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Abstract

A large family of pseudorandom sequences is constructed in
[7] by using the modulo m residues of the discrete logarithm.
Here I prove sharper bounds for the correlation measures than
in [7] using only one further assumption on the polynomial used
in the construction, namely we will assume that it has no mul-
tiple roots. The proofs are similar as in [7], only minor changes

are made to obtain this sharper result.
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1 Introduction

C. Mauduit and A. Sarkézy |5, pp. 367-370| introduced the fol-
lowing measures of pseudorandomness of binary sequences:

For a finite binary sequence Ey = {ej,es,...,ex} € {—1,+1}¥
write

U EN,t a, b Zea—l—]b

and, for D = (dy, ..., d;) with non-negative integers d; < - - - < d,

V(EN, M, D) = Z €n+dlen+d2, PN en_|_dk.

Then the well-distribution measure of Ex is defined as

E €a+5b

where the maximum is taken over all a, b,t such that a,b,t € N and

I

W(Ey) = maX|U(EN(t a,b)| = max

1<a<a+ (t—1)b < N. The correlation measure of order k of Ey

is defined as

M
Cv(En) = max \V(En,M,D)| = max Z€n+d1€n+d2a e Cntdy |
n=1
where the maximum is taken over all D = (dy,dy, . ..,d;) and M such

that M +d, < N.

A sequence Ey is considered as a “good” pseudorandom sequence if
each of these measures W (Ey), Cx(Ex) (at least for small k) is “small”
in terms of N (in particular, all are o(N) as N — 00). Indeed, it

was proved in [2, Theorem 1, 2| that for a truly random sequence

Ey C {—1,+1}" each of these measures is < \/Nlog N and > v/N.
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Later Alon, Kohayakawa, Mauduit, Moreira and R6dl [1] improved on
these bounds.

Numerous binary sequences have been tested for pseudorandom-
ness by J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkozy,
and large families of pseudorandom binary sequences have been con-
structed first by L. Goubin, C. Mauduit, A. Sarkozy [4]. I gave further
construction of this type in [6], [7].

Let p be an odd prime and g be a fixed primitive root modulo p,
and for (n,p) = 1 ind n denotes the index or discrete logarithm of n

modulo p. Thus ind n is defined as the unique integer with

g™ " =n (mod p), (1)

and 1 <ind n < p — 1. Using the discrete logarithm I introduced a
new large family of pseudorandom sequences with strong pseudoran-
dom properties in [6]. However the sequences in this family can be
generated very slowly, so in |7] I slightly modified the construction so
that the new family can be generated much faster. In this paper I
will improve on results in [7]. Recently the discrete logarithm is used
more and more frequently in cryptography. Chen Li and Xiao [3] gen-
eralized the pseudorandom constructions based on the notion of index
using elliptic curves. Throughout this paper we will use the following:
Notation Let p be an odd prime, g be a fized primitive root modulo
p. Define ind n by (1). Let f(X) € F,[X] be a polynomial of degree

k > 1 which has no multiple roots. Moreover, let
m|p—1
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with m € N, and let z be coprime with m: (x,m) = 1.
The crucial idea of the new, faster construction defined in [7] was

to reduce ind n modulo m:

Construction 1 Letind*n denote the following function: For all1 <

n<p-—1, let
indn=2z-ind'n (mod m) and 1 < ind*n <m

(ind*n ezists since (xr,m) = 1.) Define the sequence E, ; =
{e1,...,ep_1} by

+1 if 1 <ind*f(n) < %,
€n = (2)
-1 if 2 <ind*f(n) <m orp| f(n).
Note that this construction also generalizes the Legendre symbol

construction described in [4] and [5]. Indeed in the special case m =

2, © =1 the sequence e, defined in (2) becomes

+1if (1) = -1,

-1 if (é) =1lorp]| f(n).

In [7], T proved that this construction has good pseudorandom

€n, =

properties: each of the measures W(E, 1), Cig(E,_1) is less than
pt/ 2(log p)¢ under certain conditions on the polynomial f. However
in Theorem 3 in [7] for the correlation measure we obtained an upper
bound which is optimal only for large m. Indeed, there the following
was proved:

Theorem A Suppose that m is even, or m is odd with 2m | p — 1,

and at least one of the following 4 conditions holds:
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a) f is irreducible;

b) If f has the factorization f = T p5* ... @& over F, where o; € N
and the @;’s are irreducible over I, , then there exists a [ such

that exactly one or two of ¢;’s have the degree (;
c) L=2
d) (40)% <p or (4k)t < p.

Then

g!ke(e—i-l)

Co(Ep—1) < 9k£4"p'*(log p)**' + p. (3)

mt

If m is odd, then it is proved in section 4 in [7] that

p
CZ(EP*I) > Wﬁ

thus the second term in (3) can not be dropped completely. If m is
even, I will improve on Theorem A under the further assumption that

f(z) has no multiple roots.

Theorem 1 Suppose that m is even, and at least one of the conditions
a), b), ¢) and d) holds in Theorem A. Moreover we suppose that all
conditions assumed in the Notation hold, in particular, f(X) € F,[z]

has no multiple roots. Then
Co(Ep 1) < 9kL4*p'%(log p)t+!, (4)
(4) is considerably sharper than (3) if

m2€+5 < p.
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Then the second term is much larger than the first term in (3). In
particular, for m = O(1) the second term is > p, so (3) becomes

trivial, while our Theorem 1 still gives good upper bound.

2 Proof of Theorem 1.

Consider any D = {d1,ds, . .., d;} with non-negative integers d; <
dy < --- < dy; and positive integers M with M + dy < p — 1. Then
arguing as in the proof of Theorem 2 in [7] (formulas (11) and (12))

we have

\V(Ew, M, D)| < 9k£4°p'/?(log p)“**

2[ m/2
+ o > - I { 2o
1<41,...,0p<m, j=1 \l;=1
FOL(netdn) fOL(ntdy) is
a perfect m-th power
= 9kt P (logp) ™ + ) . (5)

We will prove that ), is empty, which follows from the following

lemma:

Lemma 1 Suppose that the conditions of Theorem 1 hold. Then if
1<61,...,60<m—1, and fo*(n+dy)--- f(n+dy) is a perfect m-th
power, then

m|51, (52,...,5@.

Indeed, this is a a sharpened version of Lemma 4 in [7]. Assuming
the further condition that f(z) has no multiple roots in F,, we will be

able to prove this stronger result.



If >, is empty then by (5) we have
|V(Ex, M, D)| < 9k£4*p'/? (logp)*™,

which proves Theorem 1.
Thus it remains to prove Lemma 1. We will need the following

definition and lemma:

Definition 1 Let A and B be multi-sets of the elements of Z,. If
A+ B represents every element of Z, with multiplicity divisible by m,

i.e., for all c € Z,, the number of solutions of
a+b=c a€ A beB

(the a’s and b’s are counted with their multiplicities) is divisible by m,

then the sum A+ B is said to have property P.

Lemma 2 Let A = {a1,0as,...,a,}, D = {dy1,ds,...,de} C Zy. If
one of the following two conditions holds:

(i) min{r, ¢} <2 and max{r,{} <p—1,

(ii) (40)" < p or (4r)¢ < p,

then there exist ¢i,...,¢, € Z, and a permutation (qi,...,q) of

(dy,-..,dg) such that for all1 < i</
a+d=c; ace A, deD

has at least one solution, and the number of solutions is less than
or equal to i. Moreover for all solutions a € A, d € D we have

de{q,q-..,¢}, and d = q;, a = ¢; — ¢; is always a solution.
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Proof of Lemma 2

This is Lemma 5 in [7].

Now we return to the proof of Lemma 1. The following equivalence
relation was defined in [4] and also used in [6] and [7]: We will say
that the polynomials ¢(X),¥(X) € F,[X] are equivalent, ¢ ~ 1, if
there is an a € F, such that ¢(X) = ¢(X + a). Clearly, this is an
equivalence relation.

Write f(X) as the product of irreducible polynomials over F,. Let
us group these factors so that in each group the equivalent irreducible
factors are collected. Consider a typical group ¢(X + ay),..., (X +
a,). Then f(X) is of the form f(X) = (X +a1)--- (X + a,)g(X)
where ¢g(X) has no irreducible factors equivalent with any ¢(X + a;)
(1<i<r).

Let h(X) = fo(X +dy)--- f%(X + dy) be a perfect m-th power
where 1 < §y,...,0; < m. Then writing h(z) as the product of irre-
ducible polynomials over F,, all the polynomials ¢(X + a; + d;) with
1<i<r, 1< j </ occur amongst the factors. All these polyno-
mials are equivalent, and no other irreducible factor belonging to this
equivalence class will occur amongst the irreducible factors of h(X).

Since distinct irreducible polynomials cannot have a common zero,
each of the zeros of h(X) is of multiplicity divisible by m, if and
only if in each group, formed by equivalent irreducible factors p(X +
a; + d;) of h(X), every polynomial of form ¢(X + ¢) occurs with

multiplicity divisible by m. In other words, writing A = {a4,...,a,},



D ={dy,...,dy,...,dys,...,d¢} where d; has the multiplicity ¢; in D
(h(X) = foYX +dy)--- fO(X +dy) is a perfect m-th power), then for
each group A + D must possess property P.

Let D' be the simple set version of D, more exactly, let D' =
{di,...,d¢}. A and D' satisfy the conditions of Lemma 2. So by
Lemma 2 for the sets A and D' we have the following: There ex-
ist ¢1,...,¢ € Z, and a permutation (qi,...,q) = (dj,,...,d;,) of

(dy,...,dy) such that if
a+d=c¢ a€A deD,

then we have

de{aq,.--, ¢} =1{dj,...,d;}
and d = ¢;, a = ¢;—gq; is a solution. Here (ji, .. ., j¢) is a permutation of
(1,...,£). Define the p;’s by p; = 6;, (so (p1,---,pe) = (0j,,-..,0;,) is
the same permutation of (d1,...,d,) as the permutation (gq,...,q) =
(dj,,-..,dj,) of (di,...,d;)). Returning to the multi-set case, using

this notation we get that the number of the solutions

a+d=¢ a€A deD
is of the form

€i1P1 T EiaP2 + -+ Eiipi
where ¢;; € {0,1} for 1 < j <iand g;; = 1. (We study the number
of solutions by multiplicity since D is a multi-set).

Since A + D possesses property P for all 1 < i < £ we have
m | €i1p1 + €i2p2 + - + Eiipi. (6)
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By induction on ¢ we will prove that

m | pi. (7)

Indeed, for i = 1 by (6) and €;7 = 1 we get m | p;. We will prove
that if (7) holds for i < j — 1, then it also holds for i = j.

By the induction hypothesis we have

m|p17 m|P2; SRR m|pj—1-

Using this and (6) for i = j we get:

which was to be proved.
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