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Abstract

In an earlier paper the authors considerealmosts-uniform trees, i.e. rooted
planar treed” such that the root hassuccessors, and every other vertex hasic-
cessors. They considered binary functighs V(T') — {—1,+1} defined on the
setV(T') of the vertices of such a tréeé and studied the pseudorandomness of binary
functions of this type. Here the authors extend the problemeneral rooted plane
trees: the measures of pseudorandomness of binary fusa&fined on trees of this
type are introduced; the connection between these measuseslyzed; the size of
these measures for truly random binary functions is stydigtary functions with
strong pseudorandom properties are constructed; psendtwreproperties of impor-

tant special binary functions are studied.

1. Introduction

Recently a new constructive approach has been developéddy gseudorandomness
of binary sequences
EN = {617' o 7eN} € {_17+1}N

In particular, first in [6] the following measures of pseualtdomness were introduced: the
well-distribution measuref £ is defined by
t—1
W(EN) = max Z Catjb

a,b,t

where the maximum is taken over allb,t € Nwith1 < a < a+ (¢t —1)b < N, the

correlation measure of ordet of E is defined as

M
Ck(EN) = %?%{ Z €ntdy + - - Entdy
n=1
where the maximum is taken over &8 = (d;,...,d;) andM suchthal < d; < --- <

dr, < N — M, and thenormality measure of ordet of Fy is defined as

n: >N e = — - .
e{-1,+1}k OKM<N+1-k ) n+1, y En+k X -

Research partially supported by Hungarian National Fotiolgfor Scientific Research, Grants No.
K67676 and K72731, French-Hungarian exchange programZ388, the Agence Nationale de la Recherche,
grant ANR-10-BLAN 0103 MUNUM and the Janos Bolyai Researelidwship.



Pseudorandom binary functions on rooted plane trees 3

Then the sequendgy is considered to be a “good” pseudorandom sequence iflbdth )
andCy(Ey) (at least for “small’k) are “small” in terms ofV; in particular, both are(V)
asN — oo (itwas shown in [6] that the normality measures can be estidia terms of the
correlation measures). Indeed, later Cassaigne, MauddiSarkozy [2] proved that this
terminology is justified since for almost dlly € {—1,+1}" bothW (Ey) andCy,(Ey)

are less thaV'/2(log N)¢ (see also [1], [5]). It was also shown in [6] that the Legendre
symbol forms a “good” pseudorandom sequence.

[6] was followed by numerous papers written on pseudoramdms of binary sequences.
Later this theory of pseudorandomness has been extendadinary sequences to binary
vectors, binary lattices, subsets %f, sequences ot symbols, etc. (see [4] for further
references); in particular, in [4] we studied pseudoranuess of binary functions defined
on r-almosts-uniform trees(some of the definitions and results presented in [4] will be
recalled in Section 2 or later.) In this paper our goal is totcwme the work initiated in
[4] by extending the study of pseudorandomness of binargtfons defined on trees from

r-almosts-uniform trees to possibly genenaloted plang(or ordered}rees

2. Notation, terminology, definitions

Throughout this paper we will use the following notations:

Tree will always mean a finite rooted plane (or ordered) thd&. will use the words
vertex (=node), root, successor (=child), leaf, path dista height, subtree in the usual
sense (see, e.g., [3], [8]). The vertices at distané®m the root are said to form theth
level or k& + 1-st row of the tree (so that the O-th level and 1st row consists of ifgles
root). The number of successors of the vertewill be called the degree aP and it will
be denoted byi(P) (this is called the out-degree &fand is denoted byt (P) in [3]).

We will also introduce a few further definitions.

Definition 1. If r,s € Nandr > 2, s > 2, then a tree is called an-almost,s-uniform tree
if the degree of the root is, and the degree of every vertex different from the root arid no
in the last row iss. If r = s then the tree is called-uniform tree, and in the = s = 2

special case the tree is called uniform binary tree.

(It is explained in [4] why are we also considering the casemtie degree of the root

is different from the degree of the other vertices.)
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Definition 2. A subtreeT” of the treeT is called aproper subtreéf it can be obtained
from T in the following way: the root of” can be any vertex’ of T'. First we take all
the successors d?, then we take all the successors of these successors, etstpprafter
taking all the iterated successors at a certain (not necdlgdhe last) level.(E.g., the black

vertices in Figure 1 form a proper subtree.)

Figure 1.

A proper subtree

Note that in [4] we defined the notion of proper subtree inghsly different way:

Definition 2'. If T' is anr-almosts-uniform tree, then a rooted subtrgé of T is called
a proper subtreef T if either its root is the root of” and it is anr’-almosts-uniform tree

for somer’ < r, or its root is different from the root df and it is ans-uniform tree.

Indeed, the successors of the root are handled in Definiiam 2’ in different ways:
ther’ = r special case in Definition 2’ would correspond to DefinitiorHbwever, in the
general case it seems more natural to handle the root in the way as the other vertices,

thus here we will use Definition 2 instead of Definition 2'.

Definition 3. If T is a (rooted plane) tree and the set of its vertices is denbyad(T") then
a functionf of the typef : V(T)) — {—1,+1} is called abinary functiononT'.

If we want to introduce measures of pseudorandomness farglemees, then clearly
we need some restrictions on the structure of the tree. thdemsider a tree which consists

of a long path and some leafs branching off:
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Figure 2.

An “irregular” tree

It might be very difficult to introduce any good measures ofymorandomness for
binary functions defined on trees of this type (in particulaseems hopeless to define
measures which take the vertices along the long “verticathpnto account in the same
way as the many vertices with degree 0). Thus we will resticselves to trees described

in the following definition:

Definition 4. If every vertex not in the last row has non-zero degree @lethe leafs are

in the last row) then the tree is calledgular

We will also use the following notations:

The set of the vertices of a tr@éwill be denoted by = V(T"). The number of these
vertices will be denoted by = N(T) : N = N(T) = |V|. The height of the tree will be
denoted by, = A(T"). We will denote the number of vertices in théh row (i.e., at the level
i — 1) by y; = y;(T), and we will denote these vertices (moving from left to riginich is
possible since we consider rooted plane treesPpgi, 1), Pr(i,2),..., Pr(i,y;); if T'is

fixed then we will drop the subscrifit. Clearly we have
N=NT)=y1+y2+ -+ Ynt1.

We will also use the following alternative notation for thertices. The root is de-
noted by@; : @1 = P(1,1), the vertices in the second row l6y>, Qs, ..., Qy,41 :
Q2 = P(2,1), Q3 = P(2,2),...,Qy+1 = P(2,y2), the vertices in the third row by



6 K. Gyarmati, P. Hubert, A. Sarkézy

Qy2+27 Qy2+37 R Qy2+y3+1 : Qy2+2 = P(37 1)1 Qy2+3 = P(37 2)7 s 7Qy2+y3+1 -
P(3,y3) and so on; finally) ;- denotes the last vertex in the last ra@y = P(h+1, yp11).

To the binary functionf : V(T') — {—1,+1} defined on the (rooted plane) tree we

will assign the unique binary sequence
EN = EN(faT) = (617623---76]\7) € {_1’+1}N

defined by
en=f(Qn) forn=1,2,... N.

Consider a path with endpoing;, Q; with i < j (so thatQ); is the endpoint closer to
the root). This path will be denoted B%(Q;, Q;).
Throughout the pape(r%) will denote the Legendre symbol.

3. The measures of pseudorandomness of binary functions on

almost uniform trees.

Since our goal is to extend the definitions given in the speatse of--almosts-uniform

trees in [4], thus first we will recall these definitions.

Definition 5. Thewell-distribution measuref the binary functiornf overT is defined by

Definition 6. For & > 2 and¢ > 2 thecorrelation measuré€, ,(f,T") of heightk and order
¢ of f overT is defined in the following way: considédifferent isomorphic proper sub-
treesTy, Ts, ..., T, of heightk of T', denote the set of their vertices by, V»,...,Vy, and
fort =1,2,...,00etV, = {P(i,j): i =1,2,....k+1,7=12....9(4)} ={Qun :
n=12,...,N(T})} (note that both the number of vertices in thth row andN (7}) are
independent of by the isomporhism), and write

k+1 q(4)
U(T17T27 o 7TZ) = f(Pl(Zaj))f(PQ(Zaj)) s f(PZ(Zaj))
i=1 j=1
(Tt)

= f(Ql,n)f(Q2,n) s f(QZ,n)
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Then
C T)= n,Ty,...,T,
Ck‘,f(fa ) Tl,%zi}-iT[|U( 1,42, ) Z)|
where the maximum is taken over &lluplesTy, T, ..., T, of proper subtrees of the type

described above.

Definition 7. Theuniversal correlation measure of ordesf f overT is defined by
éf(fa T) = Hl]ilX 6k,f(f> T)

Definition 8. Thenormality measuréV(f,T) of orderk (k € N, k > 2) of the binary
function f over ther-almosts-uniform tree is defined in the following way: L&t denote
the set of uniform binary subtrees of heighof T". If Gorr1_1 = (91,92, -+, gors1_1) €
{=1,41}2""" 1, then letd(f, T, Gorr1_,) denote the number of the subtreBs € T,
such that the binary sequené&r1_; = Eyxi1_1(f,T") assigned to the binary function
f: V(T — {—1,+1} (i.e., f restricted toT”) is the giver2*+! — 1 tuple Gorr1_;:

(b(fa T, G2k+1—1) = HT, : T e 774:7 E2k+1—1(f7 T,) - G2k+1—1}‘ .

Then defineV,.(f,T) by

||

Nk-(f, T) = max Qb(f, T, G2k’+171) — 22k+171 .

k+1_
Gopyr_ €{~1,+1}? o1

(So thatN(f,T) is defined as the maximal deviation betwes(f, ', Gor+1_;) and its

expected value of all the possible choice€gf+1_;.)

4. The measures of pseudorandomness of binary functions on

general trees.

The definition of the well-distribution measure in Definiti® can be used in case of
general trees as well.

The definitions of the correlation measure and universaletation measure in Defi-
nitions 6 and 7 also can be used for general trees; note thatdtion of proper subtree
occurring in Definition 6 is defined here in a slightly diffatavay as in [4]. However, in
case of general trees there is another, much greater proiemely, if the degree of the
vertices are large, then it may occur that there are very §emorphic pairs of proper sub-

trees. Even it may occur that there are no pairs of verticakeobame (positive ) degree,
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and then there are no isomorphic proper subtrees (of attieastertices) at all so that the
definition of correlation becomes empty.
To help on this problem we may introduce further correlatioeasures. One way to do

this is to use the “correlation analogue” of Definition 5:

Definition 9. Thehorizontal correlation measure of ordef the binary functionf over
T is defined by

CW(f,T) = Ch(En(f,T)).

(The use of the adjective “horizontal” will be explaineddia} To extend the notion
of normality measure to general trees is even more troutvlesoFirst, one might like
to replace the binary subtrees in Definition 8 by proper &dstr Then again it can be a
problem that it may occur that there are no isomorphic sabtr&Ve have been trying to
introduce a normality measure in the manner of Definitionsid @& but we have not been
able to find a reasonable definition. Thus in the case of getress we will not define
normality measure.

Since some of the measures of pseudorandomness defineccamf#jt be extended to
general trees or the extended measures have only a limiegdhuss we have to look for
new measures. Our starting point can be that when we inteoduantitative measures of
pseudorandomness in different structures then these nesaare related to some sort of
ordering. In case of rooted plane trees there are two nauags to order the vertices: the
vertices at any fixed level possess a from-left-to-rightegrdind the vertices along a path
starting with the root and ending with a leaf can be orderedmting to their distance from
the root. We will refer to these orderings fasrizontalresp. vertical ordering Definitions
5 and 9 are related to the horizontal ordering, and the dismusn [4] shows that in the
measures in Definitions 6 and 7 also the horizontal orderiagspa dominant role. Thus
the new measures to be introduced have to be related teettieal ordering of the tree.

Let P denote the set of the paths starting from the root and endinigealast level
(note that now we are considering regular trees so that extesr path is a part of a path
belonging toP), and for a patl? € P let Vi (P), Vi(P),..., Vis(P) be the vertices oP
(so thatV;(P) is the vertex at level) and define the binary sequenGé¢P) by

G(P) = (91(P), 92(P), -, gnt1(P)) = (f (Vo(P)), fF(Vi(P)), -, f (Vi (P)))-

Definition 10. Thestrong vertical well-distribution measuoéthe binary functioryf : 7' —
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{—1,+41} is defined by

SW(f,T) = max W(G(P))-

Definition 11. For k € N, k > 2 thestrong vertical correlation measure of ordeof the
binary functionf : T — {—1,+1} is defined by

SCx(f,T) = max G (G(P)).

cP

When we introduce a new measure for pseudorandomness of fimations then it is
a basic requirement that for a truly random binary functterheasure of it should be much
much smaller than the maximum of it over all binary functigatained usually when the
function is identically+1); more precisely, their quotient must have limit 0/é§1") — oo.
Namely, if this requirement holds then we may consider asoa ggeudorandom property
of the given function if its measure is small. In case of thesuges introduced in the last
two definitions this requirement does not always hold.
Example 1. Let H € N, H — oo and consider the-uniform treeT of heighth = 2H.
Then it is easy to see that for almost all binary functjon 7' — {—1,+1} there is a path
P € P such that

G(P) = (91(P),92(P), -, g24+1(P))
= (f(VO(’P))af(Vl(P))’ oo af(VHJrl(P)’ L. 1)

so that bothSW (f,T') andSCy(f,T) are large:

oH h
SW(T)=W(G.P)= Y 1=H=3
i=H+1
and
2H+1—k n
SCy(f,T) = Cp(G,P) = Y l=H+1-k=+1-k
i=H+1

In order to handle this situation we have to introduce furtixeaker) measures. These
measures can be defined by taking average instead of maximDwfinitions 10 and 11.
This average taking can be done in two ways: we may take thage®flW (G(P)), resp.
Cx(G(P)) over allP € P, or we may take the average of the absolute values of all tins su

whose maximum gives the value Bf (G(P)), resp.Ci.(G(P)).
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Definition 12. Theweak vertical well-distribution measure of first typkthe binary func-
tion f: T — {—1,+1} is defined by

AW (f,T) = > > W(G(
||p@

Definition 13. Theweak vertical correlation measure of ordeof first typeof the binary
functionf : T'— {—1,+1} is defined by

ACy(f,T) = ‘WE:@
PeP

Definition 14. Theweak vertical well-distribution measure of second tygehe binary
functionf : T'— {—1,+1} is defined by

D (abit): 1<a<at(t—1)b<htl ZP P ‘Zt‘;lo Ya+ ‘b(P)‘
AW (g, ) = SO S I SR )

> pep Z(a,b,t): 1<a<a+(t—1)b<h+1 1

which can be rewritten as

S pep Yo (abt): 1<a<at(t—1)p<hit | 2oimt Jatib(P)
AW (£.T) = =— i oot [EizbrP)]

P Z(a,b,t): 1<a<a+(t—1)b<h+1 1

Definition 15. Theweak vertical correlation measure of ordeof the second typef the
binary functionf : T'— {—1,+1} is defined by

A2Ck(fa T) =
h+1—k M
DY > > Gnvdy (P)gnvdy (P) - - - ntd, (P)
PeP M=1 0<d1<d2<:<dp<h+1—M |n=1
h+1—k
Pl > > 1

M=1 0<d1<d2<-<dp<h+1—-M

We will illustrate the different role of the strong and weasrtical measures by an
example.
Example 2. Let p be a large prime number, and [Btdenote the 2-uniform binary tree of
heightp — 2. Define the binary functiotf; : 7'— {—1,+1} sothatfori =1,2,...,p—1,

at each vertex in théth row it assumes the vah.(e—
p

fu&wJ»:hU%@m%=“:ﬁ“%“74”:<§>
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Then for every pattP € P the binary sequend@(P) assigned t@ is

G(P) = (91(P),g2(P), ..., gp-1(P))

()G (57)

It is known [6] that for this Legendre symbol sequence bidtrandC}, (for fixed k) mea-
sures are “small” (less than/?(log p)©). It follows that each of the vertical measures in
Definitions 10-15 is also small.

Now we madify this functionf; so that we consider the pakh which connects the first
vertices of the rows, and then we change the funcfipon the second half of the vertices

in Py for +1, so that denoting the new function iy we have

p—1 p+1

fo(Vi(Py) = +1) for i= 5 ey D— 2, (4..1)

and at every other vertel;(P) with V;(P) ¢ {Vo-1(Po), Vet1(Po), ..., Vp—2(Po)} we
2 2
have

f1(Vi(P)) = f2(Vi(P)).

Then we have

G(Py) = ((%)(;) (%) ,+1,+1,...,+1>,

and the last +1's make bollv (G(Py)) andCj,(G(Py)) (for fixed k) large (as in Example
1) thus each of the strong measures in Definitions 10 and lsaslarge forf,. On the
other hand, there are only “very few” patise P which contain one of the verticd$(P,)
appearing in (4..1), and thus their contribution to the ages in Definitions 12-15 is neg-

ligible, so that each of the weak vertical measures is sroalff (just slightly greater than
for f1).

5. Measures of pseudorandomness for a truly random binary

function defined on a given tree.

As we said in Section 4 a new measure of pseudorandomnessany fiinctions must

satisfy the requirement that for a truly random binary fiorcthe measure of it is much
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smaller, than the maximum of it over all binary functions defl on the given tree. It
follows from the results in [2] and [4] that this is so in cadetlte measures defined in
Definitions 5-9. It remains to show that the vertical measutefined in Definitions 12-15
also possess this property (the case of Definitions 10 andakldiscussed in Section 4).
This could be proved by adapting the moment method used ir§igke the proofs would
be similar, thus here we restrict ourselves to the case ohiefi 15 (the case of Definition

13 would be slightly more difficult while the remaining twoses would be slightly easier).

Theorem 1. Letk € N, and letT be a regular rooted plane tree of height Choose the
binary functionf : V(= V(T)) — {-1,+1} in random way, i.e., choose these binary
functions independently and with equal probabi%. If A is large in terms of then for

all 0 < e < 1we have
P (Ang(f, 7)) > %(k:(h + 1) log(h + 1))1/2> <e. (5..1)

(So that for fixedk andh — oo we haveAsCy(f,T) = O ((hlog h)'/?) with large
probability.) We remark that while we will prove thigoperbound by using the moment
method which can be adapted relatively easily in the mogts;asseems much more dif-
ficult, perhaps, hopeless to adapt the more sophisticatedon®e used in [1] and [5] for
giving a probabilistidower bound.

Proof of Theorem 1. We will reduce the problem to the case of randbimary sequences
studied first in [2] (and later in [1] and [5]). First we will pve

Lemma 1. For everyk € N there is a numbetd, = Hy(k) such that ifH € N and
H > Hythen

=Y Y %

M
E In+dy - - - Gn+dy

Gr={g1, g e{—1,+1}H M=10<d1<--<dy<H-M |n=1
H—k
< 11(kH log H)'/?27 Y~ > 1. (5..2)

M=10<d)<--<d<H—-M

Proof of Lemma 1. We will adapt the method used in [2]. Indeed, as in [2], wetstat

from the sum

Sur(l) = > >

Gu={g91,gu}e{-1,+1}¥ M D

M 20
Z Intdy - - - Gntdy

n=1
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which (apart from notation) appears in [2] in (2.21), whére inner sums are taken over all
M eN,D = (dy,...,dg)with0 <dy < --- < dpandM + d,, < H, andl € Nis fixed
later in (2.28) as

¢ =2klog H|. (5..3)

However, up to (2.32) only = o(M) is used forH'/* < M < H so that up to this point
it suffices to assume that
0= o(HYY). (5..4)

In other words, if (5..4) is assumed then (2.32) in [2] holds:
Spr(f) < 5- 20 HEHH2(40)", (5..5)
Now we take a slightly greatdrthan the one in (5..3): we fikas
¢ = [3klog H] (5..6)

so that (5..4) holds trivially (if7 is large enough in terms @f). We split the sun® in two
parts: letS” denote the sum of terms with

< 10(kH log H)'/? (5..7)

M
Z In+dy - - - In+dy,
n=1

and letS” denote the sum of terms for that the opposite inequalitysholthen clearly we
have

S'< > > Y 10(kHlog H)'/?

Gue{-14+41}4 M D

H—k
= 10(kH log H)'/?2" >~ > 1. (5..8)
M=10<d; <---<d<H-M

Let X denote the number of terms i, i.e., the number of terms for which the opposite
of (5..7) holds. Keeping only these terms in the st (¢) we get

12\ % ¢
Sra(l) > X (IO(kHlog H)Y ) — X (100kH log H)" . (5..9)
By (5..6), it follows from (5..5) and (5..9) fol large enough that

X <520 HF2(0/(25kH log H))® < 5 - 2H fgh+2g=3klog H
< 5.2 k2 =6k — 5. oH y—5k+2, (5..10)
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A trivial upper bound for the left hand side of (5..7)Ai¢ < H. Thus by (5..10) and the
definition of S” and X we have

S” < XH <520 g=5k+3 < oH (5..11)

for H large enough. (5..2) follows from (5..8) and (5..11) and tompletes the proof of
the lemma.

In order to prove (5..1), we start out from the sum
Z AQCk(f> T)
f: T—{-1,41}
which, by Definition 15, can be rewritten as
> MG, T) =
f: T—{-1,+1}
Zf; Tﬂ{71,+1} Z'PGP ZM ZD Zilw:l gn+d1 (P) e gnerk (P)
P> 2pl

where M and D run over allM € N, D = (dy,...,dg) with1 < M < h+1—k,

(5..12)

0<d; <---<dg, M+d < h+1. If we change the order of summation and use Lemma
1 (with h + 1 in place ofH), then the numerator can be estimated in the following way fo
h large enough:

2. 222

fi:T—{-141}PeP M D

=2 2 2. 2.

PEP f: V\{Vo(P),--,Va(P)})—={=1,+1} Gry1={g1,...gn+1 }{-1,+1}+1 M D

M
S Gurar(P) - G, (P)

n=1

M
E In+dy - - - Intdy
n=1

R S 5

PeP Gp+1={91,-gn+1}e{-1,+1}pt1 M D

M
Z In+dy - - - Gn+dy,
n=1

< > 2V 91 (k(h + 1) log(h+ 1)) /7 2213 "N
PeP M D

=11 (k(h+ 1)log(h +1)/2 2V P33 1. (5..13)
M D
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It follows from (5..12) and (5..13) that

Yo ACu(f.T) < 11 (k(h +1)log(h +1))"/% 2. (5..14)
f: T—{—1,4+1}

Clearly we have

f: T—{-1,41}
'{f T — {=1,+1}, AsCi(f, T) > % (k(h+1)log(h +1))"/*} -
L+ ) log(h 4 1)2. (5..15)

£
It follows from (5..14) and (5..15) that

P (Ang(f, T) > % (k(h +1)log(h + 1))1/2>

= ‘{fi T — {=1,+1}, ACu(f, T) > % (k(h + 1) log(h + 1))/%} %
<e€

which completes the proof of the theorem.

6. Connection between the measures of pseudorandomness

In Definitions 5,6,7,9,10,11,12,13,14 and 15 we have prepd$ measures of pseudo-
randomness. If two measures are given so that if either of tisesmall (in terms of the
trivial estimate) then the other one also must be small, ihsurffices to study one of them
while the other can be discarded. Thus one might like to stmat/the measures in these
10 definitions are pairwise independent, i.e., for any piihem either one of them can be
large while the other one is small. We studied the connedigtween the measures 5,6,7
and 9 in earlier papers. Itis clear that the vertical wedtdution measures and correlation
measures are independent. On the other hand, the vertiealunes are not quite indepen-
dent: if a strong measure is small then the correspondin wesasures are also small.
In spite of this we also need the weak measures as Example thamtiscussion after it
shows.

It remains to study the connection between the horizontaivantical ones. In the rest
of this section we will show by examples that the horizontalasures are independent of

the vertical ones.
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Example 3. Consider the following generalization of the binary fuonatidefined in Exam-
ple 2: letT be any regular rooted plane tree of height p — 2 wherep is a large prime
number, and define the binary functigron 7" so that for every verte¥ (i, j) at leveli we

havef(P(i,j)) = <1> Then for every pattP € P we have
p

6(P) = (PP ®) = (5. (2) oo (7).

thus clearly it follows from the results on this Legendre bgpinsequence in [6] that all
the vertical measures in Definitions 10-15 are smalldp'/2 log p where, in case of the
correlation measures; depends on the order of the correlation). On the other hdnd, i
the degrees of the vertices Bfare large so that at least half of the vertices belong to the
last level (e.g., this is the case if the degree of every yageat least 2) then clearly the
horizontal measures in Definitions 5 and 9 are largec(V). Moreover, if there are large
proper isomorphic trees i (e.g., this is so in case afuniform trees withs > 2) then

the correlation measures in Definitions 6 and 7 are also.lakgemay conclude that it may
occur that all the vertical measures are small and all theratreasures are large

Example 4. Let h be a large positive integer, and jebe a prime large enough in terms
of h, say, letp > h3. Consider the tre& which at each level, 1,...,h — 1 has a single

vertex of degred, and at leveh it has a single vertex of degree- 1 (see Figure 3).

Figure 3.
Independence of the vertical and horizontal measures

Definef : V(T') — {—1,+1} so that it assumes the valuel at each of the ver-

tices at leveD, 1,...,h — 1, and, moving from the left to the right, it assumes the values
1 2 -1 . .

<—> , (—) e p—> at the vertices at the last level. Then clearly all the vattic
p b p

measures in Definitions 10-15 are large. On the other hardh &gollows from the results
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in [6] that the horizontal measures in Definitions 5 and 9 anals Finally, there are no
pairs of proper isomorphic subtrees with more tharertices, thus the correlation measures
in Definitions 6 and 7 are small so that here the situationdstjue opposite of the one in
Example 3 so that, indeed, the vertical measures and theunesan Definitions 5,6,7,9 are

independent.

7. Finding a binary function with strong pseudorandom prop-

erties on an arbitrary tree.

One might like to find a construction method which producesnary function with
strong pseudorandom properties on an arbitrary reguléedqaanar tree. This seems to be
a too ambitious task; we have seen that regular rooted pteges can be of very different
structure, and this fact leads to serious difficulties. Havewe will be able to construct
many “not very large ” families of binary functions over amgular rooted planar tree such
that each of these families contains at least one binartiimwith strong pseudorandom
properties, so that we may search for a “good” binary fumctidgth strong pseudorandom
properties in a relatively small family.

Let T be any regular tree df levels andV vertices. LetV < p < 2N be a prime num-
ber. The root off" is denoted by, the vertices in the second row &g, Qs, . .., Qy,+1,
the vertices in the third row am@,, 12, Qy,+3, - - - , Qyotys+1 and so on; finallyQ) v is the
last vertex in the last row.

Let g(z) € F,[z] be an irreducible polynomial of degree> 2. For0 < z < p we

define a binary functiorf,, on this tre€l in the following way:

r+n
Q) = (15,
p
We will prove:
Theorem 2. For all z € IF,, we have
W(fs, T) < rN'?1log N. (7..1)

For everyL < N there exists an € I, such that

hLr'/?
N1/4

AW (fo, T) < + W22 (7..2)
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andfor2 </¢< L
hLr1/?
N1/4

If Lhr < N'/2 then as a corollary we get:

AsCy(fo, T) < + hM2LV2, (7..3)
Corollary 1. ForeveryL < %{2 there exists am € F,, such that
AW (fy, T) < W2 L2

andfor2 </¢< L
AsCy(fo, T) < BM2LV2,

Proof of Theorem 2.

First we will prove (7..1).

W(fa, T) = W(EN(f2, T))
({2 (22) . (22)
(52 (22). .. (7))

t—1 .
B g(x +a+ jb)
= max E (—) (7.4)

b

where the maximum is taken over allb,t € Nwith1 <a < a+ (t — 1)b < p. We will

use:
Lemma 2. Suppose that is a prime,x is a non-principal character modulp of orderd,
f € F,[z] hass distinct roots inF,, and it is not a constant multiple of thith power of a
polynomial overF,. Then:

> x(f(n)| < sp?.

nelf,
Poof of Lemma 2.

This is a special case of Weil's theorem [9] (see also [7])xtNee state the incomplete

version of Lemma 2:

Lemma 3. Suppose thah is a prime,y is a non-principal character modulp of orderd,
f € F,[z] hass distinct roots inF,, and it is not a constant multiple of thith power of a

polynomial ovelF,. Lety be a real number witlh < y < p. Then for anyr € R:

Y. x(f(n)| < 9sp"*logp.

r<nlzr+y



Pseudorandom binary functions on rooted plane trees

Poof of Lemma 3.
This follows from Lemma 2 (see e.g. [6]).

Using Lemma 3 and (7..4) we get
W(fs, T) < rp*?logp < rN'/?1log N,

which was to be proved.

Next we prove (7..2) and (7..3). Indeed we will prove:

2 2T
2 Z (AQW fo D)2+ Y (AgCg(fx,T))Q) < %Jth. (7..5)

xele 2<¢<L

From (7..5) it follows that (7..2) and (7..3) hold, since tngerage ofp different positive
numbers is greater than or equal to the minimum of these ntgnbéus there exists an

for which

h2L?
(AW (fo, T+ Y (A2Cil(f, T))? < i + hL
N1/2
2<U<L
from which (7..2) and (7..3) follows. Thus we need to proveS)7 In order to do so we

will estimate
def 1

BiE =Y (AW (f, 7))

z€Fy

andfor2 < /¢ < L

B Y (Cilhn T

z€lFp

Clearly,
- Z (AQW fo T2+ (AsColfe T ) Bi+ > By (7.6)
xele 2<¢<L 2<¢<L

First we estimate3; :

Bi= 1 3 (AW (1., 7))’

z€F,

E: f%( a+jb— 1(73))‘>

Jj=

D 2
> > 1
PEP (a,b,t): 1<a+(t—1)b<h+1

Z(Z 2

_ 1 z€Fp \PEP (a,b,t): 1<a+(t—1)b<h+1

19
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By the Cauchy-Schwarz inequality

Z Z Z (Z fx( a+jb— 1(7))))

B < 1 z€F, PEP (a,b,t): 1<a+(t—1)b<h+1
1< =

Tp > > 1

PEP (a,b,t): 1<a+(t— 1)b<h+1

Z Z Z Z fz(V. a+j1b— 1( ))fac( a+j2b— 1(7)))

1’P€P(abt) 1<a+(t—1)b<h+1 z€Fp j1=0 j2=0

T p > > 1

PEP (a,b,t): 1<a+(t—1)b<h+1

(7..7)

For a moment fix:, b, t and the pathP. Say,P contains the verticel(P) = Q,, V1(P) =
Qcys -+ Vu(P) = Qc,,, (Wherec; = 1). Then

t—1 t—1
Z Zf$(va+jlb*1 ))fa:( a+j2b— 1(P))
2€Fp j1=0 j2=0
t—1 t—1
Z Z f$(QCa+j1b)fﬂc(QCa+j2b)
x€F, j1=0 j2=0
t—1

_$§phzoj2 10< .%'+Ca+]1b)> (g(m —|—;a+j2b)>
S e e R o

0<j1#ja<t—1 z€F, p 2€Fp j1=0

Using this and Lemma 1 (note that the polynomial inside iscooistant times of a square

of a polynomial since the;'s are pairwise distinct and nonzero) we get

t—1 t—1

Z Z Z fl‘(VCl‘i’jlbfl ))fx( a+j2b— 1(P))

z€Fy, j1=0 j2=0

< t22rp'? +tp < 2(h + 1)%rp'? + (h + 1)p.

By this and (7..7)

> > (r(h+1)*p'/ + (h+ 1)p)
B <1 PEP (a,bt): 1<a<a+(t—1)b<p
S > > 1

PEP (a,b,t): 1<a<a+(t—1)b<p

g%@£%X+UHJ) (7.8)
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Next we estimatds,:

B[ = 1 Z (AQCZ(f$7T))2
p z€Fp
h+1—¢ M 9
> 2 > > fm(Vn‘Fdl—l(P))'--fm(vn+d[_1(73))‘
— 1 Z PeP M=1 0<d;<--<dy<h+1-M |[n=1
p z€Fy Z Z 1

PeP0<d;<---<dp<h+1-M

By the Cauchy-Schwarz inequality

h+1—¢ M 2
Z Z Z f$(v’n+d1*1(7))) "'fl‘(VTH’d(fl(P))
1 2€F, PeP M=1 0<d1<--<dy<h+1—M [n=1
B, < -
h+1—£
> 2 > 1
PecP M=1 0<d;<--<dp<h+1-M

h+1-¢

- (XY ¥ ¥3y
P X 2 1

PeP M=1 0<di<--<dy<h+1-M z€Fp n1=1nz=1
PeP M=1 0<di<--<dy<h+1-M

fe(Virtdr—1(P)) - fo (Vs g1 (P) f (Vs -1 (P)) - fx(Vn2+dg(7’))> :

(7..9)

Foramomentfix(,0 < d; < --- <dy < h+1— M and the pattP. Say,P contains the
verticesVy(P) = Q¢,, Vi(P) = Qs -

IDIDS

z€F, n1=1n2=1

- Vo(P) = Q. (Wherec; = 1). Then

fm(vn1+d1fl(7))) s fx(Verdzfl(P))fm(vn2+d1fl(7))) s fx(vanrdzfl(P))

- ¥

1<ni#na<M
Z (g(x + Cn1+d1) gz + Cn1+dz)g(x + Cn2+d1) gz + Cn2+d£)>
z€F, p
M
221
z€lFp n1=1
Sincecy, ¢z, . . ., cp4+ are pairwise distinct the two sefs,,, 14, : 1 <1 < ¢} and{cp,1q, :

1 <4 < ¢} are the same if and only if the two se€fta; + d; : 1 < ¢ < ¢} and{ny +
d; : 1 < i < ¢} are the same, which is equivalent with = nq. Thus the polynomial

21
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9(z + cnyvay) - 9(x + cnyta,)9(x + Cpytay) - g(x + Cpyta,) IS NOt the square of a
polynomial. Thus by using Lemma 1 we obtain
M M
z€F, n1=1n2=1
fa:( n1+di— 1( )) fx( n1+dy— 1( ))fa:( no+dy— 1( )) fx( no+dy— 1(P))
< M?2r0p"? + Mp < h22rp'/? + hp.
By this and (7..9) we get

h22r¢
B, < Dz

Using this, (7..6) and (7..8) we obtain

2 T
_Z (AQW Fo D)+ D (AoColf, T )<<Z<hlfz >

P ier, 2<I<L,

+ h.

h2L>2r
pl/2
h2L2r

< —Nl/Q + hL

< +hL

which proves (7..5).
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