/2/(log p)2 we have

W (Ep−1) ≫
p

m
.By Theorem 5 we �xed

p

m
≪ W (EN) ≪ ℓp1−1/(2ℓ) (C2ℓ(EN))1/(2ℓ) ,whih implies

1

ℓ2ℓ

p

m2ℓ
≪ C2ℓ(EN).Comparing this with (24) we get that Theorem 5 is sharp apart from aonstant fator. While the onstrution of A. Sárközy and C. Mauduit[10℄ showing that (23) is sharp used probabilisti methods, Constru-tion 1 is expliit.Proof of Theorem 5The proof is nearly the same as in [10℄, however we have to handlelarger produt of ei's than in [10℄.Let

W (EN) =

t−1
∑

j=0

ea+jb =
∑

a≤i<m
i≡a (mod b)

ei

25



where m = a+ tb ≤ N + b. If N < i ≤ N + b, let ei = 1. Then
(W (EN))2ℓ =

(

∑

a≤i<m
i≡a (mod b)

ei

)2ℓ

≤
b−1
∑

h=0

(

∑

a≤i<m
i≡h (mod b)

ei

)2ℓ

=
∑

r≤2ℓ, a≤i1<i2<···<ir<m
i1≡i2≡···≡ir (mod b)

Xr · ei1ei2 . . . eir

=
∑

j≤ℓ, a≤i1<i2<···<i2j<m
i1≡i2≡···≡i2j (mod b)

X2j · ei1ei2 . . . ei2j
. (25)Here r ≤ 2ℓ beause originally all the produts are in the form of

eα1
1 . . . e

αm−1

m−1 (where α1 + · · · + αm−1 = 2ℓ) but eαi
i = 1 if αi is evenand eαi

i = ei if αi is odd. The sum α1 + · · ·+αm−1 = 2ℓ is even, so thenumber of odd αi's is even. Thus in (25) we may suppose that r = 2jwhere j ∈ N.Let s denote the number of i's with a ≤ i < m and for whih ibelongs to a �xed residue lass modulo b (here s is the number of theterms in∑ a≤i<m
i≡h (mod b)

ei for any h, s does not depend on h on the valueof the �xed residue lass). Using the multinomial theorem:
X2j =

∑

α1+···+αs=2ℓ
α1,...,α2j are odd

α2j+1,...,αs are even (2ℓ)!

α1! . . . αs!
≤

∑

α1+···+αs=2ℓ
α1,...,α2j are odd

α2j+1,...,αs are even(2ℓ)!.For 1 ≤ i ≤ 2j let αi = 2βi −1 and for 2j+1 ≤ i ≤ s let αi = 2βi −2.Then
X2j ≤ (2ℓ)!

∑

β1+···+βs=s+ℓ−j
∀i: βi>0

1 = (2ℓ)!

(

s+ ℓ− j − 1

s− 1

)

≤ (2ℓ)!

(ℓ− j)!
(s+ ℓ− j − 1)ℓ−j ≤ (2ℓ)ℓ+j(s+ ℓ− j − 1)ℓ−j

≤ (2ℓ)ℓ+j(N + ℓ)ℓ−j = 2ℓ+jℓℓ+j(N + ℓ)ℓ−j. (26)26



By (25) and the triangle-inequality we have
(W (EN))2ℓ ≤

ℓ
∑

j=0

|X2j |
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)

∣

∣

∣

∣

∣

∣

m−1−d2j−1
∑

i=a

eiei+d1 . . . ei+d2j−1

∣

∣

∣

∣

∣

∣

. (27)By the de�nition of the orrelation measure we have:
∣

∣

∣

∣

∣

∣

m−1−d2j−1
∑

i=a

eiei+d1 . . . ei+d2j−1

∣

∣

∣

∣

∣

∣

≤ C2ℓ(EN) + 1.Thus from (26) and (27) we obtain
(W (EN))2ℓ ≤

ℓ
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ−j
∑

1≤d1<d2<···<d2j−1<m−a
0≡d1≡d2≡···≡d2j−1 (mod b)

(C2j(EN ) + 1)

=

ℓ
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ−jN2j−1(C2j(EN ) + 1)where by de�nition C0(EN ) = N . Using that for 1 ≤ j ≤ ℓ − 1

C2j(EN) ≤ N we obtain
(W (EN))2ℓ ≤

ℓ−1
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ+j +4ℓℓ2ℓN2ℓ−1(C2ℓ(EN)+1). (28)By 1 + x ≤ ex we have
ℓ−1
∑

j=0

2ℓ+jℓℓ+j(N + ℓ)ℓ+j = 2ℓℓℓ(N + ℓ)ℓ
ℓ−1
∑

j=0

2jℓj(N + ℓ)j

= 2ℓℓℓ(N + ℓ)ℓ(1 + 2ℓ(N + ℓ))ℓ−1

= 22ℓ−1ℓ2ℓ−1N2ℓ−1

(

1 +
ℓ

N

)ℓ(

1 +
2ℓ2 + 1

2ℓN

)ℓ−1

≤ 22ℓ−1ℓ2ℓ−1N2ℓ−1e2ℓ2/N ≤ 4ℓℓ2ℓ−1N2ℓ−1.27



From this and (28) we obtain
(W (EN))2ℓ ≤ 4ℓℓ2ℓN2ℓ−1(C2ℓ(EN) + 1 +

1

ℓ
) ≤ 9ℓℓ2ℓN2ℓ−1C2ℓ(EN),whih proves Theorem 5.I would like to thank to Professor András Sárközy for the valuabledisussions and to the referee Christian Elsholtz for his areful readingand onstrutive omments.Referenes[1℄ R. Ahlswede, C. Mauduit, A. Sárközy, Large families of pseudo-random sequenes of k symbols and their omplexity, Part I, PartII., Proeedings on General Theory of Information Transfer andCombinatoris, to appear.[2℄ R. Ahlswede, L.H. Khahatrian, C. Mauduit, A. Sárközy, A om-plexity measure for families of binary sequenes, Periodia Math.Hungar. 46 (2003), 107-118.[3℄ J. Cassaigne, C. Mauduit, A. Sárközy, On �nite pseudorandombinary sequenes VII: The measures of pseudorandomness, AtaArith. 103 (2002), 97-118.[4℄ L. Goubin, C. Mauduit, A. Sárközy, Constrution of large familiesof pseudorandom binary sequenes, J. Number Theory, to appear.28



[5℄ K. Gyarmati, On a family of pseudorandom binary sequenes,Periodia Math. Hungar., to appear.[6℄ K. Gyarmati, On a pseudorandom property of binary sequenes,The Ramanujan Journal, to appear.[7℄ D. R. Heath-Brown, Zero-Free Regions for Dirihlet L-Funtionsand the Least Prime in an Arithmeti Progression, Pro. LondonMath. So. 64, (1992), 265-338.[8℄ N. Koblitz, A ourse in number theory and ryptography, Gradu-ate Texts in Mathematis 114, Springer-Verlag, New-York, 1994.[9℄ C. Mauduit, A. Sárközy, On �nite pseudorandom binary se-quenes I: Measures of pseudorandomness, the Legendre symbol,Ata Arith. 82 (1997), 365-377.[10℄ C. Mauduit, A. Sárközy, On the measures of pseudorandomnessof binary sequenes, Disrete Math. 271 (2003), 195-207.[11℄ C. Mauduit, J. Rivat, A. Sárközy, Constrution of pseudorandombinary sequenes using additive haraters, Monatshefte Math.,to appear.[12℄ S. C. Pohlig, M. E. Hellman, An improved algorithm for om-puting logarithms over GF(p) and its ryptographi signi�ane,IEEE Trans. Information Theory 24 (1978), 106-110.[13℄ A. Sárközy, A �nite pseudorandom binary sequene, Studia Si.Math. Hungar. 38 (2001), 377-384.29



[14℄ A. Weil, Sur les ourbes algébriques et les variétés qui s'en dé-duisent, At. Si. Ind. 1041, Hermann, Paris, 1948.

30


