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Abstract

Ahlswede, Khachatrian, Mauduit and A. Sárközy introduced the

notion family-complexity of families of binary sequences. They es-

timated the family-complexity of a large family related to Legendre

symbol introduced by Goubin, Mauduit and Sárközy. Here their re-

sult is improved, and apart from the constant factor the best lower

bound is given for the family-complexity.
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1 Introduction

In this paper we study large families of finite, binary sequences

EN = {e1, e2, . . . , eN} ∈ {−1, +1}N .
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In many applications it is not enough to know that the family contains many

binary sequences with strong pseudorandom properties; it is also important

that the family has a “rich”, “complex” structure, there are many “indepen-

dent” sequences in it. Ahlswede, Khachatrian, Mauduit and Sárközy [1]

introduced the notion of f -complexity (“f ” for family):

Definition 1 The complexity C(F) of a family F of binary sequences EN ∈

{−1, +1}N is defined as the greatest integer j so that for any 1 ≤ i1 <

i2 < · · · < ij ≤ N , and for ε1, ε2, . . . , εj ∈ {−1, +1}j, we have at least one

EN = {e1, . . . , eN} ∈ F for which

ei1 = ε1, ei2 = ε2, . . . , eij = εj.

In order to get an upper bound for C(F), we take all specifications of the

form

e1 = ε1, e2 = ε2, . . . , eC(F) = εC(F). (1)

By the definition of f -complexity, for such a specification, there is a sequence

E ∈ F for which (1) holds. ε1, ε2, . . . , εC(F) may take 2C(F) different values,

thus,

2C(F) ≤ |F| .

So:

Proposition 1

C(F) ≤
log |F|

log 2
.



Complexity of a family 3

Numerous binary sequences have been tested for pseudorandomness by

J. Cassaigne, Z. Chen, X. Du, L. Goubin, K. Gyarmati, S. Ferenczi, S. Li,

H. Liu, C. Mauduit, L. Mérai, J. Rivat and A. Sárközy. However, the first

constructions produced only “few” pseudorandom sequences, usually for a

fixed integer N , the construction provided only one pseudorandom sequence

EN of length N . First L. Goubin, C. Mauduit, A. Sárközy [2] succeeded in

constructing large families of pseudorandom binary sequences. Their con-

struction was the following:

Construction 1 Suppose that p is a prime number, and f(x) ∈ Fp[x] is a

polynomial with degree k > 0 and no multiple zero in Fp. Define the binary

sequence Ep = {e1, . . . , ep} by

en =











(

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(2)

Ahlswede, Khachatrian, Mauduit and Sárközy [1] proved the following:

Theorem B Let p be a prime. Consider all the polynomials f(x) such that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For each of these polynomials f(x), consider the binary sequence

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1, +1}p defined by (2), and let F1 denote

the family of all the binary sequences obtained in this way. Then

C(F1) ≥ K. (3)

By Proposition 1 it is clear that

|C(F1)| ≤
log |F1|

log 2
≤

K

log 2
log p.
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We will improve on (3) and we will prove the following:

Theorem 1 Let p ≥ 3 be a prime. Consider all the polynomials f(x) such

that

0 ≤ deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero

in Fp. For each of these polynomials f(x), consider the binary sequence

Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1, +1}p defined by (2), and let F2 denote

the family of all the binary sequences obtained in this way. Then

C(F2) ≥
K

2 log 2
log p − O(K log(K log p)). (4)

2 Proof of Theorem 1

In this proof c1, c2 will denote absolute constants. For K ≥ p1/2/ log p

the right-hand side of (4) is negative, so the theorem is trivial. Thus we may

suppose that

K < p1/2/ log p. (5)

Let k be the greatest odd integer with k ≤ K. Let

j ≤
k

2 log 2
log p −

c1k

log 2
log(k log p), (6)

where we will fix the value of the absolute constant c1 later. Suppose that

we have the specification

en1
= ε1, en2

= ε2, . . . , enj
= εj. (7)
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Let I = {n1, n2, . . . , nj}. We will consider all polynomials f(x) of the form

fa1,a2,...,ak
(x) = (x − a1)(x − a2) · · · (x − ak) (8)

with ai 6∈ I, and we will prove by a counting argument that there is at least

one k-tuple a1, a2, . . . , ak (where ai 6∈ I) for which the sequence Ep defined by

(2) with fa1,a2,...,ak
(x) in place of f(x) satisfies (7). Suppose that β1, β2, . . . , βt

are the roots of f(x) which have odd multiplicity in the factorization of f(x).

Since the degree of f(x) is odd, t the number of these roots are also odd, so

t ≥ 1. Let f1(x) = (x − β1)(x − β2) . . . (x − βt). Then f1(x) has no multiple

zero and the sequence E ′
p defined by (2) with f1(x) in place of f(x) satisfies

(7).

Since this will be true for every j ≤ k
2 log 2

log p− c1k
log 2

log(k log p) from this

C(F) ≥

[

k

2 log 2
log p −

c1k

log 2
log(k log p)

]

≥
K

2 log 2
log p − c2K log(K log p)

follows.

Now consider a k-tuple a1, a2, . . . , ak with ai 6∈ I, and consider the corre-

sponding polynomial

fa1,a2,...,ak
(x) = (x − a1)(x − a2) · · · (x − ak).

Define the sequence Ep = {e1, e2, . . . , ep} by

en =











(

fa1,a2,...,ak
(n)

p

)

if (fa1,...,ak
(n), p) = 1, so n 6= ai for 1 ≤ i ≤ k,

1 if p | fa1,...,ak
(n), so n = ai for some 1 ≤ i ≤ k.

(9)

Clearly,

1

2
(1 + εieni

) =











1 if eni
= εi,

0 if eni
= −εi.
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If ni 6= as for 1 ≤ s ≤ l then

1

2

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

=











1 if eni
= εi,

0 if eni
= −εi.

Let N be the number of polynomials fa1,a2,...,ak
(x) ∈ Fp[x] with

a1, a2, . . . , ak ∈ Fp \ I such that for the sequence (9) specification (7) holds.

Then

N =

p−1
∑

a1=0
a1 6∈I

p−1
∑

a2=0
a2 6∈I

· · ·

p−1
∑

ak=0
ak 6∈I

1

2j

j
∏

i=1

(

1 + εi

(

(ni − a1)(ni − a2) · · · (ni − ak)

p

))

.

(10)

Here

A(a1, . . . , ak)
def
=

j
∏

i=1

(

1 + εi

(

(ni − a1) · · · (ni − ak)

p

))

= 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ

(

(ni1 − a1) · · · (ni1 − ak)

p

)(

(ni2 − a1) · · · (ni2 − ak)

p

)

· · ·

(

(niℓ − a1) · · · (niℓ − ak)

p

)

.

The Legendre symbol is multiplicative, thus

A(a1, . . . , ak) = 1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1εi2 · · · εiℓ

k
∏

j=1

(

(ni1 − aj)(ni2 − aj) . . . (niℓ − aj)

p

)

.
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Writing this in (10) we get

N =

p−1
∑

a1=0
a1 6∈I

· · ·

p−1
∑

ak=0
ak 6∈I

1

2j

(

1 +

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

)

=
(p − |I|)k

2j
+

1

2j

p−1
∑

a1=0
a1 6∈I

· · ·

p−1
∑

ak=0
ak 6∈I

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p − j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ

p−1
∑

a1=0
a1 6∈I

· · ·

p−1
∑

ak=0
ak 6∈I

k
∏

t=1

(

(ni1 − at)(ni2 − at) . . . (niℓ − at)

p

)

=
(p − j)k

2j
+

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

εi1 · · · εiℓ







p−1
∑

a=0
a6∈I

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p







k

. (11)

Lemma 1 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f ∈ Fp[x] has s distinct roots in Fp, and it is not the constant

multiple of the d-th power of a polynomial over Fp. Then

∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

≤ sp1/2.

Poof of Lemma 1

This is Weil’s theorem, see [3].
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By the triangle-inequality and by Lemma 1:
∣

∣

∣

∣

∣

∣

∣

p−1
∑

a=0
a6∈I

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

p−1
∑

a=0

(

(ni1 − a)(ni2 − a) . . . (niℓ − a)

p

)

∣

∣

∣

∣

∣

+ j ≤ ℓp1/2 + j ≤ jp1/2 + |I| .

Thus by (11) and the triangle-inequality

N ≥
(p − j)k

2j
−

1

2j

j
∑

ℓ=1

∑

1≤i1<i2<···<iℓ≤j

(jp1/2 + j)k =
(p − j)k

2j
− (jp1/2 + j)k.

Thus N > 0 follows from

p − j

2j/k
> jp1/2 + j

p > 2j/k(jp1/2 + j) + j. (12)

Thus it remains to prove (12). By (6)

2j/k(jp1/2 + j) ≤ 2( 1
2 log 2

log p−
c1

log 2
log(k log p))

(

k

2 log 2
p1/2 log p +

k

2 log 2
log p

)

+
k

2 log 2
log p ≤

p1/2

(k log p)c1

(

k log p

2 log 2
p1/2 +

kp1/2 log p

2 · 31/2 log 2

)

+
k

2 log 2
log p ≤

p1/2

(k log p)c1
1.138(k log p)p1/2 +

k

2 log 2
log p.

By this and (5)

2j/k(jp1/2 + j) ≤ 1.138
p

(k log p)c1−1
+

p1/2

2 log 2

≤ 1.138
p

(k log p)c1−1
+

p

2 · 31/2 log 2

≤ 1.138
p

(k log p)c1−1
+ 0.414p.

For c1 = 9 we have

2j/k(jp1/2 + j) ≤ 1.138
p

(log 3)8
+ 0.414p < p
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which proves (12). Thus for j ≤ k
2 log 2

log p − 9k
log 2

log(k log p) we have that

(12) holds. Then N > 0. So there is a sequence Ep for which specification

(7) holds. Thus we proved

C(F) ≥

[

k

2 log 2
log p −

9k

log 2
log(k log p)

]

≥
K

2 log 2
log p−O(K log(K log p)).
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