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Abstra
tFinite binary sequen
es are 
onstru
ted by using linear re
ursionmodulo p and the Legendre symbol, and their pseudorandom proper-ties are studied.1 Introdu
tionC. Mauduit and A. Sárközy [3, pp. 367-370℄ introdu
ed the following�nite measures of pseudorandomness of binary sequen
es.For a binary sequen
e

EN = {e1, . . . , eN} ∈ {−1,+1}N ,
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write
U(EN , t, a, b) =

t
∑

j=1

ea+jband, for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 < · · · < dℓ,
V (EN ,M,D) =

M
∑

n=1

en+d1 . . . en+dℓ
.Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

,where the maximum is taken over all a, b, t su
h that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N , while the 
orrelation measure of order ℓ of EN isde�ned as

Cℓ(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,where the maximum is taken over all D = (d1, . . . , dℓ) and M su
h that
M + dℓ ≤ N .In this paper we will study �nite binary pseudorandom sequen
es whi
hare de�ned by a linear re
ursion over Fp. More exa
tly, let x1, . . . , xh ∈ Fpbe the �rst h elements of the sequen
e, c1, . . . , ch ∈ Fp be the 
oe�
ients inthe linear re
ursion, so for n > h

xn ≡ c1xn−1 + c2xn−2 + · · · + chxn−h (mod p).(1)In order to transform the sequen
e {x1, x2, . . . } in a binary sequen
e {e1, e2, . . .}we de�ne(2) en =











(

xn

p

) if p ∤ xn,
1 if p | xn,2



where (xn

p

) denotes the Legendre symbol.From the de�nition of xn it is 
lear that the sequen
e {xn} is periodi
with a period T , and then the sequen
e {en} is also periodi
 with T . Con-sidering only the �rst T elements of the sequen
e {en} we get a �nite binarysequen
e {e1, e2, . . . , eT} = ET , and we will study the pseudorandom prop-erties of this sequen
e.Unfortunately we 
annot estimate the pseudorandom measures of allsequen
es ET de�ned by this way, however, we will des
ribe a large 
lassof linear re
ursions for whi
h the sequen
e ET has strong pseudorandomproperties.It is well known that the elements of the sequen
e {xn} de�ned in (1)
an be expressed by the roots of the 
hara
teristi
 polynomial
xh − c1x

h−1 − c2x
h−2 − · · · − ch ≡ 0 (mod p).Suppose that this polynomial has h distin
t roots in F∗

p: λ1, . . . , λh. Thenthere exist 
onstants a1, . . . , ah ∈ Fp su
h that
xn ≡ a1λ

n
1 + · · · + ahλ

n
h (mod p)for all n ∈ N. Let λ ∈ Fp su
h that all roots λi (1 ≤ i ≤ h) are powersof λ (e.g. λ 
an be a primitive root, or in the spe
ial 
ase when all λi arequadrati
 residues modulo p, then λ 
an be the square of a primitive rootmodulo p). Let λi = λki for 1 ≤ i ≤ h and max{k1, . . . , kh} = k. Then

xn ≡ a1λ
k1n + · · ·+ ahλ

khn = f(λn) (mod p)3



where f(x) ∈ Fp[x] is a polynomial of degree k. Then for the sequen
e
{e1, e2, . . .} we have(3) en =











(

f(λn)
p

) if p ∤ f(λn)

1 if p | f(λn).The sequen
e {en} is periodi
 with a period T , where now T 
an be themultipli
ative order of λ.Sin
e for not every linear re
ursion {xn} 
an we write the sequen
e {en}in form (3), it is more pra
ti
al to de�ne the sequen
e {en} by (3), anddetermine the linear re
ursion from this form. More exa
tly:De�nition 1 Let p be an odd prime, λ ∈ F∗

p be of multipli
ative order Tand f(x) ∈ Fp[x] be a polynomial of degree k. Then de�ne the sequen
e
ET = {e1, . . . , eT} by (3).Throughout the paper we will use this de�nition and these notations: thenumbers p, k, λ, T and the polynomial f(x) will be de�ned as in De�nition1. The next question is that how 
an we determine the linear re
ursion forthe sequen
e {xn} (where xn ≡ f(λn) mod p) from the polynomial f(x) ∈

Fp[x] and the number λ ∈ Fp. Write f(x) in the form
f(x) = a1x

k1 + · · · + ahx
kh.Then by 
omputing the 
oe�
ients �−ci� of the 
hara
teristi
 polynomial

(x− λk1) . . . (x− λkh) = xh − c1x
h−1 − · · · − ch,4



we obtain that the linear re
ursion for the sequen
e {xn} is
xn ≡ c1xn−1 + c2xn−2 + · · · + chxn−h (mod p).We will give estimates for the pseudorandom measures of ET de�ned inDe�nition 1, but these upper bounds will be non-trivial only if k, the degreeof the polynomial f(x) is ≪ p1/2−ǫ for some ǫ > 0. For the well-distributionmeasure we obtain the following:Theorem 1 Suppose that f(x) is not of the form cxα(g(x))2 with c ∈ Fp,

α ∈ N, g(x) ∈ Fp[x]. Then
W (ET ) < 5kp1/2 log p.Clearly, if f(x) is of the form c (g(x))2, then the sequen
e ET 
ontainsonly +1's or ET 
ontains only −1's ex
ept at most k/2 pie
es of +1, sin
e if

g(i) ≡ 0 (mod p) then ei = 1 and otherwise ei =
(

c(g(λi))2

p

)

=
(

c
p

). If f(x)is of the form cx(g(x))2, then ei =
(

c
p

)(

λ
p

)i for g(i) 6≡ 0 (mod p), thus thesequen
e ET is almost (apart from at most k/2 pie
es of ei's) periodi
 with2. In 
ase of the 
orrelation measure there is no non-trivial general upperbound:Let ℓ | T and f(x) be of the form f(x) = ϕ(x)ϕ(λT/ℓx) where ϕ(x) ∈

Fp[x] has no zero in Fp. Then for the sequen
e ET de�ned in (3) we willprove that
Cℓ(ET ) ≥

T

ℓ
,5



whi
h means that for small ℓ | T , the 
orrelation measure of order ℓ is large.Indeed, by the de�nition of the 
orrelation measure of order ℓ, ϕ(λn+T ) =

ϕ(λn), the multipli
ative property of the Legendre symbol and ϕ(λn+iT/ℓ) 6=

0 for i ∈ N we get
Cℓ(ET ) ≥

∣

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

enen+T/ℓen+2T/ℓ . . . en+(ℓ−1)T/ℓ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

(

ϕ(λn)ϕ(λn+T/ℓ)
p

)(

ϕ(λn+T/ℓ)ϕ(λn+2T/ℓ)
p

)

. . .
(

ϕ(λn+(ℓ−1)T/ℓ)ϕ(λn)
p

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

T/ℓ
∑

n=1

(

ϕ(λn)ϕ(λn+T/ℓ) . . . ϕ(λn+(ℓ−1)T/ℓ)

p

)2
∣

∣

∣

∣

∣

∣

= T/ℓwhi
h was to be proved.Thus for ℓ | T there exists a polynomial f(x) for whi
h Cℓ(ET ) is large.This example shows that to assure that the 
orrelation measure of order
ℓ is small one needs further assumptions on the polynomial f(x) and theintegers T and ℓ. We will use the following de�nition.De�nition 2 We say that the polynomials ϕ(x), ψ(x) ∈ Fp[x] are equiva-lent:(4) ϕ ∼ ψ,if there are c ∈ F∗

p, γ ∈ N su
h that ϕ(x) = cψ(λγx).Clearly, this is an equivalen
e relation. Next we give an upper bound forthe 
orrelation measure of order ℓ: 6



Theorem 2 Let β ∈ N be the largest integer with xβ | f(x) (thus xβ+1 ∤

f(x)). Suppose that at least one of the following 4 
onditions holdsa) ℓ = 2, and f(x)/xβ is not of the form g(xσ) or cxα(g(x))2 with σ, α ∈ N,
(σ, T ) ≥ 2, c ∈ Fp and g(x) ∈ Fp[x].b) f(x)/xβ is not of the form cxα(g(x))2 with α ∈ N, c ∈ Fp and g(x) ∈

Fp[x], T (the order of λ) is a prime and either min{(4k)ℓ, (4ℓ)k} ≤ T or2 is a primitive root modulo T ;
) Consider the fa
torization f(x)/xβ = ϕβ1

1 (x) . . . ϕβu
u (x) where βi ∈ Nand ϕi(x) is irredu
ible over Fp. Suppose that there is an equivalen
e
lass de�ned by the relation ∼ in (4), whi
h 
ontains exa
tly one fa
tor

ϕj (1 ≤ j ≤ u) amongst the irredu
ible fa
tors of f(x)/xβ, moreover themultipli
ity of this irredu
ible fa
tor ϕj in the fa
torization of f(x)/xβis βj = 1;d) k − β (the degree of the polynomial f(x)/xβ) and ℓ are odd.Then
Cℓ(ET ) ≤ 5kℓp1/2 log p.In Theorem 2a) we are able to handle the 
ase ℓ = 2 
ompletely. Clearly,if f(x) is of the form g(xσ) with g(x) ∈ Fp[x], σ ∈ N and (σ, T ) ≥ 2,then the sequen
e ET is periodi
 with the period T/(T, σ), and thus the
orrelation measure of order 2 is greater than ∑T−T/(T,σ)

n=1 enen+T/(T,σ) =7



T − T/(T, σ). (Similar situation holds if f(x) is of the form xg(xσ) sin
ethen en = −en+T/(T,σ)).In Theorem 2b), 
) and d) we study the 
ase ℓ > 2, and while these
onditions are su�
ient to assure that the 
orrelation measure is small,they are not ne
essary. It is an important open question to des
ribe allpolynomials f(x), integers T and ℓ for whi
h the 
orrelation measure oforder ℓ is small. (We remark that a similar additive problem with a primemodulus in pla
e of T was studied in [1℄.)Usually, for a �xed polynomial f(x) it is not easy to 
he
k whether
ondition 
) in Theorem 2 holds. We will show that for a large 
lass of poly-nomials f(x) ∈ Fp[x] 
ondition 
) holds, and thus the 
orrelation measureis small. These polynomials will be 
hara
terized by their zeros:Corollary 1 Suppose that f(x) has a zero ρ 6= 0 ∈ Fp of multipli
ity 1,su
h that f(x) has no other zero of the form λiρ with 1 ≤ i ≤ T − 1. Then
Cℓ(ET ) ≤ 5kℓp1/2 log p.Using this 
orollary we get, e.g., the following:Corollary 2 Suppose that the order of λ is T = (p − 1)/2, all the k zerosof f(x) are in Fp, and one of the zeros is quadrati
 non-residue modulo p,while the other k − 1 zeros are quadrati
 residues modulo p. Then

Cℓ(E(p−1)/2) ≤ 5kℓp1/2 log p.8



Finally we would like to spe
ify our results to the spe
ial 
ase when
h = 2, i.e., the order of the linear re
ursion is 2:Corollary 3 Assume that h = 2, i.e., (1) is of the form(5) xn ≡ c1xn−1 + c2xn−2 (mod p)and assume that we have

(

c21 + 4c2
p

)

= 1.Denote the zeros of the 
hara
teristi
 polynomial of the linear re
ursion(5) by λ1 and λ2 (λ2
i − c1λi − c2 ≡ 0 (mod p)), then λ1, λ2 ∈ Fp. Supposethat λi 6≡ x2/x1 (mod p) for i = 1, 2.Denote the multipli
ative order of λ2/λ1 by T , and de�ne the sequen
e

ET = {e1, . . . , eT} by (2). Then we have
W (ET ) ≤ 9p1/2 log pand
Cℓ(ET ) ≤ 9ℓp1/2 log p.Here, the 
ondition that x2/x1 is not the root of the 
hara
teristi
 poly-nomial is ne
essary, sin
e if λ1 ≡ x2/x1 (mod p), the xn ≡ x1λ

n
1 , and thusthe sequen
e {en} is periodi
 with period 2.

9



2 ProofsThe following lemma is a generalization of Lemma 3.3 in [4℄, and theproof is also similar. Indeed, in [4℄ only that 
ase is studied when λ is aprimitive root, while Lemma 1 holds for all λ ∈ F∗

p.Lemma 1 Let p be a prime, χ be a multipli
ative 
hara
ter of order d with
2 ≤ d ∈ N, λ ∈ F∗

p be of multipli
ative order T , M,K ∈ N with K ≤ T .Suppose that f(x) ∈ Fp[x] has exa
tly s distin
t ones among its zeros.(i) If f(x) is not of the form cxα (g(x))d with c ∈ Fp, α ∈ N g(x) ∈ Fp[x].Then(6) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤ 4sp1/2 log p.(ii) If f(x) = cxα (g(x))d with c ∈ F∗

p, α ∈ N and g(x) ∈ Fp[x], where
T ∤ p−1

d
α, then(7) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
d

2
.Proof of Lemma 1If p or T ≤ 2 Lemma 1 is trivial, therefore we may assume that p, T ≥ 3.We will redu
e the problem to the estimate of 
omplete sums:Lemma 2 Let p be a prime, χ be a multipli
ative 
hara
ter of order d with

2 ≤ d ∈ N, λ ∈ F∗

p be an element of multipli
ative order T . Suppose that
f(x) ∈ Fp[x] has s distin
t ones among its zeros, and f(x) is not of the form10



cxα (g(x))d with c ∈ F∗

p, α ∈ N, g(x) ∈ Fp[x]. Then we have(8) ∣

∣

∣

∣

∣

T
∑

n=1

χ(f(λn))

∣

∣

∣

∣

∣

≤ sp1/2.Proof of Lemma 2The order of λ is T thus λn (for n = 1, . . . , T ) runs over all the T di�erent
(p− 1)/T -th powers modulo p ex
ept 0. Moreover for �xed λ and n,

λn = x(p−1)/Thas exa
tly (p − 1)/T solutions in x. Thus repla
ing λn by x(p−1)/T in (8)we get(9) ∣

∣

∣

∣

∣

T
∑

n=1

χ(f(λn))

∣

∣

∣

∣

∣

=
T

p− 1

∣

∣

∣

∣

∣

p−1
∑

n=1

χ(f(x(p−1)/T ))

∣

∣

∣

∣

∣

.Now, we will need the following lemma:Lemma 3 Let p be a prime, χ be a 
hara
ter of order d > 1. Suppose that
f(x) ∈ Fp[x] has exa
tly s distin
t ones among its zeros and it is not of theform f(x) = c (g(x))d with c ∈ Fp, g(x) ∈ Fp[x]. Then

∣

∣

∣

∣

∣

p−1
∑

n=1

χ(f(x)

∣

∣

∣

∣

∣

≤ (s− 1)p1/2.Proof of Lemma 3This 
an be derived from A. Weil's theorem [6℄ (an elementary proof ofwhi
h 
an be found in [5℄); see [2℄, [3℄.Next we return to the proof of Lemma 2. We prove that f(x(p−1)/T ) isnot of the form c (g(x))d with c ∈ F∗

p, g(x) ∈ Fp[x].11



Consider the fa
torization of f(x) over Fp:
f(x) = c(x− α1)

k1 . . . (x− αs)
ks,where c ∈ Fp and α1, . . . , αs ∈ Fp are di�erent numbers. Denote by

ε1, . . . , ε(p−1)/T ∈ Fp the (p− 1)/T di�erent solutions of the 
ongruen
e
x(p−1)/T ≡ 1 (mod p)in x, and for ea
h αi (1 ≤ i ≤ s) let ρi ∈ Fp be a number with

ρ
(p−1)/T
i = αi.Then the fa
torization of f(x(p−1)/T ) over Fp is

f(x(p−1)/T ) = c

s
∏

i=1

(x(p−1)/T − ρ
(p−1)/T
i )ki,

= c
s
∏

i=1

(x− ε1ρi)
ki . . . (x− ε(p−1)/Tρi)

ki.Suppose that in Fp(10) εuρi = εyρjfor some 1 ≤ u, y ≤ (p− 1)/T and 1 ≤ i, j ≤ s. Then
(εuρi)

(p−1)/T = (εyρj)
(p−1)/T ,

αi = αj ,

i = j.12



Then if u 6= y (so εu 6= εy) from (10) we obtain that ρi = ρj = 0 (i = j), so
αi = 0.Sin
e f(x) is not of the form cxα (g(x))d with c ∈ F∗

p, α ∈ N and g(x) ∈
Fp[x], thus f(x) has an αv 6= 0 zero (1 ≤ v ≤ s) of multipli
ity tv, where
d ∤ tv. Then ε1ρv is a zero of f(x(p−1)/T ) with the same multipli
ity tv,and sin
e d ∤ tv, thus f(x(p−1)/T ) is not of the form c (g(x))d with c ∈ F∗

p,
g(x) ∈ Fp[x].The polynomial f(x) has exa
tly s distin
t zeros, thus the polynomial
f(x(p−1)/T ) (in x) has at most sp−1

T
distin
t zeros. Using Lemma 3 and (9)we get

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))

∣

∣

∣

∣

∣

≤
T

p− 1

(

s
p− 1

T
p1/2

)

= sp1/2,whi
h 
ompletes the proof of Lemma 2.Sin
e the order of λ is T , there exists a 
hara
ter χ1 of order p − 1 forwhi
h(11) χ1(λ) = e(
1

T
).Throughout the proof of Lemma 1 χ1 will denote a 
hara
ter of order p− 1with (11). Sin
e χ is a 
hara
ter of order d in Lemma 1, thus there existsan integer m with (m, d) = 1 and(12) χ = χ

m(p−1)/d
1 .First we prove part i) in Lemma 1. Let 1 ≤ γ ≤ p− 2 be an integer. Weprove that the polynomial xγ (f(x))m(p−1)/d is not of the form cxα (g(x))p−113



with c ∈ Fp, α ∈ N and g(x) ∈ Fp[x]. Indeed, f(x) has a zero 0 6= β ∈ Fpwith multipli
ity t, whi
h is not divisible by d. Then the multipli
ity of βin xγ (f(x))m(p−1)/d is tm(p− 1)/d, and as d 6 |tm the integer tm(p− 1)/d isnot divisible by p− 1.Using (12) and Lemma 2 we obtain(13) ∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T−1
∑

n=0

χ1(λ
nγ(f(λn))m(p−1)/d))

∣

∣

∣

∣

∣

≤ (s+ 1)p1/2.By (11) we have
T−1
∑

γ=0

χ1(λ
γ(n−y)) =











T if T | n− y

0 otherwise.By this and K ≤ T we get
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M+T
∑

n=M+1

χ(f(λn))
M+K
∑

y=M+1

1

T

T−1
∑

γ=0

χ1(λ
γ(n−y))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

T

T−1
∑

γ=0

(

M+K
∑

y=M+1

χ1(λ
−γy)

)(

M+T
∑

n=M+1

χ(f(λn))χ1(λ
nγ)

)
∣

∣

∣

∣

∣

≤
1

T

T−1
∑

γ=0

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

.For γ = 0 we have ∣∣
∣

∑T−1
n=0 χ(f(λn))χ1(λ

nγ)
∣

∣

∣
=
∣

∣

∣

∑T−1
n=0 χ(f(λn))

∣

∣

∣
, whi
h isless than sp1/2 by Lemma 2, thus(14)

M+K
∑

n=M+1

χ(f(λn)) ≤
1

T

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T−1
∑

n=0

χ(f(λn))χ1(λ
nγ)

∣

∣

∣

∣

∣

+ sp1/2.By (13) we have(15) ∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
(s+ 1)p1/2

T

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

+ sp1/2.14



Denoting the distan
e α to the nearest integer by ||α||, and using |1 − e(α)| ≥

4||α|| and (11) we get |1 − χ1(λ
γ)| =

∣

∣1 − e
(

γ
T

)
∣

∣ ≥ 4|| γ
T
||. By using this andthe sum of geometri
 progression we obtain(16)

T−1
∑

γ=1

∣

∣

∣

∣

∣

M+K
∑

y=M+1

χ1(λ
−γy)

∣

∣

∣

∣

∣

≤
T−1
∑

γ=1

2

4|| γ
T
||
≤

T/2
∑

γ=1

T

γ
≤ T (log(T/2)+1) ≤ 1.45 T logT.By T ≤ p− 1, (15) and (16) we get the statement of Lemma 1 i).It remains to prove part ii) in Lemma 1. Suppose that f(x) = cxα (g(x))dwith c ∈ F∗

p, α ∈ N, g(x) ∈ Fp[x]. Sin
e the order of the 
hara
ter χ is d wehave:
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(λαn)

∣

∣

∣

∣

∣

.By this, the sum of geometri
 progression, (11), (12) and |1 − e(α)| ≥ 4 ‖

α ‖ we get:
∣

∣

∣

∣

∣

M+K
∑

n=M+1

χ(f(λn))

∣

∣

∣

∣

∣

≤
2

|1 − χ(λα)|
=

2
∣

∣

∣
1 − e

(

m(p−1)α
dT

)
∣

∣

∣

≤
1

2 ‖ m(p−1)α
dT

‖
.

(17)
T | p−1 thus m(p−1)α/T is an integer. On the other hand by the 
onditionof Lemma 1 ii) we have T ∤ (p− 1)α/d, so d ∤ (p− 1)α/T . (m, d) = 1 thus
d ∤ m(p− 1)α/T also holds. Therefore ‖ m(p−1)α

dT
‖≥ 1

d
. Using this and (17)we get Lemma 1 ii).Proof of Theorem 1Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give anupper bound for U(EN , t, a, b). 15



The order of λb is T/(T, b). Clearly, for �xed a and b, f(λax) ≡ 0

(mod p) has at most k solutions in x, thus f(λa+bj) ≡ 0 (mod p) has atmost k solutions in j with 1 ≤ j ≤ t ≤ T/(T, b). Write h(x) = f(λax).Then de�ning (a
p

) as 0 for p | a, we have
|U(EN , t, a, b)| =

∣

∣

∣

∣

∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t
∑

j=1

(

f(λa+bj)

p

)

∣

∣

∣

∣

∣

+ k

=

∣

∣

∣

∣

∣

t
∑

j=1

(

h((λb)j)

p

)

∣

∣

∣

∣

∣

+ k.(18)
f(x) and h(x) are of the same degree, and if f(x) is not of the form

c (g(x))2 or cx (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x], then this also holds for
h(x). Thus we may apply Lemma 1 with (n

p

)

, 2, λb, T/(T, b) and h(x) inpla
e of χ(n), d, λ, T and f(x), then we obtain that
|U(EN , t, a, b)| ≤

∣

∣

∣

∣

∣

t−1
∑

j=0

(

h((λb)j)

p

)

∣

∣

∣

∣

∣

+ k ≤ 4kp1/2 log p + k

≤ 5kp1/2 log p.whi
h 
ompletes the proof.Proof of Theorem 2Consider any D = (d1, . . . , dℓ) with non-negative integers d1 < · · · < dℓand positive integer M with M + dℓ ≤ T . Clearly for �xed d, f(λn+d) ≡ 0

(mod p) has at most k solutions in n with 1 ≤ n ≤ T , thus (de�ning (0
p

)

16



by 0) we have
|V (EN ,M,D)| =

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

M
∑

n=1

(

f(λn+d1)

p

)

. . .

(

f(λn+dℓ)

p

)

∣

∣

∣

∣

∣

+ kℓ =

∣

∣

∣

∣

∣

M
∑

n=1

(

f(λn+d1) · · · f(λn+dℓ)

p

)

∣

∣

∣

∣

∣

+ kℓ.(19)If ϕ2(x) | f(x) for a ϕ(x) ∈ Fp[x], then in De�nition 1 the polynomials fand f/ϕ2 generate almost the same sequen
es: ( f(λn)
p

)

=
(

f/ϕ2(λn)
p

)(

ϕ(λn)
p

)2

=
(

f/ϕ2(λn)
p

) if ϕ(λn) 6≡ 0 (mod p), so if f(λn) 6≡ 0 (mod p). From this followsthat (19) also holds with f/ϕ2 in pla
e of f , thus throughout the proof ofTheorem 2 we may suppose that f is squarefree. We will use the followinglemma.Lemma 4 Suppose that f(x) is squarefree, and at least one of the 4 
ondi-tions a), b), 
), d) in Theorem 2 holds. Then the polynomial
h(x)

def
= f(λd1x) · · · f(λdℓx)
annot be of the form c (g(x))2 or cx (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x].We will prove Lemma 4 later. The degree of the polynomial h(x) is kℓ,thus from (19) by using Lemma 1 and Lemma 4 we obtain
|V (EN ,M,D)| ≤ 4kℓp1/2 log p+ kℓ ≤ 5kℓp1/2 log p.whi
h was to be proved. Thus to 
omplete the proof of Theorem 2 it remainsto prove Lemma 4. 17



Proof of Lemma 4Write f(x) in the form xβq(x), where x ∤ q(x). Then x ∤ q(λd1x) · · · q(λdℓx),thus h(x) = f(λd1x) · · · f(λdℓx)) is of the form c(g(x))2 or cx(g(x))2 with
c ∈ Fp, g(x) ∈ Fp[x], if and only if q(λd1x) · · · q(λdℓx) is of the form c(g(x))2with c ∈ Fp, g(x) ∈ Fp[x].In order to 
omplete the proof of Lemma 4 we will prove that h̃(x) def

=

q(λd1x) · · · q(λdℓx) is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x].First 
onsider the 
ase when 
ondition a) holds in Theorem 2. We provethat the polynomial h̃(x) = q(λd1x)q(λd2x) 
annot be of the form c (g(x))2with c ∈ F∗

p, g(x) ∈ Fp[x].Let L denote the splitting �eld of q(x). Then
q(x) = c

k
∏

i=1

(x− αi)with c ∈ Fp, αi ∈ L, i = 1, . . . , k and α1, . . . , αk are pairwise distin
t. Itfollows that
q(λd1x) = cλd1k

k
∏

i=1

(x− αi/λ
d1)and

q(λd2x) = cλd2k
k
∏

i=1

(x− αi/λ
d2).We have αi/λ

d1 6= αj/λ
d1 whenever i 6= j. Assume that h̃(x) = c (g(x))2.Then all the roots of h̃(x) have multipli
ity 2 and there exists a permutation

π : {1, . . . , k} → {1, . . . , k} su
h that
αi/λ

d1 = απ(i)/λ
d2 1 ≤ i ≤ k.18



We obtain
απ(i) = λd2−d1αi 1 ≤ i ≤ k.This implies

απs(i) = λs(d2−d1)αifor any s ∈ Z and 1 ≤ i ≤ k.Let σ denote the multipli
ative order of λd2−d1 , i.e. let λσ(d2−d1) = 1.Then πσ is the identi
al permutation and we obtain
(x− αi)(x− λ(d2−d1)αi) . . . (x− λ(σ−1)(d2−d1)αi) = xσ ± ασ

i , i = 1, . . . , k.Thus σ | k and σ > 1 be
ause λd2−d1 6= 1. Hen
e q(x) splits into fa
tors ofthe form xσ − ασ
i , i.e. q(x) = g(xσ) with σ > 1.Sin
e σ is the order of λd2−d1 and T is the order of λ, we also have

T | σ(d2 − d1). |d2 − d1| < T thus (σ, T ) ≥ 2, whi
h 
ontradi
ts 
onditiona) in Theorem 1.In order to prove Lemma 4 if one of the 
onditions b) and 
) holds inTheorem 2, write q(x) as the produ
t of irredu
ible polynomials over Fp,then these irredu
ible fa
tors are distin
t. Let us group these fa
tors sothat in ea
h group the equivalent irredu
ible fa
tors are 
olle
ted (using theequivalen
e relation des
ribed in De�nition 2). We will use the followinglemma.Lemma 5 Suppose that q(x) is squarefree, and h̃(x) = q(λd1x) · · · q(λdℓx) isof the form c (g(x))2 with c ∈ F∗

p, g(x) ∈ Fp[x]. Let c1ϕ(λa1x), . . . , crϕ(λarx)19



be a group formed by equivalent irredu
ible fa
tors of q(x), and write A =

{a1, . . . , ar}, D = {d1, . . . , dℓ}. Then for all γ ∈ ZT

a+ d ≡ γ (mod T ), a ∈ A, d ∈ Dhas even number of solutions.Proof of Lemma 5Writing h̃(x) = q(λd1x) · · · q(λdℓx) as the produ
t of irredu
ible polyno-mials over Fp, all the polynomials ϕ(λai+djx) with 1 ≤ i ≤ r, 1 ≤ j ≤ ℓ o

uramongst the fa
tors. All these polynomials are equivalent, and no other ir-redu
ible fa
tor belonging to this equivalen
e 
lass will o

ur amongst theirredu
ible fa
tors of h̃(x).Sin
e distin
t irredu
ible polynomials 
annot have a 
ommon zero, ea
hof the zeros of h̃(x) is of even multipli
ity, if and only if in ea
h group formedby equivalent irredu
ible fa
tors of h̃(x), every polynomial of form ϕ(λγx)o

urs with even multipli
ity, i.e., for even numbers of pairs (ai, dj). Fromthis the statement of the lemma follows.Next we return to the proof of Lemma 4. Clearly, if one of the 
onditionsb) and 
) holds in Theorem 1, then there exists a group for whi
h one ofthe following holds
i) T (the order of λ) is a prime, and either |A| = r, |D| = ℓ withmin{(4r)ℓ, (4ℓ)r} ≤

T or 2 is a primitive root modulo T ,
ii) |A| = 1. 20



In the 
ases i) and ii) we may use the following addition theorem typelemma:Lemma 6 Let A,D ⊆ ZT with |A| = r, |D| = ℓ. Suppose that one of thefollowing 3 
onditions holdsa) min{r, ℓ} = 1,b) T is a prime and min{(4r)ℓ, (4ℓ)r} ≤ T ,
) T is a prime and 2 is a primitive root modulo T .Then there exists a γ ∈ ZT su
h that
a+ d ≡ γ (mod T ), a ∈ A, d ∈ Dhas exa
tly one solution.Using Lemma 6 we get that the 
on
lusion of Lemma 5 
annot hold,thus h̃(x) = q(λd1x) · · · q(λdℓx) 
annot be of the form c(g(x))2 with c ∈ F∗

p,
g(x) ∈ Fp[x] if one of the 
ondition a), b) and 
) holds in Theorem 2. Thisproves Lemma 4 in these 
ases, but it remains to prove Lemma 6.Proof of Lemma 6a) If min{r, ℓ} = 1 without loss of generality we may suppose that r = 1,so A = {a1} and D = {d1, . . . , dℓ}. Then all the sums of the form a + dwith a ∈ A, d ∈ D are a1 + d1, . . . , a1 + dℓ and they are di�erent modulo T ,whi
h proves the assertion.b) See the proof of Theorem 2 in [1℄.21




) See the proof of Theorem 3 in [1℄.This 
ompletes the proof of Lemma 6, thus we verify Lemma 4 if oneof the 
onditions a), b) and 
) holds in Theorem 2. If the 
ondition d)holds, then Lemma 4 is trivial, sin
e the degree of the polynomial h(x) =

f(λd1x) · · · f(λdℓx) is odd sin
e k and ℓ are odd, thus h(x) 
annot be of theform c (g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. So Lemma 4 always holds, and aswe have seen, from this Theorem 2 follows.Proof of Corollary 1Sin
e ρ is a root of f(x) of multipli
ity 1, there is an irredu
ible fa
tor
ϕ(x) of multipli
ity 1 in the fa
torization of f(x) for whi
h ρ is a root of
ϕ(x): ϕ(x) | f(x) but ϕ2(x) ∤ f(x) and ϕ(ρ) = 0.All polynomials equivalent to ϕ(x) are of the form cϕ(λγx). These ir-redu
ible polynomials (ex
ept ϕ(x)) 
annot be in the fa
torization of f(x):
cϕ(λγx) | f(x) is not possible for T ∤ γ, sin
e f(x) has no other root then
ρ of the form λiρ, but cϕ(λγx) has a root of this form: x = λT−γρ. Thus
ondition 
) holds in Theorem 2, so Corollary 1 follows from Theorem 2.Proof of Corollary 2Let ρ be the only one root whi
h is quadrati
 non-residue modulo p.Sin
e the order of λ is (p − 1)/2, λ is a quadrati
 residue modulo p. Thus
λiρ is a quadrati
 non-residue modulo p, but f(x) has no other quadrati
residue root then ρ. Using Corollary 1 we get the statement.Proof of Corollary 3 22



First we extend slightly Lemma 1 in the spe
ial 
ase when the multi-pli
ative 
hara
ter is the Legendre symbol.Lemma 7 Let p be a prime, ν1, ν2 ∈ F∗

p, where ν2 is of multipli
ative order
T , and K,M ∈ Fp with K ≤ T . Suppose that f(x) ∈ Fp[x] has exa
tly sdistin
t ones among its zeros, x ∤ f(x) and f(x) is not of the form c(g(x))2with c ∈ Fp, g(x) ∈ Fp[x]. Then we have

∣

∣

∣

∣

∣

M+K
∑

n=M+1

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

≤ 8sp1/2 log p.Proof of Lemma 7Using the triangle-inequality, the multipli
ative property of the Legendresymbol and ∣∣
∣

(

νi

p

)
∣

∣

∣
= 1 we get

∣

∣

∣

∣

∣

M+K
∑

n=M+1

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡0 (mod 2)

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡1 (mod 2)

(

νn
1 f(νn

2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡0 (mod 2)

(

f(νn
2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

M+K
∑

n=M+1
n≡1 (mod 2)

(

f(νn
2 )

p

)

∣

∣

∣

∣

∣

∣

∣

∣

.From this by using Lemma 1 we get the statement of Lemma 7.Next we return to the proof of Corollary 3. Sin
e ( c21+4c2
p

)

= 1, the tworoots of the 
hara
teristi
 polynomial: λ1 and λ2 are di�erent and ∈ Fp.Thus xn is of the form
xn ≡ a1λ

n
1 + a2λ

n
2 ≡ λn

1 (a1 + a2(λ2/λ1)
n) (mod p)23



with a1, a2 ∈ Fp. Sin
e x2/x1 is not the root of the 
hara
teristi
 polynomial,thus ai 6≡ 0 (mod p) for i = 1, 2. De�ne f(x) ∈ Fp[x] by f(x) = a1 + a2x.Then
xn ≡ λn

1f((λ2/λ1)
n) (mod p).Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give anupper bound for U(EN , t, a, b).For �xed a and b, xa+jb ≡ λa+jb

1 (a1 + a2(λ2/λ1)
a+jb) ≡ 0 (mod p) has atmost one solution in j with 1 ≤ a+ jb ≤ T . Then similarly to (18) we get

|U(EN , t, a, b)| ≤

∣

∣

∣

∣

∣

t
∑

j=1

(

λa+jb
1 f((λ2/λ1)

a+jb)

p

)
∣

∣

∣

∣

∣

+ 1.Using Lemma 7 we get
|U(EN , t, a, b)| ≤ 8p1/2 log p+ 1 ≤ 9p1/2 log pwhi
h was to be proved.Consider any D = (d1, . . . , dℓ) with non negative integers d1 < · · · < dℓand positive integer M with M + dℓ ≤ T . We give an upper bound for

V (EN ,M,D). Similarly to (19) we get
|V (EN ,M,D)| ≤

∣

∣

∣

∣

∣

M
∑

n=1

(

λnj
1 λ

d1+···+dℓ
1 f((λ2/λ1)

n+d1) . . . f((λ2/λ1)
n+dℓ)

p

)
∣

∣

∣

∣

∣

+ℓ.If f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dℓx) is not of the form c(g(x))2 with c ∈ Fp,
g(x) ∈ Fp[x], then we 
an use Lemma 7 and obtain

|V (EN ,M,D)| ≤ 8ℓp1/2 log p+ ℓ ≤ 9ℓp1/2 log p,24



whi
h was to be proved.In order to 
omplete the proof of Corollary 3 we prove that f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dℓx)is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. The degree of ea
hof the polynomials f((λ2/λ1)
dix) (1 ≤ i ≤ ℓ) is 1 (in x), thus these polyno-mials are irredu
ible. Their produ
t is a 
onstant multiple of a square of apolynomial, only if there exist 1 ≤ i < j ≤ ℓ and c ∈ Fp with

f((λ2/λ1)
dix) = cf((λ2/λ1)

djx),

a1 + a2(λ2/λ1)
dix = ca1 + ca2(λ2/λ1)

djx.From this it follows by ai 6≡ 0 (mod p) that c ≡ 1 (mod p) and thus
di ≡ dj (mod T )whi
h is impossible, sin
e 1 ≤ di < dj ≤ T . This 
ompletes the proof.Referen
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