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Abstract

It is important in cryptographic applications that the “key” used

should be generated from a random seed. Thus, if the Legendre symbol

sequence generated by a polynomial (as proposed by Hoffstein and

Lieman) is used, that is
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then it is important to choose the polynomial f “almost” at random.

Goubin, Mauduit, and Sárközy presented some not very restrictive

conditions on the polynomial f , but these conditions may not be sat-

isfied if we choose a “truly” random polynomial. However, how can it

be guaranteed that the pseudorandom measures of the sequence should

be small for almost "random" polynomials? These semirandom poly-

nomials will be constructed with as few modifications as necessary

from a truly random polynomial.
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1 Introduction

Mauduit and Sárközy [11] proposed a new quantitative techniques to

study pseudorandomness of binary sequences in 1997. They introduced the

following new measures of pseudorandomness:

Definition 1 For a binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N ,

define the well-distribution measure of EN as

W (EN) = max
a,b,t

∣

∣

∣
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∣

t
∑

j=1

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and

1 ≤ a ≤ a+ tb ≤ N , while the correlation measure of order ℓ of EN is defined

as

Cℓ(EN) = max
M,D
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∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dℓ) and M such that

0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N .

It was an important topic in developing the theory of pseudorandom-

ness what estimates may be given for W and Cℓ for an average sequence.

Cassaigne, Mauduit, and Sárközy [4] proved that for almost every binary

sequence of length N ,

√
N ≪ W (EN) ≪

√

N logN

and
√
N ≪ Cℓ(EN) ≪

√

ℓN logN.

Alon, Kohayakawa, Mauduit, Moreira and Rödl [2] sharpened the lower es-

timate with a factor
√
logN and the upper estimate with a constant factor,

2



giving the exact expected magnitude of these measures. Based on these re-

sults, it is safe to conclude that a sequence has very strong pseudorandom

properties if

W (EN), Cℓ(EN ) ≪
√
N (logN)c .

However, in practical applications, to have the estimates

W (EN), Cℓ(EN) ≪ N c

with a positive constant c(< 1) (as N → ∞) is usually satisfactory. It should

be noted that in practical applications a lower estimate is not required at all.

As Alon, Kohayakawa, Mauduit, Moreira and Rödl [1] proved for even order

correlation measure we always have

C2ℓ(EN) ≫
√
N.

Although the correlation of odd order can be very small, even 1, it is clear

from Gyarmati’s [6] and later Anantharam’s [3] and Gyarmati and Mauduit’s

[8] estimates that requiring a lower estimate is unnecessary.

The Legendre symbol sequence was the first to be studied using the mea-

sures defined above. Namely, let

Ep−1 =

{(

1

p

)

,

(

2

p

)

,

(

3

p

)

, . . . ,

(

p− 1

p

)}

.

Sárközy and Mauduit [11] proved that:

W (Ep−1) ≪ p1/2 log p,

Cℓ(Ep−1) ≪ ℓp1/2 log p. (1)

We can say that the Legendre sequence possesses strong pseudorandom mea-

sures because these estimates are substantially sharper than the trivial esti-

mate.

This construction has one major drawback: it provides only one sequence

for each prime. Hoffstein and Liemann [9] improved on this with a simple

idea. Their construction was the following:
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Construction 1 (Hoffstein, Liemann) Let p be a prime, f(x) ∈ Fp[x] be

a polynomial of degree k, which is not of the form cg(x)2 with c ∈ Fp, g(x) ∈
Fp[x]. Define Ep = (e1, . . . , ep) by:

en =







(

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n).

Hoffstein and Lieman, on the other hand, did not prove anything about

the pseudorandomness of this sequence; they only claimed that it possesses

strong pseudorandom properties. However, Goubin, Mauduit, and Sárközy

[5] thoroughly studied Construction 1 and proved the following:

Theorem 1 (Goubin, Mauduit, Sárközy) Let p be a prime, f(x) ∈
Fp[x] be a polynomial of degree k, which is not of the form cg(x)2, where

c ∈ Fp, g(x) ∈ Fp[x]. Define Ep = (e1, . . . , ep) by Construction 1. Then

W (Ep) ≪ kp1/2 log p.

Assume that one of the following three conditions holds for the order ℓ of the

correlation:

(i) ℓ = 2;

(ii) ℓ < p and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then, we have:

Cℓ(Ep) ≪ kℓp1/2 log p.

Goubin, Mauduit, and Sárközy [5] also showed the existence of polynomials

f such that the associated sequences have large correlation. Thus one of the

conditions above, or a condition similar to those is really necessary to imply

that the related sequence has strong pseudorandom properties.

As a result, the pseudorandom measures of the sequences given in Con-

struction 1 are optimal, the elements of the sequence can be generated

quickly, and the construction is natural. It is without a doubt one of the
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most effective pseudorandom generators ever developed (further pseudoran-

dom constructions, as well as their comparison, can be found, for example,

in the survey paper [7]).

If the prime p and the coefficients of the polynomial f are given, the se-

quence in Construction 1 can be programmed quickly. When a sequence in

Construction 1 is used as a secret key in cryptographic systems, the polyno-

mial f must be chosen “almost” at random. This is significant because, for

example, if the coefficients in the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

are consecutive integers, then the value of the other coefficients is im-

mediately derived from the value an. Thus, simply looking at the cases

an = 1, 2, 3, ..., p − 1, the value of the sequence used as the secret key be-

comes decipherable. Similar problem can happen when f only has a few

non-zero coefficients, in which case the secret key can be decrypted again

using brute force.

Returning to the sequences in Construction 1, it is important that the

polynomial f should be chosen at almost random. It is also important that

k, the degree of the polynomial f should not be too small, since all sequences

based on a polynomial of degree k or less can be programmed in a reasonable

amount of time if the degree is small, and then our key sequence is no longer

secret. As a result, in Construction 1, users need to choose the degree of the

polynomial f for at least pε for some small positive constant ε. We believe

that ε = 0.1 is ideal for applications, for example. However, if the degree

is large, condition (iii) of Theorem 1 does not apply. Furthermore, if 2 is

not a primitive root mod p, condition (ii) does not hold, and a high-order

correlation measure can be very large. By Artin’s conjecture 2 is a primitive

root for infinitely many primes, but this is unproved yet.

We propose the following strategy: we select a random polynomial f(x) ∈
Fp[x]. Then we look for a quadratic non-residue n for which f(x) has no
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irreducible factor of the form (x + c)2 − n, with c ∈ Fp. We also select a

random a ∈ Fp. Then, in place of f in Construction 1, we use the polynomial

g(x) = ((x+ a)2 − n)f(x).

Since f is a random polynomial, we can say that g is “semirandom”. The

only thing we know about it is that it has at least one quadratic irreducible

factor. We will show that the pseudorandom measures of the sequences in

Construction 1 based on the new polynomial g are optimally small. Then

we create a fast (polynomial time) algorithm for calculating an appropriate

n quadratic non-residue. Although our algorithm will be probabilistic rather

than deterministic, it will not fail in practice. The probability of never finding

a suitable quadratic non-residue n after running the Step 1-Step 6 of the

algorithm 200 times is < 1
2100

, which is extremely small.

In the following theorem, there is no need for any condition on the order

of correlation (in contrast to Theorem 1, where there was a condition, see

i), ii), or iii)), since the polynomial g(x) has an irreducible quadratic factor

that is not equivalent to any other factors.

Theorem 2 Let p be a prime, a ∈ Fp, n be a quadratic non-residue modulo

p, and f(x) ∈ Fp[x] be a polynomial of degree k. If f(x) has no irreducible

factor of the form (x+ c)2 − n, with c ∈ Fp, then define the polynomial g(x)

by:

g(x) = ((x+ a)2 − n)f(x).

Furthermore, the sequence Ep = {e1, e2, e3, . . . , ep} is defined in the same way

as in Construction 1, but with g(x) within the Legendre symbol:

en =







(

g(n)
p

)

for (g(n), p) = 1,

+1 for p | g(n).

Then:

W (En) ≪ kp1/2 log p,

Cℓ(En) ≪ kℓp1/2 log p.
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Proof of Theorem 2. Goubin, Mauduit, and Sárközy [5] proposed the fol-

lowing equivalence relation: The polynomials ϕ and ψ ∈ Fp[x] are equivalent

if there exists c ∈ Fp for which

ϕ(x) = ψ(x+ c).

Since n is a quadratic non-residue modulo p, the polynomial g(x) in Theorem

2 has the irreducible factor (x+a)2−n. It is easy to see that there is no other

irreducible factor that is equivalent to (x+ a)2 − n. Thus g(x) is not of the

form c∗g∗(x)2 with c∗ ∈ Fp and g∗(x) ∈ Fp[x]. Furthermore, we know that for

1 ≤ d1 < d2 < · · · < dℓ ≤ p, the polynomial g(x+ d1)g(x+ d2) · · · g(x+ dk)

is not of the form c∗g∗(x)2 with c∗ ∈ Fp and g∗(x) ∈ Fp[x], since the factors

equivalent to (x+ a)2 − n in this product are:

(x+ a+ d1)
2 − n, (x+ a+ d2)

2 − n, . . . , (x+ a+ dℓ)
2 − n.

Each of the above irreducible factors appears exactly once in the decom-

position of the polynomial g(x + d1)g(x + d2) · · · g(x + dk) into irreducible

factors.

We then use Weil’s theorem [14] for the prime p and the Legendre symbol

character:

Lemma 1 (Weil) Suppose that Fq is a finite field, χ is a non-principal char-

acter of order d over it, f ∈ Fq[x] has s distinct roots in Fq, and it is not a

constant multiple of the d-th power of a polynomial over Fq. Then:

∣

∣

∣

∣

∣

∣

∑

n∈Fq

χ(f(n))

∣

∣

∣

∣

∣

∣

≤ (s− 1)q1/2.

From here, the argument is the same as in the paper of Goubin, Mauduit,

and Sárközy [5]; it is based on Weil’s theorem above, and the estimates for

W (Ep) and Cℓ(Ep) are obtained immediately. This completes the proof of

Theorem 2.
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2 Admissible quadratic non-residues and the

algorithm

However, what conditions on the quadratic non-residue n are required to

ensure that the polynomial f(x) does not have an irreducible (x + a)2 − n-

shaped factor, where a ∈ Fp? At first glance, this may appear to be a

difficult question, but it is much easier to say that a polynomial does not

have a specific type of root than it is to find one of the roots. We will

now present a fast (polynomial-time) algorithm for finding an appropriate n

quadratic non-residue. First we introduce a new definition.

Definition 2 Let p be an odd prime, f(x) ∈ Fp[x] be a polynomial and n be

a quadratic non-residue modulo p. If f(x) has no irreducible factor of the

form (x+ c)2− n, with c ∈ Fp, then the quadratic non-residue n is said to be

admissible to f(x).

Now we will describe our algorithm for determining an n admissible to

f(x). The algorithm is first illustrated in a figure, followed by step-by-step

instructions for each step of the algorithm.
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Step 1: Choose a

random n ∈ F∗

p.

Step 2: Is n a quadratic

residue modulo p?

Step 3A: Compute the

two variable polynomials

p1(x, y
2) = f(x+y)+f(x−y)

2
,

p2(x, y
2) = f(x+y)−f(x−y)

2y
.

Step 3B: Choose

a new n ∈ F∗

p.

Step 4: Compute the

one variable polynomials

q1(x) = p1(x, n),

q2(x) = p2(x, n).

Step 5: Using the re-

sultant matrix we check

whether q1(x) and q2(x)

have a common root.

Step 6A: Choose a

new n of the form

n := nt2 where t ∈ F∗

p.

Step 6B: The quadratic

non-residue n is

admissible to f(x).

no yes

∃ common root ∄ common root

This algorithm ends if it states that n is admissible to f , however there

are many n’s for which the algorithm cannot determine whether or not n is

admissible, in which case a new n must be picked.

Theorem 3 The probabilistic algorithm shown in the picture above is ef-

ficient in the sense that it generates an admissible n in polynomial time.
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(Moreover, the production of a single quadratic non-residue is the only

probabilistic-nature phase in the process.)

The fact that it is never stated that a particular n is not admissible

is immaterial because the primary goal of the technique is to generate n’s

admissible. Following this, we will study the algorithm in detail, including

its speed, storage, and probabilistic nature.

Proof of Theorem 3. We would like to begin the algorithm by generating a

quadratic non-residue n. This is accomplished by using random techniques.

In Step 1, a random n ∈ Fp is chosen. Since the number of quadratic residues

and quadratic non-residues are both p−1
2

, it has a 50% probability of n being

a quadratic residue and a 50% probability of n being a quadratic non-residue.

If n happens to be a quadratic residue, we choose a new n ∈ F∗

p. The process

is repeated until a quadratic non-residue is found. The probability that we

will always find a quadratic residue n in 100 trials is quite low: 1
2100

. As a

result, we can almost certainly find a quadratic non-residue in a very short

time.

Next we try to find an n quadratic non-residue that is admissible to f .

To do this, calculate the two variables polynomials p1 and p2 given in Step

3A. For p1 and p2 to be well defined, all the coefficients of the polynomials

f(x+ y) + f(x− y)

2

and
f(x+ y)− f(x− y)

2y

must be in Fp and the exponent of every power of y must be even in these

polynomials. The first statement is obvious, while to prove the second, we

write f(x) in the form

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0.
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Then

f(x+ y) + f(x− y)

2
=

n
∑

i=0

ai
(x+ y)i + (x− y)i

2
, (2)

f(x+ y) + f(x− y)

2y
=

n
∑

i=0

ai
(x+ y)i − (x− y)i

2y
, (3)

(4)

According to the binomial theorem, the exponent of y in both polynomials

in (2) and (3) is even. That is, the polynomials p1 and p2 are well defined by

the formulas given in Step 3A.

p1(x, y
2) =

f(x+ y) + f(x− y)

2
,

p2(x, y
2) =

f(x+ y)− f(x− y)

2y
.

A simple calculation shows that

f(x+ y) = p1(x, y
2) + yp2(x, y

2), (5)

f(x− y) = p1(x, y
2)− yp2(x, y

2). (6)

Assume that for a fixed n quadratic non-residue, f(x) has an irreducible

factor of the form (x+c)2−n with c ∈ Fp. Since n is a quadratic non-residue

it is easy to see that Fp2 has an element θ for which

θ2 = n.

Then Fp2 = Fp(θ). By θ 6∈ Fp, we get that in case

u+ vθ = 0, u, v ∈ Fp

we have

u = 0, v = 0

Since f(x) has the irreducible factor (x + c)2 − n, we know that −c + θ

and −c− θ are roots of f(x). Then writing x = −c and y = θ in (5) and (6)
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we get the result

0 = f(−c+ θ) = p1(−c, θ2) + θp2(−c, θ2),

0 = f(−c− θ) = p1(−c, θ2)− θp2(−c, θ2).

Thus it follows from our previous remark with u = p1(−c, θ2) = p1(−c, n)
and v = ±p2(−c, θ2) = ±p2(−c, n) that

p1(−c, n) = 0 and p2(−c, n) = 0,

so that the polynomials q1 and q2 given in Step 4 have a common root −c in

this case. If the resultant of the two polynomials q1 and q2 is not zero in Fp,

then these polynomials have no common root, and hence f(x) cannot have an

irreducible factor of the form (x+ c)2−n, thus n is admissible to f(x). If the

resultant of the two polynomials q1 and q2 is zero in Fp, the polynomials have

a common root (but it is far from certain that it is in Fp). Since we do not

know if n is admissible in this case, we choose a new quadratic non-residue n.

Since every quadratic non-residue has the form nt2 where t ∈ F∗

p, we do not

need to use probabilistic methods to create this new quadratic non-residue;

simply we define the new n by n := nt2 with a t ∈ F∗

p. We return to Step 4

with this new n.

What is the probability that we will get to Step 6B after Step 5 for a

randomly chosen quadratic non-residue n, i.e. the polynomials q1 and q2 do

not have a common root? We know that if there is a common root, which

we denote by a, then:

p1(a, n) = 0

p2(a, n) = 0

θ2 = n

f(a+ θ) = p1(a, n) + θp2(a, n) = 0

f(a− θ) = p1(a, n)− θp2(a, n) = 0.
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So that f has two roots, α = a+ θ and β = a− θ for which

θ =
α− β

2
,

n =

(

α− β

2

)2

.

Then

n ∈ F def
=

{

(

α− β

2

)2

: α, β are different roots of f

}

.

Clearly,

|F| ≤
(

deg f

2

)

<
k2

2
.

Thus if n 6∈ F , then the polynomials q1 and q2 have no common root, implying

that the quadratic non-residue n is certainly admissible to f .

Since F has less than k2/2 elements, thus if we proceed Step 4-Step 6 for

at least k2/2 different quadratic non-residues n (which is possible for p > k2),

then we will certainly find one of them which is admissible to f . We may also

study the probabilistic nature of these steps: by using the upper bound k2/2

for the number of elements in F , we can see that if p > 2k2, the chance of

getting from Step 5 to Step 6B for a randomly chosen quadratic non-residue

n is more than 1/2. Thus if we run this part of the algorithm 100 times,

we will almost certainly find a quadratic non-residue that is admissible to f .

The time required for the algorithm is O(k3(log p)2), the storage required is

O(k2 log p).

3 The program code of the algorithm

The algorithm from previous section was implemented in Matlab [10].

Our program is able to find a quadratic non-residue n which is admissible to

f(x). We must first enter a prime number (p), and the code will determine

whether or not it is truly prime. Then we must specify which polynomial

will be used during the algorithm. At first we need the degree of polynomial,
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and we save it and denote it by (m). When defining the polynomial, the

coefficients are listed in separately and stored in a vector for later use.

After carrying out the required calculations with the given polynomial

(h1(x)) we can compute the two variable polynomials (p1, p2). In both poly-

nomials, the exponent of y is even. At this point, we ask the user to enter an

integer n that is less than p but greater than 1 and we enter a ’while’ loop to

repeat when the condition is true. In this loop, we must determine whether

n is a quadratic non-residue modulo p. We can use the Jacobi(n, p) function

from another M-file [13] where it is implemented for this check.

In the case when n is admissible let us compute the one variable polyno-

mials with y2 = n substitutions. Using the resulting matrix, we determine

whether these two (one variable) polynomials have a common root. If yes, we

must choose a new n; otherwise, the quadratic non-residue n is admissible to

f(x). The program also prints the runtime, which is affected by the choice

of n, p and f(x) polynomial. See the MatLab source code to find a quadratic

non-residue n which is admissible to f(x) in GitHub site [12].

4 Multiple grades of security

Assume we have a prime p and a polynomial f , and the sequence Ep =

{e1, e2, . . . , ep} is given by Construction 1, that is

en =







(

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n).

The correlation of this sequence can be large, and we improve on this by find-

ing the quadratic non-residue n admissible to f using the algorithm described

in Section 2. The polynomial g(x) is then defined by the formula

g(x) = ((x+ a)2 − n)f(x),
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where a is any element of Fp. Furthermore, the following formula defines the

sequence Fp = (f1, f2, . . . , fp).

fn =







(

g(n)
p

)

for (g(n), p) = 1,

+1 for p | g(n).
(7)

The new sequence Fp has small pseudorandom measures due to Theorem 2;

nonetheless, but is there a method to find a weak point in this new construc-

tion that may cause problems in applications? A skilled code breaker may be

able to find the values of a and n in the definition of the polynomial g(x) (for

example, by going through all p2 cases) and then observe that the sequence

Ep is the same as

{(

(1 + a)2 − n

p

)

f1,

(

(2 + a)2 − n

p

)

f2, . . . ,

(

(p+ a)2 − n

p

)

fp.

}

Thus while the pseudorandom measures of the sequence Fp are optimal, a

very simple operation can be used to return to the original Ep sequence, which

may have a large correlation. This can be eliminated by producing more

admissible quadratic non-residues n1, n2, . . . , nr and defining the polynomial

g(x) by

g(x) = ((x+ a1)
2 − n1)((x+ a2)

2 − n2) · · · ((x+ ar)
2 − nr)f(x),

where a1, a2, . . . , at are arbitrary elements of Fp. The sequence Fp is defined

in the same way as before by (7). All pairs (ai, ni) as i = 1, 2, . . . , r can

take on too many values, making the strategy of the code breaker described

in this section ineffective. In practice, we believe that the choice r = 20 is

already safe. (This claim is supported by the fact that when r = 20 is being

used, the time required in brute force attacks changes to the 20th power of

the original one.)

We would like to thank the referee, János Pintz, for his thorough reading

of the paper and his valuable advice.
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