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Abstract

In an earlier paper Hubert, Mauduit and Sárközy defined the notion

of binary lattice, they introduced the measures of pseudorandomness

of binary lattices, and they constructed a binary lattice with strong

pseudorandom properties with respect to these measures. Later fur-

ther constructions of this type have been given by different authors.

In this series we study the measures of pseudorandomness of binary

lattices. In particular, in this paper first we study the minimum of the

measure Qk in one dimension. Then we introduce the correlation mea-

sure Ck in n dimensions, and we estimate the minima of Qk, Ck and

the normality measures in two dimensions. The connection between

the correlation measures of order two and three of binary lattices is

also studied.

2000 Mathematics Subject Classification: Primary 11K45.

Key words and phrases: binary lattice, pseudorandom, correlation,

normality.

1 Introduction

Recently a new constructive approach has been developed to study pseu-

dorandomness of binary sequences, and later this work has been extended

to two dimensions. In this series our goal is to study the measures of pseu-

dorandomness in two dimensions. In Part I [9] we studied the measures Qk

and the normality measure, while Part II [10] was devoted to the study of

the symmetry measure. Here we will return to the measures Qk and the nor-

mality measure; in particular, we will focus on their minimal values, but we

will also study some other related problems. However, first in Section 2 we

will recall some basic definitions and results from the one dimensional case,

and we will also add some further (one-dimensional) results. In Section 3

we will recall some main definitions and results in the two dimensional case,
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and we will also introduce the notion of the correlation measure in this case.

The rest of the paper will be devoted to new two dimensional results and

problems.

2 The basic definitions and results in one di-

mension

Consider a binary sequence

EN = {e1, e2, . . . , eN} ∈ {−1, +1}N . (2.1)

In [14] Mauduit and Sárközy introduced the following measures of pseudo-

randomness: The well-distribution measure of EN is defined by

W (EN) = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb

∣

∣

∣

∣

∣

where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a + tb ≤ N ,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
. . . en+dk

∣

∣

∣

∣

∣

where the maximum is taken over all D = (d1, . . . , dk) and M such that 0 ≤
d1 < · · · < dk ≤ N −M . Then the sequence EN is considered to be a “good”

pseudorandom sequence if both W (EN) and Ck(EN ) (at least for “small” k)

are “small” in terms of N (in particular both are o(N) as N → ∞). Indeed,

later Cassaigne, Mauduit and Sárközy [5] showed that this terminology is

justified since for almost all EN ∈ {−1, +1}N both W (EN) and Ck(EN) are

less than N1/2(log N)c. (See also [2].) In [14] the combination of the well-

distribution measure and the correlation measure was also introduced: The

combined pseudorandom measure of order k is defined as

Qk(EN ) = max
a,b,t,D

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1
. . . ea+jb+dk

∣

∣

∣

∣

∣
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where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that

all the subscripts a + jb + dℓ belong to {1, 2, . . . , N}. Note that clearly we

have

Q1(EN) = W (EN) for all N ∈ N and EN ∈ {−1, +1}N (2.2)

and

Ck(EN ) ≤ Qk(EN ) for all k, N ∈ N with k < N and EN ∈ {−1, +1}N .

(2.3)

Now consider again the binary sequence (2.1), and for k ∈ N, M ∈ N and

X = {x1, . . . , xk} ∈ {−1, +1}k let

T (EN , M, X) = |{n : 0 ≤ n < M, {en+1, en+2, . . . , en+k} = X}| .

Then the normality measure of order k of EN is defined as

Nk(EN) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣

∣

∣

∣

T (EN , M, X) − M

2k

∣

∣

∣

∣

,

and the normality measure of EN is defined as

N(EN ) = max
k≤(log N)/ log 2

Nk(EN).

It was proved in [14] that for all N, EN and k < N we have

Nk(EN) ≤ max
1≤t≤k

Ct(EN).

Since 1997 many papers have been written on these measures of pseudo-

randomness and on the pseudorandom properties of special sequences; a list

of these papers is presented in Part I of this series [9]. The main subject of

this paper is the estimate of the minima of the pseudorandom measures, thus

here we will restrict ourselves to giving a short survey of the results proved

in this direction in one dimension.

In [16] Roth proved

Theorem A We have

min
EN∈{−1,+1}N

W (EN)

(

= min
EN∈{−1,+1}N

Q1(EN)

)

≫ N1/4. (2.4)
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More precisely, this estimate does not appear explicitely in his paper; how-

ever, by adapting his method, one can prove the following more general result

easily:

Theorem B Let N, Q ∈ N, Q ≥ 2, and write Q1 = [Q/2]. Let s1, s2, . . . , sN

be complex numbers, and set si = 0 for i = 0,−1,−2, . . . and i = N +1, N +

2, . . . Then we have

Q
∑

q=1

N
∑

n=1−(Q1−1)q

∣

∣sn + sn+q + sn+2q + · · · + sn+(Q1−1)q

∣

∣

2 ≥
(

2

π
Q1

)2 N
∑

m=1

|sm|2 .

(2.5)

(This version of the result appears in [17].) Choosing here sn = en for

n = 1, 2, . . . , N and Q = [
√

N ], we get easily that the greatest term in the

double sum in (2.5) satisfies

∣

∣

∣
en + en+q + en+2q + · · · + en+([

√
N/2]−1)q

∣

∣

∣
≫ N1/4

which proves (2.4).

In the opposite direction Beck [4] proved:

min
EN∈{−1,+1}N

W (EN)

(

= min
EN∈{−1,+1}N

Q1(EN)

)

≪ N1/4(log N)5/2.

Later Matoušek and Spencer [15] improved this to

Theorem C We have

min
EN∈{−1,+1}N

W (EN) ≪ N1/4.

Thus now it is known that the exact order of magnitude of min W (EN)

is N1/4.

Now consider min
EN

Ck(EN ). Cassaigne, Mauduit and Sárközy [5] showed

that for every fixed k ∈ N we have

min
EN∈{−1,+1}N

Ck(EN ) ≪ (kN log N)1/2, (2.6)
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and if k is even, then

min
EN∈{−1,+1}N

Ck(EN ) ≫ log N (for k even). (2.7)

On the other hand, they showed that if EN = {e1, e2, . . . , eN} ∈ {−1, +1}N

is defined by en = (−1)n for n = 1, 2, . . . , N , then we have

Ck(EN ) = 1 (for k odd)

thus for all N ,

min
EN∈{−1,+1}N

Ck(EN ) = 1 for k odd. (2.8)

Later Alon, Kohayakawa, Mauduit, Moreira and Rödl [1], [13] improved (2.7)

to:

Theorem D If k, N ∈ N, 2 ≤ k ≤ N and k is even, then

min
EN∈{−1,+1}N

Ck(EN) ≫
(

N

k

)1/2

(for k even). (2.9)

Thus now the order of magnitude of min Ck(EN) is known, apart from a

logarithmic factor, for fixed even k.

On the other hand, we know very little on the minimum of the normality

measure. Alon, Kohayakawa, Mauduit, Moreira and Rödl [1] proved the

following results:

Theorem E

(i) We have

min
EN∈{−1,+1}N

Nk(EN) = 1 − 2−k (2.10)

for any k ≥ 1 and any N ≥ 2k.

(ii) We have

min
EN∈{−1,+1}N

Nk(EN ) ≥
(

1

2
+ o(1)

)

log N

log 2
. (2.11)

Theorem F For N > N0 we have

min
EN∈{−1,+1}N

Nk(EN) ≤ 3N1/3(log N)2/3. (2.12)
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There is a huge gap between the lower bound (2.11) and the upper bound

(2.12). They write in [1]: “We suspect that the logarithmic lower bound” [in

(2.11)] “is far from the truth”. They pose the following problem:

Problem 1 Is there an absolute constant α > 0 for which we have

min
EN∈{−1,+1}N

Nk(EN ) ≥ Nα

for all large enough N?

Now this is, perhaps, the most important unsolved problem in this field.

Finally, min
EN∈{−1,+1}N

Qk(EN ) has not been studied yet. Thus we will com-

plete this section by proving a theorem in this direction:

Theorem 1 (i) If k, N ∈ N, 2 ≤ k ≤ N and k is even, then

min
EN∈{−1,+1}N

Qk(EN) ≫
(

N

k

)1/2

(for k even). (2.13)

(ii) For every 0 < ε < 1 there is a number N0(ε) such that if k, N ∈ N,

N > N0(ε) and k ≤ (1 − ε)N , then

min
EN∈{−1,+1}N

Qk(EN ) ≫ ε1/4N1/4 ( for all k ≤ (1 − ε)N ). (2.14)

(iii) We have

min
EN∈{−1,+1}N

Q1(EN ) ≪ N1/4.

(iv) If k ∈ N, k ≥ 2, then there is a number N0 = N0(k) such that for N ∈ N,

N > N0 we have

min
EN∈{−1,+1}N

Qk(EN) ≤ 9(kN log N)1/2. (2.15)

(v) For all k, N ∈ N with 2 ≤ k ≤ N we have

min
EN∈{−1,+1}N

Qk(EN) ≪ kN1/2 log N.
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Observe that for odd k there is a significant difference between the be-

havior of Ck and Qk: while min
EN

Ck(EN ) is bounded for odd k by (2.8), we

have min
EN

Qk(EN ) ≫ N1/4 for odd k as well by (2.14).

Proof of Theorem 1.

(i) This follows trivially from (2.3) and (2.9).

(ii) Let EN = {e1, e2, . . . , eN}, M = [εN ], and define FM = {f1, f2, . . . , fM} ∈
{−1, +1}M by

fn = enen+1 . . . en+k−1

(note that M + k − 1 ≤ [εN ] + (1 − ε)N − 1 < N). Then using (2.4) in

Theorem A with FM in place of EN we obtain that there exist a, b, t with

1 ≤ a ≤ a + (t − 1)b ≤ M such that

∣

∣

∣

∣

∣

t−1
∑

j=0

fa+jb

∣

∣

∣

∣

∣

≫ M1/4 ≫ ε1/4N1/4. (2.16)

By the definition of Qk we have

∣

∣

∣

∣

∣

t−1
∑

j=0

fa+jb

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jbea+jb+1 . . . ea+jb+k−1

∣

∣

∣

∣

∣

≤ Qk(EN ), (2.17)

and (2.14) follows from (2.16) and (2.17).

(iii) This follows from Theorem C by (2.2).

(iv) By the n = 1, ε = 1
2

special case of the second half (more precisely,

formula (3.3)) of Theorem 1 of Hubert, Mauduit and Sárközy in [12], choosing

every EN ∈ {−1, +1}N with equal probability 2−N we have

P
(

Qk(EN) > (81kN log N)1/2
)

<
1

2

for N > N0(k), so that

Qk(EN) ≤ 9(kN log N)1/2

holds for at least half of the sequences EN ∈ {−1, +1}N which proves (2.15).
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(v) Let p denote the smallest prime greater than N , and let EN denote

the Legendre symbol sequence EN =
{(

1
p

)

,
(

2
p

)

, . . . ,
(

N
p

)}

. Then by (3.1)

in [14] we have

Qk(EN) ≤ 9kp1/2 log p ≪ kN1/2 log N

as N → ∞.

We remark that for odd (fixed) k there is a large gap between the lower

bound (2.14) and the upper bound (2.15):

N1/4 ≪ min
EN∈{−1,+1}N

Qk(EN) ≪ (kN log N)1/2 (k > 1 odd, fixed). (2.18)

Problem 2 Tighten the gap between the lower and upper bounds in (2.18).

We remark that a further pseudorandom measure, the symmetry measure

was introduced in [7], and its minimum was also estimated there. Since both

the two dimensional extension of this measure and the minimum of it was

studied in Part II of this series [10] thus we do not include this measure in

this paper.

3 The basic definitions and results in two di-

mensions

In [12] Hubert, Mauduit and Sárközy introduced the following definitions:

Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [11]

this definition was extended to more general lattices in the following way:

Let u1,u2, . . . ,un be n linearly independent vectors over the field of the real
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numbers such that the i-th coordinate of ui is a positive integer and the other

coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0) (with

zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then we

call the set

Bn
N = {x = x1u1 + · · · + xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [12] the definition of binary sequences was extended from one dimension

to n dimensions by considering functions of type

η(x) : In
N → {−1, +1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify the

notation slightly by writing η(x) = η(x1, . . . , xn). Such a function can be

visualized as the lattice points of the N -lattice replaced by the two symbols

+ and −, thus they are called binary N-lattices.

In [12] Hubert, Mauduit and Sárközy introduced the following measures

of pseudorandomness of binary lattices (here we will present the definition

in the same slightly modified but equivalent form as in [11]): Let

η : In
N → {−1, +1}.

Define the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dk)

∣

∣

∣

∣

∣

, (3.1)

where the maximum is taken over all distinct d1, . . . ,dk ∈ In
N and all box

N -lattices B such that B + d1, . . . , B + dk ⊆ In
N . Note that in the one

dimensional special case the measure Qk(η) is the same as the combined

pseudorandom measure of order k described in Section 2.

Then η is said to have strong pseudorandom properties, or briefly, it

is considered as a “good” pseudorandom binary lattice if for a fixed n and

9



“large” N the measure Qk(η) is “small” (much smaller, than the trivial upper

bound Nn). This terminology is justified by the fact that, as it was proved

in [12], for a truly random binary lattice defined on In
N and for fixed k the

measure Qk(η) is “small”, more precisely, it is less than Nn/2 multiplied by a

logarithmic factor. A list of papers written on pseudorandomness of binary

lattices is presented in Part I of this series [9].

Note that while in one dimension we separated Qk into the measures W

and Ck, here in n dimension the analog of Ck has not been introduced yet

(the analog of W (EN) = Q1(EN) is Q1(η)). The reason of this is that in one

dimension the distribution in arithmetic progression and the correlation are

standard notions which are intensively studied independently of the notion

of pseudorandomness, and this fact has no analog in n dimensions; besides, if

we are interested only in pseudorandomness, then the use of the measure Qk

is sufficient. In spite of this now we introduce the n-dimensional extension

of the notion of correlation since later in this paper we will need it:

The correlation measure of order k of the lattice η : I2
N → {−1, +1} is

defined by

Ck(η) = max
B′,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) · · · η(x + dk)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dk ∈ In
N and all box

lattices B′ of the special form

B′ = {x = (x1, . . . , xn) : 0 ≤ x1 ≤ t1(< N), . . . , 0 ≤ xn ≤ tn(< N)}

such that B′ + d1, . . . , B
′ + dk ⊆ In

N . Note that it follows trivially from the

definition that for all η, k we have

Ck(η) ≤ Qk(η) (3.2)

(but Qk is usually much greater than Ck). Later some of our methods used

for giving lower bounds for Qk will also give the same lower bound for Ck. It
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will be worth to formulate these results in terms of Ck instead of Qk since in

this way we get sharper results by (3.2).

In this section so far we have been considering n-dimensional binary lat-

tices. From now on (as in the earlier parts of this series) we restrict ourselves

to the special case n = 2. Namely, the general case could be handled simi-

larly, just the formulas are much more complicated and lengthy.

Another measure of pseudorandomness, the normality measure in two

dimensions was introduced in Part I of this series [9]. For k, ℓ ∈ N let

M(k, ℓ) denote the set of the (k× ℓ) matrices A = (aij) with aij ∈ {−1, +1}
for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, let η(x, y) : I2

N → {−1, +1} be a (two-dimensional)

binary lattice, and for X = (xij) ∈ M(k, ℓ) let

Z(η, U, V, X) =|{(m, n) : 0 ≤ m < U, 0 ≤ n < V,

η(m − 1 + i, n − 1 + j) = xij for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}|.

Then the the normality measure of order (k, ℓ) of η is defined as

N(k,ℓ) = max
X∈M(k,ℓ)

max
0<U≤N+1−k
0<V ≤N+1−ℓ

∣

∣

∣

∣

Z(η, U, V, x) − UV

2kℓ

∣

∣

∣

∣

,

while the normality measure of η is defined as

N(η) = max
kℓ≤(2 log N)/ log 2

Nk,ℓ(η).

In this paper, first in Section 4 we will prove a result of independent

interest to be used in the estimate of min Qk(η). Then in Section 5, 6 and

7 we will estimate min Ck(η) and min Qk(η). In Section 8 we will prove an

inequality on C2 and C3. Finally, in Section 9 we will estimate min N(η).

4 Generalization of Roth’s theorem to two di-

mensions

In this section we will prove the following two dimensional generalization

of Roth’s Theorem A, more precisely, of the more general Theorem B:

11



Theorem 2 Let N ∈ N, Q ∈ N and

Q ≥ 2, (4.1)

and write Q1 = [Q/2]. For u = 1, 2, . . . , N and v = 1, 2, . . . , N , let su,v be

complex numbers, and set

su,v = 0 if u, v ∈ Z and one of u < 1, u > N, v < 1, v > N holds. (4.2)

For m, n ∈ Z and q, r, ℓ ∈ N, write

D(m, n, q, r, ℓ) =
ℓ−1
∑

j=0

ℓ−1
∑

k=0

sm+jq,n+kr.

Then we have

Q
∑

q=1

Q
∑

r=1

N
∑

m=1−(Q1−1)q

N
∑

n=1−(Q1−1)r

|D(m, n, q, r, Q1)|2 ≥
(

2

π
Q1

)4 N
∑

m=1

N
∑

n=1

|sm,n|2 .

(4.3)

Corollary 1 Having the assumptions and notations of Theorem 2, there ex-

ist m, n ∈ Z and q, r ∈ N such that

1 ≤ q, r ≤ Q (4.4)

and

|D(m, n, q, r, Q1)| ≥
(

2

π

)2 [
Q

2

]2

Q−1

(

N +
Q2

4

)−1
(

N
∑

m=1

N
∑

n=1

|sm,n|2
)1/2

.

(4.5)

Corollary 2 If ε > 0, N > N0(ε) is a positive integer, su,v ∈ C for u, v ∈
{1, 2, . . . , N}, and we also use the notation (4.2), then there exist m, n ∈ Z

and q, r ∈ N such that q, r ≤ N1/2 and

∣

∣D(m, n, q, r, [N1/2/2])
∣

∣ ≥
(

4

5π2
− ε

)

(

1

N2

N
∑

m=1

N
∑

n=1

|sm,n|2
)1/2

N1/2.
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We remark that we will use these results, more precisely, Corollary 2 later

in section 5 in the lower estimate of min Qk in Theorem 3 where it would

suffice to use a more special result of Doerr, Srivastav and Wehr [6]. However,

the more general form presented above can be useful in many applications

(e.g., character sum estimates in the manner of [17]), study of k-ary lattices,

i.e., lattices composed of k symbols instead of binary lattices, etc.); besides, in

[6] the authors write “... we were not able to generalize Roth’s proof to higher

dimensions. Instead we use a different approach...” Thus we think it is of

some interest to present here the much more general result Theorem 2 which

can be proved by an adaption of Roth’s original method using elementary

harmonic analysis only.

Proof of Theorem 2. Let

F (α) =

Q1−1
∑

j=0

e(jα)

(we use the notion e(β) = e2πiβ) and

S(α, β) =
N
∑

m=1

N
∑

n=1

sm,ne(mα)e(nβ).

Adapting Roth method, we start out from the integral

J =

∫ 1

0

∫ 1

0

Q
∑

q=1

Q
∑

r=1

|F (qα)F (rβ)S(α, β)|2 dαdβ.

As Roth proved (see (11) in [16]) we have

Q
∑

q=1

|F (qα)|2 ≥
(

2

π
Q1

)2

for all 0 ≤ α ≤ 1.

13



Thus by Parseval’s formula we have

J =

∫ 1

0

∫ 1

0

|S(α, β)|2
Q
∑

q=1

|F (qα)|2
Q
∑

r=1

|F (rβ)|2 dαdβ

≥
(

2

π
Q1

)4 ∫ 1

0

∫ 1

0

|S(α, β)|2 dαdβ

=

(

2

π
Q1

)4 N
∑

m=1

N
∑

n=1

|sm,n|2 . (4.6)

On the other hand, again by Parseval’s formula (and using also (4.2)) we

have

J =

Q
∑

q=1

Q
∑

r=1

∫ 1

0

∫ 1

0

|F (qα)F (rβ)S(α, β)|2 dαdβ

=

Q
∑

q=1

Q
∑

r=1

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∣

Q1−1
∑

j=0

e(jqα)

Q1−1
∑

k=0

e(krβ)

N
∑

m=1

N
∑

n=1

sm.ne(mα)e(nβ)

∣

∣

∣

∣

∣

2

dαdβ

=

Q
∑

q=1

Q
∑

r=1

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∣

Q1−1
∑

j=0

Q1−1
∑

k=0

N
∑

m=1

N
∑

n=1

sm.ne((m + jq)α)e((n + kr)β)

∣

∣

∣

∣

∣

2

dαdβ

=

Q
∑

q=1

Q
∑

r=1

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∣

∣

N+(Q1−1)q
∑

u=1

N+(Q1−1)r
∑

v=1

Q1−1
∑

j=0

Q1−1
∑

k=0

su−jq.v−kre(uα)e(vβ)

∣

∣

∣

∣

∣

∣

2

dαdβ

=

Q
∑

q=1

Q
∑

r=1

∫ 1

0

∫ 1

0

∣

∣

∣

∣

∣

N+(Q1−1)q
∑

u=1

N+(Q1−1)r
∑

v=1

D(u − (Q1 − 1)q, v − (Q1 − 1)r, q, r, Q1)e(uα)e(vβ)

∣

∣

∣

∣

∣

2

dαdβ

=

Q
∑

q=1

Q
∑

r=1

N+(Q1−1)q
∑

u=1

N+(Q1−1)r
∑

v=1

|D(u − (Q1 − 1)q, v − (Q1 − 1)r, q, r, Q1)|2

=

Q
∑

q=1

Q
∑

r=1

N
∑

m=1−(Q1−1)q

N
∑

n=1−(Q1−1)r

|D(m, n, q, r, Q1)|2 (4.7)

(4.3) follows from (4.6) and (4.7) and this completes the proof of the

theorem.
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Proof of Corollary 1. Let us write

D = max
1≤q,r≤Q

1−(Q1−1)q≤m,n≤N

|D(m, n, q, r, Q1)| .

Then the left hand side of (4.3) is

Q
∑

q=1

Q
∑

r=1

N
∑

m=1−(Q1−1)q

N
∑

n=1−(Q1−1)r

|D(m, n, q, r, Q1)|2

≤ D2

(

Q
∑

q=1

N + (Q1 − 1)q

)2

(4.8)

≤ D2Q2

(

N +

(

Q

2
− 1

)

(Q + 1)

2

)2

≤ D2Q2

(

N +
Q2

4

)2

. (4.9)

Combining (4.3) with (4.9) we obtain

D2Q2

(

N +
Q2

4

)2

≥
(

2

π
Q1

)4 N
∑

m=1

N
∑

n=1

|sm,n|2 .

It follows from this that

D ≥
(

2

π

)2 [
Q

2

]2

Q−1

(

N +
Q2

4

)−1
(

N
∑

m=1

N
∑

n=1

|sm,n|2
)1/2

which proves that there exist m, n ∈ Z and q, r ∈ Q satisfying (4.4) and

(4.5).

Corollary 2 can be obtained from Corollary 1 by choosing Q = [
√

N ], we

leave the details to the reader.

5 The minimum of Qk in two dimensions: lower

bound for every k

First we will prove the two dimensional analog of (ii) in Theorem 1.

15



Theorem 3 For every number 0 < ε < 1 there is a number N0(ε) such that

if k, N ∈ N, N > N0(ε) and k ≤ (1 − ε)N , then

min
η: I2

N
{−1,+1}

Qk(η) ≫ ε1/2N1/2 (for all k ≤ (1 − ε)N). (5.1)

Proof of Theorem 3. Consider first the special case k = 1. Then by

Theorem 1.2 of Doerr, Srivastov and Wehr [6] we have

Q1(η) ≫ N1/2 (5.2)

for all η : I2
N → {−1, +1} (note that this also follows from Corollary 2

immediately by taking there sm,n = η(m, n)) which proves (5.1) for k = 1.

Assume now that η : I2
N → {−1, +1} and 2 ≤ k ≤ (1 − ε)N . Write

M = [εN ], and define the binary M-lattice ϕ : I2
M → {−1, +1} by

ϕ(u, v) = η(u, v)η(u+1, v+1) . . . η(u+k−1, v+k−1) for 0 ≤ u, v ≤ M−1

(note that then max{u + k − 1, v + k − 1} ≤ M − 1 + k − 1 ≤ εN − 1 + (1−
ε)N − 1 < N − 1). Then using the k = 1 special case in (5.2) of (5.1) (that

we have proved already) with M and ϕ in place of N and η we obtain that

Q1(ϕ) ≫ M1/2 ≫ ε1/2N1/2,

i.e., there is a box M-lattice B and a d ∈ I2
M with B + d ⊆ I2

M and

∣

∣

∣

∣

∣

∑

x∈B

ϕ(x + d)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

x∈B

η(x + d)η(x + (d + (1, 1))) . . . η(x + (d + (k − 1, k − 1)))

∣

∣

∣

∣

∣

≫ ε1/2N1/2

which proves (5.1).
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6 The minimum of Ck in two dimensions, lower

bound for Qk for even k

First we will show that as in one dimension, Ck is bounded if k is odd:

Proposition 1 If k, N ∈ N, 1 ≤ k ≤ N and k = 2ℓ+1 is odd, then we have

min
η: I2

N
→{−1,+1}

Ck(η) = 1. (6.1)

Note that as in one dimension, there is a significant difference between

the behavior of min Ck and min Qk for odd k: by (6.1) we have minη Ck(η) =

O(1), while minη Qk(η) ≫ N1/2 holds for odd k as well by (5.1).

Proof of Proposition 1. For any η : I2
N → {−1, +1} consider the box B′

consisting of the single point (0, 0). Then for any distinct d1,d2, . . . .dk ∈ I2
N

we have
∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

= |η(d1) . . . η(dk)| = 1

whence

Ck(η) ≥ 1

for all η, so that

min
η

Ck(η) ≥ 1. (6.2)

To show that this minimum is ≤ 1, consider the special lattice η defined

by

η(i, j) = (−1)i+j for i, j ∈ {0, 1, . . . , N − 1},

17



and consider any B′, d1 = (d′
1, d1”), . . . ,dk = (d′

k, dk”) satisfying the require-

ments in the definition of Ck. Then we have
∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(i,j)∈B′

η((i, j) + (d′
1, d1”)) . . . η((i, j) + (d′

k, dk”))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(i,j)∈B′

η(i + d′
1, j + d1”) . . . η(i + d′

k, j + dk”)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(i,j)∈B′

(−1)(i+d′
1
+j+d1”)+···+(i+d′

k
+j+dk”)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(−1)d′
1
+d1”+···+d′

k
+dk”

∑

(i,j)∈B′

(−1)k(i+j)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(i,j)∈B′

(−1)i+j

∣

∣

∣

∣

∣

∣

since k is odd. It is easy to see that for a box B′ of the type studied by us

this last sum is always −1, 0 or +1, thus we always have
∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

≤ 1

so that

Ck(η) ≤ 1.

Thus we have

min
η

Ck(η) ≤ 1. (6.3)

(6.1) follows from (6.2) and (6.3), and this completes the proof of Propo-

sition 1.

Now we will prove the two dimensional analog of (2.9) in Theorem D.
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Theorem 4 If k, N ∈ N, 2 ≤ k ≤ N and k = 2ℓ is even, then

min
η: I2

N
→{−1,+1}

Ck(η) ≥
√

2

3k
N. (6.4)

It follows from (3.2) and Theorem 4 that

min
η

Qk(η) ≥
√

2

3k
N (for k even)

also holds which is much better than the lower bound ≫ N1/2 in Theorem 3

valid for all k.

Proof of Theorem 4. We adapt the method of Anantharam [3] to prove

the theorem. We remark that the method of the proof of Alon, Kohayakawa,

Mauduit, Moreira and Rödl [1], [13] also could be adapted and, indeed, it

would give this lower bound with a slightly better absolute constant factor.

(One can prove Q2k(η) ≥
√

3
2

[

N
k+1

]

by their method.) However, we preferred

to use Anantharam’s method since it is simpler and easier to adapt.

Let M, L ∈ N, M + L ≤ N + 1, η : I2
N → {−1, +1}, and write

cd1,d2,...,dk
=
∑

u∈I2

M

η(u + d1)η(u + d2) . . . η(u + dk).

Then we have

∑

d1,...,dk∈I2

L

c2
d1,...,dk

=
∑

d1,d2,...,dk∈I2

L





∑

u∈I2

M

η(u + d1) . . . η(u + dk)





2

=
∑

d1,d2,...,dk∈I2

L

∑

u∈I2

M

∑

v∈I2

M

η(u + d1) . . . η(u + dk)η(v + d1) . . . η(v + dk)

=
∑

u∈I2

M

∑

v∈I2

M





∑

d∈I2

L

η(u + d)η(v + d)





k

(a)

≥
∑

u∈I2

M





∑

d∈I2

L

η(u + d)2





k

= M2L2k.
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where step (a) comes from dropping all the off-diagonal terms, which are

nonnegative since k is even. Now we may write

∑

d1,d2,...,dk∈I2

L

c2
d1,...,dk

= k!
∑∗

c2
d1,...,dk

+ other terms,

where in
∑∗ we sum over all k-element subsets {d1, . . . ,dk} of I2

L, the total

number of other terms is (L2)k − L2(L2 − 1) . . . (L2 − (k − 1)), and each of

these other terms is bounded above by M4. It is straightforward to prove by

induction that

(L2)k − L2(L2 − 1) . . . (L2 − (k − 1)) ≤ k

2
(k − 1)(L2)k−1,

so

(L2)k − L2(L2 − 1) . . . (L2 − (k − 1)) ≤ 1

2
k2(L2)k−1.

It follows that

∑

d1,d2,...,dk∈I2

L

c2
d1,...,dk

≤ (L2)kC2
k(η) +

1

2
k2(L2)k−1M4.

Combining this with the lower bound that was proved previously we get

Ck(η) ≥

√

M2
(

L2 − 1
2
k2M2

)

L2
.

Set M = εN and L = N − M , and assume that L > 1√
2
M . Then

Ck(η) ≥

√

ε2
(

(1 − ε)2 − 1
2
k2ε2

)

(1 − ε)2
N,

where ε < 1
1√
2
k+1

. Choose ε = 2
3k

, then by k ≥ 2

ε2

(

1 −
1
2
k2ε2

(1 − ε)2

)

=
4

9k2

(

1 − k2 4
9k2

2
(

1 − 2
3k

)2

)

≥ 4

9k2

(

1 − 2

9
(

1 − 1
3

)2

)

=
4

18k2
.
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Thus

Ck(η) ≥
√

2

3k
N

which completes the proof of (6.4).

7 The minimum of Qk in two dimensions: up-

per bounds

We will prove

Theorem 5 (i) We have

min
η: I2

N
→{−1,+1}

Q1(η) ≪ N1/2.

(ii) If k ∈ N, k ≥ 2, then there is a number N0 = N0(k) such that for N ∈ N,

N > N0 we have

min
η: I2

N
→{−1,+1}

Qk(η) ≤ 9
√

2k1/2N log N. (7.1)

(iii) For all k, N ∈ N with 2 ≤ k ≤ N we have

min
η: I2

N
→{−1,+1}

Qk(η) ≪ kN(log N)2. (7.2)

Proof of Theorem 5. (i) This holds by the upper bound in Theorem 1.2

of Doerr, Srivastav and Wehr in [6], so that together with their lower bound

(5.1), their results give the exact order of magnitude of minη Q1(η) : it is

≍ N1/2.

(ii) By the n = 2, ε = 1
2

special case of the second half of Theorem 1 of

Hubert, Mauduit and Sárközy in [12], choosing every η : I2
N → {−1, +1}

with equal probability 2−N2

we have

P
(

Qk(η) > (81kN2 log N2)1/2
)

<
1

2
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so that at least half of these lattices satisfies

Qk(η) ≤ 9
√

2k1/2N log N

which proves (7.1).

(iii) Let p denote the smallest prime with p ≥ N , and consider the p-

lattice η : I2
p → {−1, +1} defined in formula (4.1) of Hubert, Mauduit and

Sárközy in [12]. Then by Theorem 2 in [12] for all k, N ∈ N we have

Qk(η) < kp(1 + log p)2. (7.3)

Now truncate this p-lattice so that we keep only its first N -rows and N

columns. Then we get an N -lattice η : I2
N → {−1, +1} which by (7.3) and

Chebysev’s theorem satisfies

Qk(η) < kp(1 + log p)2 ≪ kN(log N)2, (7.4)

and this proves (7.2).

As in one dimension, while the order of magnitude of min Q1 is known,

for fixed odd k > 1 there is a large gap between the lower bound (5.1) and

the upper bound (7.1) for Qk:

N1/2 ≪ min
η: I2

N
→{−1,+1}

Qk(η) ≪ k1/2N log N (for fixed odd k > 1). (7.5)

Problem 3 Tighten the gap between the lower and upper bounds in (7.5)

In one dimension Gyarmati [8] and later Anantharam [3] proved theorems

which seem to indicate that, perhaps, the upper bound in (2.15) is closer to

the truth than the lower bound (2.14). In the next section we will prove

the two dimensional analog of one of their theorem so that again the upper

bound seems to be closer to the truth.
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8 An inequality involving C2 and C3

Gyarmati [8] proved that if in one dimension C2(EN) ≪ N2/3, then

C3(EN) ≫ N1/2. Later Anantharam [3] sharpened this result, and it fol-

lows from the proof of Theorem 4 in [3] that C2
3(EN )C3

2(EN) ≫ N3 if

C3(EN) ≪
√

N . By adapting his method, we will prove the following two

dimensional analog of this result:

Theorem 6 If η : I2
N → {−1, +1} and C3(η) ≤ N

13
, then for N > N0 we

have

C3(η)2C2(η)3 ≥ 1

576
N6.

Proof of Theorem 6. Let M ≥ 1 and L ≥ 1 such that 3 ≤ L ≤ N −M +1,

let η : I2
N → {−1, +1} and write

cd1,d2,d3
=
∑

u∈I2

M

η(u + d1)η(u + d2)η(u + d3).

Observe that

∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L

c2
d1,d2,d3

=
∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L





∑

u∈I2

M

η(u + d1)η(u + d2)η(u + d3)





2

=
∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L

∑

u∈I2

M

∑

v∈I2

M

η(u + d1)η(u + d2)η(u + d3)η(v + d1)η(v + d2)η(v + d3)

=
∑

u∈I2

M

∑

v∈I2

M





∑

d∈I2

L

η(u + d)η(v + d)





3

=
∑

u∈I2

M





∑

d∈I2

L

η(u + d)η(u + d)





3

+ off diagonal terms

= M2L6 + off diagonal terms.
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The total number of off-diagonal terms is M2(M2 − 1) < M4. Suppose that

u,v ∈ I2
M , u 6= v. Then we have

∣

∣

∣

∣

∣

∣

∑

d∈I2

L

η(u + d)η(v + d)

∣

∣

∣

∣

∣

∣

≤ C2(η).

It follows that the sum of the off-diagonal terms in the preceeding equation

is at most M4C3
2(η), thus we have

∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L

c2
d1,d2,d3

≥ M2L6 − M4C3
2 (η).

On the other hand, we also have

∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L

c2
d1,d2,d3

= 6
∑∗

c2
d1,d2,d3

+
∑∗∗

c2
d1,d2,d3

≤ L2(L2 − 1)(L2 − 2)C3(η)2 +
∑∗∗

c2
d1,d2,d3

≤ L6C3(η)2 +
∑∗∗

c2
d1,d2,d3

,

where in
∑∗ we sum over all 3-element subsets {d1,d2,d3} of I2

L, while in
∑∗∗ we sum over the triples {d1,d2,d3} such that at least two of them are

equal. The number of terms in
∑∗∗ is L6 − L2(L2 − 1)(L2 − 2) ≤ 3L4, and

each of them is bounded above by M4. Thus we have

∑

d1∈I2

L

∑

d2∈I2

L

∑

d3∈I2

L

c2
d1,d2,d3

≤ L6C3(η)2 + 3L4M4.

Combining the upper bound with the previously proved lower bound we have

M2L6 − M4C3
2(η) ≤ L6C2

3 (η) + 3L4M4,

M2L6 ≤ L6C2
3 (η) + M4C3

2(η) + 3L4M4.

Note that this inequality holds for all M ≥ 1, L ≥ 1 satisfying 3 ≤ L ≤
N − M + 1 and for all η. Suppose that

C3(η) ≤ N

13
. (8.1)
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We now set M = 2C3(η). Then

3C3(η)2L6 ≤ 16C4
3(η)C3

2(η) + 48C4
3(η)L4.

We take L =
[

N
2

]

. Then for large enough N we have

3

65
C3(η)2N6 ≤ 16C4

3(η)C3
2(η) + 3C4

3(η)N4 (8.2)

By (8.1)

3C4
3 (η)N4 ≤ 3C3

2(η)
N6

169
.

Thus from (8.2)

1

36
C3(η)2N6 <

(

3

65
− 3

169

)

C3(η)2N6 ≤ 16C4
3(η)C3

2(η),

1

576
N6 ≤ C2

3 (η)C3
2(η)

which was to be proved.

9 The normality measure

First we will prove the two dimensional analog of (2.11):

Theorem 7 For N → ∞ we have

min
η: I2

N
→{−1,+1}

N(η) ≥
(

1

2
+ o(1)

)

log N

log 2
. (9.1)

Proof of Theorem 7. By the definition of the normality measure we have

N(η) ≥ max
k≤(log N)/ log 2

max
X∈M(k,1)

max
0<U≤N+1−k

∣

∣

∣

∣

Z(η, U, 1, X)− U

2k

∣

∣

∣

∣

def
= A. (9.2)

Define a binary sequence EN = {e1, e2, . . . , eN} by

en = η(n − 1, 0)

for 1 ≤ n ≤ N . For X = (xij) ∈ M(k, 1) let Y = {y1, . . . , yk} be defined by

yi = xi1
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for 1 ≤ i ≤ k. Then

A = max
k≤(log N)/ log 2

max
Y ∈{−1,+1}k

max
0<U≤N+1−k

∣

∣

∣

∣

T (EN , U, Y ) − U

2k

∣

∣

∣

∣

= max
k≤(log N)/ log 2

Nk(EN) = N(EN ). (9.3)

It follows from (2.11), (9.2) and (9.3) that

N(η) ≥
(

1

2
+ o(1)

)

log N

log 2
,

which proves (9.1).

We have not been able to prove the two dimensional analogues of (2.10)

and (2.12). We will prove a weaker estimate than (2.12):

Theorem 8 For N ∈ N we have

min
η: I2

N
→{−1,+1}

N(η) ≪ N(log N)3. (9.4)

Proof of Theorem 8. Consider again the binary N -lattice described in the

proof of (iii) in Theorem 4. Then as we showed, (7.4) holds for all k. By

Theorem 3 in [9] we have

Nk,ℓ(η) ≤ max
1≤t≤kℓ

Qt(η) (9.5)

for N, k, ℓ ∈ N, k < N , ℓ < N and every binary lattice η : I2
N → {−1, +1}.

It follows from (7.4), (9.5) and the definition of the normality measure that

for the lattice η described above we have

N(η) = max
kℓ≤(2 log N)/ log 2

N(k,ℓ)(η) ≤ max
kℓ≤(2 log N)/ log 2

max
1≤t≤kℓ

Qt(η)

≪ max
1≤t≤kℓ

tN(log N)2 ≪ N(log N)3

which proves (9.4).

There is a large gap between the lower bound (9.1) and the upper bound

(9.4):
(

1

2
+ o(1)

)

log N

log 2
≪ min

η: I2

N
→{−1,+1}

N(η) ≪ N(log N)3. (9.6)

26



Problem 4 Tighten the gap between the lower and upper bounds in (9.6).

Since here the upper bounds is weaker, than in one dimension, one might

like to answer the following question at least:

Problem 5 Thus there exist a constant c < 1 such that

min
η: I2

N
→{−1,+1}

N(η) ≪ N c?
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