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Abstract

In the last 15 years a new constructive theory of pseudorandom-
ness of binary sequences has been developed. Later this theory was
extended to n dimensions, i.e., to the study of pseudorandomness of
binary lattices. In the applications it is not enough to consider sin-
gle binary sequences, one also needs information on the structure of
large families of binary sequences with strong pseudorandom prop-
erties. Thus the related notions of family complexity, collision and
avalanche effect have been introduced. In this paper our goal is to
extend these definitions to binary lattices, and we will present con-
structions of large families of binary lattices with strong pseudorandom

properties such that these families also possess a nice structure.

1 Introduction

Recently in a series of papers a new constructive approach has been de-

veloped to study pseudorandomness of binary sequences
EN = (elu SRR €N) S {_17 +1}N

In particular in [16] Mauduit and Sarkozy first introduced the following mea-
sures of pseudorandomness: the well-distribution measure of Ey is defined

by

W(Ey) = max

a,b,t

(1.1)

t—1
E €a+jb
J=0

where the maximum is taken over all a,b,t € Nwith 1 <a <a+(t—1)b < N,

and the correlation measure of order k of Ey is defined as

M
Ck(EN) = r]\l}%:}){ Zl Entdy - - - Cntdy
where the maximum is taken over all D = (di,...,d;) and M such that

0<d <--<dy <N—M. The combined (well-distribution-correlation)



pseudorandom measure of order k was also introduced:

Qr(En) = = max Z Catjbids - - - Cartjbidy (1.2)
where the maximum is taken over all a,b,t and D = (dy,...,d) such that

all the subscripts a + jb + d, belong to {1,2,..., N}. (Note that Q,(Ey) =
W (Ey) and clearly Cy(Ey) < Qk(Ex).) Then the sequence Ey is considered
to be a “good” pseudorandom sequence if both W (Ey) and Ci(Ey) (at least
for “small” k) are “small” in terms of N (in particular, both are o(N) as
N — o). Indeed, later Cassaigne, Mauduit and Sarkozy [4] showed that
this terminology is justified since for almost all Ex € {—1,+1}" both W (Ey)
and Ci(Ey) are less than N'/2(log N)°. (See also [2] and [15].) Since that
many papers have been written on the pseudorandomness of special binary
sequences and on the measures of pseudorandomness; a list of these papers
is presented in [9).

In [13] Hubert, Mauduit and Sarkozy extended this theory of pseudoran-
domness to n dimensions. They introduced the following definitions:

Denote by I} the set of n-dimensional vectors whose coordinates are

integers between 0 and N — 1:

I}@:{X:([L‘l,...,l‘n): xZG{O,l,,N—l}}

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [12]
this definition was extended to more general lattices in the following way: Let
up, Uz, ..., U, be n linearly independent n-dimensional vectors over the field
of the real numbers such that the i-th coordinate of u; is a positive integer and
the other coordinates of u; are 0, so that w; is of the form (0,...,0, 2,0,...,0)
(with z; € N). Let t1,ts,...,t, be integers with 0 < ¢,t,...,t, < N. Then

we call the set

B%:{X:l‘lul+"‘+l’nuni,ZL‘Z‘ENU{O}, O§x2|u1|§tl(<N)
fori=1,...,n}



an n-dimensional box N-lattice or briefly a box N-lattice.
In [13] the definition of binary sequences was extended to more dimensions

by considering functions of type
n(x): Iy — {—1,+1}.

If x = (x1,...,2,) so that n(x) = n((z1,...,x,)) then we will simplify the
notation slightly by writing n(x) = n(xy,...,2,). Such a function can be
visualized as the lattice points of the N-lattice replaced by the two symbols
+ and —, thus they are called binary N-lattices.

In [13] Hubert, Mauduit and Sarkozy introduced the following measures
of pseudorandomness of binary lattices (here we will present the definition

in the same slightly modified but equivalent form as in [12]):
ne I — {1, 41},

Define the pseudorandom measure of order k of 1 by

Quln) =  max ;n(X+d1)---n(x+dk) ,

where the maximum is taken over all distinct dq,...,dx € I} and all box
N-lattices B such that B +d;,...,B +dx C I}. Note that in the one
dimensional special case Qx(n) is the same as the combined pseudorandom
measure (1.2) for every k and, in particular Q1(n) is the well-distribution
measure W in (1.1).

Then 7 is said to have strong pseudorandom properties, or briefly, it is
considered as a “good” pseudorandom binary lattice if for fixed n and k and
“large” N the measure Q(n) is “small” (much smaller, than the trivial upper
bound N™). This terminology is justified by the fact that, as it was proved
in [13], for a truly random binary lattice defined on I} and for fixed k the
measure Q(n) is “small”, more precisely, it is less than N™/? multiplied by a

logarithmic factor. As in the one-dimensional case, a list of papers written
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on pseudorandomness of binary lattices and on the measures of pseudoran-
domness is presented in [9]; see also the more recent papers [10] and [11].

In the applications one may need not just a single binary sequence resp.
lattice with strong pseudorandom properties but a large family of them.
Moreover, in many applications it is not enough if our family F is large;
it can be much more important to know that F has a “rich”, “complex”
structure, there are many “independent” sequences, resp. lattices in it which
are “far apart”. Thus one needs quantitative measures for these properties of
families of binary sequences resp. lattices. In case of binary sequences such
a measure was introduced by Ahlswede, Khachatrian, Mauduit and Sarkozy
in [1]:

Let F be a family of binary sequences Ey = (ey, s, ...,ex) € {1, +1}7,
and let (g1,2,...,&;) € {—1,+1} be a fixed binary sequence of length j (for
some j < N), and let 1 < 43 < iy < --- < i; < N. If we consider binary
sequences Ey = (e1,ea,...,en) € {—1,+1}" with

€i; = &1, €iy, = E2,.. .,el-]. =&y, (13)

Definition 1 (1.3) is said to be a specification of length j (of the binary

sequence Ey ).

Definition 2 ([1]) The family complexity or briefly f-complexity of a family
F of binary sequences Exy € {—1,+1}" is defined as the greatest integer j
so that for any specification (1.3) (of length j) there is at least one En € F
which satisfies it. The f-complexity of F is denoted by T'(F). (If there is no
J € N with the property above, we set T'(F) =0.)

Note that an easy consequence of the definition is that
2" < |7

whence



Proposition 1

(1.4)

Goubin, Mauduit and Sarkozy [7] constructed the first large family of
binary sequences with strong pseudorandom properties by using the Legendre
symbol. They showed that if p is a prime number, K is “not very large” in
terms of p, we consider all polynomials f(x) € F,[x] such that 0 < deg f(x) <
K and f(z) has no multiple zeros, and each of these polynomials f(z) we

assign a binary sequence E, = (ey, eq,...,¢€,) defined by

(L) for (£(n).p) =1
+1 for p | f(n)

€n =

(where (?) is the Legendre symbol), then all these binary sequences pos-
sess strong pseudorandom properties (both W (E,) and Cy(E,) for k “not
very large” are small). Let F denote the family of these binary sequences
E,. Ahlswede, Khachatrian, Mauduit and Sarkézy [1| showed that the f-
complexity I'(F) of this family is large. Later Gyarmati [8] improved on
their lower bound by showing that I'(F) > clog|F| with some explicit con-
stant ¢; note that by (1.4), this estimate is best possible apart, from the value
of this constant ¢, and the complexity of this family is optimally large apart
from the constant factor. (See also [6].)

Another important tool of studying the pseudorandomness of families of
binary sequences is the notion of collision [3], [19], [20], [21]:

Assume that N € N, § is a given set (e.g., a set of certain polynomials
or the set of all the binary sequences of a given length much less than N), to

each s € § we assign a unique binary sequence
EN = EN(S) = (617 R €N) € {_17 +1}N7

and let F = F(S) denote the family of the binary sequences obtained in this
way:

F=FS)={En(s): s€S}. (1.5)



Definition 3 Ifs € S, s €S, s# s and
En(s) = En(s), (1.6)

then (1.6) is said to be a collision in F = F(S). If there is no collision in
F =F(S), then F is said to be collision free.

In other words, F = F(S) is collision free if we have |F| = |S|. An
ideally good family of pseudorandom binary sequences is collision free. If F
is not collision free but the number of collisions is “small”, then they may
cause only minor problems. A good measure of the number of collisions is

the following:
Definition 4 The collision maximum M = M(F,S) is defined by

M=M(F,S)=max |{s: s€S, En(s)=En}|

EneF

(i.e, M is the mazimal number of elements of S representing the same binary

sequence Ey, and F = F(S) is collision free if and only if M(F,S) =1).

There is another related notion appearing in the literature, namely, the

notion of avalanche effect (see, e.g., [3], [5], [6], [14], [20], [21]):

Definition 5 If in (1.5) we have S = {—1,+1}¢, and for any s € S, chang-
ing any element of s changes “many” elements of Ex(s) (i.e., for s # s many
elements of the sequences En(s) and En(s") are different), then we speak
about avalanche effect, and we say that F = F(S) possesses the avalanche
property. If N — oo and for any s € S, s € S, s # s at least (% — 0(1)) N
elements of En(s) and En(s") are different, then F is said to possess strict

avalanche property.

To study the avalanche property, one may introduce the following quan-

titative measure:



Definition 6 If N € N, E, = (e1,...,ex) € {=1,+1}Y and E/, = (€}, ..., €e/y) €
{=1,+1}N € {=1,+1}¥, then the distance d(Ey, EY) between Ey and Ey
s defined by

d(Ex,EN)=1{n: 1<n<N, e, #e}|

(a similar notion is introduced in [3]; this is a variant of the Hamming dis-
tance). Moreover, if F is a family from (1.5), then the distance minimum
m(F) of F is defined by

m(F) = min d(En(s), Ex(s")).

s,8'€S
s#s’

Applying this notion we may say that the family F in (1.5) is collision
free if and only if m(F) > 0, and F possesses the strict avalanche property
if

m(F) > (% — 0(1)) N.

In [20] Toth studied the Legendre symbol construction described after
Proposition 1, and she showed that a variant of the family defined there
(she replaced the condition deg f(z) < K by deg f(z) = K ) is collision
free if K < p/2/2, and it possesses the strong avalanche effect for p — oo,
K = o(p'/?). (In [20] and [21] she also studied a further construction using
additive characters, she showed that there are many collisions in it, but a
large subfamily of it possesses the strong avalanche property.)

Here first in Section 2 we will generalize the above definitions to n dimen-
sions, i.e., to binary lattices. Then in Section 3 and 4 we will study a family
of binary lattices constructed by using quadratic characters of finite fields
and polynomials (and we will prove the n-dimensional analogues of some re-
sults of Toth [20], [21]). In Part II of this paper we will study two further
families of binary lattices constructed by using finite fields, polynomials and

the notion of the multiplicative inverse.



2 Family complexity, collision, avalanche prop-

erty for families of binary lattices.

Each of definitions 1-6 can be extended easily from one dimension to n
dimensions, i.e., from binary sequences to binary lattices. For the sake of
completeness we will present the generalizations of these definitions without
adding any comments.

Let F be a family of binary lattices n : Iy — {—1,+1}, let j < N,
let x1,X2,...,X; be j distinct vectors from I}, and let (e1,eq,...,¢;) €

{—=1,+1}. If we consider binary lattices n : I% — {—1,+1} with

n(x1) = €1, N(xX2) = €2,...,0(x5) = ¢, (2.1)
then

Definition 7 (2.1) is said to be a specification of length j of 7.

Definition 8 The family complexity or f-complexity of a family F of bi-
nary lattices n : Iy — {—1,41}, denoted by I'(F), is defined as the greatest
integer j so that for any specification (2.1) of length j there is at least one
n € F which satisfies it.

Then again (1.4) holds.
Assume that N € N, n € N, § is a given finite set, to each s € § we
assign a unique binary lattice n = n, : Iy — {=1,+1}, and let F = F(S)

denote the family of the binary sequences obtained in this way:
F=FS)={ns: seS} (2.2)

Definition 9 Ifs € S, s € S, s # s and ns = ny, then this is said to be a
collision in F = F(S). If there is no collision in F = F(S), then F is said

to be collision free.



(We leave the generalization of Definition 4 to the reader.)

Definition 10 If F is of form (2.2), and for any s € S changing any element
of s changes “many” elements of ns, : Iy — {—1,4+1}, then we speak about
avalanche effect, and we say that F = F(S) possesses the avalanche property.
If forany s € S, s €S, s # s at least (% — 0(1)) N™ elements of ns and ng

are different, then F is said to possess the strict avalanche property.

Definition 11 If N € N, n e N, n: I} — {-1,+1} and ' : I} —
{=1,41}, then the distance d(n,n’) between n and n' is defined by

din,n") = {(x1, 29, ..., xn) : (x1,...,2,) € I},
n(xy, .. xn) 0 (2, x0) -

If F is a family of form (2.2), then the distance minimum m(F) is defined

by
m(F) = min d(ns,ns).

s,8'€S
s#s’

(So that F is collision free if m(F) > 0, and it possesses the strict

avalanche property if

m(F) > (1 - 0(1)) N7

3 A family of binary lattices constructed using

quadratic characters: family complexity.

Mauduit and Sarkozy [17] constructed a large family of binary lattices
with strong pseudorandom properties by using quadratic characters of finite
fields (this construction generalizes the one dimensional constructions in [7]

and [16]). They proved the following theorem:



V2

Theorem A. Assume that ¢ = p™ is the power of an odd prime, f(x) € F,[x]
has degree € with

0</l<np,

and f(x) has no multiple zero in F,. Denote the quadratic character of F,
by v (setting also v(0) = 0). Consider the linear vector space formed by the
elements of F, over IF,, and let vy, ..., v, be a basis of this vector space (i.e.,
assume that vy, v, ..., v, are linearly independent over F,). Define the n

dimensional binary p-lattice n . I} — {—=1,4+1} by

Y(f(z1v1 4 -+ + @,0y,)) for
nx) =n((z1,...,z,)) = flzivg + -+ 20,) # 0
+1 for f(xyvy + -+ x,0,) = 0.

(3.1)
Assume also k € N and
gkl < gy (3.2)
Then we have
Qr(n) < kl(q"(1 +logp)" + 2). (3.3)
Indeed this is a combination of Theorems 1 and 2 in [18].
Now define p, ¢, n as above, and set
1 logp
= . 3.4
2logd n (34)

Let F denote the family of the binary lattices n assigned to the monic

polynomials f satisfying the conditions in Theorem A with
0<deg f=(¢<L.

Then for every k with
k<L (3.5)

(3.2) holds, thus by Theorem A all these lattices n satisfy (3.3) for every
k satisfying (3.5), so that all these lattices n possess strong pseudorandom

properties in this sense.
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Now we will show that this family F, is also of large complexity and,
indeed, this is so for any number K with 0 < K < p in place of the number
L defined by (3.4):

7

Theorem 1 Assume that g = p" is the power of an odd prime, let

0< K <p,

and consider all the polynomials f(x) € Fy[z] such that
0<deg f< K

and f(x) has no multiple zero in F,. To each of these polynomials f assign
the binary lattice n defined by (3.1) as described in Theorem A, and let Fi
denote the family of these binary lattices. Then we have

r
(F) > 3 log 2

log ¢ — c¢K log(K log q) (3.6)
with some absolute constant c.

Note that the number of polynomials f € F,[x] with deg f < K is clearly

K+1

at most ¢" ™, thus we have

[Fil < Hf: fETFr], deg f < K}| <g"*. (3.7)

It follows from (1.4) and (3.7) that

< log | Fik| < (K +1)loggq
— log2 log 2

I'(Fk) (3.8)

so that the lower bound (3.6) is best possible apart from a constant factor
at most.

Proof of Theorem 1. Gyarmati’s method used in the one-dimensional case
in [8] can be adapted. Since a considerable part of the proof will be similar

to the one in [8] thus we will leave some details to the reader.
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If ¢ is large enough and K > ¢'/2/log q then the right hand side of (3.6)

is negative thus (3.6) holds trivially. Thus we may assume that
K < ¢"*/logq. (3.9)

Let h be the greatest odd integer with h < K. Let j € N,

/

< 1 c
0gq —

log(h1 3.10
2Tog2 og(hlogq) (3.10)

where we will fix the value of the absolute constant ¢ later. Assume that we

are looking for a binary lattice n € Fj satisfying the specification

n(x1) = e1, N(xz) =e2,...,n(x5) = ¢;. (3.11)

Let ¢ : I} — F, be the mapping defined so that for x = (z1,...,2,) € I}
we have

¢<X> = (,0((:1]1, e ,.Tn)> =101+ -+ xRV, € IE‘q-

Clearly, this is a bijection, and the definition of 7 in (3.1) can be rewritten

as

) (fle(x))) for f(p(x)) # 0
=9 for f(p(x)) = 0. (312)

For each of the vectors x; € I}’ considered in (3.11) write ¢(x;) = yi(€ Fy).
Then by (3.12), the specification in (3.11) can be rewritten as

Y(f (1) = €1, Y(f(y2)) = €2,...,7(f(y;)) =& for (3.13)
f(y1)7 f(y2>7 R f(y]) 7A 0.

Write Y = (y1, Y2, . . ., y;). Now let A denote the set of the h-tuples (aq, as, ..., as)
with a; € F,\ Y for i = 1,2,...,h, and consider all the polynomials f(z) €
[F,[2] of the form

farasay,(2) = (2 —a1)(z —aa) ... (2 — ap) with (a1, a9, ...,a;) € A.

We will prove by a counting argument that there is at least one h-tuple

(a1, a9, ...,a,) € A for which the binary lattice n defined by (3.12) with

12



fa1.a5...a, (%) In place of f(z) satisfies (3.13). Let (81, s..., 5 denote those
zeros of fu, a,...a,(2) which have odd multiplicity in the factorization of it.
Since the degree of fu, a,...4,(2) is odd, the number ¢ of these zeros is also
odd thus we have ¢t > 1. Write g4, 45.....0,(2) = (2 — 01)(2 — [2) ... (2 — By).
Then g, ay....a, (#) has no multiple zero and its degree is t < h < K so that
the binary lattice defined by (3.1) with g4, ..., (2) in place of f(z) belongs
to Fk, and it satisfies the specification (3.11). Since this holds for every j
satisfying (3.10), it follows that

/

h c'h
r > | —1 — log(hl
(Fx) > 27022 %9 o2 og(hlogq)
which proves (3.6).
Thus, indeed, it remains to prove that there is an h-tuple (aq, as, ..., ap)
for which the lattice n in (3.12) with f,, 4,..4,(2) in place of f(z) satisfies

(3.13). To show this, consider a h-tuple (ay, as,...,a,) € A and the polyno-
mial
Jaraz,an () = (€ —a1)(x —az) ... (x — ap)

assigned to this h-tuple. Define the binary lattice n : I) — {—1,+1} as in
(3.12) with fu, as...a, (2) in place of f(z):

(A (Farsansan (2))) 3 far s an (9(%)) # 0, Lue,

p(x) # a; for 1 <i < h,
— 3.14
L oo (o) =0 i, D

©(x) = a; for some 1 < i < h.

Clearly,
1 1 if X;) =¢&;
= (1 +em(x)) = () (3.15)
2 0 ifn(x;) = —&;

fori=1,2,...,7. If i =1,2,...,j then p(x;) = y;, and for t = 1,2,... h

we have a; € F, \ )V whence a; # y;. It follows that fu, 4, 4, (©(xi)) =

13



Jar.az.an (Ui) = (i —a1)(yi — a2) ... (y; — ap) # 0, thus by (3.14) we have

(fal,a2 ----- ah(w( ))) V(faum ----- ah(yi))

n(xi) =7
=v((y; — a1)(y; — az) ... (y; — an)) (fori=1,2,...,7).

Thus (3.15) can be rewritten as

1 N L if n(x;) = &,
3 (I4+ey((zi —a)(zi —ag) ... (i —an))) = 0 ifn(x) = —e. (3.16)

Let N denote the number of polynomials f,, 4, a, (z) € Fylx] with (a1, as,...,as) €

A such that for binary lattice (3.14) specification (3.11) holds. Then by (3.16)

we have

-y ¥ % %me —a) (i — a) . (3 — an)).

a1€FG\Y a2€F \Y ap€F\Y =1

(3.17)
In the same way as (3.3) was deduced from (3.2) in [8], by using the multi-
plicativity of A one may deduce from (3.17) that

N <q_j)h+ii Z €41 E; €;
5 5 i1y - - - Eiy

=1 1<iy <ig<--<ip<j

h
Z yll - yZQ - ) s (yiz - CL)) . (318)
€F,\
Now we need

Lemma 1 Ifq = p" is a prime power, x is a non-principal character modulo
q of order d, f(z) € F,[z] has s distinct zeros in F, and it is not the constant

multiple of the d-th power of a polynomial over I, then

> X)) < (s = 1)

z€Fy
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Proof of Lemma 1. This is a special case of Weil’s theorem [22].

By Lemma 1 we have

Z Y ((yil - a)(?/ﬁé - CL) T (yie - a))

a€F\Y

< Z’V((yil —a)(yy, —a)...(y;, —a)) +Zl < g2 + Sj(qm ).

a€ly acy

Thus it follows from (3.18) that

vR UL EY Y et

=1 1<i1<ia<---<1p<j
AR
(¢—J)"

Y (j(q1/2 + 1))h-

Thus in order to prove N > 0 we have to show that

q—17J
927 /h

> (g + 1)
or, in equivalent form,
q > 2" (jg"* + 5) +j. (3.19)

With p in place of ¢ this is inequality (12) in [8] and it was shown in [8] that
it follows from (5) and (6) if ¢; = 9 is chosen. Replacing p by ¢ and ¢; by ¢
in these two formulas, we obtain (3.9) and (3.10) above, so that if j satisfies
(3.10) then (3.19) holds whence N > 0 follows. Thus there is a binary lattice
n € Fx which satisfies specification (3.11) and this completes the proof of

Theorem 1.
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4 A family of binary lattices constructed using
quadratic characters: collisions, avalanche ef-

fect

Now we will show that if K is “not very large”, then the family Fy of
binary lattices defined in Theorem 1 is collision free, and it also possesses the
strict avalanche property. Again, let ¢ = p™ be a fixed odd prime power and
0 < K < p. Let Sk denote the set of monic polynomials f(z) € F,[x] such
that 0 < deg f < K. For every polynomial f € Sk we consider the binary
lattice 7 defined by (3.1) as described in Theorem A, and we denote it by
n¢. Then the family Fx of binary lattices defined in Theorem 1 is the set of
these lattices 7s:

Fr =Fr(Sk)=1{ny: f €Sk}

Using these notations we have

Theorem 2

m(Fr) > = (¢ — (2K — 1)¢"* - 2K)..

DO | —

Note that if K < ¢'/2, then it follows from Theorem 2 that

m(Fk) > (q - (2K — 1)(]1/2 — q1/2) = (q — 2Kq1/2) >0

DN | —
DN | —

and thus Fp is collision free. This proves

Corollary 1 If Sk, Fi are defined as above and we also have K < %ql/Q,

then Fx is collision free.

Moreover, if ¢ — oo and K = 0(q"/?) then Theorem 2 gives

() = (- o)

which proves

16



Corollary 2 If Sk, Fi are defined as above and we have ¢ — oo, K =

0(q'/?), then Fx possesses the strict avalanche property.

Proof of Theorem 2 We will adapt Téth’s method [20]. Assume that
f,9 € Sk and f # g. Then for x € I} we have

[ it =
ORI 1 iyt # 0
whence
1 0 i 1y(x) = my ()
—(1— X)ng(X)) =
2O 0 £ a0
It follows that
A = 3 5 (= mm0) = 5 [ 1= 3 mmy(x)
1
=5 a2 mmx)

17



Then using again the bijection ¢ : I}' — F, introduced at the beginning of

the proof of Theorem 1, by (3.12) this can be rewritten as

d(ny,m) = % (q — ) fe))g(e(x)
a0
- > 'f?f(X)ﬁg(X)>

Fle(x))g(p(x))=0

e X AU - Y mn)
o stno o on=s

> e X - X1
e forso

> - o) 2k | (11)

The order of the character v is 2, and since f # g, both polynomials are
monic and f, g have no multiple zeros, thus f(x)g(x) is not the constant
multiple of the square of a polynomial over F;,. Thus we may apply Lemma
1 with v and fg in place of x and f, respectively. Since the polynomial fg
has less than 2K zeros in F,, thus applying Lemma 1 we obtain from (4.1)
that

1
d(ng,mg) > 5 (a— (2K — 1)¢"/? - 2K)

which completes the proof of Theorem 2.
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