
PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDSKATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSAAbstrat. The aim of this paper is to prove a general version of Pl�unneke's inequal-ity. Namely, assume that for �nite sets A, B1; : : : Bk we have information on the sizeof the sumsets A + Bi1 + � � � + Bil for all hoies of indies i1; : : : il: Then we provethe existene of a non-empty subset X of A suh that we have 'good ontrol' over thesize of the sumset X + B1 + � � � + Bk. As an appliation of this result we generalizean inequality of [1℄ onerning the submultipliativity of ardinalities of sumsets.1. IntrodutionPl�unneke [4℄ developed a graph-theoreti method to estimate the density of sumsetsA + B, where A has a positive density and B is a basis. The third author published asimpli�ed version of his proof [5, 6℄. Aounts of this method an be found in Malouf[2℄, Nathanson [3℄, Tao and Vu [7℄.The simplest instane of Pl�unneke's inequality for �nite sets goes as follows.Theorem 1.1. Let l < k be integers, A, B sets in a ommutative group and writejAj = m, jA+ lBj = �m. There exists an X � A, X 6= ; suh that(1.1) jX + kBj � �k=ljXj:In [5℄ the ase l = 1 of Theorem 1.1 is extended to the addition of di�erent sets asfollows.Theorem 1.2. Let A, B1; : : : ; Bk be �nite sets in a ommutative group and write jAj =m, jA+Bij = �im, for 1 � i � h. There exists an X � A, X 6= ; suh that(1.2) jX +B1 + � � �+Bkj � �1�2 : : : �kjXj:The aim of this paper is to give a similar extension of the general ase. This extensionwill then be applied in Setion 5 to prove a onjeture from our paper [1℄.Theorem 1.3. Let l < k be integers, and let A, B1; : : : ; Bk be �nite sets in a ommu-tative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:1991 Mathematis Subjet Classi�ation. 11B50, 11B75, 11P70.Supported by Hungarian National Foundation for Sienti� Researh (OTKA), Grants No. T 43631,T 43623, T 49693.Supported by Hungarian National Foundation for Sienti� Researh (OTKA), Grants No. PF-64061, T-049301, T-047276.Supported by Hungarian National Foundation for Sienti� Researh (OTKA), Grants No. T 43623,T 42750, K 61908. 1



2 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSA(This is ompatible with the previous notation if we identify a one-element subset of Kwith its element.) Write(1.3) � = 0� YL�K;jLj=l�L1A(l�1)!(k�l)!=(k�1)! :There exists an X � A, X 6= ; suh that(1.4) jX +BK j � �jXj:The following result gives estimates for the size of this set X and a more generalproperty than (1.4), but it is weaker by a onstant. We do not make any e�ort toestimate this onstant; an estimate ould be derived from the proof, but we feel it isprobably muh weaker than the truth.Theorem 1.4. Let l < k be positive integers, and let A, B1; : : : ; Bk be �nite sets in aommutative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:For any J � K suh that l < j = jJ j � k de�ne(1.5) �J = 0� YL�J;jLj=l�L1A(l�1)!(j�l)!=(j�1)! :(Observe that �K = � of (1.3).) Let furthermore a number " be given, 0 < " < 1. Thereexists an X � A, jXj > (1� ")m suh that(1.6) jX +BJ j � �J jXjfor every J � K, jJ j � l. Here  is a onstant that depends on k; l and ".2. The ase k = l + 1First we prove the ase k = l + 1 of Theorem 1.3 in a form whih is weaker by aonstant.Lemma 2.1. Let l be a positive integer, k = l + 1, and let A, B1; : : : ; Bk be �nite setsin a ommutative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:Write � = 0� YL�K;jLj=l�L1A1=l :(Observe that this is the same as � of (1.3) in this partiular ase.) There exists anX � A, X 6= ; suh that(2.1) jX +BKj � k�jXj



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 3with a onstant k depending on k.Proof. Let H1; : : :Hk be yli groups of order n1; : : : nk, respetively, let H = H1 �H2� � � ��Hk, and onsider the group G0 = G�H = G�H1� � � ��Hk. Introdue thenotation B0i = Bi�f0g� � � � � f0g�Hi�f0g� � � � � f0g whih will be abbreviated asB0i = Bi �Hi, in the same manner as A� f0g � � � � � f0g will still be denoted by A.We introdue the notation i� = K n fig = f1; : : : ; i � 1; i + 1; : : : ; kg whih givesnaturally Bi� = Pj 6=iBj and, orrespondingly, �i� = �f1;2;:::;i�1;i+1;:::kg. Note that wehave Q�i� = �l.Similarly, let Hi� = H1 � � � � �Hi�1 � f0g �Hi+1 � � � � �Hk, and B0i� =Pj 6=iB0i =Bi� �Hi�.Let q be a positive integer (whih should be thought of as a large number), and letni = �i�q. We restrit q to values for whih these are integers; suh values exist, sine thenumbers �L are rational. Then jHj = n = Qni = �lqk and jHi�j = n=ni = (�q)l=�i�.Hene jA+B0i�j = jA+Bi�j jHi�j = m(�q)l independently of i.Now, let B0 = Ski=1B0i, and onsider the ardinality of the set A + (k � 1)B0. Thepoint is that the main part of this ardinality omes from terms where the summandsB0i are all di�erent, i.e. from terms of the form A + B0i�, i = 1; 2; : : : ; k. There are ksuh terms, so their ardinality altogether is not greater than(2.2) km(�q)l:The rest of the terms all ontain some equal summands, e.g. A + B01 + B01 + B02 +B03 � � � + B0k�2, ontaining two opies of B01, et. The number of suh terms is lessthan kk, and eah of them has `small' ardinality for the simple reason that Hi +Hi = Hi. For instane, in the example above we have jA + B01 + B01 + B02 + B03 � � � +B0k�2j � mjB1j(Qk�2j=1 jBjjnj) � (A;B1; : : : Bk)qk�2 where (A;B1; : : : Bk) is a onstantdepending on the sets A;B1; : : : Bk but not on q. Therefore the ardinality of the termsontaining some equal summands is not greater than(2.3) kk(A;B1; : : : Bk)qk�2 = (k; A;B1; : : : Bk)qk�2 = o(ql)Therefore, ombining (2.2)and (2.3) we onlude that(2.4) jA+ (k � 1)B0j � 2km(�q)lif q is hosen large enough.Finally, we apply Theorem 1.1 to the sets A and B0 in G0. We onlude by (2.4) thatthere exists a subset X � A suh that(2.5) jX + kB0j � jXj �2k(�q)l�k=l = kjXj(�q)k:Also, observe that X + (BK �H) � X + kB0, and jX + (BK �H)j = njX +BK j: Fromthese fats and (2.5) we obtainjX +BKj � kjXj(�q)k=n = k� jXjas desired. �3. The general aseIn this setion we prove Theorem 1.4.As a �rst step we add a bound on jXj to Lemma 2.1.



4 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSALemma 3.1. Let k = l + 1, and let A;Bi; BI ; �I and � be as in Lemma 2.1. Let anumber " be given, 0 < " < 1. There exists an X � A, jXj > (1� ")m suh that(3.1) jX +BK j � (k; ")� jXjwith a onstant (k; ") = k"� kk�1 depending on k and ".Proof. Take the largest X � A for whih (3.1) holds. If jXj > (1 � ")m, we are done.Assume this is not the ase. Put A0 = AnX, and apply Lemma 2.1 with A0 in the plaeof A. We know that jA0j � "m. The assumptions will hold with�0I = jA0 +Bij = jA0j � jA +Bij = jA0j � �I="in the plae of �I . We get a nonempty X 0 � A0 suh thatjX 0 +BK j � k� 0jX 0jwith � 0 = 0� YL�K;jLj=l�0L1A1=(k�1) � �"� kk�1 :Then X [X 0 would be a larger set, a ontradition. �Now we turn to the general ase.Lemma 3.2. Let J1; : : : ; Jn be a list of all subsets of K satisfying l < jJ j � k arrangedin an inreasing order of ardinality (so that Jn = K); within a given ardinality theorder of the sets may be arbitrary.Let A;Bi; BI ; �I and �I be as in Theorem 1.4, and let the numbers 0 < " < 1 and1 � r � n be given. There exists an X � A, jXj > (1� ")m suh that(3.2) jX +BJ j � (k; l; r; ")�J jXjfor every J = J1; : : : ; Jr with a onstant (k; l; r; ") depending on k; l; r and ".Theorem 1.4 is the ase r = n.Proof. We shall prove the statement by indution on r. Sine the sets are in inreasingorder of size, we have jJ1j = l + 1, and the laim for r = 1 follows from Lemma 3.1.Now assume we know the statement for r � 1. We apply it with "=2 in the plae of", so we have a set X � A, jXj > (1� "=2)m suh that (3.2) holds for J = J1; : : : ; Jr�1with (k; l; r � 1; "=2). Write A0 = X. This set satis�es the assumptions with�0I = �I=(1� "=2):We have jJrj = k0 with some k0, l < k0 � k. We are going to apply Lemma 3.1 withA0; k0 in the plae of A; k and "=2 in the plae of ". To this end we need bounds forjA0 +BLj for every L suh that jLj = l0 = k0� 1. By the indutive assumption we knowjA0 +BLj � (k; l; r � 1; "=2)�L jA0j :Lemma 3.1 gives us a set X 0 � A0 suh thatjX 0j > (1� "=2) jA0j > (1� ")mand jX 0 +BJr j � (l0; "=2)� 0 jX 0j ;



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 5where � 0 = 0� YL�Jr;jLj=l0 (k; l; r � 1; "=2)�L1A1=l = (k; l; r � 1; "=2)�Jr:In the last step we used an identity among the quantities �J whih easily follows fromtheir de�nition (1.5).The desired set X will be this X 0, and the value of the onstant is(k; l; r; ") = (l0; "=2)(k; l; r� 1; "=2): �4. Removing the onstantIn this setion we prove Theorem 1.3. This is done with the help of Theorem 1.4and the standard tehnique of taking diret powers of the appearing groups, sets, andorresponding digraphs. The details are as follows:Proof of Theorem 1.3. Consider the following bipartite digraph G1. The �rst olletionof verties V1 are the elements of set A, and the seond olletion of verties V2 are theelements of set A + BK (where V1 and V2 are onsidered disjoint; if the same elementappears in both A and A+BK then we onsider them in two di�erent opies; a formaldesription is easy to give by introduing a further oordinate, 1 or 2, to eah element,whih desribes the loation of the element as in V1 or V2, but we do not want to obsurethe notations). There is an edge in G1 from v1 = a1 2 V1 to v2 = a2+b1;2+: : : bk;2 2 V2 ifand only if there exist elements b1;1; : : : bk;1 suh that a1+b1;1+: : : bk;1 = a2+b1;2+: : : bk;2.The image of a set Z � V1 is the set imZ � V2 reahable from Z via edges. Themagni�ation ratio  of the the graph G1 is minf jimZjjZj ; Z � V1g: The statement ofTheorem 1.3 in these terms is that  � �, with � as de�ned in the theorem.Consider now the diret power Gr = G1 � G1 � � � � � G1 with olletions of edgesV r1 = V1 � � � � � V1 and V r2 = V2 � � � � � V2, and edges from (v11; v12; : : : ; v1r) 2 V r1 to(v21; v22; : : : v2r) 2 V r2 if and only if there exist G1-edges in eah of the oordinates. Observethat the digraph Gr orresponds exatly to the sets Ar and Ar + (Br1 + � � �+Brk) in thediret power group Gr. Applying Theorem 1.4 in the group Gr to the sets Ar; Br1; : : : Brkwith any �xed ", say " = 1=2, we obtain that the magni�ation ration r of Gr is notgreater than �r. On the other hand, the magni�ation ratio is multipliative (see [5℄or [3℄), so that we have r = r. Therefore we onlude that  � rp� and, in the limit, � � as desired. �5. An appliation to restrited sumsWe prove the following result, whih was onjetured in [1℄.Theorem 5.1. Let A;B1; : : : Bk be �nite sets in a ommutative group, and S � B1 +� � �+Bk. We have(5.1) jS + Ajk � jSj kYi=1 jA+B1 + � � �+Bi�1 +Bi+1 + � � �+Bkj :



6 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSATwo partiular ases were established in [1℄; the ase when S is the omplete sumB1 + � � � + Bk, and the ase k = 2. The proof in the sequel is similar to the proof ofthe ase k = 2, the main di�erene being that we use the above generalized Pl�unnekeinequality, while for k = 2 the original was suÆient.Proof. Let us use the notation jAj = m, s =Qki=1 jA+B1+ � � �+Bi�1+Bi+1+ � � �+Bkj.Observe that if jSj � (s=mk) 1k�1 then(5.2) jS + Aj � jSjjAj = jSj 1k jSj k�1k m � (jSjs) 1kand we are done.If jSj > (s=mk) 1k�1 then we will need to use an improved version of Lemma 3.1 impliedby Theorem 1.3 as follows.Let an integer a be given, 1 � a � m. We show that there exists an X � A, jXj � asuh that(5.3) jX +BKj � s 1k�1m kk�1 + s 1k�1(m� 1) kk�1 +� � �+ s 1k�1(m� a + 1) kk�1 +(jXj�a) s 1k�1(m� a+ 1) kk�1 :We use indution on a. The ase a = 1 is Theorem 1.3. Assume we know it for a; weprove it for a+ 1. The assumption gives us a set X, jXj � a with a bound on jX +Bjas given by (5.3). We want to �nd a set X 0 with jX 0j � a+ 1 and(5.4) jX 0 +BK j � s 1k�1m kk�1 + s 1k�1(m� 1) kk�1 + � � �+ s 1k�1(m� a) kk�1 +(jX 0j�a� 1) s 1k�1(m� a) kk�1 :If jXj � a+1, we an put X 0 = X. If jXj = a, we apply Theorem 1.3 to the sets AnX,B1, . . . , Bk. This yields a set Y � A nX suh thatjY +BK j � � s(m� a)k� 1k�1 jY jand we an put X 0 = X [ Y . This onludes the indution.It will be useful in the sequel to have a similar statement for any real number t,0 � t < m, instead of just integers a. Therefore we now show that for all 0 � t < mthere exists an X � A, jXj > t suh that(5.5) jX +BKj � (k � 1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+ (jXj � t)� s(m� t)k� 1k�1 :Indeed, we simply apply (5.3) with a = [t℄ + 1. The right side of (5.5) an be writtenas s 1k�1 R jXj0 f(x) dx, where f(x) = (m� x)� kk�1 for 0 � x � t, and f(x) = (m� t)� kk�1for t < x � jXj. Sine f is inreasing, the integral is � f(0) + f(1) + � � �+ f(jXj � 1).This exeeds the right side of (5.3) by a termwise omparison.Let us now take t = m � � sjSjk�1�1=k : Then there exists a set X � A suh thatjXj = r > t and (5.5) holds. For suh an X we have(5.6) jS+Xj � jBK+Xj � (k�1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+(r�t)� s(m� t)k� 1k�1and the trivial bound(5.7) jS + (A nX)j � jSjjA nXj = jSj(m� r):



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 7We onlude that(5.8) jS + Aj � jS +Xj+ jS + (A nX)j � (k � 1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+(r�t)� s(m� t)k� 1k�1 +jSj((m�t)�(r�t)) = ks1=kjSj1=k�(k�1)� sm� 1k�1 � k(sjSj)1=kThis inequality is nearly the required one, exept for the fator k on the right hand side.We an dispose of this fator as follows (one again, the tehnique of diret powers).Consider the sets A0 = Ar; B0j = Brj (j = 1; : : : k), and S 0 = Sr in the r'th diret powerof the original group. Applying equation (5.8) to A0; et., we obtain(5.9) jS 0 + A0j � k(s0jS 0j)1=k:Sine jS 0 + A0j = jS + Ajr; s0 = sr and jS 0j = jSjr, we get(5.10) jS + Aj � k1=r(sjSj)1=k:Taking the limit as r !1 we obtain the desired inequality(5.11) jS + Aj � (sjSj)1=k: �Referenes[1℄ K. Gyarmati, M.Matolsi, I. Z. Ruzsa, A superadditivity and submultipliativity property for ardi-nalities of sumsets, preprint, arXiv:0707.2707v1[2℄ J. L. Malouf, On a theorem of Pl�unneke onerning the sum of a basis and a set of positive density,J. Number Theory 54.[3℄ M. B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Springer,1996.[4℄ H. Pl�unneke, Eine zahlentheoretishe anwendung der graphtheorie, J. Reine Angew. Math. 243(1970), 171{183.[5℄ I. Z. Ruzsa, An appliation of graph theory to additive number theory, Sientia, Ser. A 3 (1989),97{109.[6℄ , Addendum to: An appliation of graph theory to additive number theory, Sientia, Ser. A4 (1990/91), 93{94.[7℄ T. Tao and V. H. Vu, Additive ombinatoris, Cambridge University Press, Cambridge, 2006.Alfr�ed R�enyi Institute of Mathematis, Budapest, Pf. 127, H-1364 HungaryE-mail address : gykati�s.elte.huAlfr�ed R�enyi Institute of Mathematis, Budapest, Pf. 127, H-1364 HungaryE-mail address : matomate�renyi.huAlfr�ed R�enyi Institute of Mathematis, Budapest, Pf. 127, H-1364 HungaryE-mail address : ruzsa�renyi.huE-mail address : To all authors: triola�renyi.hu


