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Abstract
Let 7(n) be the number of positive divisors of an integer n, and for
a polynomial P(X) € Z[X], let
p(n) = |[(P(m) >0: m € Z, P(m) | n)|.

R. de la Bretéche studied the maximum values of 7p(n) in intervals.
Here the following is proved: if P(X) € Z[X]is not of the form a(X +
b)* with a,b € Q, and k € N then

7p(n) < (logn)7(n)3/>.

This improves partially on La Bretéche’s results.

List of keywords and phrases: divisors, polynomial, extremal set the-
ory.
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1 Introduction

Paul Erdgs asked several problems concerning divisors, for example, he

conjectured that the density of integers n which have two divisors d;, d, with
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di < dy < 2dy is 1 (e.g. see [9]). This conjecture was proved by Maier
and Tenenbaum [16]. In this paper we study the number of certain special
divisors of an integer n. We denote positive divisors of n by d, their number
by 7(n), and the number of distinct prime divisors by w(n).

P. Erdds and R. R. Hall [10] initiated the study of 74(n), which is the

number of positive divisors of n of the form
rx+1)...(z+k—1)
with x € Z. In the case k = 2 an equivalent definition is
ro(n) = [{i: dip1 —di =1},
where 1 =d; <dy <--- < d;p) = n denote the all positive divisors of n. P.

Erdds and R. R. Hall [10] proved that

el/k_g

Tr(n) > (logn)

holds for infinitely many n. They also estimated the average value of 7;(n)

by proving
LS ) = Gy + O
A (k—1)(k —1)! '

The first upper bound for 75(n) is due to Tenenbaum [17, Theorem 2|, who
proved that
T(n) < 7(n)° (1.1)

holds with ¢ = 0.93974.... R. de la Bretéche [6, Theorem 2| improved on
the exponent ¢ and obtained (1.1) with ¢ = 0.91829.... m(n) was studied
by several authors, see in [1], [6], [10], [11] and [17].

Using La Bretéche’s method it is easy to prove that

k() < (k + )7 (n)" /0D (1-2)

where
1

- log 2

h(c)

(1 = a)log(1/(1 = a)) + alog(1/a))).



Indeed at least one of the integers d,d +1,...,d+ k — 1, m is in
the set {d: Q(d) <Q(n)/(k+1)}. By using Lemma 2.1 in [5] we get (1.2).

R. de la Bretéche [5] extended the problem to other polynomials.
Definition 1 For P(X) € Z[X], let
p(n) ={P(m)>0: me€Z, P(m)|n}.

In the special case P(X) = X(X +1)--- (X +k — 1) 7,(n) is (n). R.

de la Bretéche [5] estimated the maximum value of 7p(m):

Theorem A If P(x) € Z[x] is a polynomial of degree 2 with discriminant
A, then

e(A)+o(1)
) (13)

max 7p(m) < < max 7(m)
1<m<n 1<m<n

where
0.565... if A #0 is a square of an integer,
c(A)=1¢ 05 if A =0, (1.4)
0.579... if A is not a square of an integer.
In [5] it is also mentioned that this theorem can be improved for some
special polynomials of higher degree.
Here we will extend La Bretéche’s Theorem A to every polynomial and
in section 4 we will improve on the constant ¢(A) if n is a squarefree number
and A is not a square of an integer.

By Wigert’s theorem [18]

D(n) & max 7(m) = 20wk,

For almost all n, 7(n) is around clogn, which is significally smaller then
D(n). Indeed, in the case 7(n) < D(n)*®), (1.3) gives a trivial upper bound
for 7p(n):

mp(n) < max 7p(m) < D(n)A W),
1<m<n

This inspired me to look for a bound 7,(n) in terms of 7(n), which can give

a sharp estimate for a larger set of integers. I obtained the following
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Theorem 1 If P(X) is not of the form a(X + b)* with a,b € Q, and k € N
then
mp(n) < (logn)r(n)3/°. (1.5)

Theorem 1 is trivial for 7(n) < (logn)®/?, while the upper bound in (1.1)
are always non-trivial. For k& > 6 the exponent A(1/(k + 1)) in (1.2) is less
than 3/5, so (1.2) gives sharper bound for 74(n) than Theorem 1. However
in these special cases Theorem 1 does not give the best possible results, but
its proof is a different approach from Tenenbaum’s and La Bretéche’s and
for general polynomials P(X) (for example, for irreducible polynomials over
Q) gives a new and sharp bound for 7p(n).

The proof of Theorem 1 is based on a generalization of a lemma of B.
Lindstrom [15] on Bs sequences. Possible improvements on Theorem 1 will
be discussed in section 4.

Using Evertse’s theorem on S-unit equations [12, Theorem 1] for the

linear form x — y = 1 we get:
m(n) < 720, (1.6)

If n contains only few prime factors, so w(n) is small, then (1.6) is a sharper
bound than (1.1).
For general polynomials P(X) I will prove the following:

Theorem 2 If P(X) € Z[X] is not of the form a(X +b)* with a,b € Q, and
k € N then
7p(n) < logn(degP)“™. (1.7)

If n contains only few prime factors then the upper bound (1.7) is sharper

than (1.5).

Acknowledgement. I would like to thank Professors Zoltan Fiiredi,
Andréas Sarkozy and Miklos Simonovits for the valuable discussions. T also
wish to thank to the referee for his suggestions which leads to (1.2) and the

improvement of the original Theorem 1 by a factor w(n)'/®.
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2 Proof of Theorems 1-2

Our first lemma is a generalization of a theorem of B. Lindstorm [15].

Lemma 1 Let D be a subset of the divisors of an integer n. Suppose that

there are no T different pairs xz;,vy; € D, such that

T T _ar
n Yo Yr
Then

D| < T*57(n)*.

The exponent 3/5 in Theorem 1 strongly depends on the exponent 3/5 in
Lemma 1. This exponent might be improved in some special cases, results

in this directions will be discussed in section 4.

Lemma 2 Let v € N, P(X) = ax X* + ap 1 X' + -+ ay € Z[X] be a
polynomial which is not of the form a(X + b)* with a,b € Q, k € N. Then
there exists a (computable) constant T depending only on the polynomial

P(X) such that at most T pairs x;,y; € Z exist with

v < P(z;), P(y;) < 2v (2.1)
" P@) Pl P(ar)
Y P T Pl T Pler) 22)

The history of Lemma 2 is related to a problem of Diophantus. Dio-
phantus found 4 rational numbers such that the product of any two of them
increased by 1 is a square of a rational number. The first absolute upper
bound for the size of Diophantine tuples was given by A. Dujella, see in [7],
[8]. Later Y. Bugeaud and A. Dujella [2| extended the problem for higher
power. In [3], [13] and [14] we studied different generalizations of the problem

of Diophantus. Lemma 2 is closely related to the proof of these results.



We postpone the proof of Lemma 1 and Lemma 2 to section 3. For

. logn
OSZS m let

D; = {P(m) >0:2' < P(m) < 2", P(m) | n}.
By Lemma 2 these sets D;’s satisfy the conditions of Lemma 1. By using

Lemma 1 we get

|Dl‘ < T(n)3/5.

We have [igig} + 1 different sets D;, thus we get Theorem 1.

In order to prove Theorem 2 we will need the following lemma.

Lemma 3 Let P(X) € Z[X] be a polynomial of degree k, which is not of the
form a(X + b)*. Then there exists a (computable) constant T depending on
the polynomial P(X) such that there are at most T integers x; (1 <i <T)
such that for 1 <i,57 <T

=< <2 2.3
2 P(z) 23)
and ﬁglg is the k-th power of a rational number.
J

We will prove Lemma 3 in section 3.
Denote the prime divisors of n by py,ps,...,pr, s0 7 = w(n). To every
d € D;, d =p*---p? we assign a {0,1,...,k — 1}-vector (dy,...,d,) such
that
§; =a; (mod k)

and 0 < 9; <k —1. By Lemma 3 to at most T different d € D;’s we assign
the same {0,1,...,k — 1}-vector. Thus

Dy < Tk“™.

Again, we have {llzgg] + 1 different sets D;, thus we get Theorem 2.



3 Proof of Lemmas 1-3
Proof of Lemma 1
First we will prove the following:

Lemma 4 Let n € N. Then for 1 < x < 7(n), there exist positive integers

ny and ne such that
4
() <, T(ng) < Ti”), (3.1)

and every d | n can be written of the form d = dydy with dy | ny and dy | ns.
Throughout the proof of Lemma 1 we will use this factorization of d’s.

Proof of Lemma 4

Consider the prime factorization of n:
n=p...p.
Let H — 1(< r) denote the greatest positive integer with
(g +D)(ag+1)...(ag 1 +1) <.
Let 0 < By < ay denote the greatest integer with
(o +1)(ag+1).. . (g1 +1)(Bu + 1) <z (3.2)
By the definition of Sy we get

< %(al + D(ae+1)...(ag 1+ 1)(Br +2)

N8

<(ag+1)(ag+1)... (g1 +1)(fu + 1),

thus
47(n) S 27(n)
r (o +1)(e+1)...(ag—1 +1)(Bu +1)

> <[g§i” +1> (nin + D(amsa+1) .. (ar +1).  (3.3)




Let

=1« pir ifi=H+1,
pia ifH+2<i<r,

and
(o if1<i<H,

et = H 4, (34)

-

Br+1
[ Qi1 ifH+2<i<r+1.

Clearly, every d | n can be written in the form d = ¢J'. ..qffjll with

0 < B; < ;. This proves Lemma 4 with

— M YH
ny=4q -..49g

and

_  YH+1 Tr41
N = qgi1 - -y -

Indeed, by (3.2) and (3.3) we get (3.1). We remark that then

() =Mm+1(e+1)...(ww+1) <z (3.5)

and
47(n)

X

T(n2) = (Yr1 + (g2 +1) . (v +1) < (3.6)

Throughout the proof of Lemma 1 we will use this factorization d =
qfl o qujll with 0 < §; < 7, in place of the prime factorization. Our factor-
ization (as the prime factorization) is unique.

Next we return to the proof of Lemma 1. We will fax the value of 1 <
r < 7(n) later.

To every d € D, d = ¢ ... qujll we assign an 7 + 1-dimensional vector
ba = (01,09, ...,0,41). Let B = {by,by,..., by} be the set of all the r + 1-

dimensional vectors obtained in this way. Then
m = |D| = |B|.
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By the conditions of Lemma 1, for every a # 0, a € Z"*! the equation
a:bi—bj, bi,b]‘EB

has at most 7T different solutions in 7 and j.

We split each b, in two vectors v; and w; of dimensions H and r +
1—H. If by = (61,09,...,0,41), then let v; = (d1,02,...,dy) and w; =
(011, 0m425 -+ Opg1)-

By considering the differences v; — vy we get that for the j-th component
of v; — vy we have

= <65 —0; < ;.

Now let 2, 29,25,...,2, be an enumeration of all H-dimensional vectors

{61,082, ...,0n} with components
=7 < 05 <,
where 7;’s were defined by (3.4). Then

Let w',w?, ..., w® be an enumeration of all r + 1 — H-dimensional vectors
{0m+1,0m12, ..., 0,41} with components
0<d; <

Then by (3.6) we have

47(n) ‘

s= a1+ )2 +1) . (g +1) < (3.7)

For each i (1 <i < s), let E; denote the set of all H-dimensional v; such
that (v;, w') € B. E; can be empty. Let the cardinality of E; be e;. Then we

m = Zei. (3.8)

9
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For each i in 1 < i < s we consider the differences v; — vj, where (v;, w") and
(v, w') are vectors in the set B. The zero vector of dimension H occurs m
times as a difference, but any other vector z, occurs at most 7' times. We
will assume that z; = 0. If x; is the number of times that z; occurs as a

difference v; — v;, then
xry=m, x; <Tfori=2,3,...,p. (3.9)

By (3.7), (3.8) and the Cauchy-Shwarz inequality we find that

P 8 2 2

s m mz
E ;= E > — > . 3.10
i=1 ’ =1 " 5 4T(n) ( )

Without loss of generality, we may assume that 74 < --- < vyg. Let
H* < H be the greatest integer with

1:71:72:---:7}[*_

If all 7; > 2, then let H* = 0.

If we take all differences in a finite sequence of 0’s and 1’s, then at least
half of all differences are 0: if we have a pieces of 0 and b pieces of 1, then
the number of differences 0 is a® + b* and the number of differences +1 is
2ab. Clearly a? + b* > 2ab.

Thus if we define h;; (1 < i < p,1 < j < H*) by 1 when the j-th
component of z; is 0 and h; ; = —1 in the other case (when the j-th component

is -1 or +1), then we get

p
> higwi>0forj=1,... H". (3.11)
i=1
Put
H*
yi =max{0,1+ ) hi;}, fori=1,...p. (3.12)
j=1

It follows then from (3.11),(3.12) and since z; > 0 that

H* p p
0< Zzhi,jxi < Z(yz — 1)z;.
i—1

j=1 i=1
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By this, (3.9) and (3.12) we get

p p p
=1 i=1 =2

If in the first H* components of z;, k; components equal to 0, we get
H*
Zhi,jZQki_H*; izl,...,s.
j=1

By this, (3.12) and since for fixed (dy,...,dp+) the number of i’s for which z;
first H* components are (0q,...,d0+) is at most (2yg+41 + 1) ... (2yg + 1),

we get

Tiyi <T i
i=2 k

L >2H*—’“(1 +2k— H*)2ypeqp1 + 1) ... (2yu + 1).

>(H*—1)/2 (
(3.14)

The function f: N — R, f(k) = (") 1.7"/27*(1 4 2k — H*) is decreasing in
the interval [H*/2 + 1, H*]. Indeed

f(k) > f(k+1)
is equivalent with
(2k — H* — 2)(2.7k — H* + 6.7) + 0.1k + 15.1 > 0,
which holds for k£ € [H*/2 4+ 1, H*]. Thus for k € [H*/2 — 1, H*| we have
f(k) < f([H"/2]).

By this and the Stirling’s formula we get

H* . H* oH"
1.7 27k (1 4 9k — H* <<< ><<—.
< ; ) ( V< \mey2) < Vi

11



So

>y (Hk> 21 =k(1 4+ 2k — H)

k> (H—1)/
H : g 2 \TE
= Y < B )1.7H 2R 4 2k — H*)2H/? <ﬁ>
k>(H-—1)/2 '
. oH* 9 H* [2—k 23H*/2 2 H*[2—k
e ()
ps(ir— e VHS LT H* iy N
23H*/2
< .
,/H*
By this and (3.14) we get
i T93H*/2
i=2 vV H*

For 1 < i < H* we have 2 = ~v; + 1 and for ¢« > H* 7; > 2, thus 2v; + 1 <
(i + 1)*2, and by (3.15)

szi < i* (i + (2 +1) ... (yu + 1))3/2 vy +1) ... (2yg + 1)

1=2 v H

€ (n 1) (1)

/H*
Thus by (3.5) we get

p
T
T <K< 253/2.
2 i
By this, (3.10), (3.13) and y; < H* 4+ 1 we get

2 p
m-x
<<E in<<mH*+

T
T(n) 4 VH*
H*1(n) T
m? < m + 2?7 (n ,
PR
» 1/2
H*1(n) N TV Ry
- (H*)1/*
Now we fix the value of x in (3.2). Let
H*7(n)?/"
— T T2

:c3/2,

T(n)'2. (3.16)

(3.17)
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Clearly x < 7(n). By (3.16) and (3.17) we get
m < T2/5T(n)3/5
which was to be proved.

Proof of Lemma 2

Write
Qr—1
kak

Qg—1
kak
and let Q(X) = P(X — 3=1). Then

*

P(x;) = Q(z7), Plyi) = Qy;).
The coefficient of 2571 in Q(z) is 0, let
Q(z) = bpa® + bp_ox® 2 - 4 by.
Clearly by = a. If |2;| and |y;| are large enough (depending on the polynomial
P(X)), |zi|, |yi| > ¢1, then from (2.1)
%u < o] lys'] < 2u (3.18)

follows with u = |0'/¥|. By (2.1) the number of the pairs z;,y; € Z with
min{|z|, |y|} < ¢ is finite and depends only on the polynomial of P(X).
Thus throughout the proof we may suppose that (3.18) holds for all z;*’s
and y;*’s.

Denote by M the greatest coefficients of Q(z) in absolute value:

M = max |b;].

0<i<k

We define a modulus m depending only on the polynomial P(X). Indeed,
let

m > 2%k + 1) M2 (3.19)

Suppose that 7" is large enough:
T > 4(k + 1)m?,

13



where k is the degree of the polynomial P(X). By the pigeon-hole principle,

there exist k41 x;’s and y;’s which are congruent modulo m and all products

x;y; have the same sign. We may suppose that these z;’s and y;’s are

TN=x9=- =21 (modm), y1=ys=-+-=yry1 (modm). (3.20)

First we will prove that for all 1 <i < k 4+ 1 we have

e 3.21
viooou (3-21)
By
Q(z1* _ Q(z;*)
Qy*)  Qy*)’
Q(r1")Qyi") = Qz:")Q(y1"),
we get
bz ((xl*yz*)k N (xz*yl*)k) - _ Z bjbf(xl*jyi*é N xi*]‘yl*f).
0<5,L<k,

min{j,¢}<k—2

By estimating the right-hand side by the triangle-inequality and using |b;| <

maXxij<;<g ‘bz‘ = M and (318) we get

by [(1y)* = ()| < 2(k + 1) M2 (2u)* 2. (3.22)

Next we gave a lower bound for the left hand side of (3.22). z1*y,* and x;*y,*

have the same sign and thus

bi|(l’1*yl*)k o (xz*yl*)k‘ — bz \«’131*%* - xi*yl*‘ (‘xl*yi*|k_1 T ‘xi*y1*|k_1)
2 * % % ok u k=2
> by |21y — vt ‘k(§)

By this, (3.22) and by = a;, we get

. . 24]4:71 k+12M2
ity =ty < (W ek (3.23)
k
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The right hand side of (3.23) is a constant which depends only on the poly-
nomial P(X). Thus x;*y;* and x;*y,* are very close. Suppose that they are

not equal. Then we will give a lower bound for the left-hand side of (3.23).

My — x| =
1
(kak)2

By (3.20) we get

\(kakxl + ak,l) (kakyi + ak,l) - (kakxz + ak,l) (kakyl + ak,1)| .

m | (kagzy + ag_1) (kary; + ag_1) — (kagz; + ag_1) (karyr + ax_1) .

If x1*y;* and z;*y,* are not equal, then we obtain

oty — Tyt >

(/mk)2'
By this and (3.23) we get
m S 24]671(]{; 4 1)3M2

which contradicts (3.19), thus we proved (3.21).
By (3.21) we have that there exist ¢,d € Q with

_ Q(=7) _ T
= 000 and d= " (3.24)

forall 1 <i < (k+1). Then

0= Q(dy) — cQ(y)

has at least k + 1 solutions, since for all 1 <7 < k41, y; is a solution by
(3.24). But the polynomial Q(dy) — ¢Q(y) is not identically 0 (since P(X)
is not the form a(X + b)*) and its degree is < k, which is a contradiction.

Thus we have proved Lemma 2.

Proof of Lemma 3
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Define x}’s and polynomial Q(X) as in Lemma 2. The coefficient of 2*~!

in Q(x) is 0, and let again

Q(l‘) = bklﬁk + bk_gl‘k_Q + -+ bo (325)
and
M = max |b;|.
0<i<k

If |x;| and |z;| are large enough depending on the polynomial P(X), |z;/|, |z;| >

c1, then from (2.3)

1 .
L b *| <2. (3.26)
2 oy

The number of the integers x; with |z;| < ¢ is finite and depends only on
the polynomial of P(X). Thus throughout the proof we may suppose that
(3.26) holds for all z;* and 7.
Let m be a large prime (depending only on the polynomial P(X)) such
that
(k,m—1)=1 (3.27)

and
m > k2% M. (3.28)

Suppose that T is large enough:
T > 2(k+1)m,

where k is the degree of the polynomial P(X). By the pigeon-hole principle,
there exist k£ 4+ 1 z;’s which are congruent modulo m and all z;’s have the

same sign. Let us denote them by x1,x9, ..., Tk 1!
TN=x9=-=12p (mod m). (3.29)

First we will prove that for 1 <7 < k + 1 we have

P(z;)  Qz}) <%>k (3.30)




By (2.3) 1;((?)) ggzlg is the k-th power of a positive rational number, so

Q(:vl.*) _ (2>k (3.31)

with 0 < p,q € N. Then

p* < Q(x}) < (k+1)M [a}]",
p < 2MY*R |23 (3.32)

m is a prime with (3.27), so by (3.29) and (3.31) we have

p=¢q (mod m) (3.33)
By (3.25) and (3.31)
b ((21%)" — (2:"p)*) = — Z bi((27) ¢" — (7)'p"). (3.34)

By (3.26) 1 |z7] < |2}| < 2|z}] and by (2.3) and (3.31) 3p* < ¢* < 2p*. So
by estimating the right-hand side of (3.34) by the triangle-inequality we get

b ((@0) = (@) | < (k=DM mane [(1)" — (1))

< (k—1)M (2" +2) |22 p*. (3.35)

Next we gave a lower bound for the left hand side of (3.35). By (3.26) x1%¢

and z;*p have the same signs and thus
e (21°0)* = (@'D)*) | = Wl o' = 'l (a4 o)

ol N k=1
> Ibel o1 — 2, p|k<'§T) .

By this, (3.32) and (3.35) we get

(k—1)(2F+2)4 1M p (k- 1)(2F +2)4k 1M

< 2Nk
k |by| 23| ~ k |by|

z1"q — x;"p| <

23kM2
| b |

(3.36)
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The right hand side of (3.36) is a constant which depends only on the poly-
nomial P(X). Thus z1*q and x;*p are very close. Suppose that they are not
equal. Then we will give a lower bound for the left-hand side of (3.36).

* * 1
z1"q — x;"p| = Tan ((karxy + ar—1) ¢ — (kapx; + ax—1) p| .
k

By (3.29) and (3.33) we get
m ‘ (lmkxl + ak_l) q — (kakxl + ak_l)p.

If x1*¢q and x;*p are not equal, then we obtain

m . m
klag| Kk |bx|

1"q — 2i"p| >
By this and (3.36) we get
m < k23 M2

which contradicts (3.28), thus we proved (3.30).
By (3.30) we have that the polynomial

Q1)y" — (21)" Q)

has k +1 different roots: y = z1, 29, ..., 741 But the polynomial Q(x})y* —
(21)*Q(y) is not identically zero (since P(X) is not the form a(X + b)*) and

its degree is < k, which is a contradiction. Thus we have proved Lemma 3.

4 On possible improvements on Theorem 1

One of the main tools in the proof of Theorem 1 was Lemma 1 which is

a generalization of the following theorem of Lindstrém [15, Theorem 2|.

Lemma 5 Let Fy(d) denote the mazimum number of vectors of dimension
d, whose components are taken from the integers {0,1} such that every two

vectors have different sum. Then

Fy(d) < d23/%.
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A famous conjecture asked whether

LY lim Fy(d)"/

d— 00

equals to 1/2? The constant L is related to our problem. Probably, for all
e>0
7p(n) < (logn)r(n)F*e (4.1)

could be proved. The best known upper bound for the constant L was proved
by G. Cohen, S. Litsyn, G. Zémor [4] in 2000. Using coding theory they

proved
Lemma 6 L < 0.57526, i.e.,
. 1/d
lim (F>(d)) " < 0.57526.
d—00

Unfortunately, I was not able to generalize Lemma 5 to vectors with com-
ponents taken form a larger set than {0,1}. Thus the starting point of the
proof of Lemma 1 was Lindstrom’s [15] proof for L < 3/5. Studying only

squarefree numbers I can prove (4.1).

Theorem 3 Let ¢ > 0. If n is a squarefree number and P(X) € Z[X] is a
polynomial, which is not of the form a(X +b)F with a,b € Q, and k € N then

mp(n) < (logn)7(n)=*e,
where the implied factor depends on & and the polynomial P(X).
From this by using Lemma 6 for squarefree numbers n we get
7p(n) < (logn)T(n)%573, (4.2)

This result improves on the constant ¢(A) in La Bretéche’s Theorem C if

n is a squarefree number and A is not a square of an integer.
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I think that (4.2) might be extended to every integer n by generalizing

Lemma 5, however I was not able to prove it. Most probably the truth is
TP(n) < T(n)O(l)a

but it seems hopeless to prove it.

The proof of Theorem 3 uses similar technics than Theorem 1, but the
exponent (if we use the best known upper bound for L) is only slightly
sharper, thus here we only sketch the proof.

Sketch of the proof of Theorem 3
Let ¢; > 1 be a constant small enough, depending only on the polynomial

P(X). Write
D;={P(z) >0: z€Z, ¢, < P(z) <, P(z)|n).
We will prove that if {d,dy} # {d3,ds}, then
didy = dsdy with dy,dy, d3, dy € D; (4.3)
is not possible. Then by the definition of L we get
D) < 2+

from which the theorem follows. Let us see the proof of (4.3).
Define Q(X) = P(X — akkT_kl) Then the coefficient of z*~! in Q(X) is 0.
Clearly,

D, ={Q(x) > 0: 2+ L €Z, ¢ <Q) <", Q@) [ n)
k

Suppose that contrary to (4.3), there exists Q(z), Q(y), Q(z), Q(v) € D;
such that
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Then there exists integers a, b, ¢, d such that

ac=Qr), ad=Q),
be=Q(z), bd=Q(y).

Then

Lemma 7 There exists a constant co > 1 depending only on the polynomial
P(X) such that

caac < bd.

Proof of Lemma 7
This is Lemma 1 in [13] if zy — 2zv # 0 and Lemma 5 in [13] if zy —zv = 0.
By Lemma 7
0Q(z) < Q(y). (4.4)

Now we fix the value ¢; > 1 in the definition of D;: let ¢; = ¢. By
Q(z),Q(y) € D; and (4.4) we have

' < aQx) < Qy) < !

which is a contradiction.
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