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AbstratIn the last 15 years a new onstrutive theory of pseudorandom-ness of binary sequenes has been developed. Later this theory wasextended to n dimensions, i.e., to the study of pseudorandomness ofbinary latties. In the appliations it is not enough to onsider sin-gle binary sequenes, one also needs information on the struture oflarge families of binary sequenes with strong pseudorandom prop-erties. Thus the related notions of family omplexity, ollision andavalanhe e�et have been introdued. In this paper our goal is toextend these de�nitions to binary latties, and we will present on-strutions of large families of binary latties with strong pseudorandomproperties suh that these families also possess a nie struture.1 IntrodutionReently in a series of papers a new onstrutive approah has been de-veloped to study pseudorandomness of binary sequenes
EN = (e1, . . . , eN) ∈ {−1, +1}N .In partiular in [16℄ Mauduit and Sárközy �rst introdued the following mea-sures of pseudorandomness: the well-distribution measure of EN is de�nedby
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a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

(1.1)where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,and the orrelation measure of order k of EN is de�ned as
Ck(EN ) = max

M,D
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∣where the maximum is taken over all D = (d1, . . . , dk) and M suh that
0 ≤ d1 < · · · < dk ≤ N − M . The ombined (well-distribution-orrelation)1



pseudorandom measure of order k was also introdued:
Qk(EN ) = max

a,b,t,D
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(1.2)where the maximum is taken over all a, b, t and D = (d1, . . . , dk) suh thatall the subsripts a + jb + dℓ belong to {1, 2, . . . , N}. (Note that Q1(EN) =

W (EN) and learly Ck(EN) ≤ Qk(EN).) Then the sequene EN is onsideredto be a �good� pseudorandom sequene if both W (EN) and Ck(EN) (at leastfor �small� k) are �small� in terms of N (in partiular, both are o(N) as
N −→ ∞). Indeed, later Cassaigne, Mauduit and Sárközy [4℄ showed thatthis terminology is justi�ed sine for almost allEN ∈ {−1, +1}N bothW (EN)and Ck(EN) are less than N1/2(log N)c. (See also [2℄ and [15℄.) Sine thatmany papers have been written on the pseudorandomness of speial binarysequenes and on the measures of pseudorandomness; a list of these papersis presented in [9℄.In [13℄ Hubert, Mauduit and Sárközy extended this theory of pseudoran-domness to n dimensions. They introdued the following de�nitions:Denote by In

N the set of n-dimensional vetors whose oordinates areintegers between 0 and N − 1:
In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.This set is alled an n-dimensional N-lattie or brie�y an N-lattie. In [12℄this de�nition was extended to more general latties in the following way: Let

u1,u2, . . . ,un be n linearly independent n-dimensional vetors over the �eldof the real numbers suh that the i-th oordinate of ui is a positive integer andthe other oordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0)(with zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Thenwe all the set
Bn

N = {x = x1u1 + · · ·+ xnun :, xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)for i = 1, . . . , n}2



an n-dimensional box N-lattie or brie�y a box N-lattie.In [13℄ the de�nition of binary sequenes was extended to more dimensionsby onsidering funtions of type
η(x) : In

N → {−1, +1}.If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify thenotation slightly by writing η(x) = η(x1, . . . , xn). Suh a funtion an bevisualized as the lattie points of the N -lattie replaed by the two symbols
+ and −, thus they are alled binary N-latties.In [13℄ Hubert, Mauduit and Sárközy introdued the following measuresof pseudorandomness of binary latties (here we will present the de�nitionin the same slightly modi�ed but equivalent form as in [12℄):

η : In
N → {−1, +1}.De�ne the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk
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,where the maximum is taken over all distint d1, . . . ,dk ∈ In
N and all box

N-latties B suh that B + d1, . . . , B + dk ⊆ In
N . Note that in the onedimensional speial ase Qk(η) is the same as the ombined pseudorandommeasure (1.2) for every k and, in partiular Q1(η) is the well-distributionmeasure W in (1.1).Then η is said to have strong pseudorandom properties, or brie�y, it isonsidered as a �good� pseudorandom binary lattie if for �xed n and k and�large� N the measure Qk(η) is �small� (muh smaller, than the trivial upperbound Nn). This terminology is justi�ed by the fat that, as it was provedin [13℄, for a truly random binary lattie de�ned on In

N and for �xed k themeasure Qk(η) is �small�, more preisely, it is less than Nn/2 multiplied by alogarithmi fator. As in the one-dimensional ase, a list of papers written3



on pseudorandomness of binary latties and on the measures of pseudoran-domness is presented in [9℄; see also the more reent papers [10℄ and [11℄.In the appliations one may need not just a single binary sequene resp.lattie with strong pseudorandom properties but a large family of them.Moreover, in many appliations it is not enough if our family F is large;it an be muh more important to know that F has a �rih�, �omplex�struture, there are many �independent� sequenes, resp. latties in it whihare �far apart�. Thus one needs quantitative measures for these properties offamilies of binary sequenes resp. latties. In ase of binary sequenes suha measure was introdued by Ahlswede, Khahatrian, Mauduit and Sárközyin [1℄:Let F be a family of binary sequenes EN = (e1, e2, . . . , eN) ∈ {−1, +1}N ,and let (ε1, ε2, . . . , εj) ∈ {−1, +1}j be a �xed binary sequene of length j (forsome j ≤ N), and let 1 ≤ i1 < i2 < · · · < ij ≤ N . If we onsider binarysequenes EN = (e1, e2, . . . , eN ) ∈ {−1, +1}N with
ei1 = ε1, ei2 = ε2, . . . , eij = εj, (1.3)De�nition 1 (1.3) is said to be a spei�ation of length j (of the binarysequene EN ).De�nition 2 ([1℄) The family omplexity or brie�y f -omplexity of a family

F of binary sequenes EN ∈ {−1, +1}N is de�ned as the greatest integer jso that for any spei�ation (1.3) (of length j) there is at least one EN ∈ Fwhih satis�es it. The f -omplexity of F is denoted by Γ(F). (If there is no
j ∈ N with the property above, we set Γ(F) = 0.)Note that an easy onsequene of the de�nition is that

2Γ(F) ≤ |F|whene 4



Proposition 1
Γ(F) ≤

log |F|

log 2
. (1.4)Goubin, Mauduit and Sárközy [7℄ onstruted the �rst large family ofbinary sequenes with strong pseudorandom properties by using the Legendresymbol. They showed that if p is a prime number, K is �not very large� interms of p, we onsider all polynomials f(x) ∈ Fp[x] suh that 0 < deg f(x) ≤

K and f(x) has no multiple zeros, and eah of these polynomials f(x) weassign a binary sequene Ep = (e1, e2, . . . , ep) de�ned by
en =







(

f(n)
p

) for (f(n), p) = 1

+1 for p | f(n)(where ( ...
p

) is the Legendre symbol), then all these binary sequenes pos-sess strong pseudorandom properties (both W (Ep) and Ck(Ep) for k �notvery large� are small). Let F denote the family of these binary sequenes
Ep. Ahlswede, Khahatrian, Mauduit and Sárközy [1℄ showed that the f -omplexity Γ(F) of this family is large. Later Gyarmati [8℄ improved ontheir lower bound by showing that Γ(F) > c log |F| with some expliit on-stant c; note that by (1.4), this estimate is best possible apart from the valueof this onstant c, and the omplexity of this family is optimally large apartfrom the onstant fator. (See also [6℄.)Another important tool of studying the pseudorandomness of families ofbinary sequenes is the notion of ollision [3℄, [19℄, [20℄, [21℄:Assume that N ∈ N, S is a given set (e.g., a set of ertain polynomialsor the set of all the binary sequenes of a given length muh less than N), toeah s ∈ S we assign a unique binary sequene

EN = EN (s) = (e1, . . . , eN ) ∈ {−1, +1}N ,and let F = F(S) denote the family of the binary sequenes obtained in thisway:
F = F(S) = {EN(s) : s ∈ S}. (1.5)5



De�nition 3 If s ∈ S, s′ ∈ S, s 6= s′ and
EN (s) = EN(s′), (1.6)then (1.6) is said to be a ollision in F = F(S). If there is no ollision in

F = F(S), then F is said to be ollision free.In other words, F = F(S) is ollision free if we have |F| = |S|. Anideally good family of pseudorandom binary sequenes is ollision free. If Fis not ollision free but the number of ollisions is �small�, then they mayause only minor problems. A good measure of the number of ollisions isthe following:De�nition 4 The ollision maximum M = M(F ,S) is de�ned by
M = M(F ,S) = max

EN∈F
|{s : s ∈ S, EN (s) = EN}|(i.e, M is the maximal number of elements of S representing the same binarysequene EN , and F = F(S) is ollision free if and only if M(F ,S) = 1).There is another related notion appearing in the literature, namely, thenotion of avalanhe e�et (see, e.g., [3℄, [5℄, [6℄, [14℄, [20℄, [21℄):De�nition 5 If in (1.5) we have S = {−1, +1}ℓ, and for any s ∈ S, hang-ing any element of s hanges �many� elements of EN(s) (i.e., for s 6= s′ manyelements of the sequenes EN (s) and EN (s′) are di�erent), then we speakabout avalanhe e�et, and we say that F = F(S) possesses the avalanheproperty. If N → ∞ and for any s ∈ S, s′ ∈ S, s 6= s′ at least (1

2
− o(1)

)

Nelements of EN(s) and EN(s′) are di�erent, then F is said to possess stritavalanhe property.To study the avalanhe property, one may introdue the following quan-titative measure: 6



De�nition 6 If N ∈ N, En = (e1, . . . , eN) ∈ {−1, +1}N and E ′
n = (e′1, . . . , e

′
N) ∈

{−1, +1}N ∈ {−1, +1}N , then the distane d(EN , E ′
N ) between EN and E ′

Nis de�ned by
d(EN , E ′

N) = |{n : 1 ≤ n ≤ N, en 6= e′n}|(a similar notion is introdued in [3℄; this is a variant of the Hamming dis-tane). Moreover, if F is a family from (1.5), then the distane minimum
m(F) of F is de�ned by

m(F) = min
s,s′∈S
s 6=s′

d(EN(s), EN(s′)).Applying this notion we may say that the family F in (1.5) is ollisionfree if and only if m(F) > 0, and F possesses the strit avalanhe propertyif
m(F) ≥

(

1

2
− o(1)

)

N.In [20℄ Tóth studied the Legendre symbol onstrution desribed afterProposition 1, and she showed that a variant of the family de�ned there(she replaed the ondition deg f(x) ≤ K by deg f(x) = K ) is ollisionfree if K < p1/2/2, and it possesses the strong avalanhe e�et for p → ∞,
K = o(p1/2). (In [20℄ and [21℄ she also studied a further onstrution usingadditive haraters, she showed that there are many ollisions in it, but alarge subfamily of it possesses the strong avalanhe property.)Here �rst in Setion 2 we will generalize the above de�nitions to n dimen-sions, i.e., to binary latties. Then in Setion 3 and 4 we will study a familyof binary latties onstruted by using quadrati haraters of �nite �eldsand polynomials (and we will prove the n-dimensional analogues of some re-sults of Tóth [20℄, [21℄). In Part II of this paper we will study two furtherfamilies of binary latties onstruted by using �nite �elds, polynomials andthe notion of the multipliative inverse.

7



2 Family omplexity, ollision, avalanhe prop-erty for families of binary latties.Eah of de�nitions 1-6 an be extended easily from one dimension to ndimensions, i.e., from binary sequenes to binary latties. For the sake ofompleteness we will present the generalizations of these de�nitions withoutadding any omments.Let F be a family of binary latties η : In
N → {−1, +1}, let j ≤ Nn,let x1,x2, . . . ,xj be j distint vetors from In
N , and let (ε1, ε2, . . . , εj) ∈

{−1, +1}j. If we onsider binary latties η : In
N → {−1, +1} with

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj , (2.1)thenDe�nition 7 (2.1) is said to be a spei�ation of length j of η.De�nition 8 The family omplexity or f -omplexity of a family F of bi-nary latties η : In
N → {−1, +1}, denoted by Γ(F), is de�ned as the greatestinteger j so that for any spei�ation (2.1) of length j there is at least one

η ∈ F whih satis�es it.Then again (1.4) holds.Assume that N ∈ N, n ∈ N, S is a given �nite set, to eah s ∈ S weassign a unique binary lattie η = ηs : In
N → {−1, +1}, and let F = F(S)denote the family of the binary sequenes obtained in this way:

F = F(S) = {ηs : s ∈ S}. (2.2)De�nition 9 If s ∈ S, s′ ∈ S, s 6= s′ and ηs = ηs′, then this is said to be aollision in F = F(S). If there is no ollision in F = F(S), then F is saidto be ollision free. 8



(We leave the generalization of De�nition 4 to the reader.)De�nition 10 If F is of form (2.2), and for any s ∈ S hanging any elementof s hanges �many� elements of ηs : In
N → {−1, +1}, then we speak aboutavalanhe e�et, and we say that F = F(S) possesses the avalanhe property.If for any s ∈ S, s′ ∈ S, s 6= s′ at least (1
2
− o(1)

)

Nn elements of ηs and ηs′are di�erent, then F is said to possess the strit avalanhe property.De�nition 11 If N ∈ N, n ∈ N, η : In
N → {−1, +1} and η′ : In

N →

{−1, +1}, then the distane d(η, η′) between η and η′ is de�ned by
d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ I

n
N ,

η(x1, . . . , xn) 6= η′(x1, . . . , xn)}|.If F is a family of form (2.2), then the distane minimum m(F) is de�nedby
m(F) = min

s,s′∈S
s 6=s′

d(ηs, ηs′).(So that F is ollision free if m(F) > 0, and it possesses the stritavalanhe property if
m(F) ≥

(

1

2
− o(1)

)

Nn.)3 A family of binary latties onstruted usingquadrati haraters: family omplexity.Mauduit and Sárközy [17℄ onstruted a large family of binary lattieswith strong pseudorandom properties by using quadrati haraters of �nite�elds (this onstrution generalizes the one dimensional onstrutions in [7℄and [16℄). They proved the following theorem:9



Theorem A. Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x]has degree ℓ with
0 < ℓ < p,and f(x) has no multiple zero in Fq. Denote the quadrati harater of Fqby γ (setting also γ(0) = 0). Consider the linear vetor spae formed by theelements of Fq over Fp, and let v1, . . . , vn be a basis of this vetor spae (i.e.,assume that v1, v2, . . . , vn are linearly independent over Fp). De�ne the ndimensional binary p-lattie η : In
p → {−1, +1} by

η(x) = η((x1, . . . , xn)) =















γ(f(x1v1 + · · · + xnvn)) for
f(x1v1 + · · ·+ xnvn) 6= 0

+1 for f(x1v1 + · · ·+ xnvn) = 0. (3.1)Assume also k ∈ N and
4n(k+ℓ) < p. (3.2)Then we have

Qk(η) < kℓ(q1/2(1 + log p)n + 2). (3.3)Indeed this is a ombination of Theorems 1 and 2 in [18℄.Now de�ne p, q, n as above, and set
L =

1

2 log 4

log p

n
. (3.4)Let FL denote the family of the binary latties η assigned to the monipolynomials f satisfying the onditions in Theorem A with

0 < deg f = ℓ < L.Then for every k with
k < L (3.5)(3.2) holds, thus by Theorem A all these latties η satisfy (3.3) for every

k satisfying (3.5), so that all these latties η possess strong pseudorandomproperties in this sense. 10



Now we will show that this family FL is also of large omplexity and,indeed, this is so for any number K with 0 < K < p in plae of the number
L de�ned by (3.4):Theorem 1 Assume that q = pn is the power of an odd prime, let

0 < K < p,and onsider all the polynomials f(x) ∈ Fq[x] suh that
0 < deg f < Kand f(x) has no multiple zero in Fq. To eah of these polynomials f assignthe binary lattie η de�ned by (3.1) as desribed in Theorem A, and let FKdenote the family of these binary latties. Then we have

Γ(FK) >
K − 1

2 log 2
log q − cK log(K log q) (3.6)with some absolute onstant c.Note that the number of polynomials f ∈ Fq[x] with deg f < K is learlyat most qK+1, thus we have

|FK | ≤ |{f : f ∈ Fq[x], deg f < K}| ≤ qK+1. (3.7)It follows from (1.4) and (3.7) that
Γ(FK) ≤

log |FK |

log 2
≤

(K + 1) log q

log 2
(3.8)so that the lower bound (3.6) is best possible apart from a onstant fatorat most.Proof of Theorem 1. Gyarmati's method used in the one-dimensional asein [8℄ an be adapted. Sine a onsiderable part of the proof will be similarto the one in [8℄ thus we will leave some details to the reader.11



If c is large enough and K ≥ q1/2/ log q then the right hand side of (3.6)is negative thus (3.6) holds trivially. Thus we may assume that
K < q1/2/ log q. (3.9)Let h be the greatest odd integer with h < K. Let j ∈ N,

j ≤
h

2 log 2
log q −

c′h

log 2
log(h log q) (3.10)where we will �x the value of the absolute onstant c′ later. Assume that weare looking for a binary lattie η ∈ FK satisfying the spei�ation

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj . (3.11)Let ϕ : In
p → Fq be the mapping de�ned so that for x = (x1, . . . , xn) ∈ In

pwe have
ϕ(x) = ϕ((x1, . . . , xn)) = x1v1 + · · · + xnvn ∈ Fq.Clearly, this is a bijetion, and the de�nition of η in (3.1) an be rewrittenas

η(x) =







γ(f(ϕ(x))) for f(ϕ(x)) 6= 0

+1 for f(ϕ(x)) = 0. (3.12)For eah of the vetors xi ∈ In
p onsidered in (3.11) write ϕ(xi) = yi(∈ Fq).Then by (3.12), the spei�ation in (3.11) an be rewritten as

γ(f(y1)) = ε1, γ(f(y2)) = ε2, . . . , γ(f(yj)) = εj for (3.13)
f(y1), f(y2), . . . , f(yj) 6= 0.Write Y = (y1, y2, . . . , yj). Now letA denote the set of the h-tuples (a1, a2, . . . , ah)with ai ∈ Fq \ Y for i = 1, 2, . . . , h, and onsider all the polynomials f(z) ∈

Fq[z] of the form
fa1,a2,...,ah

(z) = (z − a1)(z − a2) . . . (z − ah) with (a1, a2, . . . , ah) ∈ A.We will prove by a ounting argument that there is at least one h-tuple
(a1, a2, . . . , ah) ∈ A for whih the binary lattie η de�ned by (3.12) with12



fa1,a2...,ah
(z) in plae of f(z) satis�es (3.13). Let β1, β2 . . . , βt denote thosezeros of fa1,a2,...,ah

(z) whih have odd multipliity in the fatorization of it.Sine the degree of fa1,a2,...,ah
(z) is odd, the number t of these zeros is alsoodd thus we have t ≥ 1. Write ga1,a2,...,ah

(z) = (z − β1)(z − β2) . . . (z − βt).Then ga1,a2,...,ah
(z) has no multiple zero and its degree is t ≤ h < K so thatthe binary lattie de�ned by (3.1) with ga1,a2,...,ah

(z) in plae of f(z) belongsto FK , and it satis�es the spei�ation (3.11). Sine this holds for every jsatisfying (3.10), it follows that
Γ(FK) ≥

[

h

2 log 2
log q −

c′h

log 2
log(h log q)

]whih proves (3.6).Thus, indeed, it remains to prove that there is an h-tuple (a1, a2, . . . , ah)for whih the lattie η in (3.12) with fa1,a2,...,ah
(z) in plae of f(z) satis�es(3.13). To show this, onsider a h-tuple (a1, a2, . . . , ah) ∈ A and the polyno-mial

fa1,a2,...,ah
(x) = (x − a1)(x − a2) . . . (x − ah)assigned to this h-tuple. De�ne the binary lattie η : In

p → {−1, +1} as in(3.12) with fa1,a2,...,ah
(z) in plae of f(z):

η(x) =



























γ(fa1,a2,...,ah
(ϕ(x))) if fa1,a2,...,ah

(ϕ(x)) 6= 0, i.e.,
ϕ(x) 6= ai for 1 ≤ i ≤ h,

+1 if fa1,a2,...,ah
(ϕ(x)) = 0, i.e.,

ϕ(x) = ai for some 1 ≤ i ≤ h. (3.14)Clearly,
1

2
(1 + εiη(xi)) =







1 if η(xi) = εi

0 if η(xi) = −εi

(3.15)for i = 1, 2, . . . , j. If i = 1, 2, . . . , j then ϕ(xi) = yi, and for t = 1, 2, . . . , hwe have at ∈ Fq \ Y whene at 6= yi. It follows that fa1,a2,...,ah
(ϕ(xi)) =13



fa1,a2,...,ah
(yi) = (yi − a1)(yi − a2) . . . (yi − ah) 6= 0, thus by (3.14) we have

η(xi) = γ(fa1,a2,...,ah
(ϕ(xi))) = γ(fa1,a2,...,ah

(yi))

= γ((yi − a1)(yi − a2) . . . (yi − ah)) (for i = 1, 2, . . . , j).Thus (3.15) an be rewritten as
1

2
(1 + εiγ ((zi − a1)(zi − a2) . . . (zi − an))) =







1 if η(xi) = εi,
0 if η(xi) = −εi. (3.16)Let N denote the number of polynomials fa1,a2,...,ah
(x) ∈ Fq[x] with (a1, a2, . . . , ah) ∈

A suh that for binary lattie (3.14) spei�ation (3.11) holds. Then by (3.16)we have
N =

∑

a1∈Fq\Y

∑

a2∈Fq\Y

· · ·
∑

ah∈Fq\Y

1

2j

j
∏

i=1

(1 + εiγ ((yi − a1)(yi − a2) . . . (yi − ah))) .(3.17)In the same way as (3.3) was dedued from (3.2) in [8℄, by using the multi-pliativity of λ one may dedue from (3.17) that
N =

(q − j)h

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 . . . εiℓ





∑

a∈Fq\Y

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))





h

. (3.18)Now we needLemma 1 If q = pn is a prime power, χ is a non-prinipal harater modulo
q of order d, f(x) ∈ Fq[x] has s distint zeros in Fq and it is not the onstantmultiple of the d-th power of a polynomial over Fq, then

∣

∣

∣

∣

∣

∣

∑

z∈Fq

χ(f(z))

∣

∣

∣

∣

∣

∣

≤ (s − 1)q1/2.
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Proof of Lemma 1. This is a speial ase of Weil's theorem [22℄.By Lemma 1 we have
∣

∣

∣

∣

∣

∣

∑

a∈Fq\Y

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

a∈Fq

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))

∣

∣

∣

∣

∣

∣

+
∑

a∈Y

1 ≤ ℓq1/2 + j ≤ j(q1/2 + 1).Thus it follows from (3.18) that
N ≥

(q − j)h

2j
−

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

(

j(q1/2 + 1)
)h

>
(q − j)h

2j
−
(

j(q1/2 + 1)
)h

.Thus in order to prove N > 0 we have to show that
q − j

2j/h
> j(q1/2 + 1)or, in equivalent form,

q > 2j/h
(

jq1/2 + j
)

+ j. (3.19)With p in plae of q this is inequality (12) in [8℄ and it was shown in [8℄ thatit follows from (5) and (6) if c1 = 9 is hosen. Replaing p by q and c1 by c′in these two formulas, we obtain (3.9) and (3.10) above, so that if j satis�es(3.10) then (3.19) holds whene N > 0 follows. Thus there is a binary lattie
η ∈ FK whih satis�es spei�ation (3.11) and this ompletes the proof ofTheorem 1.
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4 A family of binary latties onstruted usingquadrati haraters: ollisions, avalanhe ef-fetNow we will show that if K is �not very large�, then the family FK ofbinary latties de�ned in Theorem 1 is ollision free, and it also possesses thestrit avalanhe property. Again, let q = pn be a �xed odd prime power and
0 < K < p. Let SK denote the set of moni polynomials f(x) ∈ Fq[x] suhthat 0 < deg f < K. For every polynomial f ∈ SK we onsider the binarylattie η de�ned by (3.1) as desribed in Theorem A, and we denote it by
ηf . Then the family FK of binary latties de�ned in Theorem 1 is the set ofthese latties ηf :

FK = FK(SK) = {ηf : f ∈ SK}.Using these notations we haveTheorem 2
m(FK) >

1

2

(

q − (2K − 1)q1/2 − 2K
)

.Note that if K < 1
2
q1/2, then it follows from Theorem 2 that

m(FK) >
1

2

(

q − (2K − 1)q1/2 − q1/2
)

=
1

2

(

q − 2Kq1/2
)

> 0and thus FK is ollision free. This provesCorollary 1 If SK , FK are de�ned as above and we also have K < 1
2
q1/2,then FK is ollision free.Moreover, if q → ∞ and K = o(q1/2) then Theorem 2 gives

m(FK) ≥

(

1

2
− o(1)

)

qwhih proves 16



Corollary 2 If SK, FK are de�ned as above and we have q → ∞, K =

o(q1/2), then FK possesses the strit avalanhe property.Proof of Theorem 2 We will adapt Tóth's method [20℄. Assume that
f, g ∈ SK and f 6= g. Then for x ∈ In

p we have
ηf (x)ηg(x) =







+1 if ηf(x) = ηg(x)

−1 if ηf(x) 6= ηg(x)whene
1

2
(1 − ηf (x)ηg(x)) =







0 if ηf(x) = ηg(x)

1 if ηf(x) 6= ηg(x).It follows that
d(ηf , ηg) =

∑

x∈In
p

1

2
(1 − ηf(x)ηg(x)) =

1

2



pn −
∑

x∈In
p

ηf(x)ηg(x)





=
1

2



q −
∑

x∈In
p

ηf (x)ηg(x)



 .
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Then using again the bijetion ϕ : In
p → Fq introdued at the beginning ofthe proof of Theorem 1, by (3.12) this an be rewritten as

d(ηf , ηg) =
1

2

(

q −
∑

x∈In
p

f(ϕ(x))g(ϕ(x))6=0

γ(f(ϕ(x)))γ(g(ϕ(x)))

−
∑

x∈In
p

f(ϕ(x))g(ϕ(x))=0

ηf(x)ηg(x)

)

=
1

2









q −
∑

x∈In
p

(fg)(ϕ(x))6=0

γ((fg)(ϕ(x))) −
∑

x∈In
p

(fg)(ϕ(x))=0

ηf (x)ηg(x)









≥
1

2









q −
∑

z∈Fq

γ((fg)(z)) −
∑

z∈Fq

fg(z)=0

1









>
1

2



q −
∑

z∈Fq

γ((fg)(z)) − 2K



 . (4.1)The order of the harater γ is 2, and sine f 6= g, both polynomials aremoni and f, g have no multiple zeros, thus f(x)g(x) is not the onstantmultiple of the square of a polynomial over Fq. Thus we may apply Lemma1 with γ and fg in plae of χ and f , respetively. Sine the polynomial fghas less than 2K zeros in Fp, thus applying Lemma 1 we obtain from (4.1)that
d(ηf , ηg) >

1

2

(

q − (2K − 1)q1/2 − 2K
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