
On the number of divisors whih are values ofa polynomialKatalin Gyarmati�AbstratLet �(n) be the number of positive divisors of an integer n, and fora polynomial P (X) 2 Z[X℄, let�P (n) = j(P (m) > 0 : m 2 Z; P (m) j n)j :R. de la Bretèhe studied the maximum values of �P (n) in intervals.Here the following is proved: if P (X) 2 Z[X℄ is not of the form a(X +b)k with a; b 2 Q , and k 2 N then�P (n) � (log n)�(n)3=5:This improves partially on La Bretèhe's results.List of keywords and phrases: divisors, polynomial, extremal set the-ory.2000 AMS Mathematis subjet lassi�ation numbers: 11N56; 11N25.
1 IntrodutionPaul Erd®s asked several problems onerning divisors, for example, heonjetured that the density of integers n whih have two divisors d1; d2 with�Researh partially supported by Hungarian National Foundation for Sienti� Re-searh, Grants T043631, T043623 and T0496931



d1 < d2 < 2d1 is 1 (e.g. see [9℄). This onjeture was proved by Maierand Tenenbaum [16℄. In this paper we study the number of ertain speialdivisors of an integer n. We denote positive divisors of n by d, their numberby �(n), and the number of distint prime divisors by !(n).P. Erd®s and R. R. Hall [10℄ initiated the study of �k(n), whih is thenumber of positive divisors of n of the formx(x + 1) : : : (x+ k � 1)with x 2 Z. In the ase k = 2 an equivalent de�nition is�2(n) = jfi : di+1 � di = 1gj ;where 1 = d1 < d2 < � � � < d�(n) = n denote the all positive divisors of n. P.Erd®s and R. R. Hall [10℄ proved that�k(n) > (logn)e1=k�"holds for in�nitely many n. They also estimated the average value of �k(n)by proving 1xXn�x �k(n) = 1(k � 1)(k � 1)! +O(x�(k�1)=k):The �rst upper bound for �2(n) is due to Tenenbaum [17, Theorem 2℄, whoproved that �2(n)� �(n) (1.1)holds with  = 0:93974 : : : . R. de la Bretèhe [6, Theorem 2℄ improved onthe exponent  and obtained (1.1) with  = 0:91829 : : : . �2(n) was studiedby several authors, see in [1℄, [6℄, [10℄, [11℄ and [17℄.Using La Bretèhe's method it is easy to prove that�k(n) � (k + 1)�(n)h(1=(k+1)) (1.2)where h(�) = 1log 2 ((1� �) log(1=(1� �)) + � log(1=�))) :2



Indeed at least one of the integers d; d+ 1; : : : ; d+ k � 1; nd(d+1):::(d+k�1) is inthe set fd : 
(d) � 
(n)=(k + 1)g. By using Lemma 2.1 in [5℄ we get (1.2).R. de la Bretèhe [5℄ extended the problem to other polynomials.De�nition 1 For P (X) 2 Z[X℄, let�P (n) = fP (m) > 0 : m 2 Z; P (m) j ng:In the speial ase P (X) = X(X + 1) � � � (X + k � 1) �p(n) is �k(n). R.de la Bretèhe [5℄ estimated the maximum value of �P (m):Theorem A If P (x) 2 Z[x℄ is a polynomial of degree 2 with disriminant�, then max1�m�n �P (m) � � max1�m�n �(m)�(�)+o(1) (1.3)where (�) = 8>><>>: 0:565 : : : if � 6= 0 is a square of an integer ;0:5 if � = 0;0:579 : : : if � is not a square of an integer : (1.4)In [5℄ it is also mentioned that this theorem an be improved for somespeial polynomials of higher degree.Here we will extend La Bretèhe's Theorem A to every polynomial andin setion 4 we will improve on the onstant (�) if n is a squarefree numberand � is not a square of an integer.By Wigert's theorem [18℄D(n) def= max1�m�n �(m) = 2(1+o(1)) log nlog logn :For almost all n, �(n) is around  logn, whih is signi�ally smaller thenD(n). Indeed, in the ase �(n) < D(n)(�), (1.3) gives a trivial upper boundfor �P (n): �P (n) � max1�m�n �P (m) � D(n)(�)+o(1):This inspired me to look for a bound �p(n) in terms of �(n), whih an givea sharp estimate for a larger set of integers. I obtained the following3



Theorem 1 If P (X) is not of the form a(X + b)k with a; b 2 Q , and k 2 Nthen �P (n)� (logn)�(n)3=5: (1.5)Theorem 1 is trivial for �(n)� (logn)5=2, while the upper bound in (1.1)are always non-trivial. For k � 6 the exponent h(1=(k + 1)) in (1.2) is lessthan 3=5, so (1.2) gives sharper bound for �k(n) than Theorem 1. Howeverin these speial ases Theorem 1 does not give the best possible results, butits proof is a di�erent approah from Tenenbaum's and La Bretèhe's andfor general polynomials P (X) (for example, for irreduible polynomials overQ ) gives a new and sharp bound for �P (n).The proof of Theorem 1 is based on a generalization of a lemma of B.Lindström [15℄ on B2 sequenes. Possible improvements on Theorem 1 willbe disussed in setion 4.Using Evertse's theorem on S-unit equations [12, Theorem 1℄ for thelinear form x� y = 1 we get: �2(n)� 72!(n): (1.6)If n ontains only few prime fators, so !(n) is small, then (1.6) is a sharperbound than (1.1).For general polynomials P (X) I will prove the following:Theorem 2 If P (X) 2 Z[X℄ is not of the form a(X+ b)k with a; b 2 Q , andk 2 N then �P (n)� logn(degP )!(n): (1.7)If n ontains only few prime fators then the upper bound (1.7) is sharperthan (1.5).Aknowledgement. I would like to thank Professors Zoltán Füredi,András Sárközy and Miklós Simonovits for the valuable disussions. I alsowish to thank to the referee for his suggestions whih leads to (1.2) and theimprovement of the original Theorem 1 by a fator !(n)1=5.4



2 Proof of Theorems 1-2Our �rst lemma is a generalization of a theorem of B. Lindstörm [15℄.Lemma 1 Let D be a subset of the divisors of an integer n. Suppose thatthere are no T di�erent pairs xi; yi 2 D, suh that1 6= x1y1 = x2y2 = � � � = xTyT :Then jDj � T 2=5�(n)3=5:The exponent 3/5 in Theorem 1 strongly depends on the exponent 3=5 inLemma 1. This exponent might be improved in some speial ases, resultsin this diretions will be disussed in setion 4.Lemma 2 Let v 2 N, P (X) = akXk + ak�1Xk�1 + � � � + a0 2 Z[X℄ be apolynomial whih is not of the form a(X + b)k with a; b 2 Q , k 2 N. Thenthere exists a (omputable) onstant T depending only on the polynomialP (X) suh that at most T pairs xi; yi 2 Z exist withv < P (xi); P (yi) < 2v (2.1)and 1 6= P (x1)P (y1) = P (x2)P (y2) = � � � = P (xT )P (xT ) : (2.2)The history of Lemma 2 is related to a problem of Diophantus. Dio-phantus found 4 rational numbers suh that the produt of any two of theminreased by 1 is a square of a rational number. The �rst absolute upperbound for the size of Diophantine tuples was given by A. Dujella, see in [7℄,[8℄. Later Y. Bugeaud and A. Dujella [2℄ extended the problem for higherpower. In [3℄, [13℄ and [14℄ we studied di�erent generalizations of the problemof Diophantus. Lemma 2 is losely related to the proof of these results.5



We postpone the proof of Lemma 1 and Lemma 2 to setion 3. For0 � i � log nlog 2 letDi = fP (m) > 0 : 2i < P (m) < 2i+1; P (m) j ng:By Lemma 2 these sets Di's satisfy the onditions of Lemma 1. By usingLemma 1 we get jDij � �(n)3=5:We have h log nlog 2i+ 1 di�erent sets Di, thus we get Theorem 1.In order to prove Theorem 2 we will need the following lemma.Lemma 3 Let P (X) 2 Z[X℄ be a polynomial of degree k, whih is not of theform a(X + b)k. Then there exists a (omputable) onstant T depending onthe polynomial P (X) suh that there are at most T integers xi (1 � i � T )suh that for 1 � i; j � T 12 < P (xi)P (xj) < 2 (2.3)and P (xi)P (xj) is the k-th power of a rational number.We will prove Lemma 3 in setion 3.Denote the prime divisors of n by p1; p2; : : : ; pr, so r = !(n). To everyd 2 Di, d = p�11 � � � p�rr we assign a f0; 1; : : : ; k � 1g-vetor (Æ1; : : : ; Ær) suhthat Æj � �j (mod k)and 0 � Æj � k � 1. By Lemma 3 to at most T di�erent d 2 Di's we assignthe same f0; 1; : : : ; k � 1g-vetor. ThusjDij � Tk!(n):Again, we have h log nlog 2i+ 1 di�erent sets Di, thus we get Theorem 2.
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3 Proof of Lemmas 1-3Proof of Lemma 1First we will prove the following:Lemma 4 Let n 2 N. Then for 1 � x < �(n), there exist positive integersn1 and n2 suh that �(n1) � x; �(n2) � 4�(n)x ; (3.1)and every d j n an be written of the form d = d1d2 with d1 j n1 and d2 j n2.Throughout the proof of Lemma 1 we will use this fatorization of d's.Proof of Lemma 4Consider the prime fatorization of n:n = p�11 : : : p�rr :Let H � 1(� r) denote the greatest positive integer with(�1 + 1)(�2 + 1) : : : (�H�1 + 1) � x:Let 0 � �H < �H denote the greatest integer with(�1 + 1)(�2 + 1) : : : (�H�1 + 1)(�H + 1) � x: (3.2)By the de�nition of �H we getx2 < 12(�1 + 1)(�2 + 1) : : : (�H�1 + 1)(�H + 2)� (�1 + 1)(�2 + 1) : : : (�H�1 + 1)(�H + 1);thus 4�(n)x � 2�(n)(�1 + 1)(�2 + 1) : : : (�H�1 + 1)(�H + 1)� ���H + 1�H + 1�+ 1� (�H+1 + 1)(�H+2 + 1) : : : (�r + 1): (3.3)7



Let qi = 8>><>>: pi if 1 � i � H,p�HH if i = H + 1,pi�1 if H + 2 � i � r,and i = 8>>>>><>>>>>: �i if 1 � i � H,�H if i = H,h�H+1�H+1i if i = H + 1,�i�1 if H + 2 � i � r + 1. (3.4)Clearly, every d j n an be written in the form d = qÆ11 : : : qÆr+1r+1 with0 � �i � i. This proves Lemma 4 withn1 = q11 : : : qHHand n2 = qH+1H+1 : : : qr+1r+1 :Indeed, by (3.2) and (3.3) we get (3.1). We remark that then�(n1) = (1 + 1)(2 + 1) : : : (H + 1) � x (3.5)and �(n2) = (H+1 + 1)(H+2 + 1) : : : (r+1 + 1) � 4�(n)x (3.6)Throughout the proof of Lemma 1 we will use this fatorization d =qÆ11 : : : qÆr+1r+1 with 0 � �i � i in plae of the prime fatorization. Our fator-ization (as the prime fatorization) is unique.Next we return to the proof of Lemma 1. We will fax the value of 1 �x < �(n) later.To every d 2 D, d = qÆ11 : : : qÆr+1r+1 we assign an r + 1-dimensional vetorbd = (Æ1; Æ2; : : : ; Ær+1). Let B = fb1; b2; : : : ; bmg be the set of all the r + 1-dimensional vetors obtained in this way. Thenm = jDj = jBj :8



By the onditions of Lemma 1, for every a 6= 0, a 2 Zr+1 the equationa = bi � bj; bi; bj 2 Bhas at most T di�erent solutions in i and j.We split eah bi in two vetors vi and wi of dimensions H and r +1 � H. If bi = (Æ1; Æ2; : : : ; Ær+1), then let vi = (Æ1; Æ2; : : : ; ÆH) and wi =(ÆH+1; ÆH+2; : : : ; Ær+1):By onsidering the di�erenes vi� vi0 we get that for the j-th omponentof vi � vi0 we have �j � Æj � Æ0j � j:Now let z1; z2; z3; : : : ; zp be an enumeration of all H-dimensional vetorsfÆ1; Æ2; : : : ; ÆHg with omponents�j � Æj � j;where j's were de�ned by (3.4). Thenp = (21 + 1)(22 + 1) � � � (2H + 1):Let w1; w2; : : : ; ws be an enumeration of all r + 1 � H-dimensional vetorsfÆH+1; ÆH+2; : : : ; Ær+1g with omponents0 � Æi � i:Then by (3.6) we haves = (H+1 + 1)(H+2 + 1) : : : (r+1 + 1) � 4�(n)x : (3.7)For eah i (1 � i � s), let Ei denote the set of all H-dimensional vj suhthat (vj; wi) 2 B. Ei an be empty. Let the ardinality of Ei be ei. Then wehave m = sXi=1 ei: (3.8)9



For eah i in 1 � i � s we onsider the di�erenes vj � vk where (vj; wi) and(vk; wi) are vetors in the set B. The zero vetor of dimension H ours mtimes as a di�erene, but any other vetor z` ours at most T times. Wewill assume that z1 = 0. If xi is the number of times that zi ours as adi�erene vj � vk thenx1 = m; xi � T for i = 2; 3; : : : ; p: (3.9)By (3.7), (3.8) and the Cauhy-Shwarz inequality we �nd thatpXi=1 xi = sXi=1 e2i � m2s � m2x4�(n) : (3.10)Without loss of generality, we may assume that 1 � � � � � H . LetH� � H be the greatest integer with1 = 1 = 2 = � � � = H�:If all i � 2, then let H� = 0.If we take all di�erenes in a �nite sequene of 0's and 1's, then at leasthalf of all di�erenes are 0: if we have a piees of 0 and b piees of 1, thenthe number of di�erenes 0 is a2 + b2 and the number of di�erenes �1 is2ab. Clearly a2 + b2 � 2ab.Thus if we de�ne hi;j (1 � i � p; 1 � j � H�) by 1 when the j-thomponent of zi is 0 and hi;j = �1 in the other ase (when the j-th omponentis -1 or +1), then we getpXi=1 hi;jxi � 0 for j = 1; : : : ; H�: (3.11)Put yi = maxf0; 1 + H�Xj=1 hi;jg; for i = 1; : : : ; p: (3.12)It follows then from (3.11),(3.12) and sine xi � 0 that0 � H�Xj=1 pXi=1 hi;jxi � pXi=1 (yi � 1)xi:10



By this, (3.9) and (3.12) we getpXi=1 xi � pXi=1 yixi � my1 + T pXi=2 yi: (3.13)If in the �rst H� omponents of zi, ki omponents equal to 0, we getH�Xj=1 hi;j = 2ki �H�; i = 1; : : : ; s:By this, (3.12) and sine for �xed (Æ1; : : : ; ÆH�) the number of i's for whih zi�rst H� omponents are (Æ1; : : : ; ÆH�) is at most (2H�+1 + 1) : : : (2H + 1),we getT pXi=2 yi � T Xk�(H��1)=2�H�k �2H��k(1 + 2k �H�)(2H�+1 + 1) : : : (2H + 1):(3.14)The funtion f : N ! R, f(k) = �H�k �1:7H�=2�k(1 + 2k�H�) is dereasing inthe interval [H�=2 + 1; H�℄. Indeedf(k) > f(k + 1)is equivalent with(2k �H� � 2)(2:7k �H� + 6:7) + 0:1k + 15:1 > 0;whih holds for k 2 [H�=2 + 1; H�℄. Thus for k 2 [H�=2� 1; H�℄ we havef(k)� f([H�=2℄):By this and the Stirling's formula we get�H�k �1:7H�=2�k(1 + 2k �H�)� � H�[H�=2℄�� 2H�pH� :
11



So Xk�(H��1)=2�H�k �2H��k(1 + 2k �H�)= Xk�(H��1)=2�H�k �1:7H�=2�k(1 + 2k �H�)2H�=2� 21:7�H�=2�k� 2H�=2 Xk�(H��1)=2 2H�pH� � 21:7�H�=2�k = 23H�=2pH� Xk�(H��1)=2� 21:7�H�=2�k� 23H�=2pH� :By this and (3.14) we getT pXi=2 yi � T23H�=2pH� (2H�+1 + 1) : : : (2H + 1): (3.15)For 1 � i � H� we have 2 = i + 1 and for i > H� i � 2, thus 2i + 1 �(i + 1)3=2, and by (3.15)T pXi=2 yi � TpH� ((1 + 1)(2 + 1) : : : (H� + 1))3=2 (2H�+1 + 1) : : : (2H + 1)� TpH� ((1 + 1) : : : (H + 1))3=2 :Thus by (3.5) we get T pXi=2 yi � TpH�x3=2:By this, (3.10), (3.13) and y1 � H� + 1 we getm2x�(n) � pXi=1 xi � mH� + TpH�x3=2;m2 � mH��(n)x + TpH�x1=2�(n);m� H��(n)x + T 1=2(H�)1=4x1=4�(n)1=2: (3.16)Now we �x the value of x in (3.2). Letx = H��(n)2=5T 2=5 : (3.17)12



Clearly x � �(n). By (3.16) and (3.17) we getm� T 2=5�(n)3=5whih was to be proved.Proof of Lemma 2Write x�i = xi + ak�1kak ; y�i = yi + ak�1kakand let Q(X) = P (X � ak�1kak ). ThenP (xi) = Q(x�i ); P (yi) = Q(y�i ):The oe�ient of xk�1 in Q(x) is 0, letQ(x) = bkxk + bk�2xk�2 + � � �+ b0:Clearly bk = ak. If jxij and jyij are large enough (depending on the polynomialP (X)), jxij ; jyij > 1, then from (2.1)12u < jxi�j ; jyi�j < 2u (3.18)follows with u = ��v1=k��. By (2.1) the number of the pairs xi; yi 2 Z withminfjxj ; jyjg < 1 is �nite and depends only on the polynomial of P (X).Thus throughout the proof we may suppose that (3.18) holds for all xi�'sand yi�'s.Denote by M the greatest oe�ients of Q(x) in absolute value:M = max0�i�k jbij :We de�ne a modulus m depending only on the polynomial P (X). Indeed,let m > 24k�1(k + 1)3M2: (3.19)Suppose that T is large enough:T > 4(k + 1)m2;13



where k is the degree of the polynomial P (X). By the pigeon-hole priniple,there exist k+1 xi's and yi's whih are ongruent modulom and all produtsxiyj have the same sign. We may suppose that these xi's and yi's arex1 � x2 � � � � � xk+1 (mod m); y1 � y2 � � � � � yk+1 (mod m): (3.20)First we will prove that for all 1 � i � k + 1 we havex�1y�1 = x�iy�i : (3.21)By Q(x1�)Q(y1�) = Q(xi�)Q(yi�) ;Q(x1�)Q(yi�) = Q(xi�)Q(y1�);we getb2k �(x1�yi�)k � (xi�y1�)k� = � X0�j;`�k;minfj;`g�k�2 bjb`(x1�jyi�` � xi�jy1�`):By estimating the right-hand side by the triangle-inequality and using jbij �max1�i�k jbij = M and (3.18) we getb2k ��(x1�yi�)k � (xi�y1�)k�� � 2(k + 1)2M2(2u)2k�2: (3.22)Next we gave a lower bound for the left hand side of (3.22). x1�yi� and xi�y1�have the same sign and thusb2kj(x1�yi�)k � (xi�y1�)kj = b2k jx1�yi� � xi�y1�j�jx1�yi�jk�1 + � � �+ jxi�y1�jk�1�� b2k jx1�yi� � xi�y1�j k �u2�2k�2 :By this, (3.22) and bk = ak we getjx1�yi� � xi�y1�j � 24k�1(k + 1)2M2ka2k : (3.23)14



The right hand side of (3.23) is a onstant whih depends only on the poly-nomial P (X). Thus x1�yi� and xi�y1� are very lose. Suppose that they arenot equal. Then we will give a lower bound for the left-hand side of (3.23).jx1�yi� � xi�y1�j =1(kak)2 j(kakx1 + ak�1) (kakyi + ak�1)� (kakxi + ak�1) (kaky1 + ak�1)j :By (3.20) we getm j (kakx1 + ak�1) (kakyi + ak�1)� (kakxi + ak�1) (kaky1 + ak�1) :If x1�yi� and xi�y1� are not equal, then we obtainjx1�yi� � xi�y1�j � m(kak)2 :By this and (3.23) we get m � 24k�1(k + 1)3M2whih ontradits (3.19), thus we proved (3.21).By (3.21) we have that there exist ; d 2 Q with = Q(x�i )Q(y�i ) and d = x�iy�i (3.24)for all 1 � i � (k + 1). Then0 = Q(dy)� Q(y)has at least k + 1 solutions, sine for all 1 � i � k + 1, y�i is a solution by(3.24). But the polynomial Q(dy) � Q(y) is not identially 0 (sine P (X)is not the form a(X + b)k) and its degree is � k, whih is a ontradition.Thus we have proved Lemma 2.Proof of Lemma 3 15



De�ne x�i 's and polynomial Q(X) as in Lemma 2. The oe�ient of xk�1in Q(x) is 0, and let againQ(x) = bkxk + bk�2xk�2 + � � �+ b0 (3.25)and M = max0�i�k jbij :If jxij and jxjj are large enough depending on the polynomialP (X), jxij ; jxjj >1, then from (2.3) 12 < jxi�jjxj�j < 2: (3.26)The number of the integers xi with jxij < 1 is �nite and depends only onthe polynomial of P (X). Thus throughout the proof we may suppose that(3.26) holds for all xi� and x�j .Let m be a large prime (depending only on the polynomial P (X)) suhthat (k;m� 1) = 1 (3.27)and m > k23kM2: (3.28)Suppose that T is large enough:T > 2(k + 1)m;where k is the degree of the polynomial P (X). By the pigeon-hole priniple,there exist k + 1 xi's whih are ongruent modulo m and all xi's have thesame sign. Let us denote them by x1; x2; : : : ; xk+1:x1 � x2 � � � � � xk+1 (mod m): (3.29)First we will prove that for 1 � i � k + 1 we haveP (x1)P (xi) = Q(x�1)Q(x�i ) = �x�1x�i �k : (3.30)16



By (2.3) P (x1)P (xi) = Q(x�1)Q(x�i ) is the k-th power of a positive rational number, soQ(x1�)Q(xi�) = �pq�k (3.31)with 0 < p; q 2 N . Thenpk � Q(x�1) � (k + 1)M jx�1jk ;p � 2M1=k jx�1j : (3.32)m is a prime with (3.27), so by (3.29) and (3.31) we havep � q (mod m) (3.33)By (3.25) and (3.31)bk �(x1�q)k � (xi�p)k� = � X0�j�k�2 bj((x�1)jqk � (x�i )jpk): (3.34)By (3.26) 12 jx�1j < jx�i j < 2 jx�1j and by (2.3) and (3.31) 12pk < qk < 2pk. Soby estimating the right-hand side of (3.34) by the triangle-inequality we get��bk �(x1�q)k � (xi�p)k��� � (k � 1)M max0�j�k�2 ��((x�1)jqk � (x�i )jpk)��� (k � 1)M(2k + 2) jx�1jk�2 pk: (3.35)Next we gave a lower bound for the left hand side of (3.35). By (3.26) x1�qand xi�p have the same signs and thusjbk �(x1�q)k � (xi�p)k� j = jbkj jx1�q � xi�pj�jx1�qjk�1 + � � �+ jxi�pjk�1�� jbkj jx1�q � xi�pj k� jx�1j p4 �k�1 :By this, (3.32) and (3.35) we getjx1�q � xi�pj � (k � 1)(2k + 2)4k�1Mk jbkj pjx�1j � (k � 1)(2k + 2)4k�1Mk jbkj 2M1=k< 23kM2jbkj : (3.36)17



The right hand side of (3.36) is a onstant whih depends only on the poly-nomial P (X). Thus x1�q and xi�p are very lose. Suppose that they are notequal. Then we will give a lower bound for the left-hand side of (3.36).jx1�q � xi�pj = 1kak j(kakx1 + ak�1) q � (kakxi + ak�1) pj :By (3.29) and (3.33) we getm j (kakx1 + ak�1) q � (kakxi + ak�1) p:If x1�q and xi�p are not equal, then we obtainjx1�q � xi�pj � mk jakj = mk jbkj :By this and (3.36) we get m � k23kM2whih ontradits (3.28), thus we proved (3.30).By (3.30) we have that the polynomialQ(x�1)yk � (x�1)kQ(y)has k+1 di�erent roots: y = x1; x2; : : : ; xk+1. But the polynomial Q(x�1)yk�(x�1)kQ(y) is not identially zero (sine P (X) is not the form a(X + b)k) andits degree is � k, whih is a ontradition. Thus we have proved Lemma 3.4 On possible improvements on Theorem 1One of the main tools in the proof of Theorem 1 was Lemma 1 whih isa generalization of the following theorem of Lindström [15, Theorem 2℄.Lemma 5 Let F2(d) denote the maximum number of vetors of dimensiond, whose omponents are taken from the integers f0; 1g suh that every twovetors have di�erent sum. ThenF2(d)� d23=5d:18



A famous onjeture asked whetherL def= limd!1F2(d)1=dequals to 1=2? The onstant L is related to our problem. Probably, for all" > 0 �P (n)� (logn)�(n)L+" (4.1)ould be proved. The best known upper bound for the onstant L was provedby G. Cohen, S. Litsyn, G. Zémor [4℄ in 2000. Using oding theory theyprovedLemma 6 L � 0:57526, i.e.,limd!1 (F2(d))1=d � 0:57526:Unfortunately, I was not able to generalize Lemma 5 to vetors with om-ponents taken form a larger set than f0; 1g. Thus the starting point of theproof of Lemma 1 was Lindström's [15℄ proof for L � 3=5. Studying onlysquarefree numbers I an prove (4.1).Theorem 3 Let " > 0. If n is a squarefree number and P (X) 2 Z[X℄ is apolynomial, whih is not of the form a(X+ b)k with a; b 2 Q , and k 2 N then�P (n)� (logn)�(n)L+";where the implied fator depends on " and the polynomial P (X).From this by using Lemma 6 for squarefree numbers n we get�P (n)� (logn)�(n)0:5753: (4.2)This result improves on the onstant (�) in La Bretèhe's Theorem C ifn is a squarefree number and � is not a square of an integer.19



I think that (4.2) might be extended to every integer n by generalizingLemma 5, however I was not able to prove it. Most probably the truth is�P (n)� �(n)o(1);but it seems hopeless to prove it.The proof of Theorem 3 uses similar tehnis than Theorem 1, but theexponent (if we use the best known upper bound for L) is only slightlysharper, thus here we only sketh the proof.Sketh of the proof of Theorem 3Let 1 > 1 be a onstant small enough, depending only on the polynomialP (X). WriteDi = fP (x) > 0 : x 2 Z; i1 � P (x) < i+11 ; P (x) j ng:We will prove that if fd1; d2g 6= fd3; d4g, thend1d2 = d3d4 with d1; d2; d3; d4 2 Di (4.3)is not possible. Then by the de�nition of L we getjDij � 2(L+")!(n);from whih the theorem follows. Let us see the proof of (4.3).De�ne Q(X) = P (X � ak�1kak ). Then the oe�ient of xk�1 in Q(X) is 0.Clearly,Di = fQ(x) > 0 : x + ak�1kak 2 Z; i1 � Q(x) < i+11 ; Q(x) j ngSuppose that ontrary to (4.3), there exists Q(x); Q(y); Q(z); Q(v) 2 Disuh that Q(x)Q(y) = Q(z)Q(v):20



Then there exists integers a; b; ; d suh thata = Q(x); ad = Q(v);b = Q(z); bd = Q(y):ThenLemma 7 There exists a onstant 2 > 1 depending only on the polynomialP (X) suh that 2a < bd:Proof of Lemma 7This is Lemma 1 in [13℄ if xy�zv 6= 0 and Lemma 5 in [13℄ if xy�zv = 0.By Lemma 7 2Q(x) < Q(y): (4.4)Now we �x the value 1 > 1 in the de�nition of Di: let 1 = 2. ByQ(x); Q(y) 2 Di and (4.4) we havei+11 � 1Q(x) < Q(y) < i+11whih is a ontradition.Referenes[1℄ A. Balog, P. Erd®s and G. Tenenbaum, On arithmeti funtions involv-ing onseutive divisors, In: B. Berndt, H. Diamond, H. Halberstam, A.Hildebrand (eds), Analyti number theory (Urbana, 1989), Prog. Math.85, 77-90 (Birkäuser, 1990).[2℄ Y. Bugeaud, A. Dujella, On a problem of Diophantus for higher powers,Math. Pro. Cambridge Philos. So. 135 (2003), 1-10.[3℄ Y. Bugeaud, K. Gyarmati, On generalizations of a problem of Diophan-tus, Illinois J. Math. 48 (2004), 1105-1115.21
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