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Abstract

In the applications it may occur that our initial pseudorandom bi-

nary sequence turns out to be not long enough, thus we have to take

the concatenation or merging of it with another pseudorandom binary

sequences. Here our goal is study when can we form the concatena-

tion of several pseudorandom binary sequences belonging to a given

family? We introduce and study new measures which can be used for

answering this question.
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In a series of papers C. Mauduit and A. Sárközy (partly with coauthors)

studied finite pseudorandom binary sequences

EN = {e1, e2, . . . , eN} ∈ {−1, +1}N .

In particular, in part I [14] first they introduced the following measures

of pseudorandomness:

Write

U(EN , t, a, b) =

t−1
∑

j=0

ea+jb

and, for D = (d1, . . . , dk) with non-negative integers d1 < · · · < dk,

V (EN , M, D) =
M

∑

n=1

en+d1en+d2 , . . . en+dk
. (1)

Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤

a + (t − 1)b ≤ N , while the correlation measure of order k of EN is defined

as

Ck(EN) = max
M,D

|V (EN , M, D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 . . . en+dk

∣

∣

∣

∣

∣

(2)

where the maximum is taken over all D = (d1, d2, . . . , dk) and M such that

1 ≤ d1 < d2 < · · · < dk < M + dk ≤ N .

Then the sequence EN is considered as a “good” pseudorandom sequence

if both these measures W (EN) and Ck(EN ) (at least for small k) are “small”

in terms of N (in particular, both are o(N) as N → ∞).
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The goal of this paper is introducing new measures of families of binary

sequences. First Anantharam [3] studied correlation measure of a family.

Here we will extend his definition. We may expect that if the correlation

measure of a family is small, then the sequences in the family are independent

in some sense.

Definition 1 Let F ⊆ {−1, +1}N be a large family of pseudorandom binary

sequences. The f -correlation measure of order k of F is defined by

Ck(F)
def
= max

1≤ℓ≤k, E
(1)
N ,E

(2)
N ,...,E

(ℓ)
N

Ck({E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N }),

where the maximum is taken over all 1 ≤ ℓ ≤ k, different

E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N ∈ F , and where {E

(1)
N , E

(2)
N , . . . , E

(ℓ)
N } ∈ {−1, +1}ℓN

is a binary sequence of length ℓN obtained by writing the elements of

E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N successively.

Clearly we have

Proposition 1 If F and G are large families of pseudorandom binary se-

quences with G ⊆ F then Ck(G) ≤ Ck(F).

In this paper our goal is to study the importance and applicability of this

measure. First I will present a short survey of some related results and facts.

Numerous binary sequences have been tested for pseudorandomness by

J. Cassaigne, L. Goubin, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy.

In the best constructions we have W (EN) ≪ N1/2(log N)c1 and Ck(EN ) ≪
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N1/2(log N)ck , where c1, c2, . . . are positive constants. However, the first con-

structions produced only a “few” pseudorandom sequences; usually for a fixed

integer N , the construction provides only one pseudorandom sequence EN

of length N . First L. Goubin, C. Mauduit and A. Sárközy [7] succeeded in

constructing large families of pseudorandom binary sequences. Their con-

struction was the following:

Construction 1 Suppose that p is a prime number, and f(x) ∈ Fp[x] is a

polynomial with degree k > 0 and no multiple zero in Fp. Define the binary

sequence Ep = {e1, . . . , ep} by

en =











(

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n)
(3)

(where
(

n
p

)

denotes the Legendre symbol).

It turns out that under some not too restrictive conditions on p or the

degree of the polynomial the pseudorandom measures of Ep are small. Indeed

Goubin, Mauduit and Sárközy [7] proved the following

Theorem A If p is a prime and f(x) is a polynomial as it is described in

Construction 1, then for the sequence Ep defined by (3) we have

W (Ep) < 10kp1/2 log p.

Moreover, assume that for ℓ ∈ N one of the following assumptions holds:

(i) ℓ = 2;

4



(ii) ℓ < p and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then we also have

Cℓ(Ep) < 10kℓp1/2 log p.

Since then numerous other large families of pseudorandom sequences have

been constructed see [8], [9], [10], [11], [12] and [13].

In many applications it is not enough to know that the family contains

many binary sequences with strong pseudorandom properties; it is also im-

portant that the family has a “rich”, “complex” structure, there are many

“independent” sequences in it. Ahlswede, Khachatrian, Mauduit and Sárközy

[1] introduced the f -complexity (“f ” for family):

Definition 2 The complexity C(F) of a family F of binary sequences EN ∈

{−1, +1}N is defined as the greatest integer j so that for any 1 ≤ i1 < i2 <

· · · < ij ≤ N , and for any ε1, ε2, . . . , εj ∈ {−1, +1}j, we have at least one

EN = {e1, . . . , eN} ∈ F for which

ei1 = ε1, ei2 = ε2, . . . , eij = εj .

It is clear from Definition 1 that for j < C(F), there exist at least 2C(F)−j

sequences EN ∈ F with

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

However, the high f -complexity ensures only that the family contains

many “independent” sequences in this sense, it does not ensure that any pair
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of sequences in the family are independent. Next we will show an example for

a family, where the f -complexity is large, but there are certain connections

between almost any pair of sequences.

Example 1 Let 3 | N and EN = {e1, e2, . . . , eN} ∈ {−1, +1}N be a truly

random sequence. Define the family F(EN) of binary sequences in the fol-

lowing way:

F(EN) ={{e1f1, e2f2, . . . , eNfN} : {f1, f2, . . . , fN} ∈ {−1, +1}N and

|{i : fi = 1}| = N/3}.

Since EN = {e1, e2, . . . , eN} is a truly random sequence, for arbitrary se-

quence {f1, f2, . . . , fN} the sequence {e1f1, e2f2, . . . , eNfN} is a random type

sequence. Thus F(EN) consists of random type sequences. Similarly to [5]

(however, the proof would be lengthy) it can be seen that almost all sequences

from F(EN) have strong pseudorandom properties.

The well-known Vernam cipher algorithm uses {0, 1} sequences. In our

example we have {−1, +1} sequences. These sequences can be used as a

keystream in a variant of the Vernam cipher, where we use multiplication ev-

erywhere in place of modulo 2 addition. In other words, we encrypt a message

{m1, m2, . . . , mN} ∈ {−1, +1}N by a keystream {e1f1, e2f2, . . . , eNfN} ∈

F(EN) so that the encrypted message is {m1e1f1, m2e2f2, . . . , mNeNfN}.

One obvious drawback of the Vernam-cipher is that it is not recom-

manded to use the same keystream twice. For similar reasons, no two
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messages {m1, . . . , mN} and {m′
1, . . . , m

′
N} can be encrypted by two dif-

ferent keystreams from F(EN). Indeed, suppose that {m1, . . . , mN} is en-

crypted by {e1f1, e2f2, . . . , eNfN} ∈ F(EN) and {m′
1, . . . , m

′
N} is encrypted

by {e1f
′
1, e2f

′
2, . . . , eNf ′

N} ∈ F(EN). Then the two encrypted messages

are {m1e1f1, m2e2f2, . . . , mNeNfN} and {m′
1e1f

′
1, m

′
2e2f

′
2, . . . , m

′
NeNf ′

N}. We

can take the termwise product of the two encrypted messages which

is {m1e1f1m
′
1e1f

′
1, . . . , mNeNfNm′

NeNf ′
N} = {m1m

′
1f1f

′
1, . . . , mNm′

NfNf ′
N}.

Since in both {f1, . . . , fN} and {f ′
1, . . . , f

′
N} the rate of +1’s and -1’s is 1 : 2,

by a simple computation we see that in the sequence {f1f
′
1, . . . , fNf ′

N} the

rate of +1’s and -1’s is usually around 5 : 4. This fact may help the eaves-

dropper to find out the messages {m1, m2, . . . , mN} and {m′
1, m

′
2, . . . , m

′
N}.

Clearly the f -complexity of F(EN) is large: N/3. We have seen that

every sequence in the family is random-type and the f -complexity is large,

but in certain applications, for example in the variant of the Vernam-cipher

we may use at most one sequence from F(EN) as a keystream. This shows

that the f -complexity is not enough to guarantee the secure applicability of

the family, one also needs the introduction of further measures. In certain

applications we need at least a weak independence of all sequences used in the

applications. We may expect that the small f -correlation measures assure

this weak independence.

I would like to thank Professors László Csirmaz and András Sárközy for

the valuable discussions.

7



2 Theorems

Next we study the f -correlation measure of the large family of pseudo-

random binary sequences introduced by Goubin, Mauduit and Sárközy in

[7].

Proposition 2 Let p be a prime number and R ∈ N. Consider all the

polynomials f(x) ∈ Fp[x] with leading coefficient 1, which has no multiple

roots and

0 < deg f(x) ≤ R,

where deg f(x) denotes the degree of f(x). For each of these polynomi-

als f(x), consider the binary sequence Ep = Ep(f) = {e1, e2, . . . , ep} ∈

{−1, +1}p defined by (3), and let F1 denote the family of all binary sequences

obtained in this way. Then

C2(F1) ≥ p − 1.

Clearly F1 contains many independent sequences, but a few sequences from

F1 are not independent. For example Ep(f(x)) = {e1, e2, . . . , ep} and

Ep(f(x + 1)) = {e2, e3, . . . , ep, e1} are both members of the family F1 and

we may get Ep(f(x)) by shifting to left by 1 the elements of Ep(f(x + 1)).

Using this property we see that the f -correlation will be large. By using the
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function V defined in (1)

C2(F) ≥ C2({Ep(f(x)), Ep(f(x + 1))})

≥ |V ({Ep(f(x)), Ep(f(x + 1))}, p − 1, (1, p))| =
∣

∣e2
2 + e2

3 + · · ·+ e2
p

∣

∣

= p − 1.

Remark 1 Similarly it is easy to prove that for a ∈ Fp

C2({Ep(f(x)), Ep(f(x + a))}) ≥ ⌈p/2⌉ .

This shows that if the f -correlation measure is smaller than p/2, then we

may use at most one of the polynomial f(x), f(x+1), . . . , f(x+p−1) in the

construction.

f(x), f(x + 1), . . . , f(x + p − 1) are polynomials of the same degree r. If

this degree r < p, then there exists exactly one polynomial f(x + a) with

a ∈ Fp such that the coefficient of xr−1 is 0. Next we restrict our family to

such polynomials.

Theorem 1 Let p be an odd prime number and R ∈ N, R < p. Consider all

the polynomials f(x) ∈ Fp[x] which have no multiple roots,

0 < deg f(x) ≤ R

and f(x) is of the form

f(x) = xr + ar−2x
r−2 + ar−3x

r−3 + · · ·+ a1x + a0 with 1 ≤ r ≤ R, ai ∈ Fp,

so that the coefficient of the term xdeg f−1 is ar−1 = 0. For each of these poly-

nomials f(x), consider the binary sequence Ep = Ep(f) = {e1, e2, . . . , ep} ∈
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{−1, +1}p defined by (3), and let F2 denote the family of all binary sequences

obtained in this way. (Clearly F2 ⊆ F1, where F1 is a family defined in

Proposition 2.) Then

C2(F2) ≤ 80Rp1/2 log p.

Viktória Tóth [19] also studied the independence of pairs of sequences. She

introduced the distance of two sequences. The correlation measure of order

2 gives an upper bound for the difference of p/2 and this distance, but the

reverse is not true. For example, the distance of Ep(f(x)) and Ep(f(x + 1))

is around p/2, but we have seen that C2({Ep(f(x)), Ep(f(x + 1))}) is large.

Theorem 1 is very useful when a weak independence of pairs of sequences

is required, but we do not need the independence of 3 or more sequences.

However, small f -correlation measure of order 2 does not give full security.

In the next theorem we give a family which has small f -correlation measure

of order 2, but knowing enough elements of a sequence from the family we

can compute the other elements of the sequence relatively quickly.

Theorem 2 Let p be a prime number and R ∈ N, R < p. Consider all the

polynomials f(x) ∈ Fp[x], where

0 < deg f(x) ≤ R

and f(x) is of the form

f(x) = (x − α1)(x − α2) · · · (x − αr)

with 1 ≤ r ≤ R, αi ∈ Fp and α1 + α2 + · · · + αr = 0 (4)
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(so that f(x) splits into linear factors over Fp and the coefficient of the term

xdeg f−1 = xr−1 is ar−1 = 0). For each of these polynomials f(x), consider

the binary sequence Ep = Ep(f) = {e1, e2, . . . , ep} ∈ {−1, +1}p defined by

en =















(

f(n)
p

)

if p ∤ f(n), i.e., n 6= α1, α2, . . . , αr,
r
∏

i=1
i6=s

(

αs−αi

p

)

if n = αs,

and let F3 denote the family of all binary sequences obtained in this way.

Then

C2(F3) ≤ 80Rp1/2 log p. (5)

Assume that somebody knows the values of en1 , en2 , . . . , ent. Let w =

2
[

2p1−1/(R+1)
]

+ 1. For |m| < p1−1/(R+1), m 6= 0 let Am be a w × t ma-

trix whose entries are ai,j = 1 if
(

mnj−i

p

)

= −1, otherwise aij = 0 for

j = 1, 2, . . . , t and i = −
[

2p1−1/(R+1)
]

,−
[

2p1−1/(R+1)
]

+1, . . . ,
[

2p1−1/(R+1)
]

.

Let ρ denote the maximum of the ranks of the matrices Am. Then know-

ing the values of en1 , en2, . . . , ent one can compute the other elements of the

sequence by O(2w−ρt2w2) bit operations.

Remark 2 I was not able to estimate the rank of the matrices Am, but for

t ≥ w we may expect that the rank of the w×t matrices Am is min{w, t} = w,

ρ = w, so we can compute the elements of the sequence by O(t2w2) = o(p4)

bit operations. We note that sometimes more sequences may exist with

the fixed values en1 , en2, . . . , ent . Indeed take two polynomials of type (4),

denote the associated sequences by Ep(f) = {e1, e2, . . . , ep} and Ep(f
′) =
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{e′1, e
′
2, . . . , e

′
p}. We fix the places n1, n2, . . . , nt with

eni
= e′ni

= 1. (6)

The number of such ni’s is around p/4. Clearly then both Ep(f) and Ep(f
′)

satisfy (6).

Theorem 2 is totally novel, usually it is not studied that from how many

elements one may find out the other elements of the sequence. On the other

hand Theorem 2 is not very useful in the applications since only from p1−c

(where c > 0 is small) elements one can compute the other elements of the

sequence. Moreover the sizes of the matrices Am’s are very large in Theorem

2.

By Theorem 2 if the rank of the matrices Am is large, one can compute

the elements of the sequence relatively quickly. One explanation of this

phenomenon can be that the f -correlation measure of higher order than 2 is

large. Indeed, we will prove

Theorem 3 For the family F3 defined in Theorem 2 and for k ≥ 3 we have

Ck(F3) ≥ p.

Fortunately, F2 has a large subfamily for which the f -correlation is always

small.

Theorem 4 Let p be a prime number and R ∈ N, R < p. Consider all the

polynomials f(x) ∈ Fp[x] which are irreducible,

0 < deg f(x) ≤ R (7)
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and f(x) is of the form

f(x) = xr+ar−2x
r−2+ar−3x

r−3+· · ·+a1x+a0 with 1 ≤ r ≤ R, ai ∈ Fp, (8)

so the coefficient of the term xdeg f−1 = xr−1 is ar−1 = 0. For each

of these polynomials f(x), consider the binary sequence Ep = Ep(f) =

{e1, e2, . . . , ep} ∈ {−1, +1}p defined by (3), and let F4 denote the family

of all binary sequences obtained in this way. (Clearly F4 ⊆ F1, where F1 is

the family defined in Proposition 2.) Then for k ≥ 2

Ck(F4) ≤ 10Rk22k−1p1/2 log p.

Theorem 4 gives a non-trivial upper bound if R = o
( √

p

2kk2 log p

)

. Then F4

has strong pseudorandom properties. (Here we prove a strong upper bound,

while by computer it is very slow to compute even the f -correlation measures

of small orders.)

The construction of irreducible polynomials over Fp (which we need in

Theorem 4) is an important and difficult subject (see for example [4], [6],

[15], [16], [18]).

In order to avoid construction of irreducible polynomials we also introduce

the weak f -correlation measure. Here we do not consider the correlation

measure of all ℓ-tuples
(

E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N

)

just certain ℓ-tuples.

Definition 3 Let F ⊆ {−1, +1}N be a family of binary sequences. Let H

be a set of ℓ-tuples of different sequences from F with 1 ≤ ℓ ≤ k. Then the
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week f -correlation measure of order k with respect to H is

Wk,H(F)
def
= max

1≤ℓ≤k,
“

E
(1)
N ,E

(2)
N ,...,E

(ℓ)
N

”

∈H
Ck({E

(1)
N , E

(2)
N , . . . , E

(ℓ)
N }),

where the maximum is taken over all 1 ≤ ℓ ≤ k,
(

E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N

)

∈

H, where the sequences E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N are different and where

{E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N } ∈ {−1, +1}ℓN is the binary sequence of length ℓN ob-

tained by writing the elements of E
(1)
N , E

(2)
N , . . . , E

(ℓ)
N successively.

Each of Theorems 1,2 and 4 will be derived from Theorem 5 below:

Theorem 5 Suppose that F ⊆ F1 is a family of pseudorandom binary se-

quences, where F1 is the family defined in Proposition 2. Let H be a set of

ℓ-tuples from F with 1 ≤ ℓ ≤ k, for which the following holds: If

(Ep(f1), Ep(f2), . . . , Ep(fℓ)) ∈ H,

where Ep(fi) ∈ F1 is defined by (3) with fi in place of f , then for 1 ≤ i1 ≤

i2 ≤ · · · ≤ ik ≤ ℓ, ai1 , ai2 , . . . , aik ∈ Fp where ait 6= ais if it = is,

k
∏

j=1

fij(x + aij ) (9)

is never of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x].

Then for the weak f -correlation measure of order k with respect to H we

have

Wk,H(F) ≤ 10Rk22k−1p1/2 log p.

14



Theorem 5 is also useful when we have only few sequences in the family.

Then we need not worry about the irreducibility of the polynomials involved.

We need to check that there is no such product of shifted polynomials which

is of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x]. However the number of

such products can be very large since in (9) the aij ’s may usually take p

different values. The next theorem shows that using the factorization of all

polynomials we need not check that all products
∏k

j=1 fij(x + aij ) are not of

the form cg(x)2 with c ∈ Fp and g(x) ∈ Fp[x].

Theorem 6 Let f1(x), f2(x), . . . , fk(x) ∈ Fp[x]. Suppose that fi(x) factors

as

fi(x) = bi

ri
∏

j=1

(x − α
(i)
j )

over Fp, so that the degree of fi(x) is ri, its leading coefficient is bi, and its

roots are α
(i)
1 , α

(i)
2 , . . . , α

(i)
ri . Define

f̃i(x)
def
= bp

i

ri
∏

j=1

(

x −
(

α
(i)
j

)p

+ α
(i)
j

)

.

Then if
ℓ

∏

j=1

fj(x + aj)

is of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x] then

ℓ
∏

j=1

f̃j(x) (10)

is of the form c̃g̃(x)2 with c̃ ∈ Fp, g̃(x) ∈ Fp[x].
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In (10) there are no aj ’s, so we must check much less products.

Unfortunately the reverse theorem is not true. Consider the polynomials

f1(x) = x(x + 1), f2(x) = x(x + 2), f3(x) = x(x + 3). Then f̃1(x) =

f̃2(x) = f̃3(x) = x2, thus f̃1(x)f̃2(x)f̃3(x) = x6 is of the form c̃g̃(x)2 with

c̃ ∈ Fp, g̃(x) ∈ Fp[x]. On the other hand it is easy to check that there is no

a1, a2, a3 ∈ Fp such that

f1(x + a1)f2(x + a2)f3(x + a3)

is of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x].

This theorem can be used when we have only few polynomials in the

construction. If we have more polynomials or we do not wish to deal with

the factorizations of the polynomials, then Theorem 4 guarantees that using

irreducible polynomials the family has strong f -correlation measure.

3 Proofs

First we assume that Theorem 5 has been proved, and we prove the other

theorems by using Theorem 5.

Proof of Theorem 1

Let H be a set which contains every sequences from F2 and which also

contains every pairs of different sequences from F2.

H = {Ep : Ep ∈ F2} ∪ {(E(1)
p , E(2)

p ) : E(1)
p 6= E(2)

p ∈ F2}.
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Then W2,H(F2) = C2(F2). We would like to apply Theorem 5 for this set H.

In order to apply Theorem 5 we have to show that F2 is a family such that

for every f ∈ F2, a1 6= a2 ∈ Fp the product

f(x + a1)f(x + a2)

is not of the form cg(x)2 with c ∈ Fp and g(x) ∈ Fp[x], and for every

f, h ∈ F2, f 6≡ h, a1, a2 ∈ Fp

f(x + a1)h(x + a2)

is not of the form cg(x)2 with c ∈ Fp and g(x) ∈ Fp[x]. Gauss proved

that in Fp[x] there is a unique factorization (see, for example [17, Theorem

207].) Therefore f(x + a1)h(x + a2) is of the form cg(x)2 with c ∈ Fp

and g(x) ∈ Fp[x] if and only if every irreducible factors appear with even

multiplicity. Since both f(x+ a1) and h(x+ a2) have no multiple roots, thus

it follows that

f(x + a1) = h(x + a2)

or, in equivalent form,

f(x) = h(x + a2 − a1) (11)

In Remark 1 we noted that only one of the polynomials h(x), h(x +

1), . . . , h(x + p − 1) belongs to F2, so only h(x) ∈ F2, thus in (11) we have

a2 − a1 ≡ 0 (mod p), and so f(x) ≡ h(x). Thus the condition of Theorem 5

holds, and using Theorem 5 we get the statement.
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Proof of Theorem 2

The proof of (5) is similar to the proof of Theorem 1, I leave the details

to the reader.

In order to prove the last statement of the theorem, we will use the

following lemma:

Lemma 1 Let p be an odd prime, for a ∈ Z, let rp(a) denote the absolute

least residue of modulo p, i.e., define rp(a) ∈ Z by

rp(a) ≡ a (mod p), |rp(a)| ≤
p − 1

2
.

For k ∈ N, a1, a2, . . . , ak ∈ Zp there exists an integer m 6= 0 such that

|rp(mai)| ≤ 2p1−1/k for i = 1, 2, . . . , k.

Proof of Lemma 1 A variant of this lemma is proved in [7, Lemma 3].

Here we adapt their proof. The lemma is trivial for p ≤ 2p1−1/k. Therefore

we may assume

2p1−1/k < p. (12)

Consider the k-tuples

uj = (rp(ja1), . . . , rp(jak)), j = 1, 2, . . . , p. (13)

Write D =
[

2p1−1/k
]

and Z =
[

p
D

]

+ 1. Then DZ = D
([

p
D

]

+ 1
)

> p,

thus each of the k-tuples in (13), there are uniquely determined non-negative

18



integers t1 = t1(j), . . . , tk = tk(j) such that

rp(jai) ∈ {−
p − 1

2
+ tiD,−

p − 1

2
+ tiD + 1, . . . ,−

p − 1

2
+ (ti + 1)D − 1}

for i = 1, 2, . . . , k

and for these integers ti clearly we have

ti ∈ {0, 1, . . . , Z − 1} for i = 1, 2, . . . , k. (14)

By (12) we have 1 < p
D

. Thus the number of the possible k-tuples

(t1, t2, . . . , tk) with (14) is

Zk =
([ p

D

]

+ 1
)k

<
(

2
p

D

)k

<

(

2
p

p/(2p1−1/k)

)k

= p,

thus there is at least one k-tuple (t1, t2, . . . , tk) which is assigned at least two

distinct j values j1, j2:

t1 = t1(j1) = t1(j2), . . . , tk = tk(j1) = tk(j2). (15)

Then we have

−
p − 1

2
+ tiD ≤ rp(j1ai), rp(j2ai) < −

p − 1

2
+ (ti + 1)D,

whence

|rp(j1ai) − rp(j2ai)| < D for i = 1, 2, . . . , k. (16)

Now define m by m = |j1 − j2| so that, by 1 ≤ j1, j2 ≤ p and j1 6= j2, we

have (m, p) = 1.
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Then it follows from (16) that

|rp(mai)| = |rp((j1 − j2)ai)| ≤ |rp(j1ai) − rp(j2ai)| < D for i = 1, 2, . . . , k

which completes the proof of Lemma 1.

Consider the roots of the polynomial f(x): α1, α2, . . . , αr ∈ Zp. Here

r ≤ R. Using Lemma 1 for 1, α1, α2, . . . , αr we get that there exists an

integer m 6= 0, |m| < 2p1−1/(r+1) < 2p1−1/(R+1) such that

|rp(mαi)| ≤ 2p1−1/(R+1) for i = 1, 2, . . . , r. (17)

Unfortunately we do not know the value of this m. Thus we check all

m = −
[

2p1−1/(R+1)
]

, . . . ,−1, 1, . . . ,
[

2p1−1/(R+1)
]

. For all m we determine

the polynomial f(m−1x) in place of f(x). We know that there is an

m for which (17) holds. Therefore our method is the following: for all

m = −
[

2p1−1/(R+1)
]

, . . . ,−1, 1, . . . ,
[

2p1−1/(R+1)
]

, we compute f(m−1x) by

assuming that for all roots of f(m−1x), for mα1, mα2, . . . , mαr we have

|rp(mαi)| ≤ 2p1−1/(R+1).

From f(m−1x) it is easy to determine f(x) and we check whether for

f(x) the sequence Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1, +1}p is such that

en1 , en2, . . . , ent takes the required ±1 values. If for a polynomial f(x)

one knows the values en1 , en2 , . . . , ent , then one knows that the sequence

Ẽp = Ep(f(m−1x)) = {ẽ1, ẽ2, . . . , ẽp} is such that ẽmn1 = en1 , . . . , ẽmnt = ent ,

so one knows the values of ẽmn1 = en1 , . . . , ẽmnt = ent .
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Let r denote the degree of f(x). Then

∏

i is a root

of f(m−1x)

(x − i) = mrf(m−1x).

Thus for mn1, . . . , mnt we have

∏

i is a root

of f(m−1x)

(mnj − i) = mrf(m−1mnj) = mrf(nj) for j = 1, 2, . . . , t.

If p ∤ f(nj), so nj 6= αs for 1 ≤ s ≤ r, then by taking the Legendre symbol of

both sides we get

∏

i is a root

of f(m−1x)

(

mnj − i

p

)

=

(

mrf(nj)

p

)

=

(

mr

p

) (

f(nj)

p

)

=

(

mr

p

)

enj

for j = 1, 2, . . . , t. Since nj 6= αs for 1 ≤ s ≤ r, mnj 6= mαs for 1 ≤ s ≤ r, so

mnj is not a root of f(m−1x). Thus we write

∏

i is a root

of f(m−1x),
i6=mnj

(

mnj − i

p

)

=

(

mrf(nj)

p

)

=

(

mr

p

)(

f(nj)

p

)

=

(

mr

p

)

enj
(18)

for j = 1, 2, . . . , t. We proved that (18) holds if nj 6= αs for 1 ≤ s ≤ r.

Now we will prove that it also holds for nj = αs. Indeed, since the roots of

f(m−1x) are mα1, mα2, . . . , mαr and nj = αs we have

∏

i is a root

of f(m−1x),
i6=mnj

(

mnj − i

p

)

=
r

∏

i=1
αi 6=nj

(

mnj − mαi

p

)

=

(

mr

p

) r
∏

i=1
αi 6=nj

(

nj − αi

p

)

=

(

mr

p

) r
∏

i=1
i6=s

(

αs − αi

p

)

=

(

mr

p

)

eαs =

(

mr

p

)

enj
,
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which was to be proved.

We know the values of en1 , . . . , ent . We suppose that for every root β of

f(m−1x) we have

|rp(β)| ≤ 2p1−1/(R+1).

We introduce variables x−[2p1−1/(R+1)], x−[2p1−1/(R+1)]+1, . . . , x0, . . . , x[2p1−1/(R+1)]

such that

xi =











1 if i occurs with odd multiplicity amongst the roots of f(mx),

0 if i occurs with even multiplicity amongst the roots of f(mx),

Then (18) becomes

∏

xi=1,
i6=mnj

(

mnj − i

p

)

=

(

mr

p

)

enj

∏

xi=1,
“

mnj−i

p

”

=−1,

i6=mnj

(−1) =

(

mr

p

)

enj

(−1)S =

(

mr

p

)

enj
,

where

S =
∑

xi=1,
“

mnj−i

p

”

=−1

1.

Define the integers c1, c2, . . . , ct ∈ {0, 1} by

cj =











1 if
(

mr

p

)

enj
= −1,

0 if
(

mr

p

)

enj
= 1.
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Then

(−1)S = (−1)cj

S =
∑

xi=1,
“

mnj−i

p

”

=−1

1 ≡ cj (mod 2)

∑

“

mnj−i

p

”

=−1

xi ≡ cj (mod 2) (19)

for j = 1, 2, . . . , t. The equations in (19) are linear in the variables

x−[2p1−1/(R+1)], x−[2p1−1/(R+1)]+1, . . . , x0, . . . , x[2p1−1/(R+1)]. So we have t linear

equations in w variables. By Gauss elimination we solve (19) by O(t2w) bit

operations. We may get 0, 1 or more solutions. The matrix of this linear

equation is the matrix Am defined in Theorem 2. The rank of this matrix

is ≤ ρ, so the number of solutions of the system of linear equations (19) is

≤ 2w−ρ. Next we check what solutions lead to a polynomial with degree less

than R. So far we needed O(2w−ρt2w) bit operations. m may take O(w)

different values, so the algorithm uses O(2w−ρt2w2) bit operations.

Proof of Theorem 3 We define k polynomials as it follows:

fi(x) = x − i for 1 ≤ i ≤ k − 1

and

fk(x) =
k−1
∏

i=1

fi(x) = (x − 1)(x − 2) . . . (x − k + 1).

Define the sequence E
(i)
p by

E(i)
p = Ep(fi(x)) = {e

(i)
1 , . . . , e(i)

p },
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where

e(i)
n =











(

fi(n)
p

)

for (fi(n), p) = 1,

+1 for p | fi(n).

Then

Ck(F3) ≥ Ck({E
(1)
p , . . . , E(k)

p })

≥
∣

∣V ({E(1)
p , . . . , E(k)

p }, p, (0, p, 2p, . . . , (k − 1)p))
∣

∣

=

∣

∣

∣

∣

∣

p
∑

n=1

e(1)
n e(2)

n . . . e(k)
n

∣

∣

∣

∣

∣

(20)

Here for n > k − 1 we have (p, (n − 1)(n − 2) . . . , (n − k + 1)) = 1 thus

e(1)
n e(2)

n . . . e(k)
n =

k
∏

i=1

(

fi(n)

p

)

=

(∏n
i=1 fi(n)

p

)

=

(

((n − 1) . . . (n − k + 1))2

p

)

= 1. (21)

For n ≤ k − 1

e(1)
n e(2)

n . . . e(k)
n =

k−1
∏

i=1,
i6=n

e(i)
n e(n)

n e(k)
n

=
k−1
∏

i=1,
i6=n

(

n − i

p

)

· 1 ·
k−1
∏

i=1,
i6=n

(

n − i

p

)

= 1

Thus (21) holds for all 1 ≤ n ≤ p. By this and (20)

Ck(F3) ≥

∣

∣

∣

∣

∣

p
∑

n=1

e(1)
n e(2)

n . . . e(k)
n

∣

∣

∣

∣

∣

= p,

which was to be proved.
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Proof of Theorem 4 Let H be a set which contains every ℓ-tuple of se-

quences from F4 with 0 ≤ ℓ ≤ k:

H = {(E(1)
p , E(2)

p , . . . , E(ℓ)
p ) : E(1)

p , E(2)
p , . . . , E(ℓ)

p are different and ∈ F4}.

Then Wk,H(F4) = Ck(F4). We would like to apply Theorem 5 for this set

H. In order to apply Theorem 5 we have to show that if f1, f2, . . . , fk are

irreducible polynomials, a1, a2, . . . , ak ∈ Fp where at 6= as if ft = fs, then

the product
k

∏

i=1

fi(x + ai)

is never of the form cg(x)2 with c ∈ Fp and g(x) ∈ Fp[x]. In Remark 1 we

note that amongst the polynomials fi(x), fi(x+1), . . . , fi(x+p−1) only fi(x)

belongs to F4. Thus the polynomials f1(x + a1), f2(x + a2), . . . , fk(x + ak)

are different. Indeed, if

ft(x + at) = fs(x + as)

ft(x) = fs(x + as − at)

then as−at = 0, ft = fs, which is a contradiction. By the unique factorization

in Fp[x], the product of distinct irreducible polynomials is never of the form

cg(x)2 with c ∈ Fp and g(x) ∈ Fp[x]. Thus the conditions of Theorem 5

hold. Using Theorem 5 we get the statement.

Proof of Theorem 5 We have

Wk,H(F) = max
1≤ℓ≤k,

“

E
(1)
p ,E

(2)
p ,...,E

(ℓ)
p

”

∈H
Ck({E

(1)
p , E(2)

p , . . . , E(ℓ)
p }),
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where the maximum is taken over all 1 ≤ ℓ ≤ k and
(

E
(1)
p , E

(2)
p , . . . , E

(ℓ)
p

)

∈

H, where E
(1)
p , E

(2)
p , . . . , E

(ℓ)
p are different. Let f1(x), f2(x), . . . , fℓ(x) be the

polynomials for which

E(i)
p = Ep(fi(x))

is defined by (3) with fi(x) in place of f(x). Cℓ({E
(1)
p , E

(2)
p , . . . , E

(ℓ)
p })

is defined by the maximum of V ’s, see (2). Let {E
(1)
p , E

(2)
p , . . . , E

(ℓ)
p } =

{e1, e2, . . . , eℓp}. We will prove that for D = (d1, d2, . . . , dk) with non negative

integers d1 < d2 < · · · < dk, M ∈ N we have
∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 . . . en+dk

∣

∣

∣

∣

∣

≤ 10Rk22k−1p1/2 log p. (22)

We will use the following lemma.

Lemma 2 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f ∈ Fp[x] has s distinct roots in Fp, and it is not a constant

multiple of a d-th power of a polynomial over Fp. Let y be a real number with

0 < y ≤ p. Then for any x ∈ R:
∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.

Poof of Lemma 2

This is a trivial consequence of Lemma 1 in [2]. Indeed, there this result

is deduced from Weil theorem, see [20].

For each di and n define ai,n and yi,n by

n + di = (yi,n − 1)p + ai,n (23)
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where 1 ≤ ai,n ≤ p. Then

en+di
=











(

fyi,n(n+di)

p

)

for (fyi,n
(n + di), p) = 1,

+1 for p | fyi,n
(n + di).

(24)

Suppose that we fix any positive integers j1 < j2 < · · · < jk and we would

like to determine the integers 1 ≤ n ≤ M such that

en+d1 =











(

fj1
(n+d1)

p

)

for (fj1(n + d1), p) = 1,

+1 for p | fj1(n + d1),

en+d2 =











(

fj2
(n+d2)

p

)

for (fj2(n + d2), p) = 1,

+1 for p | fj2(n + d2),

...

en+dℓ
=











(

fjℓ
(n+dℓ)

p

)

for (fjℓ
(n + dℓ), p) = 1,

+1 for p | fjℓ
(n + dℓ).

Then by (23) and (24)

j1 =

[

n + d1 − 1

p

]

+ 1

j2 =

[

n + d2 − 1

p

]

+ 1

...

jk =

[

n + dk − 1

p

]

+ 1. (25)

Here 1 ≤ ji =
[

n+di−1
p

]

+ 1 ≤
[

ℓp−1
p

]

+ 1 = ℓ ≤ k. It is easy to see that the

integers n which satisfy (25) is an interval. We will denote this interval by
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Ij1,j2,...,jk
⊆ [1, 2, . . . , ℓp]. In some cases Ij1,j2,...,jk

is the empty interval. Since

j1 =
[

n+d1

p

]

+ 1 we see |Ij1,j2,...,jk
| ≤ p. Then by the triangle inequality

∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 · · · en+dk

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
∑

j1=1

k
∑

j2=1

· · ·
k

∑

jk=1
Ij1,j2,...,jk

6=∅

∑

n∈Ij1,j2,...,jk
p∤fj1

(n+d1)···fjk
(n+dk)

(

fj1(n + d1)

p

)

. . .

(

fjk
(n + dk)

p

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∑

j1=1

k
∑

j2=1

· · ·
k

∑

jk=1
Ij1,j2,...,jk

6=∅

∑

n∈Ij1,j2,...,jk
p|fj1

(n+d1)···fjk
(n+dk)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
∑

j1=1

k
∑

j2=1

· · ·
k

∑

jk=1
Ij1,j2,...,jk

6=∅

∑

n∈Ij1,j2,...,jk
,

p∤fj1
(n+d1)···fjk

(n+dk)

(

fj1(n + d1) . . . fjk
(n + dk)

p

)

∣

∣

∣

∣

∣

+

k
∑

j1=1

k
∑

j2=1

· · ·

k
∑

jk=1
Ij1,j2,...,jk

6=∅

Rk. (26)

By Lemma 2
∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 · · · en+dk

∣

∣

∣

∣

∣

≤
k

∑

j1=1

k
∑

j2=1

· · ·
k

∑

jk=1
Ij1,j2,...,jk

6=∅

(

9Rkp1/2 log p + Rk
)

≤

k
∑

j1=1

k
∑

j2=1

· · ·

k
∑

jk=1
Ij1,j2,...,jk

6=∅

10Rkp1/2 log p. (27)
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It remains to estimate
k

∑

j1=1

k
∑

j2=1

· · ·

k
∑

jk=1
Ij1,j2,...,jk

6=∅

1. It is clear that j1 may take k

different values. Next we study that for fixed j1 how many different values

ji may assume. For the fixed j1 we have

j1 =

[

n + d1 − 1

p

]

+ 1.

Thus

j1 − 1 ≤
n + d1 − 1

p
< j1

(j1 − 1)p ≤ n + d1 − 1 < j1p

(j1 − 1)p + di − d1 ≤ n + di − 1 < j1p + di − d1

j1 − 1 +
di − d1

p
≤

n + di − 1

p
< j1 +

di − d1

p

j1 − 1 +

[

di − d1

p

]

≤

[

n + di − 1

p

]

≤ j1 +

[

di − d1

p

]

j1 +

[

di − d1

p

]

≤

[

n + di − 1

p

]

+ 1 ≤ j1 + 1 +

[

di − d1

p

]

j1 +

[

di − d1

p

]

≤ ji ≤ j1 + 1 +

[

di − d1

p

]

.

Thus for fixed j1 each ji (2 ≤ i ≤ k) may assume at most 2 different values.

Thus by (27)
∣

∣

∣

∣

∣

M
∑

n=1

en+d1en+d2 · · · en+dk

∣

∣

∣

∣

∣

≤ 10Rk22k−1p1/2 log p,

which completes the proof.

Proof of Theorem 6 Suppose that

f1(x + a1)f2(x + a2) . . . fk(x + ak) = cg(x)2 = c

r
∏

j=1

(x − βj)
2
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with c ∈ Fp and g(x) =
∏r

j=1(x − βj) ∈ Fp[x]. Then

f1(x − ℓ + a1) . . . fk(x − ℓ + ak) = cg(x − ℓ)2 (28)

for ℓ = 1, 2, . . . , p − 1. By taking the product of equations (28) for ℓ =

0, 1, 2, . . . , p − 1 we get

p−1
∏

ℓ=0

f1(x − ℓ + a1) · · ·

p−1
∏

ℓ=0

fk(x − ℓ + ak) = cp

p−1
∏

ℓ=0

g(x − ℓ)2. (29)

Here
p−1
∏

ℓ=0

fi(x − ℓ + ai) =

p−1
∏

ℓ=0

fi(x − ℓ) =

p−1
∏

ℓ=0

bi

ri
∏

j=0

(x − ℓ − α
(i)
j )

where bi is the leading coefficient of fi(x) and α
(i)
1 , α

(i)
2 , . . . , α

(i)
ri denote the

roots of fi(x). By changing the two products we get

p−1
∏

ℓ=0

fi(x − ℓ + ai) = bp
i

ri
∏

j=0

p−1
∏

ℓ=0

(x − ℓ − α
(i)
j )

= bp
i

ri
∏

j=0

(

xp − x −
(

α
(i)
j

)p

+ α
(i)
j

)

= f̃i(x
p − x). (30)

Let β1, β2, . . . , βr be the roots of g(x), cr be the leading coefficient of g(x)

and let g̃(x) = cr

∏r
k=1(x − βp + β). Similarly to (30) we get

p−1
∏

ℓ=0

g(x − ℓ) = g̃(xp − x). (31)

By (29), (30) and (31) we get

p−1
∏

ℓ=0

f̃ℓ(x
p − x) = cpg̃(xp − x)2. (32)
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Since (32) also holds in Fp[x], we may substitute xp − x = y and get

j
∏

ℓ=0

f̃ℓ(y) = cpg̃(y)2,

which proves the theorem.

4 Conclusions

In the applications one may need the concatenation or merging of pseu-

dorandom binary sequences. We were looking for criteria to ensure that

the concatenation of several sequences belonging to a large family of “good”

pseudorandom sequences also possesses strong pseudorandom properties. In

Example 1 we showed that the large f -complexity is not enough to ensure

this. Thus we introduce a new measure, the f-correlation to study the connec-

tion between pseudorandom binary sequences. We applied this f -correlation

measure to compare Legendre symbol sequences. It turned out that the

f -correlation measure can be large even for families of Legendre symbol se-

quences otherwise possessing very strong pseudorandom properties. However

the situation can be saved by selecting suitable smaller subfamily.
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