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Abstract

We study the density of multiplicative bases of subsets of Z formed

by values of polynomials.

1 Introduction

Throughout the paper we will use the following notation: For a set S ⊆ Z

we denote by S(n) the cardinality of the set S ∩ [1, 2, . . . , n]. We say that

a set B ⊆ Z forms a multiplicative basis of order h of S if every element

of S can be written as the product of h members of B. While the study

of additive bases is an intensively studied topic in additive number theory,

much less attention is devoted to multiplicative bases. First multiplicative

basis of [n]
def
= [1, 2, . . . , n] were studied. It is easy to see that every multi-

plicative basis of [n] contains the prime numbers up to n. On the other hand

in 2011 Chan [2] prove that there is a multiplicative basis with less than

π(n) + c(h+ 1)2 n2/(h+1)

log2 n
elements (however he did not use this terminology

of multiplicative bases). This upper bound has been recently sharpened by

a factor h by Pach and Sándor [22]. Namely if Gh(n) denotes the size of the

smallest multiplicative basis of order h of [n] then

π(n) + 0.5h
n2/(h+1)

log2 n
≤ Gh(n) ≤ π(n) + 150.4h

n2/(h+1)

log2 n
.

Slightly related problems were studied by Erdős [9]. Next a few definitions

follow.

Definition 1 In general for a set S we denote by Gh(S) the size of the

smallest multiplicative basis of order h. A basis B of order h is a minimal

basis of order h of S if |B| = |Gh(S)|. We call B a giant basis of order

h of S if |B| ≥ |{1} ∪ S|.

In this paper we will study multiplicative basis of order 2 of the set

S(f(x), n)
def
= [f(1), f(2), . . . , f(n)] where f(x) ∈ Z[x] is a polynomial. (A
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related problem was studied by Hajdu and Sárközy in [12], namely they

studied multiplicative decomposability of polynomial sets.)

Clearly, if f(x) is of the form f(x) = xr then from Chan [2] and Pach and

Sándor’s [22] the following result immediately follows

Proposition 1

π(n) ≤ Gh(S(x
r, n)) ≤ π(n) + 150.4h

n2/(h+1)

log2 n
.

So, for these polynomials f(x) = xr we know the exact order of magnitude

of Gh(S(f(x), n)). Now we will study the case of other polynomials. First

we study the simplest case f(x) = x2 + 1. One may conjecture that the set

S(x2 + 1, n) has only giant bases, but it turned out that this is not the case.

There exists a basis with slightly less elements than |{1} ∪ S(f(x), n)|. On

the other hand we will prove that every multiplicative basis of S(x2 + 1, n)

has at least as many elements as the number of prime numbers of the form

4k + 1 between n and 2n. In other words:

Theorem 1 For every ε > 0 there exists a constant n0 = n0(ε) such that

for n > n0 we have
(

1

2
− ε

)

n

log n
≤ Gh(S(x

2 + 1, n)) ≤ n− n1/2 + (1 + ε)n1/4.

There is a huge gap between the lower and upper bound. It is an interesting

question which one is closer to the truth.

Problem 1 Does there exist a constant ε1 > 0 such that

ε1n ≤ G2(S(x
2 + 1, n)) ≤ (1− ε1)n

is always true?

Next we study the case of general polynomials f(x). In this case we will

be able to prove the following:
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Theorem 2 Let f(x) ∈ Z[x] be a polynomial of degree r ≥ 2 and write f(x)

as a product of irreducible polynomials over Z[x], say

f(x) = f1(x)f2(x) · · · fs(x), (1)

where s denotes the number of irreducible factors in (1). Then

n

(logn)s log r/ log 2
≪ G2(S(f(x), n)).

We remark that from Theorem 2 immediately follows the following:

Corollary 1 Let f(x) ∈ Z[x] be a polynomial of degree r ≥ 2. Then

n

(log n)r log r/ log 2
≪ G2(S(f(x), n)).

In case of the polynomial f(x) = x2 + 1, the lower bound in Theorem 2

gives the same result as the one in Theorem 1.

As a general upper bound we are able to give the trivial bound

|{1} ∪ S(f(x), n)| ≤ n+1. Related to the upper bound we ask the following

questions.

Problem 2 Is there any polynomial f(x) such that for every n the set

S(f(x), n) has only giant bases of order 2, in other words do we have for

every basis B of order 2 the following

|B| ≥ |{1} ∪ S(f(x), n)|?

Or, is there a general non-trivial upper bound for G2(S(f(x), n))?

Perhaps the lower bound in Theorem 2 can be sharpened. We also ask

the following:

Problem 3 Is it possible to give a general better lower bound for

G2(S(f(x), n)) than the bound n
(logn)s log r/log2 in Theorem 2?
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So far we have been studying multiplicative bases of S(f(x), n) =

{f(1), f(2), f(3), . . . , f(n)}. Next we study the multiplicative bases of its

subsets, i.e. sets of the form

W
def
= {f(a1), f(a2), f(a3), . . . , f(ak)}, (2)

where 1 ≤ a1 < a2 < · · · < ak ≤ n are integers. If B is a multiplicative basis

of order 2 of W, then each elements of W can be written in the form bibj

with bi, bj ∈ B, thus

|W| ≤ |B|2 ,

and so

|W|1/2 ≤ |B| . (3)

In case of polynomials f(x) of degree 2, this problem is slightly related

to the study of Diophantine tuples (see e.g. [1], [4], [5], [6], [7], [8], [13]).

We will study whether (3) is the best possible general lower bound? Under

some not too restrictive conditions on the ai’s in W we will prove |W|2/3 ≪

|B|:

Theorem 3 Let f(x) ∈ Z[x] be a polynomial of degree degf ≥ 2 and

u, a1, a2, . . . , ak be positive integers such that

u ≤ a1 < a2 < · · · < ak < 2u. (4)

We define W by (2). If B is a multiplicative basis of order 2 of W then

|W|2/3 ≪ |B| . (5)

Remark 1 If f(x) is of the form f(x) = xr + ar−3x
r−3 + · · ·+ ar−4x

r−4 +

· · ·+ a0 (so the coefficients of the terms xr−1 and xr−2 are 0), then Theorem

3 also holds if in place of (4) only u ≤ a1 < a2 < · · · < ak < u2 holds.

Related to Theorem 3 we ask the following
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Problem 4 Is it true that the lower bound (5) holds for arbitrary ai’s, i.e.

is condition (4) indeed necessary in Theorem 3? In this general case which

lower bound can be given for |B|?

Remark 2 Let B be a multiplicative basis of order 2 of the set W defined in

Theorem 3. Probably, the lower bound (5) in case of certain special polyno-

mials might be sharpened to |W|3/4 ≪ |B|. For more details see the end of

the proof of Theorem 3.

Finally we will say a few words about sets having only giant bases. Clearly

the set I = [a2, a2 + 1, a2 + 2, . . . , a2 + a] has only giant bases: Let B be a

multiplicative basis of I of order 2. We split B into two disjoint subsets, so

B = B1 ∪ B2 where

B1
def
= {b ∈ B : b ≤ a}

B2
def
= {b ∈ B : b ≥ a + 1}.

If bibj ∈ I and bi < bj , then bi ≤ a and bj ≥ a + 1. Thus for bibj ∈ I and

bi < bj , we have bi ∈ B1 and bj ∈ B2.

For each b ∈ B2 there exists at most one element i of I for which b | i

since |I| = a+ 1 ≤ b. Thus

a+ 1 = |I| ≤ |B2| < |B| ,

from which the statement follows.

Our final problem is the following:

Problem 5 Let I = [m+ 1, m+ 2, . . . , m+ n] and d ≥ 2 is an integer. For

which m and n’s does I have only giant bases?

2 Proofs of Theorem 1 and 2

Proof of Theorem 1
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First we prove that for n > n0(ε) we have
(

1

2
− ε

)

n

log n
≤ Gh(S(x

2 + 1, n)). (6)

Let B be a multiplicative basis of order h of S(x2 + 1, n). Let P denote

the following set

P
def
= {p : p is a prime of form 4k + 1 and n < p < 2n}. (7)

For every prime p ∈ P we assign the smallest positive integer g = g(p) with

p | g(p)2 + 1.

Since for p ∈ P, p is a prime number of form 4k + 1, the congruence

x2 ≡ −1 (mod p)

has two different solutions, and one of them is between 1 and (p− 1)/2, thus

1 ≤ g(p) ≤
p− 1

2
< n. (8)

Since B is a multiplicative basis of S(x2 + 1, n) it is also a multiplicative

basis of its subsets, namely B is a multiplicative basis of

S1
def
= {g(p)2 + 1 : p ∈ P}

since S1 ⊂ S(x2 + 1, n) by (8).

For every p ∈ P, S1 contains a multiple of p since p | g(p)2 + 1. Thus

B contains a multiple of p, which we denote by h(p). Thus h(p) ∈ B and

p | h(p).

We will prove that for p, q ∈ P, p 6= q

h(p) = h(q)

is not possible. Contrary, suppose that p 6= q and h(p) = h(q). Then

p | h(p), q | h(q).
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Thus

pq | h(p) = h(q).

Since p, q ∈ P we have n+ 1 ≤ p, q so

(n + 1)2 ≤ pq ≤ h(p) = h(q). (9)

But B is a multiplicative basis of S(x2+1, n) so its elements are less or equal

to n2 + 1, thus

h(p) = h(q) ≤ n2 + 1,

which contradicts (9).

Thus the function h : P → B is injective, so

|P| ≤ |B| ,

which proves (6).

In order to prove

Gh(S(x
2 + 1, n)) ≤ n− n1/2 + (1 + ε)n1/4.

we will prove a slightly stronger upper bound, namely Gh(S(x
2 + 1, n)) ≤

n−n1/2+n1/4+2. It is enough to construct a multiplicative basis B of order

h of S(x2 + 1, n) with

|B| ≤ n− n1/2 + n1/4 + 2.

First observe that

(

a2 + 1
) (

(a + 1)2 + 1
)

=
(

a2 + a+ 1
)2

+ 1. (10)

Let

B
def
= {x2+1 : 0 ≤ x ≤ n}\{

(

a2 + a+ 1
)2
+1 : n1/2+0.5 ≤ a2+a+1 ≤ n}.

In order to prove that B is a multiplicative basis of order h it is enough to

prove that for 1 ≤ x ≤ n the integer x2 + 1 can be written as a product of h
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elements of B. If x is not of the form a2+a+1 where n1/2+0.5 ≤ a2+a+1 ≤ n,

then it is clear that

x2 + 1 = b1b2b3 · · · bh (11)

where b1 = x2 + 1 ∈ B and b2 = b3 = · · · = bh = 1 ∈ B.

If x = a21 + a1 + 1 for some integer a1 and n1/2 + 0.5 ≤ a21 + a1 + 1 ≤ n,

then by (10)

x2 + 1 =
(

a21 + a1 + 1
)2

+ 1 =
(

a21 + 1
) (

(a1 + 1)2 + 1
)

.

Thus

x2 + 1 = b1b2b3 · · · bh,

with b1 = a21 + 1, b2 = (a1 +1)2 + 1, b3 = · · · = bh = 1. It is easy to see that

from a21 + a1 + 1 ≤ n follows

a1 < a1 + 1 < n1/2 + 0.5.

So

b1, b2 /∈ {y2 + 1 : n1/2 + 0.5 ≤ y ≤ n},

therefore

b1, b2 /∈ {
(

a2 + a+ 1
)2

+ 1 : n1/2 + 0.5 ≤ a2 + a+ 1 ≤ n}.

Thus by the definition of B we have b1, b2 ∈ B and we also have b3 = b4 =

· · · = bh = 1 ∈ B. Computing the number of elements of B we get

|B| ≤ n− n1/2 + n1/4 + 2,

which was to be proved.

Proof of Theorem 2

Throughout the proof c1, c2, c3, . . . will denote constants depending only

on the polynomial f(x). We may also suppose that the leading coefficient of

f(x) is positive.

9



Let τ(a) denote the number of positive divisors of a positive integer a. It

is well-known that
n

∑

a=1

τ(a) = n log n+O(n).

In 1952 Erdős [10] extended this result to polynomials, namely he proved

the following:

Lemma 1 (Erdős) Let f(x) ∈ Z[x] be an irreducible polynomial. There

exist positive integers c1 and c2 depending on f(x) such that for n ≥ 2 we

have

c1n logn <
n

∑

a=1

τ(f(a)) < c2n log n. (12)

Here we mention that Erdős gave an existence proof, and he could not

give bounds on the order of magnitude of the constants c1 and c2 in Lemma 1.

Recently Lapkova [17] achieved some good bounds in the case of polynomials

of degree 2. Related results can be found in [3].

In order to prove Theorem 2 we will need only the upper bound in (12).

Let s denote the number of irreducible factors fj(x) in (1). Using Erdős’s

lemma we will prove the following:

Lemma 2 There exists a constant c3 depending only on the polynomial f(x)

such that for every integer n large enough we have that the set

E(f(x), n)
def
= {a : n/4 ≤ a ≤ n and τ(f(a)) < c3(log n)

s} (13)

has at least n/4 different elements.

Proof of Lemma 2

Let s denote the number of irreducible factors fj(x) in (1). By Erdős’s

lemma for 1 ≤ j ≤ s we have

n
∑

a=1

τ(fj(a)) < c2n logn.
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Thus
n

∑

a=1

(τ(f1(a)) + τ(f2(a)) + · · ·+ τ(fs(a))) < sc2n logn = c4n logn. (14)

Let

A1
def
= {1 ≤ a ≤ n : τ(f1(a)) + τ(f2(a)) + · · ·+ τ(fs(a)) ≥ 2c4 log n, }

A2
def
= {1 ≤ a ≤ n : τ(f1(a)) + τ(f2(a)) + · · ·+ τ(fs(a)) < 2c4 logn.}

Clearly A1 and A2 are disjoint and

|A1|+ |A2| = n. (15)

By (14)

|A1| · 2c4 log n ≤
∑

a∈A1

(τ(f1(a)) + τ(f2(a)) + · · ·+ τ(fs(a)))

≤
n

∑

a=1

(τ(f1(a)) + τ(f2(a)) + · · ·+ τ(fs(a)))

< c4n logn.

Thus

|A1| < n/2.

From this and (15) we have

|A2| > n/2. (16)

Next we will use the inequality τ(xy) ≤ τ(x)τ(y) and the inequality of arith-

metic and geometric means. For a ∈ A2 we have

τ(f(a)) = τ (f1(a)f2(a) · · · τfs(a))

≤ τ (f1(a)) τ (f2(a)) · · · τ (fs(a))

≤

(

τ (f1(a)) + τ (f2(a)) + · · ·+ τ (fs(a))

s

)s

<

(

2c4 log n

s

)s

= c5(logn)
s. (17)
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Define C by

C
def
= {a : n/4 ≤ a < n and a ∈ A2}.

Clearly by (16) we have

|C| ≥ |A2| − n/4 > n/4. (18)

Since C ⊆ A2 by (17) we have for a ∈ C

τ(f(a)) < c5(logn)
s.

Thus if we define E(f(x), n) by (13) with c5 in place of c3 we have C ⊆

E(f(x), n). By this and (18) we have

n/4 < |C| ≤ |E(f(x), n)| ,

which proves Lemma 2.

Define F (f(x), n) by

F (f(x), n)
def
= {f(a) : n/4 ≤ a ≤ n and τ(f(a)) < c3(log n)

s} (19)

Since for fixed number c the equation f(x) = c has at most r = degf solutions

we have

|F (f(x), n)| ≥
1

r
|E(f(x), n)| >

n

4r
= c6n. (20)

Next we prove the following:

Lemma 3 Let B be a multiplicative basis of F (f(x), n) of order 2. Then

|B| ≫
n

(logn)s log r/ log 2
.

From Lemma 3 we immediately get Theorem 2. If B is a multiplicative

basis of S(f(x), n) then it is also a multiplicative basis of F (f(x), n) by

F (f(x), n) ⊆ S(f(x), n).

Proof of Lemma 3
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Define a graph G by the following: its vertices are the elements of B. Two

vertices v1, v2 are joined by an edge {v1, v2} if and only if

v1v2 ∈ F (f(x), n).

In other words there exists a ∈ E(f(x), n) (so n/4 ≤ a < n and τ(f(a)) <

c3(logn)
s) such that

v1v2 = f(a). (21)

By the definition of F (f(x), n) we have

max{τ(v1), τ(v2)} ≤ τ(v1v2) < c3(log n)
s. (22)

Then for the number of vertices and edges of G we have

|V (G)| = |B| (23)

|E(G)| ≥ |F (f(x), n)| > c6n. (24)

Let f(x) be of the form f(x) = arx
r + ar−1x

r−1 + · · · + a1x + a0. Since in

(21) a ≥ n/4, provided that n is large enough, we have

v1v2 = f(a) >
ar
2
ar >

ar
2
(n/4)r = c27n

r ≥ c27n
2.

So for an arbitrary edge e = {v1, v2} of G we have

v1 > c7n or v2 > c7n. (25)

We split the set of vertices B into two disjoint sets:

B1 = {v ∈ B : v > c7n}

B2 = {v ∈ B : v ≤ c7n}

By (25) clearly for every edge e = {v1, v2} of G we have v1 ∈ B1 or v2 ∈ B1.

Thus if we denote by d(v) the degree of a vertex v ∈ B in G then

|E(G)| ≤
∑

v∈B1

d(v). (26)

In Lemma 4 we give an estimate on the degree of a vertex of B1:

13



Lemma 4 For v ∈ B1 we have

d(v) ≪ (logn)s log r/ log 2

Before proving Lemma 4 we show that from Lemma 4 we immediately

get Lemma 3. From Lemma 4, (24) and (26) follows

c6n < |E(G)| ≤
∑

v∈B1

d(v) ≪
∑

v∈B1

(log n)s log r/ log 2 ≪ |B1| (log n)
s log r/ log 2

≪ |B| (log n)s log r/ log 2

from which follows
n

(log n)s log r/ log 2
< |B|

which proves Lemma 3. Thus in order to prove Theorem 2 it is enough to

prove Lemma 4.

Proof of Lemma 4

If d(v) = 0 then the statement of the lemma is trivial. Suppose that there

exist v′ ∈ B such that e = {v, v′} is an edge of G, so there exists n/4 ≤ a < n

for which τ(f(a)) < c3(log n)
s and

vv′ = f(a).

Then

τ(v) ≤ τ(vv′) = τ(f(a)) < c3(log n)
s. (27)

Next a few notations will follow. Let D(f) denote the discriminant of the

polynomial f(x). For a prime p denote by ℓ(p) the largest integer for which

pℓ(p) | D(f)

(thus pℓ(p)+1 ∤ D(f)). For m ∈ N denote by N(f(x), m) the number of

solutions of the congruence

f(x) ≡ 0 (mod m).
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In 1921 Nagel [18] and Ore [19] proved that if p is a prime and k ∈ N then

N(f(x), pk) ≤ rp2ℓ(p). (28)

This was considerably improved by Sándor [20], Huxley [14] and Stewart [21],

but for our purpose (28) is sufficient. Let m be a composite number. By the

Chinese Remainder Theorem we have

N(f(x), m) =
∏

pk||m

N(f(x), pk).

Using (28) we have

N(f(x), m) ≤
∏

p|m

rp2ℓ(p) = rω(m)
∏

p|m

p2ℓ(p)

= rω(m)
∏

p|m, ℓ(p)6=0

p2ℓ(p) ≤ rω(m)
∏

p, ℓ(p)6=0

p2ℓ(p)

≤ rω(m)
∏

p|D(f)

p2ℓ(p) = rω(m)D(f)2

= c8r
ω(m). (29)

Now we are ready to give an upper bound for d(v) if v ∈ B1. We get

d(v) = |{v′ ∈ B : vv′ = f(a) with a ∈ E(f(x), n)}|

≤ |{a ∈ E(f(x), n) : f(a) ≡ 0 (mod v)}|

≤ |{1 ≤ a ≤ n : f(a) ≡ 0 (mod v)}|

Since v ∈ B1 thus v > c7n. Let c9 = ⌈ 1
c7
⌉ then

d(v) ≤

∣

∣

∣

∣

{1 ≤ a ≤
1

c7
v : f(a) ≡ 0 (mod v)}

∣

∣

∣

∣

≤ |{1 ≤ a ≤ c9v : f(a) ≡ 0 (mod v)}|

≤ c9 |{1 ≤ a ≤ v : f(a) ≡ 0 (mod v)}|

= c9N(f(x), v).
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By (29) we have

d(v) ≤ c9c8r
ω(v) = c10r

ω(v)

c10
(

2ω(v)
)log r/ log 2

= c10τ(v)
log r/ log 2.

By (27) we have

d(v) < c10 (c3(log n)
s)log r/ log 2 = c11(log n)

s log r/ log 2,

which completes the proof of Lemma 4, from which Theorem 2 follows.

Proof of Theorem 3

Let f(x) be a polynomial of the form

f(x) = arx
r + ar−1x

r−1 + · · ·+ a1x+ a0.

Define β by β
def
= ar−1

rar
and the polynomial p(x) is

p(x)
def
= f(x− β)

= ar

(

x−
ar−1

rar

)r

+ ar−1

(

x−
ar−1

rar

)r−1

+ . . . a1

(

x−
ar−1

rar

)

+ a0.

Clearly p(x) is of the form

p(x) = qrx
r + qmx

m + qm−1x
m−1 + qm−2x

m−2 + · · ·+ q1x+ q0, (30)

where qm 6= 0 and m ≤ r − 2 (or, in other words the coefficients

qr−1, qr−2, . . . , qm+1 of p(x) are 0). Here we also remark that if ar−1 = 0

then f(x) = p(x).

Let B = {b1, b2, . . . , bt} be a multiplicative basis of W of order 2.

We will use the following lemma

Lemma 5 There exist constants c1 and c2 > 1 depending only on the poly-

nomial f(x) (= p(x−β)) such that if b1, b2, b3, b4 are integers greater than c1
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for which

b1b3 = f(x1) = p(x1 − β)

b1b4 = f(x2) = p(x2 − β)

b2b3 = f(x3) = p(x3 − β)

b2b4 = f(x4) = p(x4 − β)

hold for some integers x1, x2, x3, x4. Then

c2b1b3 < b2b4 if m = r − 2 in (30) and

c2 (b1b3)
2 < b2b4 if m ≤ r − 3 in (30).

Proof of Lemma 5. This is a combination of Lemma 1 and Lemma 2 in

[15].

We define the following graph G. Its vertices are the elements of B, so

V (G) = B. There is an edge between the vertices b1 ∈ B and b2 ∈ B if and

only if there exists an 1 ≤ i ≤ s such that

b1b2 = f(ai) = p(ai − β).

We will denote this edge by {b1, b2}.

Since B is a multiplicative basis of order 2 of W, for the number of the

edges of G we have

|E(G)| ≥ |W| . (31)

Next we will use the constants c1 and c2 defined in Lemma 5. We will

color the edges of G by different colors. We color an edge {b1, b2} of G by the

first color if b1 ≤ c1 or b2 ≤ c1. Clearly, the number of edges colored by the

first color is ≤ 2c1 |B|. For i ≥ 2 we color the edge {b1, b2} of G by the i-th

color if

ci−2
2 u ≤ b1b2 < ci−1

2 u. (32)
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Here b1b2 = f(ai) for some 1 ≤ i ≤ s. Since the leading coefficients of f(x)

is positive and by (4) we have

ar
2

< f(a1), . . . , f(ak) < 2aru
r

if u is large enough depending on the polynomial f(x). By this and (32)

the number of different colors is less than a constant c4 depending on the

polynomial f(x).

By Lemma 5 the graph G does not contain a cycle of length 4, where the

edges of the cycle are colored by the same i-th color for an i ≥ 2. By the

Kövári-Sós-Turán theorem [16] we have that if a graph G has n vertices and

it does not contain a cycle of length 4, than it has at most

1 + n+

[

1

2
n3/2

]

(33)

edges. (Here we remark that in [16] the authors studied matrices containing

0’s and 1’s and not graphs, but considering the adjacency matrix of G one

may get the upper bound in (33).) Since we have at most c4 different colors

we have

|E(G)| ≪ |V (G)|3/2 = |B|3/2 ,

where the implied constant depend on the polynomial f(x). Using (31) we

get

|W| ≪ |B|3/2 ,

from which the theorem follows.

Probably, it can be proved that if m in (30) is significantly smaller than

r which is the degree of the polynomial, then the subgraphs Gi of G formed

by the edges of G colored by the i-th color (where i ≥ 2) do not contain the

following graph θ3,3:

18



From this, using Faudree and Simonovits theorem [11] in extremal graph

theory one may obtain the bound

|W| ≤
∑

i

E(Gi) ≪ c1 |B|+
∑

i≥2

|V (Gi)|
1+1/3 ≪ |B|4/3 ,

from which

|B| ≫ |W|3/4 (34)

follows. Here, we remark that the proof that these subgraphs of G do not

contain θ3,3 can be rather lengthly and complicated, and the desired lower

bound (34) is just slightly stronger than the one in Theorem 3 and it is also

far from the truth. Thus we do not work out the details of the proof here.
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