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Abstra
tIn the last 15 years a new 
onstru
tive theory of pseudorandom-ness of binary sequen
es has been developed. Later this theory wasextended to n dimensions, i.e., to the study of pseudorandomness ofbinary latti
es. In the appli
ations it is not enough to 
onsider sin-gle binary sequen
es, one also needs information on the stru
ture oflarge families of binary sequen
es with strong pseudorandom prop-erties. Thus the related notions of family 
omplexity, 
ollision andavalan
he e�e
t have been introdu
ed. In this paper our goal is toextend these de�nitions to binary latti
es, and we will present 
on-stru
tions of large families of binary latti
es with strong pseudorandomproperties su
h that these families also possess a ni
e stru
ture.1 Introdu
tionRe
ently in a series of papers a new 
onstru
tive approa
h has been de-veloped to study pseudorandomness of binary sequen
es
EN = (e1, . . . , eN) ∈ {−1, +1}N .In parti
ular in [16℄ Mauduit and Sárközy �rst introdu
ed the following mea-sures of pseudorandomness: the well-distribution measure of EN is de�nedby

W (EN) = max
a,b,t
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(1.1)where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,and the 
orrelation measure of order k of EN is de�ned as
Ck(EN ) = max

M,D
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∣where the maximum is taken over all D = (d1, . . . , dk) and M su
h that
0 ≤ d1 < · · · < dk ≤ N − M . The 
ombined (well-distribution-
orrelation)1



pseudorandom measure of order k was also introdu
ed:
Qk(EN ) = max

a,b,t,D
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(1.2)where the maximum is taken over all a, b, t and D = (d1, . . . , dk) su
h thatall the subs
ripts a + jb + dℓ belong to {1, 2, . . . , N}. (Note that Q1(EN) =

W (EN) and 
learly Ck(EN) ≤ Qk(EN).) Then the sequen
e EN is 
onsideredto be a �good� pseudorandom sequen
e if both W (EN) and Ck(EN) (at leastfor �small� k) are �small� in terms of N (in parti
ular, both are o(N) as
N −→ ∞). Indeed, later Cassaigne, Mauduit and Sárközy [4℄ showed thatthis terminology is justi�ed sin
e for almost allEN ∈ {−1, +1}N bothW (EN)and Ck(EN) are less than N1/2(log N)c. (See also [2℄ and [15℄.) Sin
e thatmany papers have been written on the pseudorandomness of spe
ial binarysequen
es and on the measures of pseudorandomness; a list of these papersis presented in [9℄.In [13℄ Hubert, Mauduit and Sárközy extended this theory of pseudoran-domness to n dimensions. They introdu
ed the following de�nitions:Denote by In

N the set of n-dimensional ve
tors whose 
oordinates areintegers between 0 and N − 1:
In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.This set is 
alled an n-dimensional N-latti
e or brie�y an N-latti
e. In [12℄this de�nition was extended to more general latti
es in the following way: Let

u1,u2, . . . ,un be n linearly independent n-dimensional ve
tors over the �eldof the real numbers su
h that the i-th 
oordinate of ui is a positive integer andthe other 
oordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0)(with zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Thenwe 
all the set
Bn

N = {x = x1u1 + · · ·+ xnun :, xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)for i = 1, . . . , n}2



an n-dimensional box N-latti
e or brie�y a box N-latti
e.In [13℄ the de�nition of binary sequen
es was extended to more dimensionsby 
onsidering fun
tions of type
η(x) : In

N → {−1, +1}.If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify thenotation slightly by writing η(x) = η(x1, . . . , xn). Su
h a fun
tion 
an bevisualized as the latti
e points of the N -latti
e repla
ed by the two symbols
+ and −, thus they are 
alled binary N-latti
es.In [13℄ Hubert, Mauduit and Sárközy introdu
ed the following measuresof pseudorandomness of binary latti
es (here we will present the de�nitionin the same slightly modi�ed but equivalent form as in [12℄):

η : In
N → {−1, +1}.De�ne the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk
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,where the maximum is taken over all distin
t d1, . . . ,dk ∈ In
N and all box

N-latti
es B su
h that B + d1, . . . , B + dk ⊆ In
N . Note that in the onedimensional spe
ial 
ase Qk(η) is the same as the 
ombined pseudorandommeasure (1.2) for every k and, in parti
ular Q1(η) is the well-distributionmeasure W in (1.1).Then η is said to have strong pseudorandom properties, or brie�y, it is
onsidered as a �good� pseudorandom binary latti
e if for �xed n and k and�large� N the measure Qk(η) is �small� (mu
h smaller, than the trivial upperbound Nn). This terminology is justi�ed by the fa
t that, as it was provedin [13℄, for a truly random binary latti
e de�ned on In

N and for �xed k themeasure Qk(η) is �small�, more pre
isely, it is less than Nn/2 multiplied by alogarithmi
 fa
tor. As in the one-dimensional 
ase, a list of papers written3



on pseudorandomness of binary latti
es and on the measures of pseudoran-domness is presented in [9℄; see also the more re
ent papers [10℄ and [11℄.In the appli
ations one may need not just a single binary sequen
e resp.latti
e with strong pseudorandom properties but a large family of them.Moreover, in many appli
ations it is not enough if our family F is large;it 
an be mu
h more important to know that F has a �ri
h�, �
omplex�stru
ture, there are many �independent� sequen
es, resp. latti
es in it whi
hare �far apart�. Thus one needs quantitative measures for these properties offamilies of binary sequen
es resp. latti
es. In 
ase of binary sequen
es su
ha measure was introdu
ed by Ahlswede, Kha
hatrian, Mauduit and Sárközyin [1℄:Let F be a family of binary sequen
es EN = (e1, e2, . . . , eN) ∈ {−1, +1}N ,and let (ε1, ε2, . . . , εj) ∈ {−1, +1}j be a �xed binary sequen
e of length j (forsome j ≤ N), and let 1 ≤ i1 < i2 < · · · < ij ≤ N . If we 
onsider binarysequen
es EN = (e1, e2, . . . , eN ) ∈ {−1, +1}N with
ei1 = ε1, ei2 = ε2, . . . , eij = εj, (1.3)De�nition 1 (1.3) is said to be a spe
i�
ation of length j (of the binarysequen
e EN ).De�nition 2 ([1℄) The family 
omplexity or brie�y f -
omplexity of a family

F of binary sequen
es EN ∈ {−1, +1}N is de�ned as the greatest integer jso that for any spe
i�
ation (1.3) (of length j) there is at least one EN ∈ Fwhi
h satis�es it. The f -
omplexity of F is denoted by Γ(F). (If there is no
j ∈ N with the property above, we set Γ(F) = 0.)Note that an easy 
onsequen
e of the de�nition is that

2Γ(F) ≤ |F|when
e 4



Proposition 1
Γ(F) ≤

log |F|

log 2
. (1.4)Goubin, Mauduit and Sárközy [7℄ 
onstru
ted the �rst large family ofbinary sequen
es with strong pseudorandom properties by using the Legendresymbol. They showed that if p is a prime number, K is �not very large� interms of p, we 
onsider all polynomials f(x) ∈ Fp[x] su
h that 0 < deg f(x) ≤

K and f(x) has no multiple zeros, and ea
h of these polynomials f(x) weassign a binary sequen
e Ep = (e1, e2, . . . , ep) de�ned by
en =







(

f(n)
p

) for (f(n), p) = 1

+1 for p | f(n)(where ( ...
p

) is the Legendre symbol), then all these binary sequen
es pos-sess strong pseudorandom properties (both W (Ep) and Ck(Ep) for k �notvery large� are small). Let F denote the family of these binary sequen
es
Ep. Ahlswede, Kha
hatrian, Mauduit and Sárközy [1℄ showed that the f -
omplexity Γ(F) of this family is large. Later Gyarmati [8℄ improved ontheir lower bound by showing that Γ(F) > c log |F| with some expli
it 
on-stant c; note that by (1.4), this estimate is best possible apart from the valueof this 
onstant c, and the 
omplexity of this family is optimally large apartfrom the 
onstant fa
tor. (See also [6℄.)Another important tool of studying the pseudorandomness of families ofbinary sequen
es is the notion of 
ollision [3℄, [19℄, [20℄, [21℄:Assume that N ∈ N, S is a given set (e.g., a set of 
ertain polynomialsor the set of all the binary sequen
es of a given length mu
h less than N), toea
h s ∈ S we assign a unique binary sequen
e

EN = EN (s) = (e1, . . . , eN ) ∈ {−1, +1}N ,and let F = F(S) denote the family of the binary sequen
es obtained in thisway:
F = F(S) = {EN(s) : s ∈ S}. (1.5)5



De�nition 3 If s ∈ S, s′ ∈ S, s 6= s′ and
EN (s) = EN(s′), (1.6)then (1.6) is said to be a 
ollision in F = F(S). If there is no 
ollision in

F = F(S), then F is said to be 
ollision free.In other words, F = F(S) is 
ollision free if we have |F| = |S|. Anideally good family of pseudorandom binary sequen
es is 
ollision free. If Fis not 
ollision free but the number of 
ollisions is �small�, then they may
ause only minor problems. A good measure of the number of 
ollisions isthe following:De�nition 4 The 
ollision maximum M = M(F ,S) is de�ned by
M = M(F ,S) = max

EN∈F
|{s : s ∈ S, EN (s) = EN}|(i.e, M is the maximal number of elements of S representing the same binarysequen
e EN , and F = F(S) is 
ollision free if and only if M(F ,S) = 1).There is another related notion appearing in the literature, namely, thenotion of avalan
he e�e
t (see, e.g., [3℄, [5℄, [6℄, [14℄, [20℄, [21℄):De�nition 5 If in (1.5) we have S = {−1, +1}ℓ, and for any s ∈ S, 
hang-ing any element of s 
hanges �many� elements of EN(s) (i.e., for s 6= s′ manyelements of the sequen
es EN (s) and EN (s′) are di�erent), then we speakabout avalan
he e�e
t, and we say that F = F(S) possesses the avalan
heproperty. If N → ∞ and for any s ∈ S, s′ ∈ S, s 6= s′ at least (1

2
− o(1)

)

Nelements of EN(s) and EN(s′) are di�erent, then F is said to possess stri
tavalan
he property.To study the avalan
he property, one may introdu
e the following quan-titative measure: 6



De�nition 6 If N ∈ N, En = (e1, . . . , eN) ∈ {−1, +1}N and E ′
n = (e′1, . . . , e

′
N) ∈

{−1, +1}N ∈ {−1, +1}N , then the distan
e d(EN , E ′
N ) between EN and E ′

Nis de�ned by
d(EN , E ′

N) = |{n : 1 ≤ n ≤ N, en 6= e′n}|(a similar notion is introdu
ed in [3℄; this is a variant of the Hamming dis-tan
e). Moreover, if F is a family from (1.5), then the distan
e minimum
m(F) of F is de�ned by

m(F) = min
s,s′∈S
s 6=s′

d(EN(s), EN(s′)).Applying this notion we may say that the family F in (1.5) is 
ollisionfree if and only if m(F) > 0, and F possesses the stri
t avalan
he propertyif
m(F) ≥

(

1

2
− o(1)

)

N.In [20℄ Tóth studied the Legendre symbol 
onstru
tion des
ribed afterProposition 1, and she showed that a variant of the family de�ned there(she repla
ed the 
ondition deg f(x) ≤ K by deg f(x) = K ) is 
ollisionfree if K < p1/2/2, and it possesses the strong avalan
he e�e
t for p → ∞,
K = o(p1/2). (In [20℄ and [21℄ she also studied a further 
onstru
tion usingadditive 
hara
ters, she showed that there are many 
ollisions in it, but alarge subfamily of it possesses the strong avalan
he property.)Here �rst in Se
tion 2 we will generalize the above de�nitions to n dimen-sions, i.e., to binary latti
es. Then in Se
tion 3 and 4 we will study a familyof binary latti
es 
onstru
ted by using quadrati
 
hara
ters of �nite �eldsand polynomials (and we will prove the n-dimensional analogues of some re-sults of Tóth [20℄, [21℄). In Part II of this paper we will study two furtherfamilies of binary latti
es 
onstru
ted by using �nite �elds, polynomials andthe notion of the multipli
ative inverse.

7



2 Family 
omplexity, 
ollision, avalan
he prop-erty for families of binary latti
es.Ea
h of de�nitions 1-6 
an be extended easily from one dimension to ndimensions, i.e., from binary sequen
es to binary latti
es. For the sake of
ompleteness we will present the generalizations of these de�nitions withoutadding any 
omments.Let F be a family of binary latti
es η : In
N → {−1, +1}, let j ≤ Nn,let x1,x2, . . . ,xj be j distin
t ve
tors from In
N , and let (ε1, ε2, . . . , εj) ∈

{−1, +1}j. If we 
onsider binary latti
es η : In
N → {−1, +1} with

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj , (2.1)thenDe�nition 7 (2.1) is said to be a spe
i�
ation of length j of η.De�nition 8 The family 
omplexity or f -
omplexity of a family F of bi-nary latti
es η : In
N → {−1, +1}, denoted by Γ(F), is de�ned as the greatestinteger j so that for any spe
i�
ation (2.1) of length j there is at least one

η ∈ F whi
h satis�es it.Then again (1.4) holds.Assume that N ∈ N, n ∈ N, S is a given �nite set, to ea
h s ∈ S weassign a unique binary latti
e η = ηs : In
N → {−1, +1}, and let F = F(S)denote the family of the binary sequen
es obtained in this way:

F = F(S) = {ηs : s ∈ S}. (2.2)De�nition 9 If s ∈ S, s′ ∈ S, s 6= s′ and ηs = ηs′, then this is said to be a
ollision in F = F(S). If there is no 
ollision in F = F(S), then F is saidto be 
ollision free. 8



(We leave the generalization of De�nition 4 to the reader.)De�nition 10 If F is of form (2.2), and for any s ∈ S 
hanging any elementof s 
hanges �many� elements of ηs : In
N → {−1, +1}, then we speak aboutavalan
he e�e
t, and we say that F = F(S) possesses the avalan
he property.If for any s ∈ S, s′ ∈ S, s 6= s′ at least (1
2
− o(1)

)

Nn elements of ηs and ηs′are di�erent, then F is said to possess the stri
t avalan
he property.De�nition 11 If N ∈ N, n ∈ N, η : In
N → {−1, +1} and η′ : In

N →

{−1, +1}, then the distan
e d(η, η′) between η and η′ is de�ned by
d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ I

n
N ,

η(x1, . . . , xn) 6= η′(x1, . . . , xn)}|.If F is a family of form (2.2), then the distan
e minimum m(F) is de�nedby
m(F) = min

s,s′∈S
s 6=s′

d(ηs, ηs′).(So that F is 
ollision free if m(F) > 0, and it possesses the stri
tavalan
he property if
m(F) ≥

(

1

2
− o(1)

)

Nn.)3 A family of binary latti
es 
onstru
ted usingquadrati
 
hara
ters: family 
omplexity.Mauduit and Sárközy [17℄ 
onstru
ted a large family of binary latti
eswith strong pseudorandom properties by using quadrati
 
hara
ters of �nite�elds (this 
onstru
tion generalizes the one dimensional 
onstru
tions in [7℄and [16℄). They proved the following theorem:9



Theorem A. Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x]has degree ℓ with
0 < ℓ < p,and f(x) has no multiple zero in Fq. Denote the quadrati
 
hara
ter of Fqby γ (setting also γ(0) = 0). Consider the linear ve
tor spa
e formed by theelements of Fq over Fp, and let v1, . . . , vn be a basis of this ve
tor spa
e (i.e.,assume that v1, v2, . . . , vn are linearly independent over Fp). De�ne the ndimensional binary p-latti
e η : In
p → {−1, +1} by

η(x) = η((x1, . . . , xn)) =















γ(f(x1v1 + · · · + xnvn)) for
f(x1v1 + · · ·+ xnvn) 6= 0

+1 for f(x1v1 + · · ·+ xnvn) = 0. (3.1)Assume also k ∈ N and
4n(k+ℓ) < p. (3.2)Then we have

Qk(η) < kℓ(q1/2(1 + log p)n + 2). (3.3)Indeed this is a 
ombination of Theorems 1 and 2 in [18℄.Now de�ne p, q, n as above, and set
L =

1

2 log 4

log p

n
. (3.4)Let FL denote the family of the binary latti
es η assigned to the moni
polynomials f satisfying the 
onditions in Theorem A with

0 < deg f = ℓ < L.Then for every k with
k < L (3.5)(3.2) holds, thus by Theorem A all these latti
es η satisfy (3.3) for every

k satisfying (3.5), so that all these latti
es η possess strong pseudorandomproperties in this sense. 10



Now we will show that this family FL is also of large 
omplexity and,indeed, this is so for any number K with 0 < K < p in pla
e of the number
L de�ned by (3.4):Theorem 1 Assume that q = pn is the power of an odd prime, let

0 < K < p,and 
onsider all the polynomials f(x) ∈ Fq[x] su
h that
0 < deg f < Kand f(x) has no multiple zero in Fq. To ea
h of these polynomials f assignthe binary latti
e η de�ned by (3.1) as des
ribed in Theorem A, and let FKdenote the family of these binary latti
es. Then we have

Γ(FK) >
K − 1

2 log 2
log q − cK log(K log q) (3.6)with some absolute 
onstant c.Note that the number of polynomials f ∈ Fq[x] with deg f < K is 
learlyat most qK+1, thus we have

|FK | ≤ |{f : f ∈ Fq[x], deg f < K}| ≤ qK+1. (3.7)It follows from (1.4) and (3.7) that
Γ(FK) ≤

log |FK |

log 2
≤

(K + 1) log q

log 2
(3.8)so that the lower bound (3.6) is best possible apart from a 
onstant fa
torat most.Proof of Theorem 1. Gyarmati's method used in the one-dimensional 
asein [8℄ 
an be adapted. Sin
e a 
onsiderable part of the proof will be similarto the one in [8℄ thus we will leave some details to the reader.11



If c is large enough and K ≥ q1/2/ log q then the right hand side of (3.6)is negative thus (3.6) holds trivially. Thus we may assume that
K < q1/2/ log q. (3.9)Let h be the greatest odd integer with h < K. Let j ∈ N,

j ≤
h

2 log 2
log q −

c′h

log 2
log(h log q) (3.10)where we will �x the value of the absolute 
onstant c′ later. Assume that weare looking for a binary latti
e η ∈ FK satisfying the spe
i�
ation

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj . (3.11)Let ϕ : In
p → Fq be the mapping de�ned so that for x = (x1, . . . , xn) ∈ In

pwe have
ϕ(x) = ϕ((x1, . . . , xn)) = x1v1 + · · · + xnvn ∈ Fq.Clearly, this is a bije
tion, and the de�nition of η in (3.1) 
an be rewrittenas

η(x) =







γ(f(ϕ(x))) for f(ϕ(x)) 6= 0

+1 for f(ϕ(x)) = 0. (3.12)For ea
h of the ve
tors xi ∈ In
p 
onsidered in (3.11) write ϕ(xi) = yi(∈ Fq).Then by (3.12), the spe
i�
ation in (3.11) 
an be rewritten as

γ(f(y1)) = ε1, γ(f(y2)) = ε2, . . . , γ(f(yj)) = εj for (3.13)
f(y1), f(y2), . . . , f(yj) 6= 0.Write Y = (y1, y2, . . . , yj). Now letA denote the set of the h-tuples (a1, a2, . . . , ah)with ai ∈ Fq \ Y for i = 1, 2, . . . , h, and 
onsider all the polynomials f(z) ∈

Fq[z] of the form
fa1,a2,...,ah

(z) = (z − a1)(z − a2) . . . (z − ah) with (a1, a2, . . . , ah) ∈ A.We will prove by a 
ounting argument that there is at least one h-tuple
(a1, a2, . . . , ah) ∈ A for whi
h the binary latti
e η de�ned by (3.12) with12



fa1,a2...,ah
(z) in pla
e of f(z) satis�es (3.13). Let β1, β2 . . . , βt denote thosezeros of fa1,a2,...,ah

(z) whi
h have odd multipli
ity in the fa
torization of it.Sin
e the degree of fa1,a2,...,ah
(z) is odd, the number t of these zeros is alsoodd thus we have t ≥ 1. Write ga1,a2,...,ah

(z) = (z − β1)(z − β2) . . . (z − βt).Then ga1,a2,...,ah
(z) has no multiple zero and its degree is t ≤ h < K so thatthe binary latti
e de�ned by (3.1) with ga1,a2,...,ah

(z) in pla
e of f(z) belongsto FK , and it satis�es the spe
i�
ation (3.11). Sin
e this holds for every jsatisfying (3.10), it follows that
Γ(FK) ≥

[

h

2 log 2
log q −

c′h

log 2
log(h log q)

]whi
h proves (3.6).Thus, indeed, it remains to prove that there is an h-tuple (a1, a2, . . . , ah)for whi
h the latti
e η in (3.12) with fa1,a2,...,ah
(z) in pla
e of f(z) satis�es(3.13). To show this, 
onsider a h-tuple (a1, a2, . . . , ah) ∈ A and the polyno-mial

fa1,a2,...,ah
(x) = (x − a1)(x − a2) . . . (x − ah)assigned to this h-tuple. De�ne the binary latti
e η : In

p → {−1, +1} as in(3.12) with fa1,a2,...,ah
(z) in pla
e of f(z):

η(x) =



























γ(fa1,a2,...,ah
(ϕ(x))) if fa1,a2,...,ah

(ϕ(x)) 6= 0, i.e.,
ϕ(x) 6= ai for 1 ≤ i ≤ h,

+1 if fa1,a2,...,ah
(ϕ(x)) = 0, i.e.,

ϕ(x) = ai for some 1 ≤ i ≤ h. (3.14)Clearly,
1

2
(1 + εiη(xi)) =







1 if η(xi) = εi

0 if η(xi) = −εi

(3.15)for i = 1, 2, . . . , j. If i = 1, 2, . . . , j then ϕ(xi) = yi, and for t = 1, 2, . . . , hwe have at ∈ Fq \ Y when
e at 6= yi. It follows that fa1,a2,...,ah
(ϕ(xi)) =13



fa1,a2,...,ah
(yi) = (yi − a1)(yi − a2) . . . (yi − ah) 6= 0, thus by (3.14) we have

η(xi) = γ(fa1,a2,...,ah
(ϕ(xi))) = γ(fa1,a2,...,ah

(yi))

= γ((yi − a1)(yi − a2) . . . (yi − ah)) (for i = 1, 2, . . . , j).Thus (3.15) 
an be rewritten as
1

2
(1 + εiγ ((zi − a1)(zi − a2) . . . (zi − an))) =







1 if η(xi) = εi,
0 if η(xi) = −εi. (3.16)Let N denote the number of polynomials fa1,a2,...,ah
(x) ∈ Fq[x] with (a1, a2, . . . , ah) ∈

A su
h that for binary latti
e (3.14) spe
i�
ation (3.11) holds. Then by (3.16)we have
N =

∑

a1∈Fq\Y

∑

a2∈Fq\Y

· · ·
∑

ah∈Fq\Y

1

2j

j
∏

i=1

(1 + εiγ ((yi − a1)(yi − a2) . . . (yi − ah))) .(3.17)In the same way as (3.3) was dedu
ed from (3.2) in [8℄, by using the multi-pli
ativity of λ one may dedu
e from (3.17) that
N =

(q − j)h

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 . . . εiℓ





∑

a∈Fq\Y

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))





h

. (3.18)Now we needLemma 1 If q = pn is a prime power, χ is a non-prin
ipal 
hara
ter modulo
q of order d, f(x) ∈ Fq[x] has s distin
t zeros in Fq and it is not the 
onstantmultiple of the d-th power of a polynomial over Fq, then

∣

∣

∣

∣

∣

∣

∑

z∈Fq

χ(f(z))

∣

∣

∣

∣

∣

∣

≤ (s − 1)q1/2.

14



Proof of Lemma 1. This is a spe
ial 
ase of Weil's theorem [22℄.By Lemma 1 we have
∣

∣

∣

∣

∣

∣

∑

a∈Fq\Y

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

a∈Fq

γ ((yi1 − a)(yi2 − a) . . . (yiℓ − a))

∣

∣

∣

∣

∣

∣

+
∑

a∈Y

1 ≤ ℓq1/2 + j ≤ j(q1/2 + 1).Thus it follows from (3.18) that
N ≥

(q − j)h

2j
−

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

(

j(q1/2 + 1)
)h

>
(q − j)h

2j
−
(

j(q1/2 + 1)
)h

.Thus in order to prove N > 0 we have to show that
q − j

2j/h
> j(q1/2 + 1)or, in equivalent form,

q > 2j/h
(

jq1/2 + j
)

+ j. (3.19)With p in pla
e of q this is inequality (12) in [8℄ and it was shown in [8℄ thatit follows from (5) and (6) if c1 = 9 is 
hosen. Repla
ing p by q and c1 by c′in these two formulas, we obtain (3.9) and (3.10) above, so that if j satis�es(3.10) then (3.19) holds when
e N > 0 follows. Thus there is a binary latti
e
η ∈ FK whi
h satis�es spe
i�
ation (3.11) and this 
ompletes the proof ofTheorem 1.
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4 A family of binary latti
es 
onstru
ted usingquadrati
 
hara
ters: 
ollisions, avalan
he ef-fe
tNow we will show that if K is �not very large�, then the family FK ofbinary latti
es de�ned in Theorem 1 is 
ollision free, and it also possesses thestri
t avalan
he property. Again, let q = pn be a �xed odd prime power and
0 < K < p. Let SK denote the set of moni
 polynomials f(x) ∈ Fq[x] su
hthat 0 < deg f < K. For every polynomial f ∈ SK we 
onsider the binarylatti
e η de�ned by (3.1) as des
ribed in Theorem A, and we denote it by
ηf . Then the family FK of binary latti
es de�ned in Theorem 1 is the set ofthese latti
es ηf :

FK = FK(SK) = {ηf : f ∈ SK}.Using these notations we haveTheorem 2
m(FK) >

1

2

(

q − (2K − 1)q1/2 − 2K
)

.Note that if K < 1
2
q1/2, then it follows from Theorem 2 that

m(FK) >
1

2

(

q − (2K − 1)q1/2 − q1/2
)

=
1

2

(

q − 2Kq1/2
)

> 0and thus FK is 
ollision free. This provesCorollary 1 If SK , FK are de�ned as above and we also have K < 1
2
q1/2,then FK is 
ollision free.Moreover, if q → ∞ and K = o(q1/2) then Theorem 2 gives

m(FK) ≥

(

1

2
− o(1)

)

qwhi
h proves 16



Corollary 2 If SK, FK are de�ned as above and we have q → ∞, K =

o(q1/2), then FK possesses the stri
t avalan
he property.Proof of Theorem 2 We will adapt Tóth's method [20℄. Assume that
f, g ∈ SK and f 6= g. Then for x ∈ In

p we have
ηf (x)ηg(x) =







+1 if ηf(x) = ηg(x)

−1 if ηf(x) 6= ηg(x)when
e
1

2
(1 − ηf (x)ηg(x)) =







0 if ηf(x) = ηg(x)

1 if ηf(x) 6= ηg(x).It follows that
d(ηf , ηg) =

∑

x∈In
p

1

2
(1 − ηf(x)ηg(x)) =

1

2



pn −
∑

x∈In
p

ηf(x)ηg(x)





=
1

2



q −
∑

x∈In
p

ηf (x)ηg(x)



 .

17



Then using again the bije
tion ϕ : In
p → Fq introdu
ed at the beginning ofthe proof of Theorem 1, by (3.12) this 
an be rewritten as

d(ηf , ηg) =
1

2

(

q −
∑

x∈In
p

f(ϕ(x))g(ϕ(x))6=0

γ(f(ϕ(x)))γ(g(ϕ(x)))

−
∑

x∈In
p

f(ϕ(x))g(ϕ(x))=0

ηf(x)ηg(x)

)

=
1

2









q −
∑

x∈In
p

(fg)(ϕ(x))6=0

γ((fg)(ϕ(x))) −
∑

x∈In
p

(fg)(ϕ(x))=0

ηf (x)ηg(x)









≥
1

2









q −
∑

z∈Fq

γ((fg)(z)) −
∑

z∈Fq

fg(z)=0

1









>
1

2



q −
∑

z∈Fq

γ((fg)(z)) − 2K



 . (4.1)The order of the 
hara
ter γ is 2, and sin
e f 6= g, both polynomials aremoni
 and f, g have no multiple zeros, thus f(x)g(x) is not the 
onstantmultiple of the square of a polynomial over Fq. Thus we may apply Lemma1 with γ and fg in pla
e of χ and f , respe
tively. Sin
e the polynomial fghas less than 2K zeros in Fp, thus applying Lemma 1 we obtain from (4.1)that
d(ηf , ηg) >

1

2

(

q − (2K − 1)q1/2 − 2K
)whi
h 
ompletes the proof of Theorem 2.Referen
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