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Abstract

In an earlier paper Hubert, Mauduit and Sárközy defined the notion

of binary lattice, they introduced the measures of pseudorandomness

of binary lattices, and they constructed a binary lattice with strong

pseudorandom properties with respect to these measures. Later fur-

ther constructions of this type have been given by different authors.

In this series we will study the measures of pseudorandomness of

binary lattices. In particular, here in Part I first the connection be-

tween the pseudorandom measures Qk of different order is studied.

Then a further measure of pseudorandomness of binary lattices, called

normality measure, is introduced and studied.

2010 Mathematics Subject Classification: Primary 11K45.
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1 Introduction

Recently in a series of papers a new constructive approach has been de-

veloped to study pseudorandomess of binary sequences

EN = {e1, . . . , eN} ∈ {−1, +1}N . (1)

In particular in [47] Mauduit and Sárközy first introduced the following mea-

sures of pseudorandomness: the well-distribution measure of EN is defined

by

W (EN) = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

(2)

where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
. . . en+dk

∣

∣

∣

∣

∣

(3)
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where the maximum is taken over all D = (d1, . . . , dk) and M such that

0 ≤ d1 < · · · < dk ≤ N − M . The combined (well-distribution-correlation)

pseudorandom measure of order k was also introduced:

Qk(EN ) = max
a,b,t,D

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1
. . . ea+jb+dk

∣

∣

∣

∣

∣

(4)

where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that

all the subscripts a + jb + dℓ belong to {1, 2, . . . , N}. Then the sequence

EN is considered to be a “good” pseudorandom sequence if both W (EN) and

Ck(EN) (at least for “small” k) are “small” in terms of N (in particular, both

are o(N) as N −→ ∞). Indeed, later Cassaigne, Mauduit and Sárközy [11]

showed that this terminology is justified since for almost all EN ∈ {−1, +1}N

both W (EN) and Ck(EN) are less than N1/2(log N)c. (See also [3].) It was

also shown in [47] that the Legendre symbol forms a “good” pseudorandom

sequence. Later many further sequences were tested for pseudorandomness

[6], [7], [8], [9], [10], [16], [17], [19], [21], [41], [44], [45], [48], [49], [50], [60],

[62], [63], and further constructions were given for sequences with good pseu-

dorandom properties by using multiplicative characters [12], [13], [14], [15],

[20], [23], [26], [29], [39], [55], [59], [61], [65], [66], [68], additive characters [18],

[37], [38], [43], [46], [52], [57], and both additive and multiplicative characters

[42], [58], [64].

In order to encrypt a 2-dimensional digital map or picture via the analog

of the Vernam cipher, instead of a pseudorandom binary sequence (as a key

stream) one needs the n-dimensional extension of the theory of pseudoran-

domness. Such a theory has been developed recently by Hubert, Mauduit

and Sárközy [31]. They introduced the following definitions:

Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.
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This set is called an n-dimensional N-lattice or briefly an N-lattice. In [30]

this definition was extended to more general lattices in the following way:

Let u1,u2, . . . ,un be n linearly independent vectors over the field of the real

numbers such that the i-th coordinate of ui is a positive integer and the other

coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0) (with

zi ∈ Z+). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then we

call the set

Bn
N = {x = x1u1 + · · · + xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [31] the definition of binary sequences was extended to more dimensions

by considering functions of type

η(x) : In
N → {−1, +1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify the

notation slightly by writing η(x) = η(x1, . . . , xn). Such a function can be

visualized as the lattice points of the N -lattice replaced by the two symbols

+ and −, thus they are called binary N-lattices.

In [31] Hubert, Mauduit and Sárközy introduced the following measures

of pseudorandomness of binary lattices (here we will present the definition

in the same slightly modified but equivalent form as in [30]): Let

η : In
N → {−1, +1}.

Define the pseudorandom measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dℓ)

∣

∣

∣

∣

∣

, (5)

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

N -lattices B such that B + d1, . . . , B + dℓ ⊆ In
N . Note that in the one

dimensional special case Q1(η) is the same as the well-distribution measure

(2), and for every k ∈ N, Qk(η) is the combined measure (4).
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Then η is said to have strong pseudorandom properties, or briefly, it is

considered as a “good” pseudorandom binary lattice if for fixed n and ℓ and

“large” N the measure Qℓ(η) is “small” (much smaller, than the trivial upper

bound Nn). This terminology is justified by the fact that, as it was proved

in [31], for a truly random binary lattice defined on In
N and for fixed ℓ the

measure Qℓ(η) is “small”, more precisely, it is less than Nn/2 multiplied by a

logarithmic factor. Constructions for binary lattices, resp. large families of

binary lattices with strong pseudorandom properties were presented in [27],

[28], [31], [40], [53], [54], [56].

In the one-dimensional case further related notions were also introduced

and studied: the normality measure [47]; the symmetry measure [24]; the

properties of the measures of pseudorandomess and the connection between

them [1], [2], [3], [4], [5], [8], [22], [25], [51], [69]. (See [67] for a survey of the

early work in this field.) In this series of papers our goal is to introduce and

study the n-dimensional analogs of these notions. More precisely, we will

restrict ourselves to the special case n = 2, since the case of general n could

be handled similarly but then the formulas would be much more lengthy

and complicated. In particular, in this Part I of the series we will study the

connection between the measures Qk and Qℓ for k 6= ℓ, and we will introduce

and study the normality measure.

2 Connection between the measures Qk and Qℓ

In [11] we wrote “...one might like to know whether it suffices to study

correlation of order, say, 2, or correlations of higher order must be studied

as well. This question can be answered by analyzing the connection between

Ck(EN) and Cℓ(EN) for k 6= ℓ . . . ” Indeed, we proved in [11]:

Theorem A For k, ℓ, N ∈ N, k | ℓ, EN ∈ {−1, +1}N we have

Ck(EN) ≤ N

(

(ℓ!)k/ℓ

k!

(

Cℓ(EN )

N

)k/ℓ

+

(

ℓ2

N

)k/ℓ
)

.
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It follows that if k, ℓ ∈ N, k | ℓ, N −→ ∞ and Cℓ(EN) is “small”, more

exactly, Cℓ(EN) = o(N), then Ck(EN) is also small (= o(N)). We also

showed that here the condition k | ℓ is necessary and, indeed, for fixed k and

for N −→ ∞ there is an EN ∈ {−1, +1}N such that Cℓ(EN ) is small when

k ∤ ℓ, while Ck(EN) is large (≫ N):

Theorem B If k, N ∈ N and k ≤ N , then there is a sequence EN ∈

{−1, +1}N such that if ℓ ∈ N, ℓ ≤ N/2, then

Cℓ(EN) >
N − ℓ

k
− 54k2N1/2 log N if k | ℓ

and

Cℓ(EN ) < 27k2ℓN1/2 log N if k ∤ ℓ.

In [22] and [51] we also analyzed the connection between W (EN)(=

Q1(EN)) and Ck(EN ), but we have never studied the connection between

Qk(EN ) and Qℓ(EN).

Here first we will study the connection between Qk(η) and Qℓ(η) for two

dimensional binary lattices η (but our results and proofs could be adapted

to the cases when the dimension is 1 or greater than 2).

Theorem 1 For k, ℓ, N ∈ N, k < N , ℓ < N , k | ℓ and every binary lattice

η : I2
N −→ {−1, +1} we have

Qk(EN) ≤ N2

(

(

ℓ

N

)2k/ℓ

+
4(ℓ!)k/ℓ

k!

(

Qℓ(η)

N2

)k/ℓ
)

.

It follows that if k | ℓ, N −→ ∞ and Qℓ(η) = o(N2), then Qk(η) is also

o(N2).

Proof. By (5) it suffices to prove that for all distinct d1, . . . ,dk ∈ I2
N

and box N -lattices B with B + d1, . . . , B + dk ⊆ I2
N we have

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

≤ N2

(

(

ℓ

N

)2k/ℓ

+
4(ℓ!)k/ℓ

k!

(

Qℓ(η)

N2

)k/ℓ
)

.

(6)
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Write ℓ/k = t so that t ∈ N by k | ℓ. Then clearly
(

∑

x∈B

η(x + d1) . . . η(x + dk)

)t

=

(

∑

x1∈B

η(x1 + d1) . . . η(x1 + dk)

)

. . .

(

∑

xt∈B

η(xt + dt) . . . η(xt) + dk)

)

=
∑

x1∈B

· · ·
∑

xt∈B

η(x1 + d1) . . . η(x1 + dk) . . . η(xt + d1) . . . η(xt + dk)

= S1 + S2 (7)

where S1 denotes the contribution of those terms η(x1 + d1) . . . η(xt + dk)

where there are two equal vectors amongst the xi + du’s:

xi + du = xj + dv (8)

(with (i, u) 6= (j, v)) while in S2 all these vectors are distinct.

First we estimate S1. In (8), u and v can be chosen in at most k ways, i, j

both in t ways, xj (for fixed j) in |B| (=number of lattice points in B)≤ N2

ways, and u, v,xj determine xi uniquely. Each of the t − 2 remaining xh’s

can be chosen in at most N2 ways, so that S1 has at most k2t2N2(N2)t−2 =

ℓ2N2(t−1) terms and thus

|S1| ≤ ℓ2N2(t−1). (9)

Now we estimate S2. We will use the lexicographical ordering of the lattice

points (x, y) ∈ N2 (i.e., the vectors z = (x, y)): we write (x, y) < (u, v) if

either x < u, or x = u and y < v. Then clearly we have (x, y) + (c, d) <

(u, v) + (c, d) if (x, y), (u, v), (c, d) ∈ N2 and (x, y) < (u, v).

We may assume that we have d1 < d2 < · · · < dk in terms of this

ordering. Consider each of the terms η(x1 + d1) . . . η(xt + dk) in S2, and

rearrange the order of the factors η(xi + du) so that the vectors should be

increasing:

η(x1 + d1) . . . η(xt + dk) = η(w1) . . . η(wℓ), w1 < · · · < wℓ. We t-colour

these factors η(w1), . . . , η(wℓ): if the vector wu is of the form wu = xj +dv,

6



then we colour the factor η(wu) by the j-th colour. Then to each term

η(w1) . . . η(wℓ) we may assign the sequence of the colours following each

other in the order used to colour η(w1), . . . , η(wℓ). In this way we get colour

patterns of length ℓ where each of the t colours occurs k times, so that the

number of these colour patterns is ℓ!/(k!)t.

Now fix any of the colour patterns, and consider each of the terms η(w1) . . . η(wℓ)

with this fixed colour pattern. We define an equivalence relation among these

terms: we say that

η(w1) . . . η(wℓ) ∼ η(v1) . . . η(vℓ) if v1 −w1 = · · · = vℓ − wℓ.

Clearly, this is indeed an equivalence relation. Fix a colour pattern and an

equivalence class, and collect all the terms from this class. Let

η(a1) . . . η(aℓ) (10)

be any fixed term taken from this class. Then we have

η(a1) < · · · < η(aℓ), (11)

and every term belonging to the class is of the form

η(a1 + x) . . . η(aℓ + x), (12)

or equivalently,

η(y)η(y + (a2 − a1)) . . . η(y + (aℓ − a1)). (13)

Now we will determine all vectors x,y ∈ N2 for which the product in (12),

resp. (13) appears in the sum S2 in (7). First, observe that it follows from

(11) that

η(a1 + x) < · · · < η(aℓ + x),

so that if the product (12) appears in (7), then it certainly belongs to S2. So

the question is: when does the product (12), resp. (13) appear in (7)? For

7



j = 1, 2, . . . , t, let η(aij) denote the factor in (10) in which the j-th colour

first appears; then clearly aij is of the form

aij = zj + d1 with some zj ∈ B (for j = 1, 2, . . . , t),

in particular,

a1 = air = zr + d1 for some r ∈ {1, 2, . . . , t}.

Then the ij-th factor in (13) is

η(y + (aij − a1)) = η(y + (zj − zr)).

Since this is of the same colour as η(aij), thus y + (zj − zr) must be of the

form

y + (zj − zr) = xj + d1 with the xj ∈ B in (7),

whence

y = xj + d1 + zr − zj ∈ B + d1 + zr − zj for j = 1, 2, . . . , t,

in particular, for j = r we have

y ∈ B + d1.

It follows that we must have

y ∈ (B + d1)
⋂

(

⋂

1≤j≤t
j 6=r

(B + dr + zr − zj)
)

. (14)

On the other hand, reversing this argument it can be shown that if y satisfies

(14), then the product in (13) belongs to the given equivalence class.

On the right hand side of (14) we have t translates of the same box B; let

B = {(au, bv) : 0 ≤ u ≤ U, 0 ≤ v ≤ V }. Then it is easy to see by induction

on t that the intersection of t translates is also a translate of a similar box

B′ = {(au, bv) : 0 ≤ u ≤ U ′, 0 ≤ v ≤ V ′} (with U ′, V ′ in place of U, V );
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denote this translate by B′ + d′. Then the sum of the terms (13) belonging

to the given equivalence class is

∑

y∈B′+d′

η(y)η(y + (a2 − a1)) . . . η(y + (aℓ − a1))

=
∑

x∈B′

η(x + d′)η(x + d′ + a2 − a1) . . . η(x + d′ + aℓ − a1).

By the definition of Qℓ, it follows that for any fixed equivalence class the

absolute value of this sum is
∣

∣

∣

∣

∣

∑

y∈B+d′

η(y)η(y + (a2 − a1)) . . . η(y + (aℓ − a1))

∣

∣

∣

∣

∣

≤ Qℓ(η).

It remains to estimate the number of equivalence classes. An equivalence

class is uniquely determined by the colour pattern, which can be chosen in

ℓ!/(k!)t ways, and by the box B′ formed by the vectors y in (14). This box

is uniquely determined by the t − 1 vectors zr − zj with j 6= t (r is fixed).

Each of these vectors is of the form (u, v) with −(N − 1) ≤ u, v ≤ N − 1,

thus each of them can be chosen in less than (2N)2 ways, so that B′ can be

chosen in less than (2N)2(t−1) ways. We may conclude that

|S2| ≤
ℓ!

(k!)t
(2N)2(t−1)Qℓ(η). (15)

It follows from (7), (9) and (15) that
∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

= (S1 + S2)
1/t ≤ |S1|

1/t + |S2|
1/t

≤ ℓ2/tN2N−2/t +
(ℓ!)1/t

k!
22N2N−2/tQℓ(η)1/t

= N2

(

(

ℓ

N

)2k/ℓ

+
4(ℓ!)k/ℓ

k!

(

Qℓ(η)

N

)k/ℓ
)

which proves (6) and this completes the proof of Theorem 1.

Now we will show that the condition k | ℓ is necessary in Theorem 1:
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Theorem 2 If k, N ∈ N and k ≤ N , then there is a binary N-lattice η such

that if ℓ ∈ N, ℓ ≤ N/2, then

Qℓ(η) ≥
N(N − ℓ)

k
if k | ℓ (16)

and

Qℓ(η) ≪ k2ℓN(log N)2 if k ∤ ℓ (17)

Proof. Let p denote the smallest prime with p > N so that, by Chebyshev’s

theorem,

N < p ≤ 2N

(whence N − 1 ≤ p − 2).

Write q = p2, and the quadratic character of Fq will be denoted by γ. Let

v1,v2 be a basis of the vector space formed by Fq over Fp.

Define η : I2
N → {−1, +1} by

η(x1, x2) =











γ((x1 + 1)v1 + (x2 + 1)v2) for x1 6≡ k − 1 (mod k),
k−1
∏

j=1

γ((x1 + j − 1)v1 + (x2 + 1)v2) for x1 ≡ k − 1 (mod k).

Since 0 ≤ x1, x2 ≤ p − 2, η always assumes +1 or −1 here. First we will

prove (16). Define the 2-dimensional box N -lattice B by

B = {(x1, x2) : 0 ≤ x1 < N − ℓ, x1 ≡ 0 (mod k), 0 ≤ x2 < N}.

Define the vectors d1,d2, . . . ,dℓ by

di = (i − 1, 0).

Then by the definition of the pseudorandom measure of order ℓ we have

Qℓ(η) ≥
∑

x∈B

η(x + d1) . . . η(x + dℓ)

=
N−1
∑

x2=0

∑

0≤x1<N−ℓ
x1≡0 (mod k)

η(x1, x2)η(x1 + 1, x2) . . . η(x1 + ℓ − 1, x2)

10



Since now k | ℓ, here we have

η(x1, x2)η(x1 + 1, x2) . . . η(x1 + ℓ − 1, x2)

=

ℓ/k−1
∏

i=0

η(x1 + ik, x2)η(x1 + ik + 1, x2) . . . η(x1 + ik + k − 1, x2).

By the definition of η, for x1 ≡ 0 (mod k) we have

η(x1 + ik, x2)η(x1 + ik + 1, x2) . . . η(x1 + ik + k − 1, x2) = 1.

It follows that

Qℓ(η) ≥

N−1
∑

x2=0

∑

0≤x1<N−ℓ
x1≡0 (mod k)

1 ≥
N(N − ℓ)

k
.

Next we prove (17). Let B1 be a box lattice of the form

B1 = {(x1z1, x2z2) : 0 ≤ x1z1 ≤ t1(< N), 0 ≤ x2z2 ≤ t2(< N), x1, x2 ∈ N},

and let d1,d2, . . . ,dℓ ∈ I2
N be distinct vectors such that B+d1, . . . , B+dℓ ⊆

I2
N .

Let

S =
∑

x∈B1

η(x + d1) . . . η(x + dℓ).

We will prove that

|S| ≪ k2ℓN(log N)2 (18)

from which (17) follows. Write

di = (d
(i)
1 , d

(i)
2 ).

Then

S =

t1/z1
∑

x1=0

t2/z2
∑

x2=0

ℓ
∏

i=1

η(x1z1 + d
(i)
1 , x2z2 + d

(i)
2 ).

Define

S(r)
def
=

∑

0≤x1≤t1/z1

x1≡r (mod k)

t2/z2
∑

x2=0

ℓ
∏

i=1

η(x1z1 + d
(i)
1 , x2z2 + d

(i)
2 ). (19)

11



Then

S =

k−1
∑

r=0

S(r). (20)

Next we will prove that

|S(r)| ≪ kℓN(log N)2. (21)

(18) follows from (20) and (21). In (19) we substitute x1 = y1k + r, so that

S(r) =
∑

0≤y1≤(t1/z1−r)/k

t2/z2
∑

x2=0

ℓ
∏

i=1

η((y1k + r)z1 + d
(i)
1 , x2z2 + d

(i)
2 )

=
∑

0≤y1≤(t1/z1−r)/k

t2/z2
∑

x2=0

ℓ
∏

i=1

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 )). (22)

Since B + di ⊆ I2
N , for 0 ≤ y1 ≤ (t1/z1 − r)/k we have

0 ≤ (y1k + r)z1 + d
(i)
1 ≤ N − 1 ≤ p − 2.

For y1 = 0 we get

1 ≤ rz1 + d
(i)
1 + 1 ≤ p − 1.

If rz1 + d
(i)
1 ≡ k − 1 (mod k) also holds, then for 1 ≤ j ≤ k − 1 we have

1 ≤ rz1 + d
(i)
1 + 1 − j ≤ p − 2. (23)

We will use (23) later in the proof.

By the definition of η we have

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 ))

= γ(y1kz1v1 + x2z2v2 + (rz1 + d
(i)
1 + 1)v1 + (d

(i)
2 + 1)v2)

for rz1 + d
(i)
1 6≡ k − 1 (mod k), and

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 ))

=

k−1
∏

j=1

γ(y1kz1v1 + x2z2v2 + (rz1 + d
(i)
1 + 1 − j)v1 + (d

(i)
2 + 1)v2)

12



for rz1 + d
(i)
1 ≡ k − 1 (mod k).

Let A and B be the following multisets:

A = {(rz1 + d
(i)
1 + 1)v1 + (d

(i)
2 + 1)v2 : 1 ≤ i ≤ ℓ,

rz1 + d
(i)
1 6≡ k − 1 (mod k)},

B = {(rz1 + d
(i)
1 + 1 − j)v1 + (d

(i)
2 + 1)v2 : 1 ≤ i ≤ ℓ, 1 ≤ j ≤ k − 1,

rz1 + d
(i)
1 ≡ k − 1 (mod k)}.

Here |A| = n and |B| = (k − 1)m for some n, m ∈ N with

n + m = ℓ. (24)

Let

B2 = {y1(kz1v1) + x2(z2v2) : 0 ≤ y1 ≤ (t1/z1 − r)/k, 0 ≤ x2 ≤ t2/z2}.

Then by (22)

S(r) =
∑

z∈B2

∏

α∈A
S

B

γ(z + α).

Using the multiplicativity of the quadratic character γ, we have

S(r) =
∑

z∈B2

γ





∏

α∈A
S

B

(z + α)



 .

Now we will use the following lemma

Lemma 1 Let p be an odd prime, n ∈ N, q = pn and v1, v2, . . . , vn be a

basis of Fq as a vector space over Fp. Let χ be a multiplicative character

of Fq of order d > 1 and let f(x) ∈ Fq[x] be a polynomial which is not of

the form cg(x)d for c ∈ Fq, g(x) ∈ Fq[x]. Suppose that f(x) has s distinct

zeros in its splitting field over Fq, and k1, . . . , kn are positive integers with

k1 ≤ p, . . . , kn ≤ p. Then writing B =

{

n
∑

i=1

jivi : 0 ≤ ji < ki

}

, we have

∣

∣

∣

∣

∣

∑

z∈B

χ(f(z))

∣

∣

∣

∣

∣

< sq1/2(1 + log p)n.
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This is a part of Theorem 2 in [71] (where its proof was based on A. Weil’s

theorem [70]).

Let f(x) =
∏

α∈A
S

B

(x + α). Then

S(r) =
∑

z∈B2

γ(f(z)). (25)

Here we may use Lemma 1, since v1,v2 is a basis of Fq as a vector space over

Fp, thus kz1v1, z2v2 is also such a basis. Thus the box B2 is of the same type

as B in Lemma 1. If we prove that f(x) =
∏

α∈A
S

B

(x + α) ∈ Fq[x] is not of

the form cg(x)d with c ∈ Fq, g(x) ∈ Fq[x], then by Lemma 1, (24) and (25)

we have

|S(r)| ≤ (|A| + |B|) q1/2(1 + log p)2

≤ (|A| + |B|) 2N(1 + log(2N))2

≤ (k − 1)(n + m)2N(1 + log(2N))2 ≪ kℓN(log N)2,

so that (21) holds and this was to be proved. Since d1,d2, . . . ,dℓ are distinct

vectors, the elements of A are distinct. Similarly, the elements of B are

also distinct: suppose that B has two identical elements, i.e., for (i1, j1) 6=

(i2, j2), 1 ≤ i1, i2 ≤ ℓ and 1 ≤ j1, j2 ≤ k − 1 we have

(rz1 +d
(i1)
1 +1− j1)v1 +(d

(i1)
2 +1)v2 = (rz1 +d

(i2)
1 +1− j2)v1 +(d

(i2)
2 +1)v2.

Then

rz1 + d
(i1)
1 + 1 − j1 ≡ rz1 + d

(i2)
1 + 1 − j2 (mod p)

and

d
(i1)
2 ≡ d

(i2)
2 (mod p).

Since 0 ≤ d
(i1)
2 , d

(i2)
2 < N < p and by (23)

1 ≤ rz1 + d
(i1)
1 + 1 − j1, rz1 + d

(i2)
1 + 1 − j2 ≤ p

14



we also have

rz1 + d
(i1)
1 + 1 − j1 = rz1 + d

(i2)
1 + 1 − j2, (26)

d
(i1)
2 = d

(i2)
2 . (27)

Since (rz1+d
(i1)
1 +1−j1)v1+(d

(i1)
2 +1)v2, (rz1+d

(i2)
1 +1−j2)v1+(d

(i2)
2 +1)v2 ∈

B, it follows from (26) that

j2 − j1 = (rz1 +d
(i1)
1 +1)− (rz1 +d

(i2)
1 +1) ≡ (k−1)− (k−1) ≡ 0 (mod k).

But 1 ≤ j1, j2 ≤ k − 1, thus

j1 = j2. (28)

By this and (26) we get

d
(i1)
1 = d

(i2)
1 . (29)

It follows from (27) and (29) that

di1 = di2 .

But then by this and (28) we have (i1, j1) = (i2, j2) which is a contradiction.

Since A and B contain different elements, thus
∏

α∈A
S

B

(x+α) is a constant

multiple of the perfect square of a polynomial if and only if A = B. Then

|A| = |B| ,

i.e.,

n = (k − 1)m,

thus by (24)

ℓ = n + m = km.

But in (17) we assumed that k ∤ ℓ. This contradiction proves that f(x) is

not of the form cg(x)2 with c ∈ Fq, g(x) ∈ Fq[x]. Then (21) indeed holds.

By (20) and (21)

S ≪ k2ℓN(log N)2

which was to be proved.

15



3 The normality measure

In one dimension consider the binary sequence (1), and for k ∈ N, M ∈ N

and X = {x1, . . . , xk} ∈ {−1, +1}k let

T (EN , M, X) = |{n : 0 ≤ n < M, {en+1, en+2, . . . , en+k} = X}| . (30)

Definition 1 ([47]) The normality measure of order k of EN is defined as

Nk(EN) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣

∣

∣

∣

T (EN , M, X) −
M

2k

∣

∣

∣

∣

.

Definition 2 ([47]) The normality measure of EN is defined as

N(EN ) = max
k≤(log N)/ log 2

Nk(EN).

It was proved in [47] that

Theorem C For all N, EN and k < N we have

Nk(EN) ≤ max
1≤t≤k

Ct(EN).

Thus the estimate of the normality measure of order k can be reduced to

the estimate of the correlation of order ≤ k.

Now we will introduce the analogous notations in 2 dimensions. For

k, ℓ ∈ N let M(k, ℓ) denote the set of the (k × ℓ) matrices A = (aij) with

aij ∈ {−1, +1} for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, let η(x, y) : I2
N → {−1, +1} be a

binary lattice, and for X = (xij) ∈ M(k, ℓ) let

Z(η, U, V, X) = |{(m, n) : 0 ≤ m < U, 0 ≤ n < V,

η(m − 1 + i, n − 1 + j) = xij for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}|.

(31)

Definition 3 The normality measure of order (k, ℓ) of η is defined as

N(k,ℓ)(η) = max
X∈M(k,ℓ)

max
0<U≤N+1−k
0<V ≤N+1−ℓ

∣

∣

∣

∣

Z(η, U, V, X) −
UV

2kℓ

∣

∣

∣

∣

.
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(This definition can be generalized to d dimensions easily; then, of course,

we have to replace the matrices X ∈ M(k, ℓ) by mappings X : {1, 2, . . . , k1}×

· · · × {1, 2, . . . , k1} → {−1, +1}.)

Definition 4 The normality measure of η is defined as

N(η) = max
kℓ≤(2 log N)/ log 2

N(k,ℓ)(η).

We will prove the following 2-dimensional analog of Theorem C:

Theorem 3 For N, k, ℓ ∈ N, k < N , ℓ < N and every binary lattice η :

I2
N → {−1, +1} we have

N(k,ℓ)(η) ≤ max
1≤t≤kℓ

Qt(η). (32)

Proof. Writing N(k, ℓ) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} for X = (xij) ∈

M(k, ℓ), 0 < U ≤ N + 1 − k and 0 < V ≤ N + 1 − ℓ we have
∣

∣

∣

∣

Z(η, U, V, X)−
UV

2kℓ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣
{(m, n) : 0 ≤ m < U, 0 ≤ n < V, η(m − 1 + i, n − 1 + j) = xij

for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}
∣

∣

∣
−

UV

2kℓ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

0≤m<U

∑

0≤n<V

1

2kℓ

k
∏

i=1

ℓ
∏

j=1

xij(η(m − 1 + i, n − 1 + j) + xij) −
UV

2kℓ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2kℓ

k
∏

i=1

ℓ
∏

j=1

xij

kℓ
∑

t=1

∑

(i1,j1),...,(it,jt)⊆N(k,ℓ)

∏

(i,j)∈N(k,ℓ)\{(i1,j1),...,(it,jt)}

xij

∑

0≤m<U

∑

0≤n<V

t
∏

r=1

η(m − 1 + ir, n − 1 + jr)

∣

∣

∣

∣

∣

17



whence writing dr = (ir, jr) and d′
r = (ir − 1, jr − 1) for r = 1, . . . , t and

B = {(m, n) : 0 ≤ m < U, 0 ≤ n < V } we obtain

∣

∣

∣

∣

Z(η, U, V, X)−
UV

2kℓ

∣

∣

∣

∣

≤
1

2kℓ

kℓ
∑

t=1

∑

{d1,...,dt}⊆N(k,ℓ)

∣

∣

∣

∣

∣

∑

y∈B

η(y + d′
1) . . . η(y + d′

t)

∣

∣

∣

∣

∣

≤
1

2kℓ

kℓ
∑

t=1

∑

{d1,...,dt}⊆N(k,ℓ)

Qt(η) =
1

2kℓ

kℓ
∑

t=1

(

kℓ

t

)

Qt(η)

≤ max
t≤kℓ

Qt(η)

which proves (32).

In [28], [30], [31], [40], [53], [54], 2-dimensional binary N -lattices were

constructed for which for every fixed t and N −→ ∞ the measure Qt(η) is

“small”. It follows from Theorem 3 that in all these cases for fixed k, ℓ and

N −→ ∞ the normality measure N(k,ℓ)(η) is also small. In particular, in this

way we get that the binary p-lattice constructed in [31] in the 2-dimensional

case satisfies

N(k,ℓ)(η) < kℓp(1 + log p)2.

In [31] it was also shown that for a truly random n-dimensional binary

N -lattice η, Qk(η) is “small” with probability > 1 − ε. More precisely, in

the special case when the dimension is n = 2 this result gives that for N >

N0(k, ε) the inequality

Qk(η) ≤ 3(2k)1/2N log N

holds with probability > 1 − ε. By Theorem 3 this implies that if N >

N1(k, ℓ, ε), then for a truly random 2-dimensional binary N -lattice η,

N(k,ℓ)(η) ≤ 3(kℓ)1/2N log N

holds with probability > 1 − ε.

Note that in [32], [33], [34], [35] and [36] Levin and Smorodinsky also

constructed and studied a 2-dimensional binary lattice of “small” normality.
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(They are defining “square normality” and “rectangle normality” and they

are estimating these measures of the lattice constructed by them.)

Now we will show that if k ≤ r, ℓ ≤ s, and r, s are “small” then Nk,ℓ

cannot be much greater than Nr,s:

Theorem 4 For every N, k, ℓ, r, s ∈ N, k ≤ r ≤ N , ℓ ≤ s ≤ N and every

binary lattice η : I2
N → {−1, +1} we have

Nk,ℓ(η) ≤ 2((r − k) + (s − ℓ))N + Nr,s(η)2rs−kℓ. (33)

Proof If A = (aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s) is an r×s matrix and k ≤ r, ℓ ≤ s,

then let A(k, ℓ) denote the “truncated” k × ℓ matrix (aij) with i ≤ k, j ≤ ℓ.

Moreover, if η : I2
N → {−1, +1}, k, ℓ ∈ N, m + k ≤ N and n + ℓ ≤ N , then

let D(k, ℓ, m, n, η) = (dij) denote the k × ℓ matrix defined by

dij = η(m + i − 1, n + j − 1) for 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ.

Then a pair (m, n) with 0 ≤ m < U ≤ N + 1 − r, 0 ≤ n < V ≤ N + 1 − s is

counted in the definition of Z(η, U, V, X) in (31) (with multiplicity 1) if and

only if D(k, ℓ, m, n, η) = X. Then writing D(r, s, m, n, η) = Y (∈ M(r, s)),

clearly we have X = Y (k, ℓ). Thus for U ≤ N + 1 − r, V ≤ N + 1 − s we

have

Z(η, U, V, X) = |{(m, n) : 0 ≤ m < U, 0 ≤ n < V, D(k, ℓ, m, n, η) = X}|

=
∑

Y ∈M(r,s)
Y (k,ℓ)=X

|{(m, n) : 0 ≤ m < U, 0 ≤ n < V,

D(k, ℓ, m, n, η) = Y }|

=
∑

Y ∈M(r,s)
Y (k,ℓ)=X

Z(η, U, V, Y ) =
∑

Y ∈M(r,s)
Y (k,ℓ)=X

(

Z(η, U, V, Y ) −
UV

2kℓ

)

+
UV

2rs

∑

Y ∈M(r,s)
Y (k,ℓ)=X

1. (34)
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If Y = (yij) ∈ M(r, s) and Y (k, ℓ) = X = (xij) so that yij = xij for

1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, then the number of the remaining entries yij of Y

with k < i ≤ r and/or ℓ < j ≤ s is rs − kℓ, and each of them is ∈ {−1, +1}

so that it can be chosen in 2 ways, it follows that Y in the last sum can be

chosen in 2rs−kℓ ways. It follows that in the last term in (34) is

UV

2rs
2rs−kℓ =

UV

2kℓ
.

Thus we get from (34) that
∣

∣

∣

∣

Z(η, U, V, X)−
UV

2kℓ

∣

∣

∣

∣

≤
∑

Y ∈M(r,s)
Y (k,ℓ)=X

∣

∣

∣

∣

Z(η, U, V, X) −
UV

2rs

∣

∣

∣

∣

≤ N(r,s)(η)
∑

Y ∈M(r,s)
Y (k,ℓ)=X

1

= N(r,s)(η)2rs−kℓ (for U ≤ N + 1 − r, V ≤ N + 1 − s).

(35)

Finally, if N +1− r < U ≤ N +1−k and/or N +1− s < V ≤ N +1− ℓ,

then using (35) with U ′ = min{U, N + 1 − r}, V ′ = min{V, N + 1 − s} in

place of U and V , respectively, we obtain that

20



∣

∣

∣

∣

∣

Z(η, U, V, X) −
UV

2kℓ

∣

∣

∣

∣

∣

≤ |Z(η, U, V, X) − Z(η, U ′, V ′, X)|

+

∣

∣

∣

∣

Z(η, U ′, V ′, Y ) −
U ′V ′

2kℓ

∣

∣

∣

∣

+
1

2kℓ
|U ′V ′ − UV |

≤

∣

∣

∣

∣

∣

|{(m, n) : 0 ≤ m < U, 0 ≤ n < V, D(k, ℓ, m, n, η) = X}|

− |{(m, n) : 0 ≤ m < U ′, 0 ≤ n < V ′, D(k, ℓ, m, n, η) = X}|

∣

∣

∣

∣

∣

+ N(r,s)(η)2rs−kℓ +
1

2kℓ
(|U(V − V ′)| + |V ′(U − U ′)|)

≤ |{(m, n) : U ′ ≤ m < U, D(k, ℓ, m, n, η) = X|

+ |{(m, n) : V ′ ≤ n < V, D(k, ℓ, m, n, η) = X|

+ N(r,s)(η)2rs−kℓ +
1

2kℓ
((V − V ′)N + (U − U ′)N)

≤ (U − U ′)N + (V − V ′)N + N(r,s)(η)2rs−kℓ

+
1

2kℓ
((V − V ′)N + (U − U ′)N)

≤ 2((r − k) + (s − ℓ))N + N(r,s)(η)2rs−kℓ

whence (33) follows and this completes the proof of Theorem 4.

A consequence of Theorem 4 is that if k ≤ r, ℓ ≤ s, and k, ℓ, r, s are all

O(1), then

N(k,ℓ)(η) = O
(

N(r,s)(η) + N
)

. (36)

Another consequence of the theorem is that for k, ℓ = O(1), k ≥ ℓ the

estimate of N(k,ℓ)(η) can be reduced to the estimate of N(k,k). Thus for “small”

k, ℓ, it suffices to estimate the normality measures N(k,k)(η).

If k ≤ r, ℓ ≤ s each of k, ℓ, r, s is O(1), and N(r,s)(η) is “small”, then by

(36), Nk,ℓ(η) is also small. One may ask the question whether the converse of

this statement is also true, i.e., if we have the same assumptions on k, ℓ, r, s

and Nk,ℓ(η) is small, then N(r,s)(η) is also small?
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One may ask another related question: As in [27], to any lattice η : I2
N →

{−1, +1} we may assign the binary sequences E
(1)
N , E

(2)
N , . . . , E

(N)
N formed by

the row vectors of the matrix (η(i, j)) (with 0 ≤ i, j < N) so that E
(i)
N =

{e
(i)
1 , e

(i)
2 , . . . , e

(i)
N } is defined by e

(i)
j = η(i − 1, j − 1) for i = 1, 2, . . . , N ,

j = 1, 2, . . . , N . Is it true that if Nk(E
(i)
N ) is “small” for all i for small k,

then Nk,ℓ(η) is also small for small k and ℓ? The answer to both questions is

negative as the following example shows.

Example 1 Let the first row E
(1)
N = {e

(1)
1 , e

(1)
2 , . . . , e

(1)
N } of the matrix (η(i, j))

be a binary sequence such that Nk(E
(1)
N ) is small for every small k; e.g., let

N = p − 1 (p prime) and e
(1)
i =

(

i
p

)

(Legendre symbol) for i = 1, 2, . . . , N ,

and let E
(j)
N = E

(1)
N for j = 1, 2, . . . , N . Then it follows from the results in

[47] that Nk(E
(i)
N ) is small for all i for small k, however N(k,ℓ)(η) is large for

small k and ℓ if k ≥ 2.
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