
On linear reursion and pseudorandomnessKatalin Gyarmati, Attila Peth® and András Sárközy∗
AbstratFinite binary sequenes are onstruted by using linear reursionmodulo p and the Legendre symbol, and their pseudorandom proper-ties are studied.1 IntrodutionC. Mauduit and A. Sárközy [3, pp. 367-370℄ introdued the following�nite measures of pseudorandomness of binary sequenes.For a binary sequene

EN = {e1, . . . , eN} ∈ {−1,+1}N ,
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write
U(EN , t, a, b) =

t
∑

j=1

ea+jband, for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 < · · · < dℓ,
V (EN ,M,D) =

M
∑

n=1

en+d1 . . . en+dℓ
.Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

,where the maximum is taken over all a, b, t suh that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N , while the orrelation measure of order ℓ of EN isde�ned as

Cℓ(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,where the maximum is taken over all D = (d1, . . . , dℓ) and M suh that
M + dℓ ≤ N .In this paper we will study �nite binary pseudorandom sequenes whihare de�ned by a linear reursion over Fp. More exatly, let x1, . . . , xh ∈ Fpbe the �rst h elements of the sequene, c1, . . . , ch ∈ Fp be the oe�ients inthe linear reursion, so for n > h

xn ≡ c1xn−1 + c2xn−2 + · · · + chxn−h (mod p).(1)In order to transform the sequene {x1, x2, . . . } in a binary sequene {e1, e2, . . .}we de�ne(2) en =











(

xn

p

) if p ∤ xn,
1 if p | xn,2



where (xn

p

) denotes the Legendre symbol.From the de�nition of xn it is lear that the sequene {xn} is periodiwith a period T , and then the sequene {en} is also periodi with T . Con-sidering only the �rst T elements of the sequene {en} we get a �nite binarysequene {e1, e2, . . . , eT} = ET , and we will study the pseudorandom prop-erties of this sequene.Unfortunately we annot estimate the pseudorandom measures of allsequenes ET de�ned by this way, however, we will desribe a large lassof linear reursions for whih the sequene ET has strong pseudorandomproperties.It is well known that the elements of the sequene {xn} de�ned in (1)an be expressed by the roots of the harateristi polynomial
xh − c1x

h−1 − c2x
h−2 − · · · − ch ≡ 0 (mod p).Suppose that this polynomial has h distint roots in F∗

p: λ1, . . . , λh. Thenthere exist onstants a1, . . . , ah ∈ Fp suh that
xn ≡ a1λ

n
1 + · · · + ahλ

n
h (mod p)for all n ∈ N. Let λ ∈ Fp suh that all roots λi (1 ≤ i ≤ h) are powersof λ (e.g. λ an be a primitive root, or in the speial ase when all λi arequadrati residues modulo p, then λ an be the square of a primitive rootmodulo p). Let λi = λki for 1 ≤ i ≤ h and max{k1, . . . , kh} = k. Then

xn ≡ a1λ
k1n + · · ·+ ahλ

khn = f(λn) (mod p)3



where f(x) ∈ Fp[x] is a polynomial of degree k. Then for the sequene
{e1, e2, . . .} we have(3) en =











(

f(λn)
p

) if p ∤ f(λn)

1 if p | f(λn).The sequene {en} is periodi with a period T , where now T an be themultipliative order of λ.Sine for not every linear reursion {xn} an we write the sequene {en}in form (3), it is more pratial to de�ne the sequene {en} by (3), anddetermine the linear reursion from this form. More exatly:De�nition 1 Let p be an odd prime, λ ∈ F∗

p be of multipliative order Tand f(x) ∈ Fp[x] be a polynomial of degree k. Then de�ne the sequene
ET = {e1, . . . , eT} by (3).Throughout the paper we will use this de�nition and these notations: thenumbers p, k, λ, T and the polynomial f(x) will be de�ned as in De�nition1. The next question is that how an we determine the linear reursion forthe sequene {xn} (where xn ≡ f(λn) mod p) from the polynomial f(x) ∈

Fp[x] and the number λ ∈ Fp. Write f(x) in the form
f(x) = a1x

k1 + · · · + ahx
kh.Then by omputing the oe�ients �−ci� of the harateristi polynomial

(x− λk1) . . . (x− λkh) = xh − c1x
h−1 − · · · − ch,4



we obtain that the linear reursion for the sequene {xn} is
xn ≡ c1xn−1 + c2xn−2 + · · · + chxn−h (mod p).We will give estimates for the pseudorandom measures of ET de�ned inDe�nition 1, but these upper bounds will be non-trivial only if k, the degreeof the polynomial f(x) is ≪ p1/2−ǫ for some ǫ > 0. For the well-distributionmeasure we obtain the following:Theorem 1 Suppose that f(x) is not of the form cxα(g(x))2 with c ∈ Fp,

α ∈ N, g(x) ∈ Fp[x]. Then
W (ET ) < 5kp1/2 log p.Clearly, if f(x) is of the form c (g(x))2, then the sequene ET ontainsonly +1's or ET ontains only −1's exept at most k/2 piees of +1, sine if

g(i) ≡ 0 (mod p) then ei = 1 and otherwise ei =
(

c(g(λi))2

p

)

=
(

c
p

). If f(x)is of the form cx(g(x))2, then ei =
(

c
p

)(

λ
p

)i for g(i) 6≡ 0 (mod p), thus thesequene ET is almost (apart from at most k/2 piees of ei's) periodi with2. In ase of the orrelation measure there is no non-trivial general upperbound:Let ℓ | T and f(x) be of the form f(x) = ϕ(x)ϕ(λT/ℓx) where ϕ(x) ∈

Fp[x] has no zero in Fp. Then for the sequene ET de�ned in (3) we willprove that
Cℓ(ET ) ≥

T

ℓ
,5



whih means that for small ℓ | T , the orrelation measure of order ℓ is large.Indeed, by the de�nition of the orrelation measure of order ℓ, ϕ(λn+T ) =

ϕ(λn), the multipliative property of the Legendre symbol and ϕ(λn+iT/ℓ) 6=

0 for i ∈ N we get
Cℓ(ET ) ≥

∣

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

enen+T/ℓen+2T/ℓ . . . en+(ℓ−1)T/ℓ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

(

ϕ(λn)ϕ(λn+T/ℓ)
p

)(

ϕ(λn+T/ℓ)ϕ(λn+2T/ℓ)
p

)

. . .
(

ϕ(λn+(ℓ−1)T/ℓ)ϕ(λn)
p

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

(

ϕ(λn)ϕ(λn+T/ℓ) . . . ϕ(λn+(ℓ−1)T/ℓ)

p

)2
∣

∣

∣

∣

∣

∣

= T/ℓwhih was to be proved.Thus for ℓ | T there exists a polynomial f(x) for whih Cℓ(ET ) is large.This example shows that to assure that the orrelation measure of order
ℓ is small one needs further assumptions on the polynomial f(x) and theintegers T and ℓ. We will use the following de�nition.De�nition 2 We say that the polynomials ϕ(x), ψ(x) ∈ Fp[x] are equiva-lent:(4) ϕ ∼ ψ,if there are c ∈ F∗

p, γ ∈ N suh that ϕ(x) = cψ(λγx).Clearly, this is an equivalene relation. Next we give an upper bound forthe orrelation measure of order ℓ: 6



Theorem 2 Let β ∈ N be the largest integer with xβ | f(x) (thus xβ+1 ∤

f(x)). Suppose that at least one of the following 4 onditions holdsa) ℓ = 2, and f(x)/xβ is not of the form g(xσ) or cxα(g(x))2 with σ, α ∈ N,
(σ, T ) ≥ 2, c ∈ Fp and g(x) ∈ Fp[x].b) f(x)/xβ is not of the form cxα(g(x))2 with α ∈ N, c ∈ Fp and g(x) ∈

Fp[x], T (the order of λ) is a prime and either min{(4k)ℓ, (4ℓ)k} ≤ T or2 is a primitive root modulo T ;) Consider the fatorization f(x)/xβ = ϕβ1

1 (x) . . . ϕβu
u (x) where βi ∈ Nand ϕi(x) is irreduible over Fp. Suppose that there is an equivalenelass de�ned by the relation ∼ in (4), whih ontains exatly one fator

ϕj (1 ≤ j ≤ u) amongst the irreduible fators of f(x)/xβ, moreover themultipliity of this irreduible fator ϕj in the fatorization of f(x)/xβis βj = 1;d) k − β (the degree of the polynomial f(x)/xβ) and ℓ are odd.Then
Cℓ(ET ) ≤ 5kℓp1/2 log p.In Theorem 2a) we are able to handle the ase ℓ = 2 ompletely. Clearly,if f(x) is of the form g(xσ) with g(x) ∈ Fp[x], σ ∈ N and (σ, T ) ≥ 2,then the sequene ET is periodi with the period T/(T, σ), and thus theorrelation measure of order 2 is greater than ∑T−T/(T,σ)

n=1 enen+T/(T,σ) =7



T − T/(T, σ). (Similar situation holds if f(x) is of the form xg(xσ) sinethen en = −en+T/(T,σ)).In Theorem 2b), ) and d) we study the ase ℓ > 2, and while theseonditions are su�ient to assure that the orrelation measure is small,they are not neessary. It is an important open question to desribe allpolynomials f(x), integers T and ℓ for whih the orrelation measure oforder ℓ is small. (We remark that a similar additive problem with a primemodulus in plae of T was studied in [1℄.)Usually, for a �xed polynomial f(x) it is not easy to hek whetherondition ) in Theorem 2 holds. We will show that for a large lass of poly-nomials f(x) ∈ Fp[x] ondition ) holds, and thus the orrelation measureis small. These polynomials will be haraterized by their zeros:Corollary 1 Suppose that f(x) has a zero ρ 6= 0 ∈ Fp of multipliity 1,suh that f(x) has no other zero of the form λiρ with 1 ≤ i ≤ T − 1. Then
Cℓ(ET ) ≤ 5kℓp1/2 log p.Using this orollary we get, e.g., the following:Corollary 2 Suppose that the order of λ is T = (p − 1)/2, all the k zerosof f(x) are in Fp, and one of the zeros is quadrati non-residue modulo p,while the other k − 1 zeros are quadrati residues modulo p. Then

Cℓ(E(p−1)/2) ≤ 5kℓp1/2 log p.8



Finally we would like to speify our results to the speial ase when
h = 2, i.e., the order of the linear reursion is 2:Corollary 3 Assume that h = 2, i.e., (1) is of the form(5) xn ≡ c1xn−1 + c2xn−2 (mod p)and assume that we have

(

c21 + 4c2
p

)

= 1.Denote the zeros of the harateristi polynomial of the linear reursion(5) by λ1 and λ2 (λ2
i − c1λi − c2 ≡ 0 (mod p)), then λ1, λ2 ∈ Fp. Supposethat λi 6≡ x2/x1 (mod p) for i = 1, 2.Denote the multipliative order of λ2/λ1 by T , and de�ne the sequene

ET = {e1, . . . , eT} by (2). Then we have
W (ET ) ≤ 9p1/2 log pand
Cℓ(ET ) ≤ 9ℓp1/2 log p.Here, the ondition that x2/x1 is not the root of the harateristi poly-nomial is neessary, sine if λ1 ≡ x2/x1 (mod p), the xn ≡ x1λ

n
1 , and thusthe sequene {en} is periodi with period 2.

9



2 ProofsThe following lemma is a generalization of Lemma 3.3 in [4℄, and theproof is also similar. Indeed, in [4℄ only that ase is studied when λ is aprimitive root, while Lemma 1 holds for all λ ∈ F∗

p.Lemma 1 Let p be a prime, χ be a multipliative harater of order d with
2 ≤ d ∈ N, λ ∈ F∗

p be of multipliative order T , M,K ∈ N with K ≤ T .Suppose that f(x) ∈ Fp[x] has exatly s distint ones among its zeros.(i) If f(x) is not of the form cxα (g(x))d with c ∈ Fp, α ∈ N g(x) ∈ Fp[x].Then(6) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤ 4sp1/2 log p.(ii) If f(x) = cxα (g(x))d with c ∈ F∗

p, α ∈ N and g(x) ∈ Fp[x], where
T ∤ p−1

d
α, then(7) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
d

2
.Proof of Lemma 1If p or T ≤ 2 Lemma 1 is trivial, therefore we may assume that p, T ≥ 3.We will redue the problem to the estimate of omplete sums:Lemma 2 Let p be a prime, χ be a multipliative harater of order d with

2 ≤ d ∈ N, λ ∈ F∗

p be an element of multipliative order T . Suppose that
f(x) ∈ Fp[x] has s distint ones among its zeros, and f(x) is not of the form10



cxα (g(x))d with c ∈ F∗

p, α ∈ N, g(x) ∈ Fp[x]. Then we have(8) ∣

∣

∣

∣

∣

T
∑

n=1

χ(f(λn))

∣

∣

∣

∣

∣

≤ sp1/2.Proof of Lemma 2The order of λ is T thus λn (for n = 1, . . . , T ) runs over all the T di�erent
(p− 1)/T -th powers modulo p exept 0. Moreover for �xed λ and n,

λn = x(p−1)/Thas exatly (p − 1)/T solutions in x. Thus replaing λn by x(p−1)/T in (8)we get(9) ∣

∣

∣

∣

∣

T
∑

n=1

χ(f(λn))

∣

∣

∣

∣

∣

=
T

p− 1

∣

∣

∣

∣

∣

p−1
∑

n=1

χ(f(x(p−1)/T ))

∣

∣

∣

∣

∣

.Now, we will need the following lemma:Lemma 3 Let p be a prime, χ be a harater of order d > 1. Suppose that
f(x) ∈ Fp[x] has exatly s distint ones among its zeros and it is not of theform f(x) = c (g(x))d with c ∈ Fp, g(x) ∈ Fp[x]. Then

∣

∣

∣

∣

∣

p−1
∑

n=1

χ(f(x)

∣

∣

∣

∣

∣

≤ (s− 1)p1/2.Proof of Lemma 3This an be derived from A. Weil's theorem [6℄ (an elementary proof ofwhih an be found in [5℄); see [2℄, [3℄.Next we return to the proof of Lemma 2. We prove that f(x(p−1)/T ) isnot of the form c (g(x))d with c ∈ F∗

p, g(x) ∈ Fp[x].11



Consider the fatorization of f(x) over Fp:
f(x) = c(x− α1)

k1 . . . (x− αs)
ks,where c ∈ Fp and α1, . . . , αs ∈ Fp are di�erent numbers. Denote by

ε1, . . . , ε(p−1)/T ∈ Fp the (p− 1)/T di�erent solutions of the ongruene
x(p−1)/T ≡ 1 (mod p)in x, and for eah αi (1 ≤ i ≤ s) let ρi ∈ Fp be a number with

ρ
(p−1)/T
i = αi.Then the fatorization of f(x(p−1)/T ) over Fp is

f(x(p−1)/T ) = c

s
∏

i=1

(x(p−1)/T − ρ
(p−1)/T
i )ki,

= c
s
∏

i=1

(x− ε1ρi)
ki . . . (x− ε(p−1)/Tρi)

ki.Suppose that in Fp(10) εuρi = εyρjfor some 1 ≤ u, y ≤ (p− 1)/T and 1 ≤ i, j ≤ s. Then
(εuρi)

(p−1)/T = (εyρj)
(p−1)/T ,

αi = αj ,

i = j.12



Then if u 6= y (so εu 6= εy) from (10) we obtain that ρi = ρj = 0 (i = j), so
αi = 0.Sine f(x) is not of the form cxα (g(x))d with c ∈ F∗

p, α ∈ N and g(x) ∈
Fp[x], thus f(x) has an αv 6= 0 zero (1 ≤ v ≤ s) of multipliity tv, where
d ∤ tv. Then ε1ρv is a zero of f(x(p−1)/T ) with the same multipliity tv,and sine d ∤ tv, thus f(x(p−1)/T ) is not of the form c (g(x))d with c ∈ F∗

p,
g(x) ∈ Fp[x].The polynomial f(x) has exatly s distint zeros, thus the polynomial
f(x(p−1)/T ) (in x) has at most sp−1

T
distint zeros. Using Lemma 3 and (9)we get

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))

∣

∣

∣

∣

∣

≤
T

p− 1

(

s
p− 1

T
p1/2

)

= sp1/2,whih ompletes the proof of Lemma 2.Sine the order of λ is T , there exists a harater χ1 of order p − 1 forwhih(11) χ1(λ) = e(
1

T
).Throughout the proof of Lemma 1 χ1 will denote a harater of order p− 1with (11). Sine χ is a harater of order d in Lemma 1, thus there existsan integer m with (m, d) = 1 and(12) χ = χ

m(p−1)/d
1 .First we prove part i) in Lemma 1. Let 1 ≤ γ ≤ p− 2 be an integer. Weprove that the polynomial xγ (f(x))m(p−1)/d is not of the form cxα (g(x))p−113



with c ∈ Fp, α ∈ N and g(x) ∈ Fp[x]. Indeed, f(x) has a zero 0 6= β ∈ Fpwith multipliity t, whih is not divisible by d. Then the multipliity of βin xγ (f(x))m(p−1)/d is tm(p− 1)/d, and as d 6 |tm the integer tm(p− 1)/d isnot divisible by p− 1.Using (12) and Lemma 2 we obtain(13) ∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T−1
∑

n=0

χ1(λ
nγ(f(λn))m(p−1)/d))

∣

∣

∣

∣

∣

≤ (s+ 1)p1/2.By (11) we have
T−1
∑

γ=0

χ1(λ
γ(n−y)) =











T if T | n− y

0 otherwise.By this and K ≤ T we get
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M+T
∑

n=M+1

χ(f(λn))
M+K
∑

y=M+1

1

T

T−1
∑

γ=0

χ1(λ
γ(n−y))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

T

T−1
∑

γ=0

(

M+K
∑

y=M+1

χ1(λ
−γy)

)(

M+T
∑

n=M+1

χ(f(λn))χ1(λ
nγ)

)
∣

∣

∣

∣

∣

≤
1

T

T−1
∑

γ=0

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

.For γ = 0 we have ∣∣
∣

∑T−1
n=0 χ(f(λn))χ1(λ

nγ)
∣

∣

∣
=
∣

∣

∣

∑T−1
n=0 χ(f(λn))

∣

∣

∣
, whih isless than sp1/2 by Lemma 2, thus(14)

M+K
∑

n=M+1

χ(f(λn)) ≤
1

T

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

+ sp1/2.By (13) we have(15) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
(s+ 1)p1/2

T

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

+ sp1/2.14



Denoting the distane α to the nearest integer by ||α||, and using |1 − e(α)| ≥

4||α|| and (11) we get |1 − χ1(λ
γ)| =

∣

∣1 − e
(

γ
T

)
∣

∣ ≥ 4|| γ
T
||. By using this andthe sum of geometri progression we obtain(16)

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

≤
T−1
∑

γ=1

2

4|| γ
T
||
≤

T/2
∑

γ=1

T

γ
≤ T (log(T/2)+1) ≤ 1.45 T logT.By T ≤ p− 1, (15) and (16) we get the statement of Lemma 1 i).It remains to prove part ii) in Lemma 1. Suppose that f(x) = cxα (g(x))dwith c ∈ F∗

p, α ∈ N, g(x) ∈ Fp[x]. Sine the order of the harater χ is d wehave:
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(λαn)

∣

∣

∣

∣

∣

.By this, the sum of geometri progression, (11), (12) and |1 − e(α)| ≥ 4 ‖

α ‖ we get:
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
2

|1 − χ(λα)|
=

2
∣

∣

∣
1 − e

(

m(p−1)α
dT

)
∣

∣

∣

≤
1

2 ‖ m(p−1)α
dT

‖
.

(17)
T | p−1 thus m(p−1)α/T is an integer. On the other hand by the onditionof Lemma 1 ii) we have T ∤ (p− 1)α/d, so d ∤ (p− 1)α/T . (m, d) = 1 thus
d ∤ m(p− 1)α/T also holds. Therefore ‖ m(p−1)α

dT
‖≥ 1

d
. Using this and (17)we get Lemma 1 ii).Proof of Theorem 1Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give anupper bound for U(EN , t, a, b). 15



The order of λb is T/(T, b). Clearly, for �xed a and b, f(λax) ≡ 0

(mod p) has at most k solutions in x, thus f(λa+bj) ≡ 0 (mod p) has atmost k solutions in j with 1 ≤ j ≤ t ≤ T/(T, b). Write h(x) = f(λax).Then de�ning (a
p

) as 0 for p | a, we have
|U(EN , t, a, b)| =

∣

∣

∣

∣

∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t
∑

j=1

(

f(λa+bj)

p

)

∣

∣

∣

∣

∣

+ k

=

∣

∣

∣

∣

∣

t
∑

j=1

(

h((λb)j)

p

)

∣

∣

∣

∣

∣

+ k.(18)
f(x) and h(x) are of the same degree, and if f(x) is not of the form

c (g(x))2 or cx (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x], then this also holds for
h(x). Thus we may apply Lemma 1 with (n

p

)

, 2, λb, T/(T, b) and h(x) inplae of χ(n), d, λ, T and f(x), then we obtain that
|U(EN , t, a, b)| ≤

∣

∣

∣

∣

∣

t−1
∑

j=0

(

h((λb)j)

p

)

∣

∣

∣

∣

∣

+ k ≤ 4kp1/2 log p + k

≤ 5kp1/2 log p.whih ompletes the proof.Proof of Theorem 2Consider any D = (d1, . . . , dℓ) with non-negative integers d1 < · · · < dℓand positive integer M with M + dℓ ≤ T . Clearly for �xed d, f(λn+d) ≡ 0

(mod p) has at most k solutions in n with 1 ≤ n ≤ T , thus (de�ning (0
p

)

16



by 0) we have
|V (EN ,M,D)| =

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M
∑

n=1

(

f(λn+d1)

p

)

. . .

(

f(λn+dℓ)

p

)

∣

∣

∣

∣

∣

+ kℓ =

∣

∣

∣

∣

∣

M
∑

n=1

(

f(λn+d1) · · · f(λn+dℓ)

p

)

∣

∣

∣

∣

∣

+ kℓ.(19)If ϕ2(x) | f(x) for a ϕ(x) ∈ Fp[x], then in De�nition 1 the polynomials fand f/ϕ2 generate almost the same sequenes: ( f(λn)
p

)

=
(

f/ϕ2(λn)
p

)(

ϕ(λn)
p

)2

=
(

f/ϕ2(λn)
p

) if ϕ(λn) 6≡ 0 (mod p), so if f(λn) 6≡ 0 (mod p). From this followsthat (19) also holds with f/ϕ2 in plae of f , thus throughout the proof ofTheorem 2 we may suppose that f is squarefree. We will use the followinglemma.Lemma 4 Suppose that f(x) is squarefree, and at least one of the 4 ondi-tions a), b), ), d) in Theorem 2 holds. Then the polynomial
h(x)

def
= f(λd1x) · · · f(λdℓx)annot be of the form c (g(x))2 or cx (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x].We will prove Lemma 4 later. The degree of the polynomial h(x) is kℓ,thus from (19) by using Lemma 1 and Lemma 4 we obtain
|V (EN ,M,D)| ≤ 4kℓp1/2 log p+ kℓ ≤ 5kℓp1/2 log p.whih was to be proved. Thus to omplete the proof of Theorem 2 it remainsto prove Lemma 4. 17



Proof of Lemma 4Write f(x) in the form xβq(x), where x ∤ q(x). Then x ∤ q(λd1x) · · · q(λdℓx),thus h(x) = f(λd1x) · · · f(λdℓx)) is of the form c(g(x))2 or cx(g(x))2 with
c ∈ Fp, g(x) ∈ Fp[x], if and only if q(λd1x) · · · q(λdℓx) is of the form c(g(x))2with c ∈ Fp, g(x) ∈ Fp[x].In order to omplete the proof of Lemma 4 we will prove that h̃(x) def

=

q(λd1x) · · · q(λdℓx) is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x].First onsider the ase when ondition a) holds in Theorem 2. We provethat the polynomial h̃(x) = q(λd1x)q(λd2x) annot be of the form c (g(x))2with c ∈ F∗

p, g(x) ∈ Fp[x].Let L denote the splitting �eld of q(x). Then
q(x) = c

k
∏

i=1

(x− αi)with c ∈ Fp, αi ∈ L, i = 1, . . . , k and α1, . . . , αk are pairwise distint. Itfollows that
q(λd1x) = cλd1k

k
∏

i=1

(x− αi/λ
d1)and

q(λd2x) = cλd2k
k
∏

i=1

(x− αi/λ
d2).We have αi/λ

d1 6= αj/λ
d1 whenever i 6= j. Assume that h̃(x) = c (g(x))2.Then all the roots of h̃(x) have multipliity 2 and there exists a permutation

π : {1, . . . , k} → {1, . . . , k} suh that
αi/λ

d1 = απ(i)/λ
d2 1 ≤ i ≤ k.18



We obtain
απ(i) = λd2−d1αi 1 ≤ i ≤ k.This implies

απs(i) = λs(d2−d1)αifor any s ∈ Z and 1 ≤ i ≤ k.Let σ denote the multipliative order of λd2−d1 , i.e. let λσ(d2−d1) = 1.Then πσ is the idential permutation and we obtain
(x− αi)(x− λ(d2−d1)αi) . . . (x− λ(σ−1)(d2−d1)αi) = xσ ± ασ

i , i = 1, . . . , k.Thus σ | k and σ > 1 beause λd2−d1 6= 1. Hene q(x) splits into fators ofthe form xσ − ασ
i , i.e. q(x) = g(xσ) with σ > 1.Sine σ is the order of λd2−d1 and T is the order of λ, we also have

T | σ(d2 − d1). |d2 − d1| < T thus (σ, T ) ≥ 2, whih ontradits onditiona) in Theorem 1.In order to prove Lemma 4 if one of the onditions b) and ) holds inTheorem 2, write q(x) as the produt of irreduible polynomials over Fp,then these irreduible fators are distint. Let us group these fators sothat in eah group the equivalent irreduible fators are olleted (using theequivalene relation desribed in De�nition 2). We will use the followinglemma.Lemma 5 Suppose that q(x) is squarefree, and h̃(x) = q(λd1x) · · · q(λdℓx) isof the form c (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x]. Let c1ϕ(λa1x), . . . , crϕ(λarx)19



be a group formed by equivalent irreduible fators of q(x), and write A =

{a1, . . . , ar}, D = {d1, . . . , dℓ}. Then for all γ ∈ ZT

a+ d ≡ γ (mod T ), a ∈ A, d ∈ Dhas even number of solutions.Proof of Lemma 5Writing h̃(x) = q(λd1x) · · · q(λdℓx) as the produt of irreduible polyno-mials over Fp, all the polynomials ϕ(λai+djx) with 1 ≤ i ≤ r, 1 ≤ j ≤ ℓ ouramongst the fators. All these polynomials are equivalent, and no other ir-reduible fator belonging to this equivalene lass will our amongst theirreduible fators of h̃(x).Sine distint irreduible polynomials annot have a ommon zero, eahof the zeros of h̃(x) is of even multipliity, if and only if in eah group formedby equivalent irreduible fators of h̃(x), every polynomial of form ϕ(λγx)ours with even multipliity, i.e., for even numbers of pairs (ai, dj). Fromthis the statement of the lemma follows.Next we return to the proof of Lemma 4. Clearly, if one of the onditionsb) and ) holds in Theorem 1, then there exists a group for whih one ofthe following holds
i) T (the order of λ) is a prime, and either |A| = r, |D| = ℓ withmin{(4r)ℓ, (4ℓ)r} ≤

T or 2 is a primitive root modulo T ,
ii) |A| = 1. 20



In the ases i) and ii) we may use the following addition theorem typelemma:Lemma 6 Let A,D ⊆ ZT with |A| = r, |D| = ℓ. Suppose that one of thefollowing 3 onditions holdsa) min{r, ℓ} = 1,b) T is a prime and min{(4r)ℓ, (4ℓ)r} ≤ T ,) T is a prime and 2 is a primitive root modulo T .Then there exists a γ ∈ ZT suh that
a+ d ≡ γ (mod T ), a ∈ A, d ∈ Dhas exatly one solution.Using Lemma 6 we get that the onlusion of Lemma 5 annot hold,thus h̃(x) = q(λd1x) · · · q(λdℓx) annot be of the form c(g(x))2 with c ∈ F∗

p,
g(x) ∈ Fp[x] if one of the ondition a), b) and ) holds in Theorem 2. Thisproves Lemma 4 in these ases, but it remains to prove Lemma 6.Proof of Lemma 6a) If min{r, ℓ} = 1 without loss of generality we may suppose that r = 1,so A = {a1} and D = {d1, . . . , dℓ}. Then all the sums of the form a + dwith a ∈ A, d ∈ D are a1 + d1, . . . , a1 + dℓ and they are di�erent modulo T ,whih proves the assertion.b) See the proof of Theorem 2 in [1℄.21



) See the proof of Theorem 3 in [1℄.This ompletes the proof of Lemma 6, thus we verify Lemma 4 if oneof the onditions a), b) and ) holds in Theorem 2. If the ondition d)holds, then Lemma 4 is trivial, sine the degree of the polynomial h(x) =

f(λd1x) · · · f(λdℓx) is odd sine k and ℓ are odd, thus h(x) annot be of theform c (g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. So Lemma 4 always holds, and aswe have seen, from this Theorem 2 follows.Proof of Corollary 1Sine ρ is a root of f(x) of multipliity 1, there is an irreduible fator
ϕ(x) of multipliity 1 in the fatorization of f(x) for whih ρ is a root of
ϕ(x): ϕ(x) | f(x) but ϕ2(x) ∤ f(x) and ϕ(ρ) = 0.All polynomials equivalent to ϕ(x) are of the form cϕ(λγx). These ir-reduible polynomials (exept ϕ(x)) annot be in the fatorization of f(x):
cϕ(λγx) | f(x) is not possible for T ∤ γ, sine f(x) has no other root then
ρ of the form λiρ, but cϕ(λγx) has a root of this form: x = λT−γρ. Thusondition ) holds in Theorem 2, so Corollary 1 follows from Theorem 2.Proof of Corollary 2Let ρ be the only one root whih is quadrati non-residue modulo p.Sine the order of λ is (p − 1)/2, λ is a quadrati residue modulo p. Thus
λiρ is a quadrati non-residue modulo p, but f(x) has no other quadratiresidue root then ρ. Using Corollary 1 we get the statement.Proof of Corollary 3 22



First we extend slightly Lemma 1 in the speial ase when the multi-pliative harater is the Legendre symbol.Lemma 7 Let p be a prime, ν1, ν2 ∈ F∗

p, where ν2 is of multipliative order
T , and K,M ∈ Fp with K ≤ T . Suppose that f(x) ∈ Fp[x] has exatly sdistint ones among its zeros, x ∤ f(x) and f(x) is not of the form c(g(x))2with c ∈ Fp, g(x) ∈ Fp[x]. Then we have

∣

∣

∣

∣

∣

M+K
∑

n=M+1

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

≤ 8sp1/2 log p.Proof of Lemma 7Using the triangle-inequality, the multipliative property of the Legendresymbol and ∣∣
∣

(

νi

p

)
∣

∣

∣
= 1 we get

∣

∣

∣

∣

∣

M+K
∑

n=M+1

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡0 (mod 2)

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡1 (mod 2)

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡0 (mod 2)

(

f(νn
2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡1 (mod 2)

(

f(νn
2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

.From this by using Lemma 1 we get the statement of Lemma 7.Next we return to the proof of Corollary 3. Sine ( c21+4c2
p

)

= 1, the tworoots of the harateristi polynomial: λ1 and λ2 are di�erent and ∈ Fp.Thus xn is of the form
xn ≡ a1λ

n
1 + a2λ

n
2 ≡ λn

1 (a1 + a2(λ2/λ1)
n) (mod p)23



with a1, a2 ∈ Fp. Sine x2/x1 is not the root of the harateristi polynomial,thus ai 6≡ 0 (mod p) for i = 1, 2. De�ne f(x) ∈ Fp[x] by f(x) = a1 + a2x.Then
xn ≡ λn

1f((λ2/λ1)
n) (mod p).Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give anupper bound for U(EN , t, a, b).For �xed a and b, xa+jb ≡ λa+jb

1 (a1 + a2(λ2/λ1)
a+jb) ≡ 0 (mod p) has atmost one solution in j with 1 ≤ a+ jb ≤ T . Then similarly to (18) we get

|U(EN , t, a, b)| ≤

∣

∣

∣

∣

∣

t
∑

j=1

(

λa+jb
1 f((λ2/λ1)

a+jb)

p

)
∣

∣

∣

∣

∣

+ 1.Using Lemma 7 we get
|U(EN , t, a, b)| ≤ 8p1/2 log p+ 1 ≤ 9p1/2 log pwhih was to be proved.Consider any D = (d1, . . . , dℓ) with non negative integers d1 < · · · < dℓand positive integer M with M + dℓ ≤ T . We give an upper bound for

V (EN ,M,D). Similarly to (19) we get
|V (EN ,M,D)| ≤

∣

∣

∣

∣

∣

M
∑

n=1

(

λnj
1 λ

d1+···+dℓ
1 f((λ2/λ1)

n+d1) . . . f((λ2/λ1)
n+dℓ)

p

)
∣

∣

∣

∣

∣

+ℓ.If f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dℓx) is not of the form c(g(x))2 with c ∈ Fp,
g(x) ∈ Fp[x], then we an use Lemma 7 and obtain

|V (EN ,M,D)| ≤ 8ℓp1/2 log p+ ℓ ≤ 9ℓp1/2 log p,24



whih was to be proved.In order to omplete the proof of Corollary 3 we prove that f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dℓx)is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. The degree of eahof the polynomials f((λ2/λ1)
dix) (1 ≤ i ≤ ℓ) is 1 (in x), thus these polyno-mials are irreduible. Their produt is a onstant multiple of a square of apolynomial, only if there exist 1 ≤ i < j ≤ ℓ and c ∈ Fp with

f((λ2/λ1)
dix) = cf((λ2/λ1)

djx),

a1 + a2(λ2/λ1)
dix = ca1 + ca2(λ2/λ1)

djx.From this it follows by ai 6≡ 0 (mod p) that c ≡ 1 (mod p) and thus
di ≡ dj (mod T )whih is impossible, sine 1 ≤ di < dj ≤ T . This ompletes the proof.Referenes[1℄ L. Goubin, C. Mauduit, A. Sárközy, Constrution of large families ofpseudorandom binary sequenes, J. Number Theory, 106 (2004), 56-69.[2℄ I. Hankala, A. Tietäväinen, Codes and Number Theory, in: Handbookof Coding Theory, Elsevier Siene, 1998, pp. 1141-1194.[3℄ C. Mauduit, A. Sárközy, On �nite pseudorandom binary sequenes, I.Measures of pseudorandomness, the Legendre symbol, Ata Arithmetia82 (1997), 365-377. 25
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