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Abstract

In Part I of this paper we extended the notions of family complexity,

collision and avalanche effect from one dimension to n dimensions, i.e.,

from binary sequences to binary lattices. Then we considered a large

family of binary lattices with strong pseudorandom properties which

had been constructed by using quadratic characters of finite fields, and

we showed that this family also possesses a nice structure in terms

of these notions. In Part I we considered a large family of binary

sequences with strong pseudorandom properties constructed by using

additive characters and we extended it to n dimensions, i.e., to binary

lattices. In this paper we will show that these binary lattices possess

strong pseudorandom properties, and their family also possesses a nice

structure in terms of family complexity, collision and avalanche effect.

1 Introduction

First we recall those definitions from Part I [9] which we need here. In

[14] Mauduit and Sárközy proposed to use the following measures of pseudo-

randomness of binary sequences

(e1, e2, . . . , eN) ∈ {−1,+1}N :

the well-distribution measure of EN is defined by

W (EN) = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

(1.1)

where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,

and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dk

∣

∣

∣

∣

∣
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where the maximum is taken over all D = (d1, . . . , dk) and M such that

0 ≤ d1 < · · · < dk ≤ N −M . The combined (well-distribution-correlation)

pseudorandom measure of order k was also introduced:

Qk(EN ) = max
a,b,t,D

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb+d1 . . . ea+jb+dk

∣

∣

∣

∣

∣

(1.2)

where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that

all the subscripts a + jb+ dℓ belong to {1, 2, . . . , N}. (Note that Q1(EN) =

W (EN) and clearly Ck(EN) ≤ Qk(EN).) Then the sequence EN is considered

to be a “good” pseudorandom sequence if both W (EN) and Ck(EN) (at least

for “small” k) are “small” in terms of N , in particular, both are o(N) as

N −→ ∞. Indeed, later Cassaigne, Mauduit and Sárközy [3] showed that

this terminology is justified since for almost all EN ∈ {−1,+1}N bothW (EN)

and Ck(EN ) (for fixed k) are less than N1/2(logN)c (and they are also greater

than εN1/2; see also [2] and [12]). Since that many papers have been written

on the pseudorandomness of special binary sequences and on the measures

of pseudorandomness.

In [11] Hubert, Mauduit and Sárközy extended this theory of pseudoran-

domness to n dimensions. They introduced the following definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

InN = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [10]

this definition was extended to more general lattices in the following way: Let

u1,u2, . . . ,un be n linearly independent n-dimensional vectors over the field

of the real numbers such that the i-th coordinate of ui is a positive integer and

the other coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0)

(with zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then

2



we call the set

Bn
N = {x = x1u1 + · · ·+ xnun :, xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [11] the definition of binary sequences was extended to more dimensions

by considering functions of type

η(x) : InN → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify the

notation slightly by writing η(x) = η(x1, . . . , xn). Such a function can be

visualized as the lattice points of the N -lattice replaced by the two symbols

+ and −, thus they are called binary N-lattices.

In [11] Hubert, Mauduit and Sárközy introduced the following measures

of pseudorandomness of binary lattices (here we will present the definition

in the same slightly modified but equivalent form as in [10]):

η : InN → {−1,+1}.

Define the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dk)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dk ∈ InN and all box

N -lattices B such that B + d1, . . . , B + dk ⊆ InN . Note that in the one

dimensional special case Qk(η) is the same as the combined pseudorandom

measure (1.2) for every k and, in particular Q1(η) is the well-distribution

measure W in (1.1).

Then η is said to have strong pseudorandom properties, or briefly, it is

considered as a “good” pseudorandom binary lattice if for fixed n and k and

“large” N the measure Qk(η) is “small” (much smaller, than the trivial upper
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bound Nn). This terminology is justified by the fact that, as it was proved

in [11], for a truly random binary lattice defined on InN and for fixed k the

measure Qk(η) is “small”, more precisely, it is less than Nn/2 multiplied by a

logarithmic factor. As in the one-dimensional case, a list of papers written

on pseudorandomness of binary lattices and on the measures of pseudoran-

domness is presented in [6]; see also the more recent papers [7] and [8].

In the applications one may need not just a single binary sequence resp.

lattice with strong pseudorandom properties but a large family of them.

Moreover, in many applications it is not enough if our family F is large;

it can be much more important to know that F has a “rich”, “complex”

structure, there are many “independent” sequences, resp. lattices in it which

are “far apart”. Thus one needs quantitative measures for these properties

of families of binary sequences, resp. lattices. In the one dimensional case

there are tools of this type appearing in the literature: family complexity,

collision, avalanche effect. In Part I we presented their definitions, and then

we extended them to n dimensions, i.e., to binary lattices. These definitions

in the n dimensional case are the following:

Let F be a family of binary lattices η : InN → {−1,+1}, let j ≤ Nn,

let x1,x2, . . . ,xj be j distinct vectors from InN , and let (ε1, ε2, . . . , εj) ∈

{−1,+1}j. If we consider binary lattices η : InN → {−1,+1} with

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj , (1.3)

then

Definition 1 (1.3) is said to be a specification of length j of η.

Definition 2 The family complexity or f -complexity of a family F of bi-

nary lattices η : InN → {−1,+1}, denoted by Γ(F), is defined as the greatest

integer j so that for any specification (1.3) of length j there is at least one

η ∈ F which satisfies it.
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Then it is easy to see that

Γ(F) ≤
log |F|

log 2
. (1.4)

(Indeed, this is Proposition 1 in [9].)

Assume that N ∈ N, n ∈ N, S is a given finite set, to each s ∈ S we

assign a unique binary lattice η = ηs : InN → {−1,+1}, and let F = F(S)

denote the family of the binary lattices obtained in this way:

F = F(S) = {ηs : s ∈ S}. (1.5)

Definition 3 If s ∈ S, s′ ∈ S, s 6= s′ and ηs = ηs′, then this is said to be a

collision in F = F(S). If there is no collision in F = F(S), then F is said

to be collision free.

Definition 4 If F is of form (1.5), and for any s ∈ S changing any element

of s changes “many” elements of ηs : InN → {−1,+1}, then we speak about

avalanche effect, and we say that F = F(S) possesses the avalanche property.

If for any s ∈ S, s′ ∈ S, s 6= s′ at least
(

1
2
− o(1)

)

Nn elements of ηs and ηs′

are different, then F is said to possess the strict avalanche property.

Definition 5 If N ∈ N, n ∈ N, η : InN → {−1,+1} and η′ : InN →

{−1,+1}, then the distance d(η, η′) between η and η′ is defined by

d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ I
n
N ,

η(x1, . . . , xn) 6= η′(x1, . . . , xn)}|.

If F is a family of form (1.5), then the distance minimum m(F) is defined

by

m(F) = min
s,s′∈S
s 6=s′

d(ηs, ηs′).

(So that F is collision free if m(F) > 0, and it possesses the strict

avalanche property if

m(F) ≥

(

1

2
− o(1)

)

Nn.)
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After introducing these definitions in Part I, the rest of the paper was de-

voted to the study of a family of binary lattices. In [16] Mauduit and Sárközy

constructed a large family of binary lattices by using the quadratic character

of finite fields and they proved that these lattices have strong pseudorandom

properties in terms of the measures Qk. In Part I we also showed that a

variant of this family also possesses nice pseudorandom structure in terms of

family complexity, collisions and avalanche effect.

The quadratic character based constructions certainly belong to the best

ones in both one and n dimensions. However, there are a few further con-

structions which are (nearly) equally good or just slightly inferior to these

quadratic character constructions. It may occur that these other construc-

tions have certain advantages (e.g., fast and simple implementation, flexibil-

ity of certain type, better control of a special pseudorandom property) which

pay in some applications. Thus it is worth to continue the work by analyz-

ing the pseudorandom properties of families generated by other important

constructions. In this paper our goal is to analyze two closely related further

constructions, and then combining certain elements of the two constructions

we will be able to construct a further large family of binary lattices such

that each of them has strong pseudorandom properties and their family also

possesses a nice pseudorandom structure.

2 Two further constructions

The first construction is a one dimensional-one which was presented by

Mauduit, Rivat and Sárközy in [13]: let p be an odd prime, f(x) ∈ Fp[x] ,

and define the binary sequence Ep = (e1, . . . , ep) by

en =







+1 if 0 ≤ rp(f(n)) < p/2

−1 if p/2 ≤ rp(f(n)) < p
(2.1)

6



(for n = 1, 2, . . . , p) where rp(n) denotes the unique r ∈ {0, 1, . . . , p−1} such

that n ≡ r (mod p). They proved:

Theorem A If f ∈ Fq[x] is of degree ℓ ≥ 2 and Ep = (e1, e2, . . . , ep) is

defined as above, then we have

W (Ep) ≪ ℓp1/2(log p)2,

and for

2 ≤ k ≤ ℓ− 1, (2.2)

Ck(Ep) ≤ ℓp1/2(log p)k+2.

(The expression “additive characters” appears in the title of their paper

[13] since this result is proved by using additive characters.) However, they

also showed that the correlation of large order can be large:

Theorem B For any ℓ = 2s there exists a constant c = c(ℓ) > 0 such that if p

is a prime number large enough, f ∈ Fp[x] is of degree ℓ and Ep = (e1, . . . , ep)

is defined as above, then

max
U,V

1≤U<U+V≤p+1−ℓ

∣

∣

∣

∣

∣

U+V
∑

n=U

enen+1 . . . en+ℓ−1

∣

∣

∣

∣

∣

≥ cp.

Thus condition (2.2) in Theorem A is necessary, and the correlation of

order k can be large if k ≥ deg f . This slight weakness of construction (2.1)

explains that, apart from a rather simplified and crude construction in [5]

(which did not use finite fields) it has not been extended to n dimensions (to

binary lattices). However, in the most applications this small problem does

not lead to any difficulties: it is usually enough to know that the correlation

of small order are small. If we want Ck to be small, for say k ≤ K, then it is

enough to take polynomials of degree greater than K. Taking the degrees of

the polynomial higher makes the computation longer but, on the other hand,

it means more freedom in the choice of the coefficients and it makes the size

of the family greater, which pays in cryptography and elsewhere.
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In [18] Tóth showed that the family induced by (2.1) and (2.2) is not

collision free, but later she showed [19] that this weakness can be corrected

by taking a subfamily which is just a slightly smaller but it is collision free

and it also possesses the strict avalanche property.

Thus we may conclude that in spite of minor problems arising from Theo-

rem B, construction (2.1) can be adjusted to the majority of the applications,

besides it is simple and it can be implemented easily, so that is worth to con-

tinue its study and, in particular, to extend it to n dimensions (to binary

lattices), by using also finite fields which may lead to sharper estimates.

The difficulties arising from Theorem B can be eliminated by using the

notion of the multiplicative inverse and replacing f(n) in (2.1) by its multi-

plicative inverse. This was shown by Mauduit and Sárközy in [15]:

Theorem C Assume that p is a prime number, f ∈ Fp[x] has degree

(0 <)ℓ(< p) and no multiple zero in Fp. For (a, p) = 1, denote the multi-

plicative inverse of a by a−1:

aa−1 ≡ 1 (mod p).

Define the binary sequence Ep = (e1, . . . , ep) by

en =







+1 if (f(n), p) = 1, rp(f(n))−1 < p
2

−1 if either (f(n), p) = 1 and rp(f(n))−1 > p
2

or p | f(n)
(2.3)

for n = 1, 2, . . . , p (where rp(n) is defined as in (2.1)). Then we have

W (Ep) ≪ ℓp1/2(log p)2.

Theorem D Define p, f(x), ℓ and Ep = (e1, . . . , ep) in the same way as in

Theorem C. Assume also that k ∈ N with 2 ≤ k ≤ p, and one of the following

conditions holds:

(i) k = 2;

(ii) (4ℓ)k < p.

Then we also have

Ck(Ep) ≪ ℓkp1/2(log p)k+1.

8



Note that for small ℓ (for ℓ ≪ log p
log log p

) condition (ii) in Theorem D is

weaker, than (2.2) in Theorem A.

In [17] Mauduit and Sárközy extended construction (2.3) to n dimensions

(to binary lattices). Let q = pn be the power of an odd prime. We will

consider the field Fq of order q, its prime field of order p will be denoted by

Fp (and we will identify Fp with the field of the modulo p residue classes,

and we write i for the residue class ≡ i (mod p)). Fix a basis v1, v2, . . . , vn of

the linear vector space formed by Fq over Fp (i.e., v1, v2, . . . , vn are linearly

independent over Fp). Let ϕ : Inp → Fq be the mapping defined so that for

x = (x1, . . . , xn) ∈ Inp we have

ϕ(x) = ϕ((x1, x2, . . . , xn)) = x1v1 + · · · + xnvn ∈ Fq;

clearly, this is a bijection.

Assume that ℓ ∈ N, a1, . . . , aℓ are distinct elements of Fq, and let

f(z) = (z + a1)(z + a2) . . . (z + aℓ) (∈ Fq[z]). (2.4)

Define the “boxes” B1, B2, . . . , Bn by

B1 = {

n
∑

i=1

uivi : 0 ≤ u1 ≤
p− 3

2
, u2, . . . , un ∈ Fp},

Bj = {
n
∑

i=1

uivi : u1 = · · · = uj−1 =
p− 1

2
, 0 ≤ uj ≤

p− 3

2
,

uj+1, . . . , un ∈ Fp}

and write

B = ∪nj=1Bj.

Define the binary lattice Inp → {−1,+1} by

η(x) =







+1 if f(ϕ(x)) 6= 0 and f(ϕ(x))−1 ∈ B

−1 otherwise.
(2.5)

9



(As they write in [17]: “We remark that the definition of B is made slightly

complicated by the fact that we have to balance between two requirements:

the structure of B must be possibly symmetric, easy to handle and, on the

other hand, its cardinality must approximate
q

2
well.”)

It was shown that if k is not very large, then Qk(η) is “small” for this

binary lattice η:

Theorem E If p, q, n, ℓ,B and η are defined as above, k ∈ N

k, ℓ < p, k + ℓ ≤ p+ 1

and

kℓ <
q

2
,

then we have

Qk(η) <
(

2k+3 + 1
)

kℓnkq1/2(log p+ 2)n+k.

We have tried to show that there is a large family of binary lattices of

type (2.5) obtained from polynomials of form (2.4) (so that by Theorem E

the pseudorandom measures Qk of the lattices are small for small k) and the

complexity of this family is large, it is collision free, and it also possesses

the strict avalanche property (as it happens in case of the quadratic char-

acter construction studied in Part I). Unfortunately, we have not been able

to do this. The difficulty is that the polynomials f appearing in this con-

struction have the very special structure given in (2.4) which can be handled

only by multiplicative characters (which appear in the quadratic character

construction) but it can be handled neither by additive characters (which is

the natural approach in case of construction (2.5)) nor by the interpolation

method used in [1].

Since the estimate of the family complexity seems to be so difficult in case

of the multiplicative inverse construction (2.3), thus we will return here to

construction (2.1) which is slightly simpler and thus it can be handled more

10



easily. First in Section 3 we will extend construction (2.1) to n dimensions

by using the same finite fields approach which was used in [17] for extending

construction (2.3) to the n dimensional construction (2.5), and we will show

that Qk(η) is small for the binary lattice obtained in this way if k is small.

Then in Section 4 we will introduce a large subfamily of these lattices, and

we will show that its family complexity is also large; we will prove this by

using a variant of the interpolation method (introduced in [1]). Finally, in

Section 5 we will show that the same subfamily is collision free, and it also

possesses the strict avalanche property. Thus this subfamily is composed of

lattices each having strong pseudorandom properties, and their family also

possesses strong pseudorandom properties.

3 Extension of construction (2.1) to n dimen-

sions and estimate of the pseudorandom mea-

sures.

We will use the same notations as in Section 2. Let f(z) ∈ Fq[z] be a

non-constant polynomial, and define the binary lattice η : Inp → {−1,+1}

by

η(x) = ηf(x) =







+1 if f(ϕ(x)) ∈ B

−1 if f(ϕ(x)) 6∈ B.
(3.1)

Theorem 1 Let k, ℓ ∈ N with

2 ≤ ℓ < p (3.2)

and

2 ≤ k ≤ ℓ− 1, (3.3)

let f(z) ∈ Fq[z] be of degree ℓ, and define η by (3.1). Then we have

Qk(EN) < 2kℓnkq1/2(log p+ 2)n+k. (3.4)

11



As Theorem B shows condition (3.3) is necessary in the special case n = 1.

This result could be extended to the case of general n (so that (3.3) is also

necessary for n > 1); we will not go into details of this here.

Proof of Theorem 1. Consider the i-th factor η(x + di) in the sum in

definition of Qk(η). By (3.1), the value of this is

η(x + di) =







+1 if f(ϕ(x + di)) ∈ B

−1 if f(ϕ(x + di)) 6∈ B.
(3.5)

Clearly, ϕ(x + di) = ϕ(x) + ϕ(di), so that writing ϕ(x) = z and ϕ(di) = zi,

(3.5) can be rewritten as

η(x + di) =







+1 if f(z + zi) ∈ B

−1 if f(z + zi) 6∈ B.
(3.6)

Moreover, if x runs over the elements of the box N -lattice

B = {x = (x1b1, x2b2, . . . , xnbn) : 0 ≤ xi ≤ ti for i = 1, 2, . . . , n}

then z runs over the box

B′ = {ϕ(x) : x ∈ B}

= {x1b1v1 + x2b2v2 + · · ·+ xnbnvn : xi ∈ N ∪ {0}, 0 ≤ xi ≤ ti} ⊆ Fq.

Clearly, for all u ∈ Fq we have

2





1

q

∑

b∈B

∑

h∈Fq

ψ1 (h(u− b)) −
1

2



 =







+1 if u ∈ B

−1 if u 6∈ B

where ψ1 denotes the canonical character of Fq thus (3.6) can be rewritten

as

η(x + di) = 2





1

q

∑

b∈B

∑

h∈Fq

ψ1 (h(f(z + zi) − b)) −
1

2
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so that the sum in the definition of Qk(η) can be written as

∑

x∈B

η(x + d1) . . . η(x + dk) =
∑

z∈B′

2k
k
∏

i=1





1

q

∑

b∈B

∑

h∈Fq

ψ1 (h(f(z + zi) − b)) −
1

2



 .

(3.7)

Separating the h = 0 term in the general factor of the product we get

1

q

∑

b∈B

∑

h∈Fq

ψ1 (h(f(z + zi) − b)) −
1

2
=

(

1

q

∑

b∈B

1 −
1

2

)

+
1

q

∑

b∈B

∑

h∈F∗

q

ψ1 (h(f(z + zi) − b)) .

Here we have

1

q

∑

b∈B

1 −
1

2
=

1

q

n
∑

j=1

|Bj | −
1

2
=

1

q

n
∑

j=1

p− 1

2
· pn−j −

1

2
=

1

2q
(pn − 1) −

1

2

=
q − 1

2q
−

1

2
= −

1

2q

13



so that it follows from (3.7) that
∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

z∈B′

2k
k
∏

i=1





1

q

∑

b∈B

∑

h∈F∗

q

ψ1 (h(f(z + zi) − b)) −
1

2q





∣

∣

∣

∣

∣

∣

=
1

qk

∣

∣

∣

∣

∣

∑

z∈B′

(

(−1)k +

k
∑

j=1

(−1)k−j2j
∑

(b1,...,bj)∈Bj

∑

(h1,...,hj)∈(F∗

q)
j

∑

1≤i1<···<ij≤k

ψ1(h1(f(z + zi1) − b1) + · · · + hj(f(z + zij ) − bj))

)∣

∣

∣

∣

∣

≤ 1 +
1

qk

k
∑

j=1

2j
∑

(h1,...,hj)∈(F∗

q)
j

∑

1≤i1<···<ij≤k

∣

∣

∣

∣

∣

∑

z∈B′

ψ1(h1(f(z + z1)) + · · · + hj(f(z + zj)))

∣

∣

∣

∣

∣

×

×

∣

∣

∣

∣

∣

∣

∑

(b1,...,bj)∈Bj

ψ1(−h1b1 − · · · − hjbj)

∣

∣

∣

∣

∣

∣

. (3.8)

In order to estimate the penultimate sum we will need Weil’s theorem

[20]:

Lemma 1 If q is a prime power, ψ is a nontrivial additive character of Fq,

and g(x) ∈ Fq[x] is a polynomial of degree d with d ≥ 1, then we have
∣

∣

∣

∣

∣

∣

∑

z∈Fq

ψ(g(z))

∣

∣

∣

∣

∣

∣

≤ (d− 1)q1/2.

We will use the incomplete version of this theorem:

Lemma 2 Assume that q = pn is a prime power, ψ is a nontrivial additive

character of Fq, and g(x) ∈ Fq[x] is a polynomial of degree d with d ≥ 2 and

B ⊆ Fq is a box of form

B = {

n
∑

j=1

jivi : 0 ≤ ji ≤ ti for i = 1, 2, . . . , n}
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(where v1, . . . , vn are linearly independent over the prime field of Fq). Then

we have
∣

∣

∣

∣

∣

∣

∑

z∈B

ψ(g(z))

∣

∣

∣

∣

∣

∣

≤ (d− 1)q1/2(2 + log p)n. (3.9)

Proof of Lemma 2. This can be derived from the complete version in

Lemma 1 in the standard way; for the sake of completeness we sketch the

proof. By ψ 6= ψ0 for any u, b ∈ Fq we have

1

q

∑

h∈Fq

ψ(h(u− b)) =







1 if u = b

0 if u 6= b,

and thus
∣

∣

∣

∣

∣

∣

∑

z∈B

ψ(g(z))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

u∈Fq

ψ(g(u))
∑

b∈B

1

q

∑

h∈Fq

ψ(h(u− b))

∣

∣

∣

∣

∣

∣

≤
1

q

∑

h∈Fq

∣

∣

∣

∣

∣

∣

∑

u∈Fq

ψ(g(u) + hu)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B

ψ(hb)

∣

∣

∣

∣

∣

∣

(3.10)

By deg g(u) = d ≥ 2 we have

deg (g(u) + hu) = deg g(u) ≥ 2

for every h ∈ Fq, thus we may estimate the middle sum by using Lemma 1,

and then we obtain
∣

∣

∣

∣

∣

∣

∑

u∈Fq

ψ(g(u) + hu)

∣

∣

∣

∣

∣

∣

≤ (d− 1)q1/2 for every h ∈ Fq. (3.11)

Moreover, by formula (3.21) in [17], for ψ 6= ψ0 and any box B of the given

type we have

∑

h∈Fq

∣

∣

∣

∣

∣

∣

∑

b∈B

ψ(hb)

∣

∣

∣

∣

∣

∣

≤ q(2 + log p)n. (3.12)

(3.9) follows from (3.10) by (3.11) and (3.12), and this completes the proof

of Lemma 2.

To complete the proof of Theorem 1 it suffices to prove
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Lemma 3 In the penultimate sum in (3.8) we have

deg
(

h1f(z + zi1) + · · · + hjf(z + zij )
)

≥ 2 (3.13)

for every (h1, . . . , hj) ∈ (F∗
q)
j and 1 ≤ i1 < · · · < ij ≤ k.

First we will show that, indeed, (3.4) follows from (3.8) and Lemma 3,

and we will return to the proof of Lemma 3 after this.

By Lemma 3, each of the polynomials h1f(z + z1) + · · · + hjf(z + zj) in

the penultimate sum in (3.8) is of degree greater than 1, and clearly, each of

them has degree at most deg f = ℓ. Thus we may use Lemma 2 to estimate

these sums, and then we get

∣

∣

∣

∣

∣

∑

z∈B′

ψ1(h1f(z + z1) + · · ·+ hjf(z + zj))

∣

∣

∣

∣

∣

≤ (ℓ− 1)q1/2(2 + log p)n.

Thus it follows from (3.8) that

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

≤ 1 +
1

qk

k
∑

j=1

2j
∑

(h1,...,hj)∈(F∗

q)j

∑

1≤i1<···<ij≤k

(ℓ− 1)q1/2(2 + log p)n
j
∏

i=1

∣

∣

∣

∣

∣

∑

b∈B

ψ1(hib)

∣

∣

∣

∣

∣

= 1 +
1

qk

k
∑

j=1

2j(ℓ− 1)q1/2(2 + log p)n
(

k

j

)





∑

h∈F∗

q

∣

∣

∣

∣

∣

∑

b∈B

ψ1(hb)

∣

∣

∣

∣

∣





j

. (3.14)

Here we have

∑

h∈F∗

q

∣

∣

∣

∣

∣

∑

b∈B

ψ1(hb)

∣

∣

∣

∣

∣

=
∑

ψ 6=ψ0

∣

∣

∣

∣

∣

∑

b∈B

ψ(b)

∣

∣

∣

∣

∣

=
∑

ψ 6=ψ0

∣

∣

∣

∣

∣

n
∑

i=1

∑

b∈Bi

ψ(b)

∣

∣

∣

∣

∣

≤
∑

ψ 6=ψ0

n
∑

i=1

∣

∣

∣

∣

∣

∑

b∈Bi

ψ(b)

∣

∣

∣

∣

∣

=
n
∑

i=1

∑

ψ 6=ψ0

∣

∣

∣

∣

∣

∑

b∈Bi

ψ(b)

∣

∣

∣

∣

∣

16



By (3.29) in [17] we have

∑

ψ 6=ψ0

∣

∣

∣

∣

∣

∑

b∈Bi

ψ(b)

∣

∣

∣

∣

∣

< q

(

log p +
3

2

)

so that

∑

h∈F∗

q

∣

∣

∣

∣

∣

∑

b∈B

ψ1(hb)

∣

∣

∣

∣

∣

<
n
∑

i=1

q

(

log p+
3

2

)

= nq

(

log p+
3

2

)

. (3.15)

Thus it follows from (3.14) that

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dk)

∣

∣

∣

∣

∣

≤ 1 +
1

qk

k
∑

j=1

2j(ℓ− 1)q1/2(2 + log p)n

(

k

j

)(

nq

(

log p +
3

2

))j

= 1 +
ℓ− 1

qk
q1/2(2 + log p)n

k
∑

j=1

(

k

j

)

(

2nq

(

log p +
3

2

))j

< 1 +
ℓ− 1

qk
q1/2(2 + log p)n

(

1 + 2nq

(

log p +
3

2

))k

< 1 + (ℓ− 1)q1/2(2 + log p)n (2n (log p+ 2))k

< 2kℓnkq1/2(log p + 2)n+k.

This holds for every B,d1, . . . ,dk which proves (3.4) in the theorem.

It remains to prove Lemma 3.

Proof of Lemma 3 Write

F (z) = h1f(z + zi1) + · · ·+ hjf(z + zij ),

and assume that contrary to (3.13) we have

deg F (z) = 0 or 1, or F (z) ≡ 0. (3.16)
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By the assumption deg f = ℓ < p in (3.2), for every zi ∈ Fq we may use the

Taylor formula to write

f(z + zi) =

ℓ
∑

m=0

zmi
m!
f (m)(z).

(where f (m)(z) denotes the m-th derivative of f(z)). By (3.3) we have

j ≤ k ≤ ℓ− 1, (3.17)

thus we may rewrite this as

f(z + zi) =

j−1
∑

m=0

zmi
m!
f (m)(z) + ri(z)

with some polynomial ri(z) of degree at most ℓ− (j − 1) − 1 = ℓ− j. Thus

F (z) can be written as

F (z) =

j
∑

t=1

ht

j−1
∑

m=0

zmit
m!
f (m)(z) +

j
∑

t=1

htrit(z) (3.18)

=

j−1
∑

m=0

(

j
∑

t=1

htz
m
it

)

1

m!
f (m)(z) +R(z) (3.19)

where R(z) is a polynomial of degree

deg R(z) ≤ ℓ− j (or R(z) ≡ 0), (3.20)

while the polynomials fm(z) with 0 ≤ m ≤ j − 1 are of degree

deg f (m)(z) = ℓ−m ≥ ℓ− j + 1 (3.21)

so that by (3.17) we have

deg f (m)(z) ≥ 2. (3.22)
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By our indirect assumption (3.16), it follows from (3.19), (3.20), (3.21) and

(3.22) that the coefficient of every f (m)(z) in (3.19) must be 0:

h1 + h2 + · · ·+ hj = 0,

zi1h1 + zi2h2 + · · ·+ zijhj = 0,

...

zj−1
i1

h1 + zj−1
i2

h2 + · · · + zj−1
ij

hj = 0.

This is a system of linear equations in the variables h1, h2, . . . , hj whose deter-

minant is a Vandermonde determinant with generating elements zi1 , zi2, . . . , zij

which are pairwise distinct, thus it is nonzero. It follows that the system has

only the trivial solution

h1 = h2 = · · · = hj = 0,

which contradicts our assumption (h1, h2, . . . , hj) ∈ (F∗
q)
j , and this completes

the proof of the lemma.

4 The family complexity of a large subfamily

of the binary lattices studied in Theorem 1

Suppose that by using construction (3.1) we want to form a large family of

n-dimensional binary p-lattices η each of them having strong pseudorandom

properties, more precisely, we want Qk(η) to be “small” for every η belonging

to the family and every k ∈ N less than a certain parameter K ∈ N. By

Theorem 1 the lattice η = ηf in (3.1) satisfies this requirement if conditions

(3.2) and (3.3) in Theorem 1 hold with ℓ = deg f < p and K in place of

k + 1: K ≤ ℓ < p. On the other hand, if ℓ = deg f increases then the

computational complexity of the construction also increases, thus we have to

keep ℓ = deg f possibly small. To balance these two requirements, we take
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polynomials of degree exactly K, i.e., wee consider the family

GK = {η : η = ηf is of form (3.1) with f ∈ Fq[x], deg f = K}.

Note that the coefficients of f can be chosen in (q − 1)qK ways so that

|GK | = (q − 1)qK . (4.1)

Now we will define a subfamily HK of GK which is just slightly smaller than

GK , and we will show that it is of high family complexity (it follows from

HK ⊆ GK that Γ(HK) ≤ Γ(GK) so that then GK is also of high complexity),

it is also collision free, and it possesses the strict avalanche property. Thus,

indeed, both the lattices belonging to this family HK and the family itself

will possess all the pseudorandom properties studied by us.

Define S+ and S− as the set of the polynomials of the following form:

S+ = {xK + x2g(x) + x+ 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0},

S− = {xK + x2g(x) − x− 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0},

and let

S = S+ ∪ S−

and

HK = {η : η = ηf with some f ∈ S}.

Note that clearly

|S| =
∣

∣S+
∣

∣+
∣

∣S−
∣

∣ = 2qK−2,

and in the next section we will show that HK = HK(S) is collision free so

that

|HK | = |S| = 2qK−2 (4.2)

which is indeed, just slightly smaller than |GK | in (4.1).

Now we will prove that HK is of high complexity:
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Theorem 2 Define q = pn, S and HK as above, and assume that K ∈ N is

such that

3 < K < p. (4.3)

Then we have

Γ(HK) ≥ K − 2. (4.4)

Note that by (1.4) and (4.2) we have

Γ(HK) ≤
log |HK |

log 2
=

log 2 + (K − 2) log q

log 2
<

2

log 2
(K − 2) log q

so that our lower bounds (4.4) is worse than the best possible one by at most

a factor c log q.

Proof of Theorem 2 We will use a modified and extended version of the

interpolation method applied in [1]. While this method gives slightly weaker

estimate than the optimal one, it has the advantage that it is more flexible

than the method used in [4] and it can be adapted to more general situations.

We will use the same notations as in Section 5.

In order to prove (4.4) we have to show that for any specification

η(x1) = ε1, η(x2) = ε2, . . . , η(xK−2) = εK−2, (4.5)

of length K − 2 there is an f ∈ S such that the associated binary lattice

η = ηf : Inp → {−1,+1} satisfies it. For each of the vectors xi ∈ Inp

considered in (4.5) we write ϕ(xi) = yi and Y = {y1, y2, . . . , yK−2}. Then by

(3.1),

η(xi) = εi

holds for some η = ηf if and only if (4.6)

f(yi) ∈ B if εi = +1 and f(yi) 6∈ B if εi = −1. (4.6)

Since clearly 1 ∈ B1 ⊆ B for p > 3 and 1 ∈ B2 ⊆ B for p = 3, and −1 6∈ B,

thus (4.6) follows from

f(yi) = εi (4.7)
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so that it suffices to show that there is an f ∈ S = S+ ∪ S− such that (4.7)

holds for i = 1, 2, . . . , K − 2.

If 0 6∈ Y , or 0 ∈ Y and for the i0 with yi0 = 0 we have

εi0 = +1, (4.8)

then we look for such an f in S+, i.e., we represent it in the form

f(y) = yK + y2g(y) + y + 1. (4.9)

Clearly, f(0) = +1 for every f of this form, so that if 0 ∈ Y then by (4.8),

(4.7) holds trivially for i = i0. Thus we may restrict ourselves to i 6= i0 in

(4.7), i.e., we are looking for a

g ∈ Fq[y] with deg g(y) ≤ K − 3 or g(y) ≡ 0 (4.10)

such that

f(yi) = yKi + y2
i g(yi) + yi + 1 = εi

for i 6= i0. If i 6= i0, i.e., yi 6= 0, then the last equality can be rewritten in the

form

g(yi) = −yK−2
i +

εi − yi − 1

y2
i

(for i 6= i0). (4.11)

Since i may assume at most K−2 values here, thus there is an interpolation

polynomial g of form (4.10) which satisfies (4.11) for every i 6= i0 (which can

be determined by Lagrange or Newton interpolation) and then the polyno-

mial f defined by (4.9) is of the desired properties.

It remains to consider the case when 0 ∈ Y and for the i0 with yi0 = 0

we have

εi0 = −1.

Then we look for f in S−, i.e., we represent it in the form

f(y) = yK + y2g(y)− y − 1.
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Then again (4.7) holds trivially for i = i0. It remains to find a polynomial g

of form (4.10) such that

f(yi) = yKi + y2
i g(yi) − yi − 1 = εi

or, in equivalent form,

g(yi) = −yK−2
i +

εi + yi + 1

y2
i

(for i 6= i0).

Again, such a polynomial g can be found by interpolation, and this completes

the proof of Theorem 2.

5 The family studied in Section 4 is collision

free and it possesses the strict avalanche prop-

erty

We will prove

Theorem 3 Using the notations and assumptions of Section 4 we have

m(HK) >
1

2

(

q − 6(K − 1)n2q1/2

(

log p+
3

2

)2
)

. (5.1)

Note that if

6(K − 1)n2

(

log p+
3

2

)2

< q3/2 (5.2)

then the right hand side of (5.1) is positive so that m(HK) > 0 and thus HK

is collision free. This proves

Corollary 1 If (5.2) holds then HK is collision free.

Moreover, if q → ∞ and

Kn2(log p)2 = o(q3/2) (5.3)
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then it follows from (5.1) that

m(HK) >

(

1

2
− o(1)

)

q

which proves

Corollary 2 If (5.3) holds then HK possesses the strict avalanche property.

Proof of Theorem 3 Assume that f, g ∈ S and f 6= g. Then as at the

beginning of the proof of Theorem 2 in [9] we have

d(ηf , ηg) =
1

2



q −
∑

x∈In
p

ηf(x)ηg(x)



 . (5.4)

If we write ϕ(x) = z, then in the same way as in the proof of Theorem 1 we

get

ηf (x) = 2





1

q

∑

b∈B

∑

h∈Fq

ψ1(h(f(z) − b)) −
1

2





= 2





1

q

∑

b∈B

∑

h∈F∗

q

ψ1(h(f(z) − b)) −
1

2q



 (5.5)

and

ηg(x) = 2





1

q

∑

b∈B

∑

h∈F∗

q

ψ1(h(g(z) − b)) −
1

2q



 . (5.6)

If x runs over the elements of Inp then ϕ(x) = z runs over the elements of Fq.

Thus by (5.5) and (5.6), the sum in (5.4) can be rewritten as

∑

x∈In
p

ηf (x)ηg(x) = 4





1

q

∑

b∈B

∑

h∈F∗

q

ψ1(h(f(z) − b)) −
1

2q



×

×





1

q

∑

b∈B

∑

h∈F∗

q

ψ1(h(g(z) − b)) −
1

2q





= 4
(

∑

1
+
∑

2
+
∑

3

)

+
1

q2
(5.7)
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where

∑

1
=

1

q2

∑

h1∈F∗

q

∑

h2∈F∗

q

∑

z∈Fq

ψ1(h1f(z) + h2g(z))
∑

b1∈B

ψ1(−h1b1)
∑

b2∈B

ψ1(−h2b2),

∑

2
=

1

2q2

∑

h∈F∗

q

∑

z∈Fq

ψ1(h(f(z)))
∑

b∈B

ψ1(−hb)

and
∑

3
=

1

2q2

∑

h∈F∗

q

∑

z∈Fq

ψ1(h(g(z)))
∑

b∈B

ψ1(−hb).

We have

∑

1
=

1

q2

∑

h1∈F∗

q

∑

h2∈F∗

q

∣

∣

∣

∣

∣

∣

∑

z∈Fq

ψ1(h1f(z) + h2g(z))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b1∈B

ψ1(−h1b1)

∣

∣

∣

∣

∣

×

×

∣

∣

∣

∣

∣

∑

b2∈B

ψ1(−h2b2)

∣

∣

∣

∣

∣

. (5.8)

We will show that for every h1, h2 ∈ F
∗
q we have

deg (h1f(z) + h2g(z)) ≥ 1. (5.9)

Indeed, if h1 6= −h2, then the coefficient of xK in h1f(z)+h2g(z) is nonzero.

If h1 = −h2 and both f(z) and g(z) belong to S+ or both belong to S−,

then, by f 6= g the coefficient of at least one of x2, x3, . . . , xK−1 is nonzero.

Finally, if h1 = −h2 and one of f and g belongs to S+ and the other one to

S− then the coefficient of x is ±2h1 6= 0 (note that p > 2). This proves (5.9)

so that we may apply Lemma 1 to estimate the middle sum in (5.8). Clearly,

the degree of the polynomial in (5.9) is at most K, thus we obtain
∣

∣

∣

∣

∣

∣

∑

z∈Fq

ψ1(h1f(z) + h2g(z))

∣

∣

∣

∣

∣

∣

≤ (K − 1)q1/2

(uniformly for h1, h2 ∈ F
∗
q). Thus it follows from (5.8) that

∣

∣

∣

∑

1

∣

∣

∣
≤

1

q2
(K − 1)q1/2





∑

h∈F∗

q

∣

∣

∣

∣

∣

∑

b∈B

ψ1(−hb)

∣

∣

∣

∣

∣





2
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whence, by (3.15),

∣

∣

∣

∑

1

∣

∣

∣
≤

1

q2
(K − 1)q1/2

(

nq

(

log p+
3

2

))2

= (K − 1)n2q1/2

(

log p+
3

2

)2

.

(5.10)

Clearly we have

∣

∣

∣

∑

2

∣

∣

∣
≤

1

2q2

∑

h∈F∗

q

∣

∣

∣

∣

∣

∣

∑

z∈Fq

ψ1(hf(z))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B

ψ1(−hb))

∣

∣

∣

∣

∣

.

Again we may estimate the middle sum by Lemma 1 and then we may use

(3.15):

∣

∣

∣

∑

2

∣

∣

∣
≤

1

2q2

∑

h∈F∗

q

(K − 1)q1/2

∣

∣

∣

∣

∣

∑

b∈B

ψ1(−hb))

∣

∣

∣

∣

∣

=
1

2q2
(K − 1)q1/2

∑

h∈F∗

q

∣

∣

∣

∣

∣

∑

b∈B

ψ1(−hb))

∣

∣

∣

∣

∣

≤
1

2q2
(K − 1)q1/2nq

(

log p+
3

2

)

=
1

2q1/2
(K − 1)n

(

log p+
3

2

)

, (5.11)

and in the same way,
∣

∣

∣

∑

3

∣

∣

∣
≤

1

2q1/2
(K − 1)n

(

log p+
3

2

)

. (5.12)

It follows from (5.7), (5.10), (5.11) and (5.12) that
∣

∣

∣

∣

∣

∣

∑

x∈In
p

ηf (x)ηg(x)

∣

∣

∣

∣

∣

∣

≤ 4

(

(K − 1)n2q1/2

(

log p+
3

2

)2

+
1

q1/2
(K − 1)n

(

log p +
3

2

)

)

+
1

q2

< 6(K − 1)n2q1/2

(

log p+
3

2

)2

. (5.13)

(5.1) follows from (5.4) and (5.13) which completes the proof of the the-

orem.
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