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Abstract

In Part I of this paper we introduced and studied the notion of
reducibility and primitivity of subsets of Fp: a set A � Fp is said
to be reducible if it can be represented in the form A � B � C with
B, C � Fp, |B|, |C| ¥ 2; if there are no such sets B, C then A is said to
be primitive. Here we introduce and study strong form of primitivity
and reducibility: a set A � Fp is said to be k-primitive if changing at
most k elements of it we always get a primitive set, and it is said to be
k-reducible if it has a representation in the form A � B1�B2�� � ��Bk

with B1,B2, . . . ,Bk � Fp, |B1|, |B2|, . . . , |Bk| ¥ 2.

1 Introduction

In this paper we will use the following notations and definitions:
The set of the positive integers is denoted by N, the finite field of p

elements is denoted by Fp, and we write F�
p � Fpzt0u. If A,B � Fp, then their

distance DpA,Bq is defined as the cardinality of their symmetric difference
(in other words, DpA,Bq is the Hamming distance between A and B). If G
is an additive semigroup and A � ta1, a2, . . . u is a subset of G such that the
sums ai � aj with 1 ¤ i   j are distinct, then A is called a Sidon set. In
some of the proofs we will identify Fp with the field of the modulo p residue
classes, and a residue class and its representant element will be denoted in
the same way.

We will also need
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Definition 1. Let G be a semigroup with the group operation called and
denoted as addition and A,B1, . . . ,Bk subsets of G with|Bi| ¥ 2 for i � 1, 2, . . . , k. (1.1)

If
A � B1 � B2 � � � � � Bk,

then this is called an (additive) k-decomposition of A, while if the group
operation in G is called and denoted as multiplication and (1.1) and

A � B1 � B2 � . . . � Bk (1.2)

hold, then (1.2) is called a multiplicative k-decomposition of A. (A decom-
position will always mean a non-trivial one, i.e., a decomposition satisfying
(1.1).)

In 1948 H. H. Ostmann [12], [13] introduced some definitions on additive
properties of sequences of non-negative integers and studied some related
problems. The most interesting definitions are:

Definition 2. A finite or infinite set C of non-negative integers is said to be
reducible if it has an (additive) 2-decomposition

C � A� B with |A| ¥ 2, |B| ¥ 2.

If there are no sets A, B with these properties, then C is said to be primitive

(or irreducible).

Definition 3. Two infinite sets A, B of non-negative integers are said to
be asymptotically equal if there is a number K such that A X rK � 8q �
B X rK,�8q and then we write A � B.

Definition 4. An infinite set C of non-negative integers is said to be totally

primitive if every C1 with C1 � C is primitive.

Since 1948 many papers have been published on related problems; a short
survey of some of these papers was presented in Part I of this paper [8]. In
almost all of the papers written before 2000 infinite sequences of non-negative
integers are studied. The intensive study of finite problems of this type, in
particular, of analogous problems in Fp has started only in the last decade
(again, see [8] for details). In [8] we wrote: “. . . the notions of additive and
multiplicative decompositions, reducibility and primitivity can be extended
from integers to any semigroup, in particular, to the additive group of Fp and
multiplicative group of F�

p for any prime p; in the rest of the paper we will use
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these definitions in this extended sense.” (More precisely, the multiplicative
group of F�

p and multiplicative decompositions are considered only in the
introduction (Section 1) of [8], after that only the additive group of Fp and
additive decompositions of subsets of Fp are studied.) “In this paper our goal
is to continue the study of the reducible and primitive subsets of Fp and the
connection between them.” We recall two results from [8] which we will also
need here:

Theorem A. If A � ta1, a2, . . . , atu � Fp is a Sidon set, then it is primitive.

Theorem B. Let A � Fp, and for d P F�
p denote the number of solutions of

a� a1 � d, a P A, a1 P A

by fpA, dq. If
max
dPF�p fpA, dq   |A|1{2, (1.3)

then A is primitive.

While the notions of reducibility and primitivity can be extended to any
semigroup, the second author wrote in [16]: “On the other hand, clearly the
definition of totalprimitivity [Definition 4] cannot be adapted to finite sets,
thus we will not use it.” This is certainly so, however, one may replace this
missing notion by another one which has a similar flavor and it can be also
used in case of finite sets. In this paper our first goal is to introduce and study
a notion of this type, called k-primitivity ; this will be done in Section 2. The
study of this notion will lead to another problem of independent interest: in
Section 3 we will be looking for a possibly large reducible subset of a given
subset A of Fp. In Section 4 we will return to the study of k-primitivity. The
k-primitivity can be considered as a strong form of primitivity ; in Sections
5 and 6 we will also introduce and study a strong form of reducibility called
k-reducibility. Finally, in Section 7 we will show (by adapting an idea used
in Section 6) that large subsets of Fp also possess a large reducible subset R
with a balanced 2-decomposition, i.e., with a decomposition R � B� C such
that both |B| and |C| are large.

2 k-primitive subsets of Fp

As we pointed out in the introduction the definition of totalprimitivity (Def-
inition 4) cannot be adapted to finite sets. Instead, we propose to introduce
the following definition in Fp:
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Definition 5. For k P N a set A � Fp is said to be k-primitive if every set
B � Fp with DpA,Bq ¤ k is primitive. (In other words, A is k-primitive if
changing at most k elements of it we always get a primitive set.)

We will prove the following criterion for k-primitivity:

Theorem 1. Let A � Fp, and define fpA, dq as in Theorem B: fpA, dq ��� pa, a1q : a P A, a1 P A, a� a1 � d
(��. If

max
dPF�p fpA, dq   1

3
|A|1{2 (2.1)

and k P N with

k ¤ 1

4
|A|1{2, (2.2)

then A is k-primitive.

If A � Fp is a Sidon set and |A| ¥ 16, then the left-hand side of (2.1) is
1 and the right-hand side is greater than 1, thus it follows from Theorem 1
that

Corollary 1. If A � Fp is a Sidon set with |A| ¥ 16 and we write k ��
1

4
|A|1{2�, then A is k-primitive.

Proof of Theorem 1. We have to show that any set B � Fp with

DpA,Bq ¤ k (2.3)

is primitive. By Theorem B it suffices to show that such a set B satisfies
(1.3) with B in place of A:

max
dPF�p fpB, dq   |B|1{2. (2.4)

In order to prove this we have to give an upper bound for fpB, dq, i.e., for
the number of pairs pb, b1q with

b P B, b1 P B, (2.5)

b� b1 � d (2.6)

(for any fixed d P F�
p). By B � pA X Bq Y pBzAq, any pair b, b1 satisfying

(2.5) and (2.6) must satisfy one of the following pairs of conditions:

b, b1 P AXB � A, b� b1 � d, (2.7)
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b P BzA, b1 � b� d (2.8)

and
b1 P BzA, b � b1 � d. (2.9)

By (2.1), the number of pairs b, b1 satisfying (2.7) is at most

fpA, dq   1

3
|A|1{2.

Moreover, by (2.3) the number of b’s satisfying (2.8) is at most|BzA| ¤ DpA,Bq ¤ k

and b determines b1 � b� d uniquely, thus (2.8) has at most k solutions, and
in the same way, the number of solutions of (2.9) is at most k. Combining
these estimates, by (2.2) we get that

fpB, dq   1

3
|A|1{2 � 2k ¤ 5

6
|A|1{2. (2.10)

By A � B Y pAzBq we have|A| ¤ |B| � |AzB| ¤ |B| �DpA,Bq
whence, by (2.2) and (2.3),|B| ¥ |A| �DpA,Bq ¥ |A| � k ¥ |A| � 1

4
|A|1{2 ¥ |A| � 1

4
|A| � 3

4
|A|. (2.11)

It follows from (2.10) and (2.11) that

fpB, dq   5

6
|A|1{2 ¤ 5

6

�
4

3
|B|
1{2 � �

25

27


1{2 |B|1{2   |B|1{2
which proves (2.4) and this completes the proof of Theorem 1.

If p is a prime then let Mppq denote the greatest integer k such that there
is a k-primitive set A in Fp. Our next goal is to estimate this function Mppq.
However, in order to give an upper bound for Mppq, we will need the answer
to the following question of independent interest: if A is a subset of Fp then,
depending on the cardinality of A, what can be said about the size of the
greatest reducible subset of A? Thus first in the next section we will study
this problem, and we will return to the estimate of Mppq in Section 4.
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3 The size of the greatest reducible subset of

a given subset of Fp

If A is a Sidon set, then its subsets are also Sidon sets, thus by Theorem A
they are primitive so that A has no reducible subset.

The cardinality of a Sidon set in Fp can be " p1{2 (if S is a maximal Sidon
set selected from t1, 2, . . . , rp{2su, then the residue classes represented by the
elements of S form a Sidon set in Fp, and by theorems of Erdős and Turán
[5], Chowla [2] and Erdős [4] we have |S| � p1�op1qqpp{2q1{2), thus there are
subsets A � Fp with |A| ¡ c1p

1{2 which do not contain a reducible subset.
On the other hand, we can prove that every subset A with |A| ¡ c2p

1{2 must
contain a reducible set. This follows from

Theorem 2. If A is a subset of Fp with|A|2 � |A| ¡ p� 1, (3.1)

then it contains a reducible subset of form B � C with|B � C| ¥ |B| ¥ |A|2 � |A|
p� 1

, (3.2)|B| ¥ 2 (3.3)

and |C| � 2. (3.4)

Proof of Theorem 2. Defining fpA, dq in the same way as in Theorem B,
clearly we have

ḑPF�p fpA, dq �
ḑPF�p ��tpa, a1q : a P A, a1 P A, a� a1 � du��� ��tpa, a1q : a P A, a1 P A, a � a1u�� � |A|2 � |A|. (3.5)

Let d0 be an element of F�
p for which fpA, dq is maximal: fpA, d0q ¥ fpA, dq

for all d P F�
p . Then by (3.5) we have|A|2 � |A| �

ḑPF�p fpA, dq ¤
ḑPF�p fpA, d0q � pp� 1qfpA, d0q

whence

fpA, d0q ¥ |A|2 � |A|
p� 1

. (3.6)
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Write B � ta1 : a1 P A, a1 � d0 P Au and C � t0, d0u. Then clearly we have

B � C � B � t0, d0u � B Y �
B � td0u� � A,

by (3.6) we have|B � C| � ��B Y pB � td0uq�� ¥ |B|� ��ta1 : a1 P A, a1 � d0 P Au�� � fpA, d0q ¥ |A|2 � |A|
p� 1

, (3.7)

which proves (3.2), (3.3) follows from (3.1) and (3.7), and (3.4) also holds
trivially, and this completes the proof of Theorem 2.

Observe that the decomposition B � C in Theorem 2 is of very special
type: one of the two summands B, C is a 2-element subset. One may expect
that if |A| increases, then there are also better balanced decompositions of
a large reducible subset of A where both B and C are large. Indeed, we will
prove such a theorem in Section 7.

4 The estimate of Mppq
Now we are ready to estimate the function Mppq defined at the end of Sec-
tion 2:

Theorem 3. For p ¡ p0 we have

0.0029p  Mppq   1

4
p. (4.1)

Proof of Theorem 3. First we will prove the upper bound in (4.1). Let us
write

KpAq � maxtk : k P N, A is k-primitiveu
for A � Fp so that

Mppq � max
A�Fp

KpAq.
By the definition of KpAq for every reducible set A1 � Fp we must have

DpA,A1q ¥ KpAq � 1

or, in equivalent form,

KpAq ¤ DpA,A1q � 1.
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Thus in order to prove the upper bound in (4.1) it suffices to show that for
every A � Fp there is a reducible set A1 with

DpA,A1q � 1   1

4
p. (4.2)

We have to distinguish two cases.
First consider the case when |A| ¡ 2p1{2. (4.3)

It follows from this assumption that|A|2 � |A| ¡ 4p� |A| ¥ 3p ¡ p� 1

thus (3.1) holds so that Theorem 2 can be applied. Let B� C be a reducible
set of the type described in Theorem 2, and take A1 � B � C. Then A1 is
reducible, and by (3.2) for p ¡ 5 we have

DpA,A1q � |AzpB � Cq| � |A| � |B � C|¤ |A| � |A|2 � |A|
p� 1

� �� |A|pp� 1q1{2 � pp� 1q1{2
2


2 � p� 1

4
� |A|

p� 1¤ p� 1

4
� p

p� 1
� p

4
� 1� �

1

p � 1
� 1

4


   p

4
� 1,

which proves (4.2) in this case.
Assume now that |A| ¤ 2p1{2.

Then the set
A1 � t0, 1, 2u � t0, 1u � t0, 1u

is reducible and for p ¡ 100 we have

DpA,A1q � |AzA1| � |A1zA| ¤ |A| � |A1| ¤ 2p1{2 � 3   p

5
� p

30
  p

4

which again proves (4.2) and this completes the proof of the upper bound in
(4.1).

The proof of the lower bound will be based on the following result of
Alon, Granville and Ubis [1]:

Lemma 1. The number of reducible subsets of Fp is less than 1.9602p if p is

large enough.
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(See Theorem 3 and Corollary 1 in [1].)
Assume that contrary to the lower bound stated in (4.1) we have

Mppq ¤ 0.0029p, (4.4)

and write
k � r0.0029ps � 1. (4.5)

Then by the definition of Mppq and (4.4), there is no k-primitive A � Fp for
this k, so that denoting the set of the reducible subsets of Fp by Rp, for every
A � Fp there exists a set R � RpAq � Rp with

DpA,Rq ¤ k. (4.6)

For a fixed set R � Fp let ApRq denote the set of the subsets A of Fp for
which (4.6) holds. If R is fixed then every A � ApRq can be obtained from
R by changing (dropping or adding) exactly i elements for some i ¤ k; these
i elements of Fp can be chosen in

�
p

i

�
ways. Thus we have|ApRq| � ķ

i�0

�
p

i


 ¤ pk � 1q�p
k



. (4.7)

Since for every A � Fp there is an R P Fp with A P ApRq thus by (4.7) and
Lemma 1 we have

2p � ��tA : A � Fpu�� � ��� ¤
RPRp

tA : A P ApRqu���¤
ŖPRp

|ApRq| ¤
ŖPRp

pk � 1q�p
k


 � pk � 1q�p

k


|Rp|   pk � 1q�p
k



1.9602p

whence pk � 1q�p
k


 ¡ �
2

1.9602


p

. (4.8)

Now we need the following lemma which is Lemma 3 in [15] and can be
proved easily by using Stirling’s formula:

Lemma 2. Let 0 ¤ a   b and ε ¡ 0. Then there exist a positive number

δ � δpa, b, εq and a positive integer m0pa, b, εq such that if m ¥ m0pa, b, εq,|u� bm|   δm and |v � am|   δm, then�
u

v


   2pbdpa{bq�εqm,
where the function dpxq is defined by dpxq � � 1

log 2
px log x�p1�xq logp1�xqq

for 0   x   1 and dp0q � dp1q � 0.
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By (4.5), it follows from Lemma 2 (with m � u � p, v � k, a � 0.0029,
b � 1) that for pÑ8 we havepk � 1q�p

k


   2pdp0.0029q�op1qqp . (4.9)

It follows from (4.8) and (4.9) that we must have

2

1.9602
¤ 2dp0.0029q,

whence plog 2qdp0.0029q � log 0.9801 ¥ 0,�0.0029 log 0.0029� 0.9971 log 0.9971� log 0.9801 ¥ 0. (4.10)

However, a little computation shows that the left-hand side of (4.10) is less
than

0.01695� 0.00290� 0.02010 � �0.00025   0,

so that (4.10) does not hold. This contradiction shows that (4.4) does not
hold either, and this completes the proof of Theorem 3.

5 k-reducible subsets of Fp

Roughly speaking, k-primitivity is a strong form of primitivity. Now we will
introduce a strong form of reducibility, called k-reducibility:

Definition 6. If k P N and the set A � Fp has a k-decomposition

A � B1 � B2 � � � � � Bk pwith |B1|, |B2|, . . . , |Bk| ¥ 2q, (5.1)

then A is said to be k-reducible.

But is k-reducibility really a strong form of reducibility, in other words,
does it follow from the k-reducibility of A that it is also 2-reducible or briefly
reducible? It follows from (5.1) that

A � B1 � pB2 � � � � � Bkq
which is a 2-decomposition of A thus A is trivially reducible, so that the
answer to this question is affirmative. But is k-reducibility much stronger

than reducibility, in particular, are there many reducible sets which are not
3-reducible? This is an important question to answer since there are several
papers [3], [16], [17], [18] where it is conjectured that a certain special subset
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of Fp is primitive, i.e., it is not 2-reducible. Then it turns out that the
conjecture is beyond reach, thus partial results are proved; among others, it
is proved that the given subset is not 3-reducible. Is this partial result close
to the conjectured fact or is there still a long way to go? We will show by a
construction that the second half of this alternative seems to be closer to the
truth since there are many 2-reducible subsets which are not 3-reducible:

Theorem 4. Let p be a prime number with p ¡ 22, and let A be a subset of

Fp which is of the form

A � t0, 1u YA0 (5.2)

where A0 is a subset of Fp with

A0 � �p
4
,
p

2

	
(5.3)

and it is of the form

A0 � r¤
j�1

 
aj , aj � 1, . . . , a1j( (5.4)

with r ¥ 1,
a1j ¡ aj for j � 1, 2, . . . , r (5.5)

and

aj�1 ¥ a1j � 2 for j � 1, 2, . . . , r � 1. (5.6)

Then A is 2-reducible but it is not 3-reducible. Moreover, if G denotes the

set of the subsets A � Fp of the type described above, then we have|G| ¡ 2p{8�2. (5.7)

Proof of Theorem 4. If we define B � Fp by

B � t0u Y � r¤
j�1

 
aj , aj�1, . . . , a

1
j � 1

(

,

then clearly
A � t0, 1u � B

is a non-trivial 2-decomposition of A.
Now assume that contrary to the statement of the theorem A is not 3-

reducible, i.e., it has a non-trivial 3-decomposition

A � B � C �D. (5.8)
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By 0 P A and (5.8) there are b P B, c P C, d P D such that 0 � b � c � d.
Then writing B1 � B � tbu, C1 � C � tcu and D1 � D � tdu, clearly

A � B1 � C1 �D1 (5.9)

is a non-trivial 3-decomposition of A with

0 P B1, C1,D1. (5.10)

Since (5.9) is a non-trivial 3-decomposition of A thus there exist b1, c1, d1
with

b1 � 0, c1 � 0, d1 � 0 (5.11)

and
b1 P B1, c1 P C1, d1 P D1. (5.12)

Then by (5.9), (5.10) and (5.12) we havetb1, c1, d1, b1�c1, b1�d1, c1�d1, b1�c1�d1u�t0, b1u�t0, c1u�t0, d1u � B
1�C1�D1�A.

(5.13)
Now we have to distinguish three cases. Assume first that none of b1, c1, d1

is equal to 1. Then by (5.11) and (5.13) we have

b1, c1, d1 P Azt0, 1u.
By (5.2) and (5.3), it follows from this that

p

4
¤ b1, c1, d1   p

2

whence
p

2
¤ b1 � c1, b1 � d1, c1 � d1   p. (5.14)

By (5.13) and (5.14) we have b1�c1, b1�d1, c1�d1 P AX�p
2
, p
�
which contradicts

the fact that, by (5.2) and (5.3), AX �
p

2
, p
�
is empty.

Now assume that exactly one of b1, c1 and d1 is equal to 1; we may assume
that b1 � 1, c1 � 1, d1 � 1. Then by (5.11) we have

c1, d1 R t0, 1u
so that by (5.2), (5.3) and (5.13) we have

c1, d1 P Azt0, 1u � A0 � �p
4
,
p

2

	
whence

p

4
¤ c1, d1   p

2
,
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p

2
¤ c1 � d1   p. (5.15)

By (5.13) and (5.15) again we have c1 � d1 P A X �
p

2
, p
�
which contradicts

AX �
p

2
, p
� � H.

Finally, assume that at least two of b1, c1 and d1 are equal to 1; we may
assume that b1 � c1 � 1. Then by (5.13) we have

b1 � c1 � 2 P A.

Since p ¡ 9 it follows from this that

2 P AX p1, p{4q
which contradicts the fact that by (5.2) and (5.3) we have AXp1, p{4q � H.

Thus in each of the three cases (5.8) leads to a contradiction which proves
that (5.8) cannot hold so that A is not 3-reducible.

In order to prove (5.7), consider all the non-empty subsets E0 of Fp with

E0 � �
p

4
,
3p
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, (5.16)

and write such a set E0 as the union of blocks of consecutive integers with
gaps between these blocks:

E0 � r¤
j�1

 
ej , ej � 1, . . . , e1j( (5.17)

with
e1j ¥ ej for j � 1, 2, . . . , r (5.18)

and
ej�1 ¥ e1j � 2 for j � 1, 2, . . . , r � 1; (5.19)

denote the set of these subsets E0 by H. To every E0 P H we assign the set
A0 � A0pE0q defined in the following way: first we define the elements aj , a

1
j

with j � 1, 2, . . . , r by

aj � ej � pj � 1q and a1j � e1j � j for j � 1, 2, . . . , r, (5.20)

and then define A0 � A0pE0q by (5.4) and the set A � ApE0q by (5.2). Then
by (5.16), (5.17), (5.18), (5.19) and (5.20), each of (5.4), (5.5) and (5.6) holds
trivially for every A0 � A0pE0q with E0 P H. In order to prove (5.3), observe
that for a P A0 � A0pE0q we have

a ¥ e1 ¥ p

4
pfor a P A0pE0qq. (5.21)
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Moreover, it also follows from (5.16)–(5.20) that

3p

8
¡ e1r � ŗ

j�1

pe1j�ejq�r�1̧

j�1

pej�1�e1jq�e1 ¥ ŗ

j�1

0�r�1̧

j�1

2��p
4

� � 2pr�1q��p
4

�
whence, by p ¡ 22,

r   1

2

�
3p

8
� �p

4

�
 � 1 ¤ 1

2

�
3p

8
� p� 3

4


� 1 � p

16
� 11

8
  p

8

so that, by (5.16) and (5.20), for every a P A0 � A0pE0q we have

a ¤ a1r � e1r � r   3p

8
� p

8
� p

2
pfor a P A0pE0qq. (5.22)

(5.3) follows from (5.21) and (5.22).
Thus all the sets A � ApE0q assigned to some E0 P H satisfy the assump-

tions (5.2)–(5.6) in the theorem so that they belong to G. Clearly, if E0, E
1
0

are distinct subsets of H then we have ApE0q � ApE 1
0q so that |H| � |G|.

Thus it remains to estimate |H|, i.e., the number of non-empty subsets of Fp

satisfying (5.16). This is clearlyp|G| �q |H| � 2|tn: nPN, p{4¤n 3p{8u| � 1 ¥ 2p{8�1 � 1 ¡ 2p{8�2

which completes the proof of Theorem 4.

6 The estimate of the greatest k such that a

given subset of Fp has a k-reducible subset

Now we will extend Theorem 2 by showing that large subsets of Fp also have
k-reducible subsets for some large k:

Theorem 5. If p is a prime number with p ¡ p0, A � Fp,|A| ¥ p4{5, (6.1)

and we write

k � �
11

10
log

log 3p

logp3p{|A|q� , (6.2)

then A has a k-reducible subset B.

(Note that if |A| � p1�op1q then we have k Ñ8 for the number k in (6.2),
while for |A| " p we have k " log log p.)
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Proof of Theorem 5. We will need

Definition 7. If G is an additive group, d P N and y, x1, x2, . . . , xd are
elements of G with xi � 0 for i � 1, 2, . . . , d, then the set

H � "
y � ḑ

i�1

εixi : εi P t0, 1u for i � 1, 2, . . . , d

*
(6.3)

is called a d-dimensional Hilbert cube.

An infinite version of the Hilbert cube occurred first in Hilbert’s paper
[11]; see also [6], [7], [9], [10], [14], [19]. We will need the following quantita-
tive Hilbert cube theorem proved in [14]:

Lemma 3. If N ¡ N0, E � t1, 2, . . . , Nu with|E | ¥ N4{5 (6.4)

and we write

d � �
11

10
log

log 3N

logp3N{|E |q� , (6.5)

then there exists a d-dimensional Hilbert cube H of form (6.3) with xi � xj

for 1 ¤ i   j ¤ d in E :

H � "
y � ḑ

i�1

εixi : εi P t0, 1u for i � 1, 2, . . . , d

* � E .

In order to prove the statement of Theorem 5 we identify Fp with the
field of the modulo p residue classes, and we represent each of the modulo
p residue classes belonging to A by the least positive integer in the given
residue class; denote the set of these representant elements by A1. Then by
(6.1) and (6.2), we may apply Lemma 3 with p, A1 and k in place of N , E
and d, respectively. We obtain that there is a k-dimensional Hilbert cube H1
in A1:

H1 � "
y1 � ķ

i�1

εix
1
i : vei P t0, 1u for i � 1, 2, . . . , k

* � A1.
It follows that if the residue classes represented by y1, x11, . . . , x1k are denoted
by y, x1, . . . , xk, respectively, then we have

H � "
y � ķ

i�1

εixi : εi P t0, 1u for i � 1, 2, . . . , k

* � A. (6.6)

15



If we write B1 � ty, y � x1u and Bi � t0, xiu for i � 2, . . . , k, then (6.6) can
be rewritten as

H � B1 � B2 � � � � � Bk � A (6.7)

so that H is a k-reducible subset of A which completes the proof of Theo-
rem 5.

7 Balanced decompositions of large reducible

subsets

Now we return to the problem described at the end of Section 3: we will
show that if A is a large subset of Fp then it has a reducible subset which
has a decomposition B � C such that both B and C are large. Observe that
such a result follows easily from Theorem 5 and its proof:

Corollary 2. If p, A and k are defined as in Theorem 5, then A has a

reducible subset R such that it has a decomposition

R � B � C (7.1)

with

mint|B|, |C|u ¥ rk{2s � 1. (7.2)

Proof of Corollary 2. By using the notations in the proof of Theorem 5, we
will show that taking R as the set H in (6.6) and (6.7), and B, C as

B � B1 � B2 � � � � � Brk{2s, C � Brk{2s�1 � � � � � Bk�1 � Bk, (7.3)

these sets R, B and C satisfy R � A, (7.1) and (7.2). Indeed, R � A and
(7.1) follow from (6.7) and (7.3). In order to prove (7.2) we need

Lemma 4. If D1,D2, . . . ,Dt are subsets of Fp with |D1| � |D2| � � � � �|Dt| � 2, then we have��D1 �D2 � � � � �Dt

�� ¥ mintt� 1, pu.
Proof of Lemma 4. This follows easily from the Cauchy–Davenport inequal-
ity by induction.

(7.2) follows from the definition of the sets Bi, (7.3) and Lemma 4, and
this completes the proof of Corollary 2.
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Note that in the proof of Corollary 2 we did not use the fact that in
Lemma 3 it is also stated that the “generating elements” x1, x2, . . . , xd of
the Hilbert cube H are pairwise distinct. If we also use this fact, then with
some work the lower bound in (7.2) could be improved, perhaps, to " k2

(but certainly not beyond that); for |A| " p this would give the lower bound

mint|B|, |C|u " plog log pq2 (7.4)

for the size of the summands B, C in (7.1) (while (7.2) gives only the lower
bound " log log p). Next we will show that by adding a further idea, one can
improve on these estimates significantly.

We will introduce the following definition:

Definition 8. If the Hilbert cube H in (6.3) is such that the sums
d°

i�1

εixi

(with εi P t0, 1u for i � 1, 2, . . . , d) are pairwise distinct, in other words,|H| � ����"y � ḑ

i�1

εixi : εi P t0, 1u for i � 1, 2, . . . , d

*���� � 2d,

then H will be called a non-degenerate d-dimensional Hilbert cube.

We will need the following sharpening (of independent interest) of the
quantitative Hilbert theorem in Lemma 3:

Lemma 5. If N ¡ N0, E � t1, 2, . . . , Nu and (6.4) hold, and d is defined

by (6.5), then there exists a non-degenerate d-dimensional Hilbert cube H�
in E :

H� � "
y� � ḑ

i�1

εix
�
i : εi P t0, 1u for i � 1, 2, . . . , d

* � E (7.5)

with |H�| � 2d. (7.6)

(Note that (7.6) implies that x�i � x�j for 1 ¤ i   j ¤ d.)

Proof of Lemma 5. The proof is similar to the proof of Lemma 3 above given
in [14] thus we will leave some details to the reader.

It suffices to show the existence of sets E0, E1, . . . , Ed and positive integers
x�1 , x�2 , . . . , x�d such that

E0 � E , (7.7)

Ek �  
0, x�k( � Ek�1 for k � 1, 2, . . . , d, (7.8)
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x�k R"k�1̧

i�1

δix
�
i : δi P t�1, 0,�1u for i�1, 2, . . . , k�1

*
for k�2, 3, . . . , d,

(7.9)|Ek| ¥ |E |2kLp3Nq2k�1 for k � 1, 2, . . . , d. (7.10)

Indeed, if E0, E1, . . . , Ed, x
�
1 , x

�
2 , . . . , x

�
d satisfy these conditions, then by

(7.7) and (7.8), (7.5) holds for any y� P Ed, while (7.10) implies that Ed is
not empty. Now we have to show that the Hilbert cube H� in (7.5) is non-
degenerate, i.e., the assumption that there are distinct d-tuples

�
ε1, . . . , εd

�
,�

ε11, . . . , ε1d� P t0, 1ud with

ε1x
�
1 � ε2x

�
2 � � � � � εdx

�
d � ε11x�1 � ε12x�2 � ε1dx�d (7.11)

leads to contradiction. If (7.11) holds, then let k denote the greatest subscript
for which εk � ε1k. Then x�k can be expressed from (7.11) in the form

x�k � k�1̧

i�1

δix
�
i with δi P t�1, 0,�1u for i � 1, 2, . . . , k � 1

which, in fact, contradicts (7.9). This then will complete the proof of Lemma 5.
We will construct E0, E1, . . . , Ed, x

�
1 , x

�
2 , . . . , x

�
d recursively. Let E0 � E .

Assume now that 0 ¤ k ¤ d � 1 and that E0, E1, . . . , Ek and, in the case
k ¡ 0, x�1 , x�2 , . . . , x�k have already been defined. For 1 ¤ h ¤ N � 1 let
fpEk, hq denote the number of solutions of

e� e1 � h, where e, e1 P Ek.

Then in order to define Ek�1 and x�k�1, we need an estimate for

F � max fpEk, hq (7.12)

where the maximum is taken over all h with 1 ¤ h ¤ N � 1,

h R " ķ

i�1

δix
�
i : δi P t�1, 0,�1u for i � 1, 2, . . . , k

*
.

Clearly, for all h we have fpEk, hq ¤ |Ek|. Moreover,

N�1̧

h�1

fpEk, hq � �|Ek|
2



(7.13)
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since e�e1 P t1, 2, . . . , N�1u for any pair e, e1 P Ek with e ¡ e1. If we majorize

fpEk, hq by |Ek| for h P ! k°
i�1

δix
�
i : δi P t�1, 0,�1u for i � 1, 2, . . . , k

)
and by

F otherwise, then (7.13) implies�|Ek|
2


 ¤ 3k|Ek| � pN � 1� 3kqF   3k|Ek| �NF

so that

F ¡ 1

2N

��|Ek|2 � |Ek|�� 2 � 3k|Ek|� � |Ek|
2N

�|Ek| � 1� 2 � 3k� . (7.14)

Now we will show that here we have

1� 2 � 3k   1

3
|Ek| (7.15)

which will follow from
3k�2   |E |.

By our induction assumption (7.10), it suffices to prove that

3k�2   |E |2kLp3Nq2k�1

or, in equivalent form,

N ¡ �
3N|E |
2k � 3k�1,

logN ¡ 2k log
3N|E | � k log 3� log 3.

The right-hand side is increasing in k, thus by k ¤ d� 1 we may replace the
last inequality by

logN ¡ 2d log
3N|E | � d log 3� log 3. (7.16)

By (6.4) and (6.5), the right-hand side can be estimated in the following way
for N large enough:

2d log
3N|E | � d log 3� log 3  exp

�plog 2q � 11
10
plog log 3N � log log 3N{|E |q � log log 3N{|E |
�Oplog logNq

19



� exp

�plog 2q � 11
10

log log 3N � �
1� plog 2q11

10



log log 3N{|E |
�Oplog logNq� exp

�plog 2q � 11
10

log logN � �
1� plog 2q11

10



log logN1{5 � op1q
�Oplog logNq� exp

�
log logN � �

1� plog 2q11
10



log 5� op1q
�Oplog logNq  expplog logN � 0.3825q �Oplog logNq   0.6821 logN. (7.17)

(7.16) and thus also (7.15) follow from (7.17). By (7.15), it follows from
(7.14) that

F ¡ |Ek|
2N

� 2
3
|Ek| � |Ek|2

3N
(7.18)

so that by the assumption (7.10) we have

F ¡ �|E |2kLp3Nq2k�1
	2 L

3N � |E |2k�1
Lp3Nq2k�1�1. (7.19)

Now let x�k�1 P t1, 2, . . . , N � 1uz! k°
i�1

δix
�
i : δi P t�1, 0,�1u for i �

1, 2, . . . , k
)
denote an integer h for which the maximum in (7.12) is attained

and let
Ek�1 �  

e P Ek : e � x�k�1 P Ek
(
.

Then (7.8) and (7.9) also hold with k� 1 in place of k and since |Ek�1| � F ,
(7.19) implies (7.10) with k�1 in place of k. This completes the proof of the
existence of E0, E1, . . . , Ed, x

�
1 , x

�
2 , . . . , x

�
d with the desired properties, so that

Lemma 5 is proved.

Now we are ready to prove the following sharpening of Corollary 2:

Theorem 6. If p, A and k are defined as in Theorem 5, then A has a

reducible subset R� such that it has a decomposition

R� � B� � C� (7.20)

with

min
 |B�|, |C�|( ¥ 2rk{2s. (7.21)

(Observe that for |A| " p this gives the lower bound

min
 |B�|, |C�|( " plog pqc

with c � 11
20
log 2; compare this with the lower bound in (7.4).)
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Proof of Theorem 6. We argue in the same way as in the proofs of Theorem 5
and Corollary 2, but we use Lemma 5 instead of Lemma 3. Then we obtain
that A contains a non-degenerate k-dimensional Hilbert cube H�:

H� � "
y� � ķ

i�1

εix
�
i : εi P t0, 1u for i � 1, 2, . . . , k

* � A. (7.22)

Then writing B�
1 � ty�, y� � x�1u and B�

i � t0, x�i u for i � 1, 2, . . . , k, and
takingR� � H�, B� � B�

1�B�
2�� � ��B�rk{2s and C� � B�rk{2s�1�� � ��B�

k�1�B�
k ,

(7.20) follows from (7.21), and B�, C� are also non-degenerate Hilbert cubes
of dimension rk{2s and k�rk{2s ¥ rk{2s, respectively, thus their cardinalities
satisfy (7.21).
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[16] A. Sárközy, On additive decompositions of the set of quadratic residues mod-
ulo p, Acta Arith. 155 (2012), 41–51.

[17] J. D. Shkredov, Sumsets in quadratic residues, Acta Arith., to appear.

[18] J. E. Shparlinski, Additive decompositions of subgroups of finite fields, arXiv:
1301.2872v1 [math.NT]
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