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Abstract

In the applications it may occur that our initial pseudorandom

binary sequence is not long enough, thus we have to take the concate-

nation of it with another pseudorandom binary sequences. Here we

will consider concatenation of Legendre symbol sequences so that the

resulting longer sequence has strong pseudorandom properties.
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1 Introduction

In a series of papers Mauduit and Sárközy (partly with further coauthors)

studied finite pseudorandom binary sequences

EN = {e1, e2, . . . , eN} ∈ {−1, +1}N .

Research partially supported by Hungarian National Foundation for Scientific Re-

search, Grants No. K67676 and PD72264 and the János Bolyai Research Fellowship.
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In particular, in Part I [9] first they introduced the following measures of

pseudorandomness:

Write

U(EN , t, a, b) =

t−1
∑

j=0

ea+jb

and, for D = (d1, . . . , dℓ) with non-negative integers d1 < · · · < dℓ,

V (EN , M, D) =
M

∑

n=1

en+d1
en+d2

. . . en+dℓ
. (1)

Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤

a+(t−1)b ≤ N , while the correlation measure of order ℓ of EN is defined as

Cℓ(EN) = max
M,D

|V (EN , M, D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

. . . en+dℓ

∣

∣

∣

∣

∣

, (2)

where the maximum is taken over all D = (d1, d2, . . . , dℓ) and M such that

1 ≤ d1 < d2 < · · · < dℓ < M + dℓ ≤ N .

Then the sequence EN is considered as a “good” pseudorandom sequence

if both measures W (EN), Cℓ(EN ) (at least for small ℓ) are “small” in terms

of N (in particular, both are o(N) as N → ∞).

It was shown in [9] that the Legendre symbol forms a “good” pseudoran-

dom sequence. More exactly, let p be an odd prime, and

N = p − 1, en =

(

n

p

)

, EN = {e1, . . . , eN}.

Then by Theorem 1 in [9] we have

W (EN) ≪ p1/2 log p ≪ N1/2 log N
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and

Cℓ(EN) ≪ ℓp1/2 log p ≪ ℓN1/2 log N.

Numerous binary sequences have been tested for pseudorandomness by J.

Cassaigne, Z. Chen, X. Du, L. Goubin, X. Guozhen, S. Ferenczi, S. Li, H.

Liu, C. Mauduit, L. Mérai, S. Oon, J. Rivat, A. Sárközy, G. Xiao, C. Zhixiong

and others. In the best constructions we have W (EN) ≪ N1/2(log N)c and

Cℓ(EN ) ≪ N1/2(log N)cℓ , where c, c2, c3, . . . are positive constants. However,

most of these constructions produced only a “few” pseudorandom sequences;

usually for a fixed integer N , the construction provided only one pseudoran-

dom sequence EN of length N . First L. Goubin, C. Mauduit, A. Sárközy [2]

succeeded in constructing a large family of pseudorandom binary sequences.

Their construction was the following:

Construction 1 Suppose that p is a prime number, and f(x) ∈ Fp[x] is a

polynomial with degree k > 0 and no multiple zero in Fp. Define the binary

sequence Ep = {e1, . . . , ep} by

en =











(

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n).
(3)

It turns out that under some not too restrictive conditions on p or the

degree of the polynomial, the pseudorandom measures of Ep are small. Indeed

Goubin, Mauduit and Sárközy [2] proved the following.

Theorem A If p is a prime and f(x) is a polynomial as it is described in

Construction 1, then for the sequence Ep defined by (3) we have

W (Ep) < 10kp1/2 log p.
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Moreover, assume that for ℓ ∈ N one of the following assumptions holds:

(i) ℓ = 2;

(ii) ℓ < p and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then we also have

Cℓ(Ep) < 10kℓp1/2 log p.

Since then numerous other large families of pseudorandom sequences have

been constructed (see [3], [4], [5], [7], [8] and [10]).

In this paper first we will give a further condition on the polynomial f(x)

which guarantees that the correlation measures are small (so that the some-

what inconvenient assumptions (i)-(iii) can be replaced by another, perhaps,

simpler one). It is very easy to generate polynomials which satisfy this con-

dition. Next we will adapt the method of this construction for constructing

pseudorandom sequences whose concatenation also possesses strong pseudo-

random properties.

Theorem 1 Suppose that p is an odd prime, R ∈ N, f(x) ∈ Fp[x] is a

polynomial which is of the form

f(x) =
(

x2 − a1

) (

x2 − a2

)

· · ·
(

x2 − ak

)

(x − 1), (4)

where 0 ≤ k ≤ R, the ai’s are different quadratic non-residues modulo p so

that
(

ai

p

)

= −1 for 1 ≤ i ≤ k. For each of these polynomials f , consider the

binary sequence Ep = Ep(f) defined by (3), and let F denote the family of

all binary sequences obtained in this way. Then for any 2 ≤ ℓ ∈ N and for
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all f ∈ F we have

Cℓ(Ep(f)) ≪ Rℓp1/2 log p. (5)

Remark We note that a second degree polynomial x2 − a is irreducible over

Fp if and only if a is quadratic non-residue modulo p.

If f(x) is a polynomial of form (4) then its single zero is x = 1.

In Theorem 1 we did not estimate the well-distribution measure. For

f ∈ F by Theorem A trivially we have

W (Ep(f)) ≪ Rp1/2 log p. (6)

It is a natural question why do we not consider polynomials of form

f(x) = (x2 − a1) (x2 − a2) · · · (x
2 − ak)? In this case the sequence Ep(f)

would be symmetric (en = ep−n for 1 ≤ n ≤ p) which causes difficulties in

the applications (see [6]).

Although F in Theorem A contains many binary sequences with strong

pseudorandom properties, it may occur that there are certain relations be-

tween them. Let E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p ∈ {−1, +1}p be binary sequences

of length p. Let {E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈ {−1, +1}tp denote the sequence

of length tp obtained by writing the elements of E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p ∈

{−1, +1}p successively. Our question is the following: for a fixed sequence

E
(1)
p ∈ F how do we choose further sequences E

(2)
p , E

(3)
p , . . . , E

(t)
p ∈ F such

that the longer sequence {E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈ {−1, +1}tp will have

strong pseudorandom properties? It is not true that for any choices of

different E
(1)
p , E

(2)
p , . . . , E

(t)
p ∈ F the sequence {E

(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈
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{−1, +1}tp also has strong pseudorandom properties. Consider the following

example:

E(1)
p = Ep ((x − 1)) ∈ F ,

E(2)
p = Ep

(

(x2 − a1)(x − 1)
)

∈ F ,

E(3)
p = Ep

(

(x2 − a2)(x − 1)
)

∈ F ,

E(4)
p = Ep

(

(x2 − a1)(x
2 − a2)(x − 1)

)

∈ F ,

Then E4p = {E
(1)
p , E

(2)
p , E

(3)
p , E

(4)
p } has week pseudorandom properties. In-

deed; the correlation of order 4 is “large”:

C4(E4p) ≥ |V (E4p, p, (0, p, 2p, 3p))|

=

p
∑

n=1

(

n − 1

p

) (

(n2 − a1)(n − 1)

p

)

(

(n2 − a2)(n − 1)

p

) (

(n2 − a1)(n
2 − a2)(n − 1)

p

)

− 1

=

p
∑

n=1

(

(n2 − a1)
2(n2 − a2)

2(n − 1)4

p

)

− 1 ≥ p − 2.

Next we will give a sufficient condition for the sequence

{E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈ {−1, +1}tp having strong pseudorandom

properties.

Theorem 2 Suppose that p is an odd prime and

f1(x) = (x2 − a11)(x
2 − a12) . . . (x2 − a1r1

)(x − 1),

f2(x) = (x2 − a21)(x
2 − a22) . . . (x2 − a2r2

)(x − 1),

...

ft(x) = (x2 − at1)(x
2 − at2) . . . (x2 − atrt

)(x − 1), (7)
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where ai1, ai2, . . . , airi
are different quadratic non-residues modulo p for 1 ≤

i ≤ t. Moreover suppose that ai1 = avs if and only if i = v and 1 = s. Let

R = max
1≤i≤t

ri + 1 = max
1≤i≤t

deg fi(x).

Define E
(i)
p ∈ F by Ep(fi) in (3) with fi in place of f for 1 ≤ i ≤ t.

Then Etp = {E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈ {−1, +1}tp has strong pseudoran-

dom properties: for any 2 ≤ ℓ ∈ N we have

W (Etp) ≪ tRp1/2 log p, (8)

Cℓ(Etp) ≪ Rℓt2ℓ−1p1/2 log p. (9)

Proof of Theorem 1

We will need the following lemma:

Lemma 1 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f(x) ∈ Fp[x] has s distinct roots in Fp, and it is not a constant

multiple of the d-th power of a polynomial over Fp. Let y be a real number

with 0 < y ≤ p. Then for any x ∈ R:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.

Poof of Lemma 1

This is a trivial consequence of Lemma 1 and Lemma 2 in [1]. Indeed,

there this result is deduced from Weil’s theorem [11].

For any integers d1, d2, . . . , dℓ and M ∈ N with

0 ≤ d1 < d2 < · · · < dℓ < M + dℓ ≤ p, (10)
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the congruence

f(n + di) ≡ 0 (mod p), 1 ≤ n < M, 1 ≤ i ≤ ℓ

has at most ℓ solutions (n ≡ 1 − di (mod p)). Thus writing
(

0
p

)

= 0, we

have

V (Ep, M, D) =

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

. . . en+dℓ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M
∑

n=1

(

f(n + d1)

p

) (

f(n + d2)

p

)

. . .

(

f(n + dℓ)

p

)

∣

∣

∣

∣

∣

+ ℓ

=

∣

∣

∣

∣

∣

M
∑

n=1

(

f(n + d1)f(n + d2) . . . f(n + dℓ)

p

)

∣

∣

∣

∣

∣

+ ℓ

Write h(x) = f(x + d1)f(x + d2) . . . f(x + dℓ). Then h(x) has no multiple

roots. Since the irreducible factors

x + di − 1 and x + dj − 1,

x + di − 1 and (x + dj)
2 − as,

(x + di)
2 − aq and (x + dj)

2 − as

are different if di and dj are different and aq, as are quadratic non-residues.

Thus we may apply Lemma 1 with
(

n
p

)

, 2 and h(x) in place of χ, d and

f(x), respectively. The degree of h(x) is clearly less than Rℓ, thus applying

Lemma 1 we obtain

|V (Ep, M, D)| ≤

∣

∣

∣

∣

∣

M
∑

n=1

(

h(n)

p

)

∣

∣

∣

∣

∣

+ ℓ < 9Rℓp1/2 log p + ℓ ≪ Rℓp1/2 log p

for all d1, d2, . . . , dℓ, M satisfying (10) which proves (5).

Proof of Theorem 2

By the definition of the well-distribution measure, it is easy to see that

W (Etp) ≤ W (E(1)) + W (E(2)) + · · · + W (E(t)). (11)
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By (6) we have W (E(i)) ≪ Rp1/2 log p. Using this and (11) we get (8).

Next we prove (9).

Lemma 2 Let f1, f2, . . . , ft ∈ Fp[x] be different polynomials. Suppose that

for all 1 ≤ i1 ≤ i2 ≤ · · · ≤ iℓ ≤ t, b1, b2, . . . , bℓ ∈ Fp (where bs 6= br if is = ir)

the polynomial
ℓ

∏

j=1

fij (x + bj)

is never of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x]. Define E
(i)
p ∈ F

by Ep(fi) in (3) with fi in place of f . Then the correlation measure of

Etp = {E
(1)
p , E

(2)
p , E

(3)
p , . . . , E

(t)
p } ∈ {−1, +1}tp is

Cℓ(Etp) ≪ Rℓt2ℓ−1p1/2 log p. (12)

We will prove Lemma 2 later. Let f1, f2, . . . , ft be polynomials of the

form (7). In order to prove (9), by Lemma 2 it is sufficient to prove that a

product of the form
ℓ

∏

j=1

fij(x + bj),

where 1 ≤ i1 ≤ i2 ≤ · · · ≤ iℓ ≤ t, b1, b2, . . . , bℓ ∈ Fp and bs 6= br if is = ir, is

never of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x]. Here

fi1(x + b1) = ((x + b1)
2 − ai11)((x + b1)

2 − ai12) . . . ((x + b1)
2 − ai1ri1

)(x− 1).

Consider the multiplicity of the irreducible factor (x + b1)
2 − ai11 in the

product
ℓ

∏

j=1

fij(x + bj).

It is clear that (x+ b1)
2−ai11 appears once in the factorization of fi1(x+ b1).

Suppose that one of fi2(x+b2), fi3(x+b3), . . . , fiℓ(x+bℓ) contains (x+b1)
2−ai11
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as an irreducible factor. Say, fij (x + bj) (j ≥ 2) has an irreducible factor,

namely, (x + bj)
2 − aijd which is (x + b1)

2 − ai11. Then

(x + bj)
2 − aijd = (x + b1)

2 − ai11

x2 + 2bjx + b2
j − aijd = x2 + 2b1x + b2

1 − ai11.

From this b1 ≡ bj (mod p) and aijd ≡ ai11 (mod p) follows. Since b1 ≡ bj

(mod p) we have i1 6= ij . But then aijd and ai11 (mod p) are different, which

is a contradiction.

Thus (x+ b1)
2 −ai11 appears once in the factorization of

∏ℓ
j=1 fij (x+ bj).

So
∏ℓ

j=1 fij (x + bj) is never of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x].

Thus we may use Lemma 2, which proves Theorem 2. It remains to prove

Lemma 2.

Proof of Lemma 2 Cℓ({E
(1)
p , E

(2)
p , . . . , E

(t)
p }) is defined as the maximum

of V ’s, see (2). Let {E
(1)
p , E

(2)
p , . . . , E

(t)
p } = {e1, e2, . . . , etp}. We will prove

that for D = (d1, d2, . . . , dℓ) with non negative integers d1 < d2 < · · · < dℓ,

M ∈ N we have

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

. . . en+dℓ

∣

∣

∣

∣

∣

≤ 10Rℓt2ℓ−1p1/2 log p. (13)

For each di and n define ai,n and yi,n by

n + di = (yi,n − 1)p + ai,n (14)

where 1 ≤ ai,n ≤ p. Then

en+di
=











(

fyi,n
(n+di)

p

)

for (fyi,n
(n + di), p) = 1,

+1 for p | fyi,n
(n + di).

(15)
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Suppose that we fix any positive integers j1 ≤ j2 ≤ · · · ≤ jℓ and we would

like to determine the integers 1 ≤ n ≤ M such that

en+d1
=











(

fj1
(n+d1)

p

)

for (fj1(n + d1), p) = 1,

+1 for p | fj1(n + d1).

en+d2
=











(

fj2
(n+d2)

p

)

for (fj2(n + d2), p) = 1,

+1 for p | fj2(n + d2).

...

en+dℓ
=











(

fjℓ
(n+dℓ)

p

)

for (fjℓ
(n + dℓ), p) = 1,

+1 for p | fjℓ
(n + dℓ).

Then by (14) and (15)

j1 =

[

n + d1 − 1

p

]

+ 1

j2 =

[

n + d2 − 1

p

]

+ 1

...

jℓ =

[

n + dℓ − 1

p

]

+ 1. (16)

Here 1 ≤ ji =
[

n+di−1
p

]

+ 1 ≤
[

tp−1
p

]

+ 1 = t. It is easy to see that the

integers n which satisfy (16) form an interval. We will denote this interval by

Ij1,j2,...,jℓ
⊆ [1, 2, . . . , tp]. (it can be the empty interval). Since j1 =

[

n+d1

p

]

+1
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we see that |Ij1,j2,...,jℓ
| ≤ p. Then by the triangle inequality we have

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dℓ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t
∑

j1=1

t
∑

j2=1

· · ·
t

∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

∑

n∈Ij1,j2,...,jℓ

p∤fj1
(n+d1)···fjℓ

(n+dℓ)

(

fj1(n + d1)

p

)

. . .

(

fjℓ
(n + dℓ)

p

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∑

j1=1

t
∑

j2=1

· · ·

t
∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

∑

n∈Ij1,j2,...,jℓ

p|fj1
(n+d1)···fjℓ

(n+dℓ)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t
∑

j1=1

t
∑

j2=1

· · ·

t
∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

∑

n∈Ij1,j2,...,jℓ

p∤fj1
(n+d1)···fjℓ

(n+dℓ)

(

fj1(n + d1) . . . fjℓ
(n + dℓ)

p

)

∣

∣

∣

∣

∣

+

t
∑

j1=1

t
∑

j2=1

· · ·

t
∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

ℓ. (17)

The theorem is trivial for ℓ ≥ p1/2 log p. For ℓ < p1/2 log p by (17) and

Lemma 2

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dℓ

∣

∣

∣

∣

∣

≤

t
∑

j1=1

t
∑

j2=1

· · ·

t
∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

(

9Rℓp1/2 log p + ℓ
)

≤
k

∑

j1=1

k
∑

j2=1

· · ·
t

∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

10Rℓp1/2 log p. (18)

It remains to estimate

t
∑

j1=1

t
∑

j2=1

· · ·

t
∑

jℓ=1
Ij1,j2,...,jℓ

6=∅

1. It is clear that j1 may take t

different values. Next we study that for fixed j1, how many different values
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may ji assume. For the fixed j1 we have

j1 =

[

n + d1 − 1

p

]

+ 1.

Thus

j1 − 1 ≤
n + d1 − 1

p
< j1

(j1 − 1)p ≤ n + d1 − 1 < j1p

(j1 − 1)p + di − d1 ≤ n + di − 1 < j1p + di − d1

j1 − 1 +
di − d1

p
≤

n + di − 1

p
< j1 +

di − d1

p

j1 − 1 +

[

di − d1

p

]

≤

[

n + di − 1

p

]

≤ j1 +

[

di − d1

p

]

j1 +

[

di − d1

p

]

≤

[

n + di − 1

p

]

+ 1 ≤ j1 + 1 +

[

di − d1

p

]

j1 +

[

di − d1

p

]

≤ ji ≤ j1 + 1 +

[

di − d1

p

]

.

It follows that for fixed j1 each ji (2 ≤ i ≤ ℓ) may assume at most 2 different

values. Thus by (18)

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

· · · en+dℓ

∣

∣

∣

∣

∣

≤ 10Rℓt2ℓ−1p1/2 log p,

which completes the proof.
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