
PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDSKATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSAAbstra
t. The aim of this paper is to prove a general version of Pl�unne
ke's inequal-ity. Namely, assume that for �nite sets A, B1; : : : Bk we have information on the sizeof the sumsets A + Bi1 + � � � + Bil for all 
hoi
es of indi
es i1; : : : il: Then we provethe existen
e of a non-empty subset X of A su
h that we have 'good 
ontrol' over thesize of the sumset X + B1 + � � � + Bk. As an appli
ation of this result we generalizean inequality of [1℄ 
on
erning the submultipli
ativity of 
ardinalities of sumsets.1. Introdu
tionPl�unne
ke [4℄ developed a graph-theoreti
 method to estimate the density of sumsetsA + B, where A has a positive density and B is a basis. The third author published asimpli�ed version of his proof [5, 6℄. A

ounts of this method 
an be found in Malouf[2℄, Nathanson [3℄, Tao and Vu [7℄.The simplest instan
e of Pl�unne
ke's inequality for �nite sets goes as follows.Theorem 1.1. Let l < k be integers, A, B sets in a 
ommutative group and writejAj = m, jA+ lBj = �m. There exists an X � A, X 6= ; su
h that(1.1) jX + kBj � �k=ljXj:In [5℄ the 
ase l = 1 of Theorem 1.1 is extended to the addition of di�erent sets asfollows.Theorem 1.2. Let A, B1; : : : ; Bk be �nite sets in a 
ommutative group and write jAj =m, jA+Bij = �im, for 1 � i � h. There exists an X � A, X 6= ; su
h that(1.2) jX +B1 + � � �+Bkj � �1�2 : : : �kjXj:The aim of this paper is to give a similar extension of the general 
ase. This extensionwill then be applied in Se
tion 5 to prove a 
onje
ture from our paper [1℄.Theorem 1.3. Let l < k be integers, and let A, B1; : : : ; Bk be �nite sets in a 
ommu-tative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:1991 Mathemati
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2 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSA(This is 
ompatible with the previous notation if we identify a one-element subset of Kwith its element.) Write(1.3) � = 0� YL�K;jLj=l�L1A(l�1)!(k�l)!=(k�1)! :There exists an X � A, X 6= ; su
h that(1.4) jX +BK j � �jXj:The following result gives estimates for the size of this set X and a more generalproperty than (1.4), but it is weaker by a 
onstant. We do not make any e�ort toestimate this 
onstant; an estimate 
ould be derived from the proof, but we feel it isprobably mu
h weaker than the truth.Theorem 1.4. Let l < k be positive integers, and let A, B1; : : : ; Bk be �nite sets in a
ommutative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:For any J � K su
h that l < j = jJ j � k de�ne(1.5) �J = 0� YL�J;jLj=l�L1A(l�1)!(j�l)!=(j�1)! :(Observe that �K = � of (1.3).) Let furthermore a number " be given, 0 < " < 1. Thereexists an X � A, jXj > (1� ")m su
h that(1.6) jX +BJ j � 
�J jXjfor every J � K, jJ j � l. Here 
 is a 
onstant that depends on k; l and ".2. The 
ase k = l + 1First we prove the 
ase k = l + 1 of Theorem 1.3 in a form whi
h is weaker by a
onstant.Lemma 2.1. Let l be a positive integer, k = l + 1, and let A, B1; : : : ; Bk be �nite setsin a 
ommutative group G. Let K = f1; 2; : : : ; kg, and for any I � K putBI =Xi2I Bi;jAj = m; jA +BI j = �Im:Write � = 0� YL�K;jLj=l�L1A1=l :(Observe that this is the same as � of (1.3) in this parti
ular 
ase.) There exists anX � A, X 6= ; su
h that(2.1) jX +BKj � 
k�jXj



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 3with a 
onstant 
k depending on k.Proof. Let H1; : : :Hk be 
y
li
 groups of order n1; : : : nk, respe
tively, let H = H1 �H2� � � ��Hk, and 
onsider the group G0 = G�H = G�H1� � � ��Hk. Introdu
e thenotation B0i = Bi�f0g� � � � � f0g�Hi�f0g� � � � � f0g whi
h will be abbreviated asB0i = Bi �Hi, in the same manner as A� f0g � � � � � f0g will still be denoted by A.We introdu
e the notation i� = K n fig = f1; : : : ; i � 1; i + 1; : : : ; kg whi
h givesnaturally Bi� = Pj 6=iBj and, 
orrespondingly, �i� = �f1;2;:::;i�1;i+1;:::kg. Note that wehave Q�i� = �l.Similarly, let Hi� = H1 � � � � �Hi�1 � f0g �Hi+1 � � � � �Hk, and B0i� =Pj 6=iB0i =Bi� �Hi�.Let q be a positive integer (whi
h should be thought of as a large number), and letni = �i�q. We restri
t q to values for whi
h these are integers; su
h values exist, sin
e thenumbers �L are rational. Then jHj = n = Qni = �lqk and jHi�j = n=ni = (�q)l=�i�.Hen
e jA+B0i�j = jA+Bi�j jHi�j = m(�q)l independently of i.Now, let B0 = Ski=1B0i, and 
onsider the 
ardinality of the set A + (k � 1)B0. Thepoint is that the main part of this 
ardinality 
omes from terms where the summandsB0i are all di�erent, i.e. from terms of the form A + B0i�, i = 1; 2; : : : ; k. There are ksu
h terms, so their 
ardinality altogether is not greater than(2.2) km(�q)l:The rest of the terms all 
ontain some equal summands, e.g. A + B01 + B01 + B02 +B03 � � � + B0k�2, 
ontaining two 
opies of B01, et
. The number of su
h terms is lessthan kk, and ea
h of them has `small' 
ardinality for the simple reason that Hi +Hi = Hi. For instan
e, in the example above we have jA + B01 + B01 + B02 + B03 � � � +B0k�2j � mjB1j(Qk�2j=1 jBjjnj) � 
(A;B1; : : : Bk)qk�2 where 
(A;B1; : : : Bk) is a 
onstantdepending on the sets A;B1; : : : Bk but not on q. Therefore the 
ardinality of the terms
ontaining some equal summands is not greater than(2.3) kk
(A;B1; : : : Bk)qk�2 = 
(k; A;B1; : : : Bk)qk�2 = o(ql)Therefore, 
ombining (2.2)and (2.3) we 
on
lude that(2.4) jA+ (k � 1)B0j � 2km(�q)lif q is 
hosen large enough.Finally, we apply Theorem 1.1 to the sets A and B0 in G0. We 
on
lude by (2.4) thatthere exists a subset X � A su
h that(2.5) jX + kB0j � jXj �2k(�q)l�k=l = 
kjXj(�q)k:Also, observe that X + (BK �H) � X + kB0, and jX + (BK �H)j = njX +BK j: Fromthese fa
ts and (2.5) we obtainjX +BKj � 
kjXj(�q)k=n = 
k� jXjas desired. �3. The general 
aseIn this se
tion we prove Theorem 1.4.As a �rst step we add a bound on jXj to Lemma 2.1.



4 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSALemma 3.1. Let k = l + 1, and let A;Bi; BI ; �I and � be as in Lemma 2.1. Let anumber " be given, 0 < " < 1. There exists an X � A, jXj > (1� ")m su
h that(3.1) jX +BK j � 
(k; ")� jXjwith a 
onstant 
(k; ") = 
k"� kk�1 depending on k and ".Proof. Take the largest X � A for whi
h (3.1) holds. If jXj > (1 � ")m, we are done.Assume this is not the 
ase. Put A0 = AnX, and apply Lemma 2.1 with A0 in the pla
eof A. We know that jA0j � "m. The assumptions will hold with�0I = jA0 +Bij = jA0j � jA +Bij = jA0j � �I="in the pla
e of �I . We get a nonempty X 0 � A0 su
h thatjX 0 +BK j � 
k� 0jX 0jwith � 0 = 0� YL�K;jLj=l�0L1A1=(k�1) � �"� kk�1 :Then X [X 0 would be a larger set, a 
ontradi
tion. �Now we turn to the general 
ase.Lemma 3.2. Let J1; : : : ; Jn be a list of all subsets of K satisfying l < jJ j � k arrangedin an in
reasing order of 
ardinality (so that Jn = K); within a given 
ardinality theorder of the sets may be arbitrary.Let A;Bi; BI ; �I and �I be as in Theorem 1.4, and let the numbers 0 < " < 1 and1 � r � n be given. There exists an X � A, jXj > (1� ")m su
h that(3.2) jX +BJ j � 
(k; l; r; ")�J jXjfor every J = J1; : : : ; Jr with a 
onstant 
(k; l; r; ") depending on k; l; r and ".Theorem 1.4 is the 
ase r = n.Proof. We shall prove the statement by indu
tion on r. Sin
e the sets are in in
reasingorder of size, we have jJ1j = l + 1, and the 
laim for r = 1 follows from Lemma 3.1.Now assume we know the statement for r � 1. We apply it with "=2 in the pla
e of", so we have a set X � A, jXj > (1� "=2)m su
h that (3.2) holds for J = J1; : : : ; Jr�1with 
(k; l; r � 1; "=2). Write A0 = X. This set satis�es the assumptions with�0I = �I=(1� "=2):We have jJrj = k0 with some k0, l < k0 � k. We are going to apply Lemma 3.1 withA0; k0 in the pla
e of A; k and "=2 in the pla
e of ". To this end we need bounds forjA0 +BLj for every L su
h that jLj = l0 = k0� 1. By the indu
tive assumption we knowjA0 +BLj � 
(k; l; r � 1; "=2)�L jA0j :Lemma 3.1 gives us a set X 0 � A0 su
h thatjX 0j > (1� "=2) jA0j > (1� ")mand jX 0 +BJr j � 
(l0; "=2)� 0 jX 0j ;



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 5where � 0 = 0� YL�Jr;jLj=l0 
(k; l; r � 1; "=2)�L1A1=l = 
(k; l; r � 1; "=2)�Jr:In the last step we used an identity among the quantities �J whi
h easily follows fromtheir de�nition (1.5).The desired set X will be this X 0, and the value of the 
onstant is
(k; l; r; ") = 
(l0; "=2)
(k; l; r� 1; "=2): �4. Removing the 
onstantIn this se
tion we prove Theorem 1.3. This is done with the help of Theorem 1.4and the standard te
hnique of taking dire
t powers of the appearing groups, sets, and
orresponding digraphs. The details are as follows:Proof of Theorem 1.3. Consider the following bipartite digraph G1. The �rst 
olle
tionof verti
es V1 are the elements of set A, and the se
ond 
olle
tion of verti
es V2 are theelements of set A + BK (where V1 and V2 are 
onsidered disjoint; if the same elementappears in both A and A+BK then we 
onsider them in two di�erent 
opies; a formaldes
ription is easy to give by introdu
ing a further 
oordinate, 1 or 2, to ea
h element,whi
h des
ribes the lo
ation of the element as in V1 or V2, but we do not want to obs
urethe notations). There is an edge in G1 from v1 = a1 2 V1 to v2 = a2+b1;2+: : : bk;2 2 V2 ifand only if there exist elements b1;1; : : : bk;1 su
h that a1+b1;1+: : : bk;1 = a2+b1;2+: : : bk;2.The image of a set Z � V1 is the set imZ � V2 rea
hable from Z via edges. Themagni�
ation ratio 
 of the the graph G1 is minf jimZjjZj ; Z � V1g: The statement ofTheorem 1.3 in these terms is that 
 � �, with � as de�ned in the theorem.Consider now the dire
t power Gr = G1 � G1 � � � � � G1 with 
olle
tions of edgesV r1 = V1 � � � � � V1 and V r2 = V2 � � � � � V2, and edges from (v11; v12; : : : ; v1r) 2 V r1 to(v21; v22; : : : v2r) 2 V r2 if and only if there exist G1-edges in ea
h of the 
oordinates. Observethat the digraph Gr 
orresponds exa
tly to the sets Ar and Ar + (Br1 + � � �+Brk) in thedire
t power group Gr. Applying Theorem 1.4 in the group Gr to the sets Ar; Br1; : : : Brkwith any �xed ", say " = 1=2, we obtain that the magni�
ation ration 
r of Gr is notgreater than 
�r. On the other hand, the magni�
ation ratio is multipli
ative (see [5℄or [3℄), so that we have 
r = 
r. Therefore we 
on
lude that 
 � rp
� and, in the limit,
 � � as desired. �5. An appli
ation to restri
ted sumsWe prove the following result, whi
h was 
onje
tured in [1℄.Theorem 5.1. Let A;B1; : : : Bk be �nite sets in a 
ommutative group, and S � B1 +� � �+Bk. We have(5.1) jS + Ajk � jSj kYi=1 jA+B1 + � � �+Bi�1 +Bi+1 + � � �+Bkj :



6 KATALIN GYARMATI, M�AT�E MATOLCSI, AND IMRE Z. RUZSATwo parti
ular 
ases were established in [1℄; the 
ase when S is the 
omplete sumB1 + � � � + Bk, and the 
ase k = 2. The proof in the sequel is similar to the proof ofthe 
ase k = 2, the main di�eren
e being that we use the above generalized Pl�unne
keinequality, while for k = 2 the original was suÆ
ient.Proof. Let us use the notation jAj = m, s =Qki=1 jA+B1+ � � �+Bi�1+Bi+1+ � � �+Bkj.Observe that if jSj � (s=mk) 1k�1 then(5.2) jS + Aj � jSjjAj = jSj 1k jSj k�1k m � (jSjs) 1kand we are done.If jSj > (s=mk) 1k�1 then we will need to use an improved version of Lemma 3.1 impliedby Theorem 1.3 as follows.Let an integer a be given, 1 � a � m. We show that there exists an X � A, jXj � asu
h that(5.3) jX +BKj � s 1k�1m kk�1 + s 1k�1(m� 1) kk�1 +� � �+ s 1k�1(m� a + 1) kk�1 +(jXj�a) s 1k�1(m� a+ 1) kk�1 :We use indu
tion on a. The 
ase a = 1 is Theorem 1.3. Assume we know it for a; weprove it for a+ 1. The assumption gives us a set X, jXj � a with a bound on jX +Bjas given by (5.3). We want to �nd a set X 0 with jX 0j � a+ 1 and(5.4) jX 0 +BK j � s 1k�1m kk�1 + s 1k�1(m� 1) kk�1 + � � �+ s 1k�1(m� a) kk�1 +(jX 0j�a� 1) s 1k�1(m� a) kk�1 :If jXj � a+1, we 
an put X 0 = X. If jXj = a, we apply Theorem 1.3 to the sets AnX,B1, . . . , Bk. This yields a set Y � A nX su
h thatjY +BK j � � s(m� a)k� 1k�1 jY jand we 
an put X 0 = X [ Y . This 
on
ludes the indu
tion.It will be useful in the sequel to have a similar statement for any real number t,0 � t < m, instead of just integers a. Therefore we now show that for all 0 � t < mthere exists an X � A, jXj > t su
h that(5.5) jX +BKj � (k � 1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+ (jXj � t)� s(m� t)k� 1k�1 :Indeed, we simply apply (5.3) with a = [t℄ + 1. The right side of (5.5) 
an be writtenas s 1k�1 R jXj0 f(x) dx, where f(x) = (m� x)� kk�1 for 0 � x � t, and f(x) = (m� t)� kk�1for t < x � jXj. Sin
e f is in
reasing, the integral is � f(0) + f(1) + � � �+ f(jXj � 1).This ex
eeds the right side of (5.3) by a termwise 
omparison.Let us now take t = m � � sjSjk�1�1=k : Then there exists a set X � A su
h thatjXj = r > t and (5.5) holds. For su
h an X we have(5.6) jS+Xj � jBK+Xj � (k�1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+(r�t)� s(m� t)k� 1k�1and the trivial bound(5.7) jS + (A nX)j � jSjjA nXj = jSj(m� r):



PL�UNNECKE'S INEQUALITY FOR DIFFERENT SUMMANDS 7We 
on
lude that(5.8) jS + Aj � jS +Xj+ jS + (A nX)j � (k � 1)s 1k�1 �(m� t)� 1k�1 �m� 1k�1�+(r�t)� s(m� t)k� 1k�1 +jSj((m�t)�(r�t)) = ks1=kjSj1=k�(k�1)� sm� 1k�1 � k(sjSj)1=kThis inequality is nearly the required one, ex
ept for the fa
tor k on the right hand side.We 
an dispose of this fa
tor as follows (on
e again, the te
hnique of dire
t powers).Consider the sets A0 = Ar; B0j = Brj (j = 1; : : : k), and S 0 = Sr in the r'th dire
t powerof the original group. Applying equation (5.8) to A0; et
., we obtain(5.9) jS 0 + A0j � k(s0jS 0j)1=k:Sin
e jS 0 + A0j = jS + Ajr; s0 = sr and jS 0j = jSjr, we get(5.10) jS + Aj � k1=r(sjSj)1=k:Taking the limit as r !1 we obtain the desired inequality(5.11) jS + Aj � (sjSj)1=k: �Referen
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