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Abstract

In Part I of this paper we constructed a two dimensional binary

lattice by using the Legendre symbol and polynomials of two vari-

ables, and we studied its pseudorandom properties. We proved that

if the polynomial is non-degenerate then under certain conditions the

lattice possesses strong pseudorandom properties, while in the degen-

erate case it may occur that the lattice has only weak pseudorandom

properties. In this paper we continue our analysis of the degenerate

case and we will give both lower and upper bounds for the pseudoran-

dom measures of the lattices. We will also give an algorithm to decide

if a polynomial is degenerate. Finally, we shall construct a large family

of non-degenerate polynomials satisfying one of the sufficient condi-

tions for which the corresponding lattices have strong pseudorandom

properties.
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1 Introduction

First we recall some definitions, notation and results from Part I [3] of

this paper.

In 1997 Mauduit and Sárközy [6] initiated a new, constructive approach

to the theory of pseudorandomness of binary sequences. Their paper was

followed by many other papers written on this subject (see the survey paper

[10] and the references in [2]). This theory has been extended to n dimen-

sions by Hubert, Mauduit and Sárközy [5]. They introduced the following

definitions:

Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. Here we

will extend this definition to more general lattices in the following way. Let

u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate

of ui is a positive integer, and the other coordinates of ui are 0, so ui is of

the form (0, . . . , 0, zi, 0, . . . , 0) (where zi ∈ N). Let t1, t2, . . . , tn be integers

with 0 ≤ t1, t2, . . . , tn < N . Then we will call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [5] the definition of binary sequences is extended to more dimensions

by considering functions of type

ex = η(x) : In
N → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).
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Such a function can be visualized as the lattice points of the N -lattice

replaced by the two symbols + and −, thus they are called binary N-lattices.

Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption

of digital images.

In [5] Hubert, Mauduit and Sárközy introduced the following pseudo-

random measure of binary lattices (here we will present the definition in a

slightly modified but equivalent form):

Definition 1 Let

η : In
N → {−1,+1}.

The pseudorandom measure of order ℓ of η is defined by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

N-lattices B such that B + d1, . . . , B + dℓ ⊆ In
N .

Then η is said to have strong pseudorandom properties, or briefly, it is

considered as a good pseudorandom lattice if for fixed n and ℓ and large N

the measure Qℓ(η) is small (much smaller than the trivial upper bound Nn).

This terminology is justified by the fact that, as was proved in [5], for a truly

random binary lattice defined on In
N and for fixed ℓ the measure Qℓ(η) is

small. It is less than Nn/2 multiplied by a logarithmic factor.

In applications one needs large families of binary lattices with strong

pseudorandom properties. Constructions of this type have been given in [5],

[7] and [8]. However, one would expect that, as in one dimension [1], [4], [6],

[11], the most promising constructions can be given by using the Legendre

symbol. Indeed, in Part I [3] we presented the following construction of this

type.
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Construction 1 Let p be an odd prime, f ∈ Fp[x1, x2] be a polynomial in

two variables. Define η : I2
p → {−1,+1} by

η(x1, x2) =







(

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

1 if p | f(x1, x2).
(1.1)

In [3] we showed that there are many polynomials f ∈ Fp[x1, x2] for which

the lattice η defined by (1.1) has a very regular structure, so that it certainly

cannot be considered of pseudorandom type. All these polynomials belong

to the family described in the following definition.

Definition 2 A polynomial f ∈ Fp[x1, x2] is called degenerate if there exist

λ ∈ Fp, (γ1, δ1), . . . , (γs, δs) in Fp×Fp, ϕ1, . . . , ϕs in Fp[x] and ψ in Fp[x1, x2]

for which for all (x1, x2) in Fp × Fp

f(x1, x2) = λ

(

s
∏

j=1

ϕj(γjx1 + δjx2)

)

ψ2(x1, x2). (1.2)

If f cannot be expressed in form (1.2) then it is said to be non-degenerate.

Notice that under this definition f(x1, x2) = xp
1 + x2 is degenerate since

f(x1, x2) = x1 + x2 for all (x1, x2) ∈ Fp × Fp. We are interested in f as a

function as opposed to a formal polynomial. However if we suppose that f

is of degree less than p in x1 and in x2 then the two notions coincide and we

may view (1.2) as an identity of polynomials.

Our main result in [3] was that if f ∈ Fp[x1, x2] is non-degenerate and one

of 5 sufficient conditions hold then the pseudorandom measures associated

with (1.1) are small.

Theorem A Let f ∈ Fp[x1, x2] be a polynomial of degree k. Suppose that

f(x1, x2) cannot be expressed in the form (1.2) and one of the following 5

conditions holds:
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a) f(x1, x2) is irreducible in Fp[x1, x2],

b) ℓ = 2,

c) 2 is a primitive root modulo p,

d) 4k+ℓ < p,

e) ℓ and the degree of the polynomial in x1 (or in x2) are odd.

Then for the binary p-lattice defined by (1.1) we have

Qℓ(η) ≤ 11kℓp3/2 log p.

In this paper our goal is to continue the study of Construction 1. First we

will analyze the degenerate case. In Section 2 we will analyze the structure

of the degenerate polynomials f(x1, x2), and we will introduce the notion

of the normal form and rank r = r(f) of such a polynomial. In Section 3

we will prove that if f is degenerate, ℓ ≤ r = r(f), η is defined by (1.1)

and one of four specified conditions holds, then Qℓ(η) is small.We will also

present an algorithm for deciding whether a given polynomial f(x1, x2) is

degenerate and, if it is, for determining its normal form. In Section 4 we will

show that here the upper bound r cannot be replaced by 2r . In Section 5 we

will study the implementation of Construction 1 and, in particular, we will

construct a large family of polynomials f(x1, x2) which are non-degenerate

and satisfy the first sufficient condition in Theorem A so that the binary

lattice η in (1.1) possesses strong pseudorandom properties. In particular

its pseudorandom measures Qℓ(η) are small for ℓ not very large.Finally, in

Section 6, we construct families of polynomials for which the bounds for the

pseudorandom measures are essentially optimal.
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2 Structure of degenerate polynomials

In this section our goal is to transform the representation (1.2) of a degen-

erate polynomial into another more useful one. We will need several lemmas.

Lemma 1 If F is a field, then in F[x1, x2, . . . , xn] every polynomial has a

factorization into irreducible polynomials which is unique apart from constant

factors and reordering.

Proof of Lemma 1. See, for example [9, Theorem 207]. �

Lemma 2 Let g1, g2 ∈ Fp[x, y] and f ∈ Fp[x] be non-zero polynomials. Sup-

pose that for some (α, β) ∈ Fp × Fp

g1(x, y)g2(x, y) = f(αx+ βy). (2.1)

Then there exist f1, f2 ∈ Fp[x] such that

gi(x, y) = fi(αx+ βy)

for i = 1, 2.

Proof of Lemma 2. If (α, β) = (0, 0) the result is immediate. Thus we may

suppose that (α, β) 6= (0, 0) and, without loss of generality, we may assume

that α 6= 0. Put

z = αx+ βy

so that x = α−1z − α−1βy. We may now define h1, h2 in Fp[y, z] by putting

hi(y, z) = gi(α
−1z − α−1βy, y) for i = 1, 2.

From (2.1) we find that

h1(y, z)h2(y, z) = f(z). (2.2)
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Write

h1(y, z) = ua(z)y
a + ua−1(z)y

a−1 + · · · + u0(z),

h2(y, z) = vb(z)y
b + vb−1(z)y

b−1 + · · · + v0(z)

and

h1(y, z)h2(y, z) = wa+b(z)y
a+b + wa+b−1(z)y

a+b−1 + · · ·+ w0(z)

where ua(z), vb(z) are not the zero polynomial. Clearly we have

wa+b(z) = ua(z)vb(z). (2.3)

But by (2.2), h1(y, z)h2(y, z) is a one variable polynomial in z, thus we have

wa+b(z) = wa+b−1(z) = · · · = w1(z) = 0 if a + b > 0. (2.4)

It follows from (2.3) and ua(z) 6= 0, vb(z) 6= 0 that wa+b(z) 6= 0. Thus by (2.4)

we have a+ b = 0 whence a = b = 0. Then h1(y, z) = u0(z), h2(y, z) = v0(z)

which completes the proof of the lemma. �

We shall identify the elements of Fp with the p congruence classes modulo

p and shall denote the elements of Fp × Fp by (a, b) with a and b integers

representing the congruence class of a and of b modulo p. Define the subset

T of Fp × Fp by

T = {(0, 1), (1, 0), (1, 1), (2, 1), . . . , (p− 1, 1)}.

Lemma 3 Let f be a non-constant degenerate polynomial in Fp[x1, x2] of

degree less than p in x1 and in x2. Then there exist a non-zero λ in Fp, a

non-negative integer r, distinct elements (γ1, δ1), . . . , (γr, δr) from T, ψ in

Fp[x1, x2] and squarefree non-constant polynomials ϕ1, . . . , ϕr in Fp[x] for

which

f(x1, x2) = λ

(

r
∏

j=1

ϕj(γjx1 + δjx2)

)

ψ2(x1, x2). (2.5)
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Further r is uniquely determined and the polynomials ϕj(γjx1 + δjx2) and

ψ(x1, x2) are unique up to constant factors and reordering of ϕ1(γ1x1 +

δ1x2), . . . , ϕr(γrx1 + δrx2).

We shall refer to a decomposition of f as in (2.5) as a normal form of f

and to r as the rank of f. Notice that since (γ1, δ1), . . . , (γr, δr) are distinct

elements of T we have

γjδi − δjγi 6= 0 for i 6= j. (2.6)

Proof of Lemma 3. Let ψ be a polynomial of largest degree for which ψ2

divides f in Fp[x1, x2]. Then since f is degenerate we may write f in the

form (1.2) with ψ as above and with (γi, δi) 6= (0, 0) for i = 1, . . . , s. Further

we may suppose that ϕ1, . . . , ϕs are squarefree polynomials in Fp[x] and that

ϕ1 · · ·ϕs is also squarefree.

Suppose that ϕ is in Fp[x] and (γ, δ) are in Fp × Fp\{(0, 0)} and define

ϕ∗ in Fp[x] by

ϕ∗(x) =











ϕ(γx) when γ 6= 0,

ϕ(δx) when γ = 0.

Then

ϕ(γx1 + δx2) =











ϕ∗(x1 + δγ−1x2) if γ 6= 0,

ϕ∗(x2) if γ = 0.

Therefore we may write

ϕ1(γ1x1 + δ1x2) · · ·ϕs(γsx1 + δsx2)

as

ϕ∗
1(γ1x1 + δ1x2) · · ·ϕ

∗
s(γsx1 + δsx2)
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where now (γi, δi) is in T for i = 1, . . . , s. We now collect and multiply

together the polynomials ϕ∗
i for which (γi, δi) are the same to get a represen-

tation for f of the form (2.5).

Suppose that, in addition to (2.5),

f(x1, x2) = λ1

(

s
∏

j=1

ρj(θjx1 + βjx2)

)

ψ2
1(x1, x2)

with (θ1, β1), . . . , (θs, βs) distinct elements of T, λ1 a non-zero element of Fp,

ψ1 in Fp[x1, x2] and squarefree non-constant polynomials ρ1, . . . , ρs in Fp[x].

By Lemma 1 ψ(x) is a constant times ψ1(x) since ψ2(x) and ψ2
1(x) correspond

to the greatest square factor of f in Fp[x1, x2]. Next note that for each j from

1 to s we may decompose ρj(θjx1 + βjx2) into irreducibles and by Lemma 2

ρj(θjx1 + βjx2) = ρj,1(θjx1 + βjx2) · · ·ρj,t(θjx1 + βjx2)

where ρj,1, . . . , ρj,t are irreducible polynomials in Fp[x]. Thus each irreducible

ρj,k(θjx1+βjx2) occurs in the essentially unique decomposition of ϕm(γmx1+

δmx2) into irreducibles for some m. Notice that if a polynomial g(x, y) =

f1(γ1x + β1y) = f2(γ2x + β2y) with f1, f2 ∈ F[x] and γ1β2 − γ2β1 6= 0 then

g(x, y) is a constant. (Indeed, fix a, b, c, d ∈ Fp and we will prove that

g(a, b) = g(c, d). Since γ1β2 − γ2β1 6= 0 the system of linear equations

γ1x+ β1y = γ1a + β1b

γ2x+ β2y = γ2c+ β2d

has a unique solution in x, y ∈ Fp. Then

g(a, b) = f1(γ1a+ β1b) = f1(γ1x+ β1y) = g(x, y) = f2(γ2x+ β2y)

= f2(γ2c+ β2d) = g(c, d).)
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Thus, by (2.6), (θj , βj) = (γm, δm). Repeating this argument with all the

irreducible factors of ρj and all the irreducible factors of ϕm(γmx1 + δmxz)

we find that ϕm(γmx1 + δmx2)/ρj(θjx1 + βjx2) is a constant. From this it

readily follows that r = s and the result follows. �

We remark that we may determine if a polynomial f is degenerate by first

replacing it with a polynomial f ∗ of degree at most p − 1 in each variable

by using the fact that xp = x for all x in Fp. We then factor f ∗ and write

f ∗ as a product of irreducibles multiplied by its largest square divisor. Each

irreducible must be tested to see if it is of the form g(γx+βy) with g ∈ Fp[x]

and (γ, β) ∈ T. Given (γ, β) in T if suffices to check that the irreducible is

constant on the lines in Fp × Fp given by γx+ βy = c for c in Fp and this is

a finite process. Furthermore T is a finite set. Either there is an irreducible

not of the form g(γx+ βy) for any g ∈ F[x] and (γ, β) in T in which case f ∗

is non-degenerate or f ∗ is degenerate and we may produce the normal form

as in the proof of Lemma 3.

3 The pseudorandom measures of small or-

der in the degenerate case.

We will show that if f(x1, x2) is a degenerate polynomial and the order ℓ

of the pseudorandom measure Qℓ is not greater than the rank of f then, for

the binary lattice η defined in (1.1), Qℓ(η) is small. In fact our estimates are

the same as in the non-degenerate case studied in Theorem A.

Theorem 1 Let f(x1, x2) ∈ Fp[x1, x2] be a non-constant degenerate polyno-

mial of reduced normal form (2.5) with degree k. Suppose that ℓ, the order

of the pseudorandom measure is not greater than the rank r of f(x1, x2), and
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one of the following 5 conditions holds:

a) f(x1, x2) is irreducible in Fp[x1, x2],

b) ℓ = 2,

c) 2 is a primitive root modulo p,

d) (4k)ℓ < p or (4ℓ)k < p,

e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary lattice η defined in (1.1) we have

Qℓ(η) < 11kℓp3/2 log p.

Proof of Theorem 1. The proof will be based on the following result.

Lemma 4 Suppose that f ∈ Fp[x1, x2] is a polynomial such that there are no

distinct d1, . . . ,dℓ ∈ F2
p with the property that f(x+d1) . . . f(x+dℓ) is of the

form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Let k be the degree of the polynomial

f(x1, x2). Then for the binary p-lattice η defined in (1.1) we have

|Qℓ(η)| < 11kℓp3/2 log p.

Proof of Lemma 4. This is Lemma 5 in [3] (note that we proved it by

using a consequence of Weil’s theorem [12]). �

In order to ensure the applicability of this lemma, we have to show that

it follows from one of the 5 assumptions in Theorem 1 that there are not

distinct d1, . . . ,dℓ ∈ F2
p such that the polynomial

h(x) = f(x + d1) . . . f(x + dℓ)

is of the form cq(x)2 with c ∈ Fp, q ∈ Fp[x1, x2]. Indeed, if this is proved,

then the statement of Theorem 1 follows from Lemma 4 immediately.

We will prove this by contradiction. Assume that

h(x) = f(x + d1) · · · f(x + dℓ)
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is the constant multiple of a perfect square. Then we will prove

r + 1 ≤ ℓ,

where r denotes the rank of f , which contradicts our assumption.

Write

di = (d′i, d
′′
i )

for i = 1, . . . , l.

Suppose that f has the normal form

f(x1, x2) = λ

r
∏

j=1

fj(αjx1 + βjx2)ψ
2(x1, x2)

with λ ∈ Fp\{0}, (α1, β1), . . . , (αr, βr) distinct elements of T, f1, . . . , fr square-

free non-constant polynomials in Fp[x] and ψ ∈ Fp[x1, x2]. Then it follows

that

r
∏

j=1

fj(αjx1+βjx2 + αjd
′
1 + βjd

′′
1)fj(αjx1 + βjx2 + αjd

′
2 + βjd

′′
2) · · ·

fj(αjx1 + βjx2 + αjd
′
ℓ + βjd

′′
ℓ ). (3.1)

is a non-zero multiple of the square of a polynomial in Fp[x1, x2].

Now we will introduce an equivalence relation which is similar to the one

used in the proof of Theorem 1 in [1].

Definition 3 Two polynomials ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are t-equivalent

(t for translation) if there are a1, a2 ∈ Fp such that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Consider any two factors fj1(αj1x1 +βj1x2 +αj1d
′
v1

+βj1d
′′
v1

) = f ∗
j1

(αj1x1 +

βj1x2) and fj2(αj2x1+βj2x2+αj2d
′
v2

+βj2d
′′
v2

) = f ∗
j2

(αj2x1+βj2x2) with j1 6= j2
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on the right hand side of (3.1), factor them into irreducible polynomials,

and consider an irreducible factor ϕ1 of the former polynomial and ϕ2 of

the latter polynomial. Then by Lemma 2, these irreducible factors are of

the form ϕ1(αj1x1 + βj1x2), and ϕ2(αj2x1 + βj2x2). Assume that these two

polynomials are t-equivalent, so that there exist a, b ∈ Fp such that

ϕ1(αj1x1 + βj1x2) = ϕ2(αj2(x1 + a) + βj2(x2 + b))

= ϕ2((αj2x1 + βj2x2) + (αj2a + βj2b)) = ϕ3(αj2x1 + βj2x2)

(3.2)

(where ϕ3(z) = ϕ2(z + (αj2a+ βj2b))). Both the first and last polynomial in

(3.2) are in normal form, and since the normal form is unique, we must have

(αj1, βj1) = (αj2 , βj2) whence j1 = j2.

Thus if two factors fj1(αj1x1 + βj1x2 + αj1d
′
v1

+ βj1d
′′
v1

) and fj2(αj2x1 +

βj2x2 + αj2d
′
v2

+ βj2d
′′
v2

) on the right hand side of (3.1) have t-equivalent

irreducible factors then j1 = j2. But then the expression (3.1) is of the form

cq(x1, x2)
2 if and only if

fj(αjx1 + βjx2 + αjd
′
1 + βjd

′′
1) · · · fj(αjx1 + βjx2 + αjd

′
ℓ + βjd

′′
ℓ )

is the constant multiple of a square for every 1 ≤ j ≤ r. Writing z =

αjx1 + βjx2 and d∗j(i) = αjd
′
i + βjd

′′
i ∈ F∗

p we obtain for 1 ≤ j ≤ r:

fj(z + d∗j(1))fj(z + d∗j(2)) · · ·fj(z + d∗j(ℓ))

is of the form cq(z)2. LetDj be the set of terms of the sequence (d∗j(1), . . . , d∗j(ℓ))

which occur with odd multiplicity. If Dj is not empty, then

∏

d∈Dj

fj(z + d)

is the constant multiple of a perfect square. By the proof of Lemma 2 in

[1] this is not possible (note that by Lemma 2, in case a) the one-variable
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polynomial f(z) is also irreducible). It remains to consider the case when Dj

is empty for j = 1, . . . , r. Ṫhen, for 1 ≤ j ≤ r, in the sequence

(αjd
′
1 + βjd

′′
1, αjd

′
2 + βjd

′′
2, . . . , αjd

′
ℓ + βjd

′′
ℓ )

every term occurs with even multiplicity, hence every term occurs with mul-

tiplicity at least 2. Then for every j, there is a number 2 ≤ i(j) ≤ ℓ such

that

αjd
′
1 + βjd

′′
1 = αjd

′
i(j) + βjd

′′
i(j).

We will prove that 1, i(1), i(2), . . . , i(r) are different numbers. It is clear that

none of i(1), i(2), . . . , i(r) is equal to 1. It remains to prove that

x = i(j1) = i(j2) (3.3)

is not possible. Suppose that (3.3) holds. Then

αj1d
′
1 + βj1d

′′
1 = αj1d

′
x + βj1d

′′
x,

αj2d
′
1 + βj2d

′′
1 = αj2d

′
x + βj2d

′′
x.

Thus

αj1(d
′
1 − d′x) − βj1(d

′′
1 − d′′x) = 0,

αj2(d
′
1 − d′x) − βj2(d

′′
1 − d′′x) = 0. (3.4)

Since (d′1, d
′′
1) 6= (d′x, d

′′
x) from (3.4) we obtain

αj1βj2 − αj2βj1 = 0,

from which j1 = j2 follows. Thus 1 < i(1), i(2), . . . , i(r) ≤ ℓ and i(1), i(2), . . . , i(r)

are different numbers, so that

r + 1 ≤ ℓ

which contradicts the conditions of Theorem 1 and this completes the proof

of the theorem. �
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4 The pseudorandom measures of large order

in the degenerate case

In Section 3 we showed that in the degenerate case if ℓ ≤ r then Qℓ(η) is

small. Now we will prove that Qℓ(η) is large for some ℓ with ℓ at most 2r.

Theorem 2 Let f ∈ Fp[x1, x2] be a degenerate polynomial with rank r and

degree m and n in x1 and x2, respectively. Then there exists a positive integer

ℓ with ℓ at most 2r for which

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p.

Proof of Theorem 2 We may assume that r ≤ p1/2/4 since otherwise the

theorem is immediate. Suppose that f(x1, x2) has the normal form

f(x1, x2) = λ

r
∏

j=1

fj(αjx1 + βjx2)ψ(x1, x2)
2

with (α1, β1), . . . , (αr, βr) distinct elements from T. We distinguish two cases.

In the first case all of the αi’s are non-zero. In the second case one of the

αi’s is zero and in that case we may suppose, without loss of generality, that

(α1, β1) = (0, 1). There exists an integer γi with 1 ≤ |γi| ≤ p1/2 + 1 such

that γiαi is congruent modulo p to a positive integer of size at most p1/2

for i = 1, . . . , r in the first case and i = 2, . . . , r in the second case. To

see this consider the first [p1/2] + 2 multiples of αi in Fp. Two of them have

representations which differ by at most (p−1)/([p1/2]+1), so by at most p1/2,

and the difference gives the result. In the second case we may take γ1 = 1 so

γ1β1 = 1.

Put

E = {ε = (ε1, . . . , εr) with εi ∈ {0, 1} for i = 1, . . . , r}
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and for each ε in E put

d(ε) = ε1(β1,−α1)γ1 + · · ·+ εr(βr,−αr)γr.

Notice that for each ε in E, d(ε) has coordinates represented by integers

between −r(p1/2 + 1) and r(p1/2 + 1).

Lemma 5
∏

ε∈E

f(x + d(ε))

is the square of a polynomial in Fp[x1, x2].

Proof of Lemma 5. Write

fj(x1, x2) = fj(αjx1 + βjx2),

for j = 1, . . . , r, so that

f(x) = λ

r
∏

j=1

fj(x1, x2)ψ
2(x1, x2). (4.1)

For each integer j with 1 ≤ j ≤ r we may split E into two disjoint sets

E0
j and E1

j where ε in E is in E0
j if εj = 0 and is in E1

j if εj = 1. For ε in E0
j

let ε
1 denote the element of E1

j with the same coordinates as ε except for

the j-th coordinate which is 1. Then, for ε in E0
j ,

fj(x + d(ε)) = fj(x + d(ε1))

and so

∏

ε∈E

fj(x + d(ε)) =
∏

ε∈E0

j

(fj(x + d(ε))fj(x + d(ε1)))

=





∏

ε∈E0

j

fj(x + d(ε))





2

.
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The result now follows from (4.1) since |E| is even. �

Let D be the set of d = d(ε) which occur with odd multiplicity among

the terms d(ε) with ε in E. It follows from Lemma 5 that if D is non-empty

then
∏

d∈D

f(x + d) (4.2)

is the square of a polynomial in Fp[x1, x2].

We claim that (0, 0) is in D. Certainly d(0, . . . , 0) = (0, 0). Further if ε is

in E and d(ε) = (0, 0) then ε1α1γ1 + · · ·+εrαrγr = 0. Since αiγi is congruent

to a positive integer of size at most p1/2 and r is at most p1/2/4 we see that

ε1 = · · · = εr = 0 in the first case and that ε2 = · · · = εr = 0 in the second

case. But in the second case we find that d(ε) = (ε1β1γ1, 0) = (ε1, 0) so

ε1 = 0. Therefore if ε is in E and d(ε) = (0, 0) we see that ε = (0, . . . , 0) and

this shows that (0, 0) is in D. Clearly, |D| ≡ |E| (mod 2) and since |E| = 2r

we conclude that

2 ≤ |D| ≤ |E| = 2r.

Let d = (d1, d2) in D. Then d1 and d2 are integers between −r(p1/2 + 1)

and r(p1/2 + 1). Put

d1
1 = min

d∈D
d1, d1

2 = min
d∈D

d2

and

d0 = (d1
1, d

1
2).

Then d − d0 ∈ I2
p for d ∈ D since r ≤ p1/2/4. Next put

B = {(x1, x2) ∈ I2
p | 0 ≤ xi < p− 2r(p1/2 + 1) for i = 1, 2}.

Notice that

|B| ≥ (p− 2r(p1/2 + 1))2 ≥ p2 − 4rp3/2. (4.3)
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Put

F (x) =
∏

d∈D

f(x + d − d0).

F (x) is the square of a polynomial in Fp[x1, x2] by (4.2). Let ℓ = |D|. With

η defined by (1.1) we find that

Qℓ(η) ≥

∣

∣

∣

∣

∣

∑

x∈B

∏

d∈D

η(x + d − d0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈B
F (x)6=0

(

F (x)

p

)

+
∑

x∈B
F (x)=0

∏

d∈D

η(x + d− d0)

∣

∣

∣

∣

∣

∣

∣

∣

≥
∑

x∈B
F (x)6=0

1 −
∑

x∈B
F (x)=0

1 ≥ |B| − 2
∑

x∈F
2
p

F (x)=0

1. (4.4)

It is easy to see that if a polynomial F ∈ Fp[x1, x2] is of degree u and v in x1

and x2, respectively, then the number of its zeros x ∈ F2
p is at most (u+ v)p.

Thus it follows from (4.3) and (4.4) that

Qℓ(η) ≥ p2 − 4rp3/2 − 2ℓ(m+ n)p

which proves Theorem 2. �

5 Generating a large family of suitable poly-

nomials

In this section we construct a large family of polynomials which are non-

degenerate.

Theorem 3 Let f ∈ Fp[x1, x2] be a polynomial of the form

f(x1, x2) = xk
1 + x1x2g(x1, x2) + x2h(x2) (5.1)

18



with g ∈ Fp[x1, x2], deg g ≤ k − 3, h ∈ Fp[x2], deg h(x2) ≤ k − 2 and

x2 ∤ h(x2). Then for the binary lattice η defined in (1.1) we have

Qℓ(η) < 11kℓp3/2 log p. (5.2)

Proof of Theorem 3. We will need the following generalization of the

Schönemann-Eisenstein theorem.

Lemma 6 If f(x) = a0x
n + · · ·+an is a polynomial over an integral domain

R and a is a maximal ideal of R with

a0 6≡ 0 (mod a),

a1 ≡ · · · ≡ an ≡ 0 (mod a),

an 6≡ 0 (mod a
2)

then f(x) cannot be decomposed in R[x] into a product of non-constant fac-

tors.

Proof of Lemma 6. See, for example [9, Theorem 282]. �

R = Fp[x2] is an integral domain and a =< x2 > is a maximal ideal in it.

Then the conditions of Lemma 6 hold for the polynomial f(x1, x2) ∈ R[x1]

in (5.1), thus f(x1, x2) is irreducible.

In order to use Theorem 1 we prove that f(x1, x2) is not of the form

(2.5). Since f(x1, x2) is irreducible we have to prove that f(x1, x2) is not of

the form

f(x1, x2) = f1(α1x1 + β1x2). (5.3)

Let h be the degree of f1 and consider the terms of degree h in f1, so

f1(α1x1 + β1x2) = c(α1x1 + β1x2)
h + f2(α1x1 + β1x2),
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where the degree of f2(α1x1 + β1x2) is ≤ h − 1 and c 6= 0 ∈ Fp. Clearly,

c(α1x1 + β1x2)
h equals the sum of the terms of degree k of f(x1, x2), thus by

the conditions of Theorem 2 we have

c(α1x1 + β1x2)
h = xk

1.

We may suppose that k is less than p since the result is immediate otherwise.

It then follows that h = k, c = α1 = 1 and β1 = 0, thus from (5.3)

f(x1, x2) = f1(x1). (5.4)

On the other hand f(x1, x2) contains a power of x2, and this contradicts

(5.4). Thus f(x1, x2) is not of the form (2.5). We have also proved that

f(x1, x2) is irreducible, and by using Theorem 1 a) we obtain the result. �

6 A Legendre symbol construction with op-

timal bounds

As we remarked already in [3], our upper bounds are not optimal; in

particular, in (5.2) the optimal upper bound would be, up to logarithmic

factors, p (with a factor depending on k and ℓ). On the other hand this

construction is more natural than the ones using finite fields in [5], [7] or [8]

(where the bounds are sharper), and it can be implemented faster. However,

we will show that for a certain (rather special) family of polynomials the

finite field construction presented in [7] is equivalent to a Legendre symbol

construction of type (1.1). Thus in this case we obtain a family of binary

lattices which combines the advantages of the two constructions: as in [7]

we have optimal bounds, and as a Legendre symbol construction it can be

implemented fast and easily.
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Indeed, combining Theorems 1 and 2 of [7], we get the following result:

Theorem A. Let p be an odd prime, n ∈ N, q = pn, and denote the quadratic

character of Fq by γ (setting also γ(0) = 0). Consider the linear vector space

formed by the elements of Fq over Fp, and let v1, . . . , vn be a basis of this

vector space. Let f(x) ∈ Fq[x] be a polynomial of degree k with

0 < k < p (6.1)

which has no multiple zero. Define the n-dimensional binary p-lattice η(x) :

In
p → {−1,+1} by

η(x) = η((x1, . . . , xn))

=







γ(f(x1v1 + · · ·+ xnvn)) for f(x1v1 + · · ·+ xnvn) 6= 0

1 for f(x1v1 + · · ·+ xnvn) = 0.
(6.2)

Assume also that ℓ ∈ N with

4n(k+ℓ) < p. (6.3)

Then we have

Qℓ(η) < kℓ
(

q1/2(1 + log p)n + 2
)

. (6.4)

Our next result follows from Theorem A in the case that n = 2 and for a

special choice of v1, v2 and the polynomial f .

Theorem 4 Let p be an odd prime and let r be a quadratic non-residue mod-

ulo p. Then the polynomial x2−r is irreducible over Fp; denote one of its zeros

by θ, and consider the extension of Fp by θ: Fp[θ](∼= Fp2). Let k and ℓ be inte-

gers which satisfy (6.1) and (6.3), and assume that a1, a2, . . . , ak, b1, b2, . . . , bk ∈

Fp satisfy

ai + biθ 6= aj + bjθ and ai + biθ 6= aj − bjθ for 1 ≤ i < j ≤ k. (6.5)
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Put

f̃(x1, x2) =

k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2
)

(6.6)

and

η̃(x) = η̃(x) = η̃((x1, x2)) =







(

f̃(x1,x2)
p

)

if (f̃(x1, x2), p) = 1

1 if p | f̃(x1, x2).
(6.7)

For each positive integer ℓ with

42(ℓ+k) < p (6.8)

we have

Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

.

Proof of Theorem 4. By the definition of θ and Euler’s lemma, we have

θp = (θ2)
p−1

2 θ = r
p−1

2 θ = −θ. (6.9)

We will use Theorem A with n = 2, q = p2, v1 = 1, v2 = θ, so that now

the elements of Fq = Fp2 are represented in the form x1 + x2θ. Then by the

generalization of Euler’s lemma to Fq and (6.9), for x1 + x2θ ∈ F∗
p2 , so with

(x1, x2) 6= (0, 0), we have

γ(x1 + x2θ) = (x1 + x2θ)
p2

−1

2 = (x1 + x2θ)
p2

−p

2 (x1 + x2θ)
p−1

2

= ((x1 + x2θ)
p)

p−1

2 (x1 + x2θ)
p−1

2 = (xp
1 + xp

2θ
p)

p−1

2 (x1 + x2θ)
p−1

2

= (x1 − x2θ)
p−1

2 (x1 + x2θ)
p−1

2 = (x2
1 − x2

2θ
2)

p−1

2 = (x2
1 − rx2

2)
p−1

2

=

(

x2
1 − rx2

2

p

)

.

By the multiplicativity of γ and the Legendre symbol, it follows that writing

f(x1 + x2θ) =

k
∏

i=1

((x1 + x2θ) − (ai + biθ)) (6.10)
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and defining η(x) = η((x1, x2)) as in (6.2) we have

η(x) = γ(f(x1 + x2θ)) = γ

(

k
∏

i=1

((x1 + x2θ) − (ai + biθ))

)

=
k
∏

i=1

γ ((x1 + x2θ) − (ai + biθ)) =
k
∏

i=1

γ ((x1 − ai) + (x2 − bi)θ)

=
k
∏

i=1

(

(x1 − ai)
2 − r(x2 − bi)

2

p

)

=

(

∏k
i=1((x1 − ai)

2 − r(x2 − bi)
2)

p

)

=

(

f̃(x1, x2)

p

)

= η̃(x) (for f(x1 + x2θ) 6= 0) (6.11)

with the polynomial f̃ and the lattice η̃ defined by (6.6) and (6.7), respec-

tively, and trivially we have

η(x) = η̃(x) for f(x1 + x2θ) = 0. (6.12)

By (6.5) and the definition of r, the polynomial f̃ has no multiple zero, and

now (6.3) holds by (6.8). Thus Theorem A can be applied, and then we

obtain from (6.4), (6.11) and (6.12) that

Qℓ(η) = Qℓ(η̃) < ℓk
(

p(1 + log p)2 + 2
)

which completes the proof of Theorem 4.

We remark that the construction in Theorem 4 could be extended by also

considering higher degree factors in (6.10). Even more generally, we may

consider polynomials f which are not given in a product form. In either

case, we may use the fact that if f(x1 + x2θ) = p(x1, x2) + θq(x1, x2) (with

f(z) ∈ Fp[z], p(x1, x2), q(x1, x2) ∈ Fp[x1, x2] and θ, r defined as above), then

we have

γ(f(x1 + θx2)) = γ(p(x1, x2) + θq(x1, x2)) =

(

p2(x1, x2) − rq2(x1, x2)

p

)

.
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However this would make the polynomial f̃ in (6.6) in Theorem 4 much more

complicated.

Finally, we would like to discuss the implementation of the construction

in Theorem 4. The critical point of the implementation is to find a quadratic

non-residue r. If p is fixed, then it is known that the GRH implies that

the least quadratic non-residue modulo p is less than (log p)c (with some

positive constant c), and since the quadratic character of a given residue can

be decided in polynomial time (by using Jacobi symbols), r can be chosen

as the least quadratic non-residue modulo p which can be determined in

polynomial time. On the other hand, no algorithm is known for finding

the least quadratic non-residue in polynomial time without any unproved

hypothesis. However, in most cases one need not fix p, and this difficulty

can be avoided. Namely, we may start out from the fact that if p is a prime

of the form 4k − 1, then -1 is a quadratic non-residue modulo p. Thus it is

worthwhile to make first a long sequence of primes p1 = 3 < p2 < · · · < pt

of the form 4k − 1 with say, pi < pi+1 < 2pi, and if we need a prime p of

size about N with p ≡ −1 (mod 4), then we take the first prime from this

sequence greater than N , and we take r = −1. (If we want a large prime p

of the form 4k − 1, then we may use the fact that the Mersenne primes are

of the form 4k − 1.)
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