
ON POWERS IN SHIFTED PRODUCTSK. Gyarmati and C.L. StewartAlfred Rényi Institute of Mathemati
s, HungaryUniversity of Waterloo, CanadaAbstra
t. In this note we give an estimate for the size of a subset Aof {1, . . . , N} whi
h has the property that the produ
t of any two distin
telements of A plus 1 is a perfe
t power.1. Introdu
tionLet V denote the set of all positive integers whi
h are of the form xk with
x and k integers and k at least 2. Thus V is the set of positive integers whi
hare perfe
t powers. In [6℄ Gyarmati, Sárközy and Stewart showed that if Nis a positive integer and A is a subset of {1, . . . , N} with the property that
aa′ + 1 is in V whenever a and a′ are distin
t elements of A then |A|, the
ardinality of A, is not large. In parti
ular, they showed that for N su�
ientlylarge(1.1) |A| ≤ 340(logN)2/ log log N.In addition they 
onje
tured that |A| is bounded by an absolute 
onstant.In [8℄ Lu
a showed that this follows as a 
onsequen
e of the abc 
onje
ture.Further he improved on (1.1) by showing that there is a positive number c0su
h that for N su�
iently large(1.2) |A| < c0(log N/ log log N)3/2.Estimate (1.1) was proved by 
ombining results from extremal graph the-ory with a gap prin
iple due to Gyarmati [5℄ whi
h allows one to push apartintegers whose shifted produ
t is a �xed power. The improvement (1.2) ofLu
a was due to his more e�
ient treatment of the large powers whi
h mighto

ur. He introdu
ed estimates for linear forms in the logarithms of algebrai
2000 Mathemati
s Subje
t Classi�
ation. 11B75, 11D99.Key words and phrases. perfe
t powers, extremal graph theory.1



2 K. GYARMATI AND C.L. STEWARTnumbers into his argument to this end. The linear forms Lu
a 
onsiders 
on-sist of 4 terms. The purpose of this note is to show that a further improvementof (1.2) is possible by a modi�
ation of Lu
a's argument whi
h allows one todeal with linear forms in only 2 terms. We shall prove the following result.Theorem 1.1. There exists an e�e
tively 
omputable positive number c1su
h that if N is a positive integer with N ≥ 2 and A is a subset of {1, . . . , N}with the property that aa′+1 is a perfe
t power whenever a and a′ are distin
tintegers from A then
|A| < c1 log N.2. Preliminary lemmasLemma 2.1. There is no set of six positive integers {a1, . . . , a6} with theproperty that aiaj + 1 is a square for 1 ≤ i < j ≤ 6.Proof. This is Theorem 2 of [4℄.Lemma 2.2. Let n and r be integers with 3 ≤ r ≤ n. Let G be a graph on

n verti
es with at least
r − 2

2(r − 1)
n2edges. Then G 
ontains a 
omplete subgraph on r edges.Proof. This follows from Turán's graph theorem, see [9℄ or Lemma 3 of[3℄. Lemma 2.3. Let G be a graph with n (> 1) verti
es and e edges andsuppose that

e >
1

2
(n3/2 + n − n1/2).Then G 
ontains a 
y
le of length 4.Proof. This is a spe
ial 
ase of Theorem 2.3, Chapter VI of [2℄ and isdue to Kövári, Sós and Turán [7℄.We shall need an extension of Lemma 2.3 to the 
ase when G is a graphof k 
olours and the 
y
le of length 4 is 
oloured in a 
ertain way.Lemma 2.4. Let G be a graph with n verti
es and e edges with the edges
oloured by k 
olours. Suppose that G does not 
ontain a 
y
le through verti
es

a1, a2, a3, a4 where the edges from a1 to a2 and from a1 to a4 have the same
olour and where the edges from a2 to a3 and from a3 to a4 have the same
olour. Then
e ≤ k1/2n3/2 + kn.



ON POWERS IN SHIFTED PRODUCTS 3Proof. We will 
ount the number of subgraphs G0 of G of the form
G0 =

�
�

�

@
@

@

a1

a2 a4where the edges (a1, a2) and (a1, a4) are 
oloured by the same 
olour. Let thedegree of ai 
oloured by the j-th 
olour be di,j . Then the number of subgraphs
G0 is exa
tly

n
∑

i=1

k
∑

j=1

(

di,j

2

)

.On the other hand this number is less or equal to (

n
2

) sin
e for every pair
(a2, a4) there exists at most one a1 su
h that the edges (a1, a2) and (a1, a4)have the same 
olour. Thus

n
∑

i=1

k
∑

j=1

(

di,j

2

)

≤

(

n

2

)

.Sin
e ∑n
i=1

∑k
j=1

di,j = 2e we get
1

2

n
∑

i=1

k
∑

j=1

d2

i,j − e ≤
n(n − 1)

2
.By the Cau
hy-S
hwarz inequality

(

∑n
i=1

∑k
j=1

di,j

)2

2kn
− e ≤

n(n − 1)

2and so
2e2

kn
− e ≤

n(n − 1)

2
.Thus

e ≤ ((4kn2(n − 1) + k2n2)1/2 + kn)/4and the result now follows.Lemma 2.5. Let k be an integer with k ≥ 2 and let a1, a2, a3 and a4 bepositive integers with a1 < a3 and a2 < a4. If a1a2 + 1, a1a4 + 1, a2a3 + 1and a3a4 + 1 are k-th powers, then
a3a4 > (a1a2)

k−1.Proof. This follows from the proof of Theorem 1 of [5℄.



4 K. GYARMATI AND C.L. STEWARTFor any non-zero rational number α, where α = a/b with a and b 
oprimeintegers, we put H(α) = max{|a|, |b|}.Lemma 2.6. Let b1 and b2 be non-zero integers and let α1 and α2 benon-zero rational numbers. Put Ai = max{2, H(αi)} for i = 1, 2, B =
max{|b1|, |b2|, 2} and Λ = b1 log α1 + b2 log α2 where the logarithms take theirprin
ipal values. There exists an e�e
tively 
omputable positive 
onstant Csu
h that if Λ 6= 0 then

|Λ| > exp(−C log A1 log A2 log B).Proof. This follows from the Main Theorem of [1℄.3. Proof of Theorem 1.1Let A be a subset of {1, . . . , N} with the property that aa′ + 1 is in Vwhenever a and a′ are distin
t integers from A. We may suppose that(3.3) |A| > log N,sin
e otherwise our result holds. Let c1, c2, . . . denote e�e
tively 
omputablepositive numbers. We shall suppose that N is su�
iently large that(3.4) (log N)/2 log log N > 16.Noti
e that there is an integer m with
1 ≤ m ≤

log((log N)/ log 2)

log 2
,su
h that A has more than (|A| − 3)/((log((log N)/ log 2))/ log 2) elementsfrom {22

m

, 22
m

+ 1, . . . , 22
m+1

− 1}. We shall denote these elements by Amand put n = |Am| and M = 22
m+1

. Then, for N > c1,(3.5) n >
|A|

2 log log N
.Further, by (3.3), (3.4) and (3.5),(3.6) M > 16.Form the 
omplete graph G whose verti
es are the elements of Am. G has

(

n
2

) edges and for ea
h pair (a, a′) of verti
es of G we 
olour the edge between
a and a′ with the smallest prime p for whi
h aa′ + 1 is a perfe
t p-th power.By Lemma 2.2, if the number of edges of G with the 
olour 2 ex
eeds
(2/5)n2 then there is a 
omplete subgraph of G on 6 verti
es 
oloured with
2 and this is impossible by Lemma 2.1. Therefore the number of edges of Gwith a 
olour di�erent from 2 is at least (

n
2

)

− (2/5)n2 = (n2/10) − (n/2).Put(3.7) t = (9C log M log log M)1/2,



ON POWERS IN SHIFTED PRODUCTS 5where C is the positive number whi
h o

urs in Lemma 2.6. Let G1 be thesubgraph of G 
onsisting of the verti
es of G together with the edges of Gwhi
h are 
oloured with a prime p for whi
h(3.8) 3 ≤ p ≤ tand let G2 be the subgraph of G 
onsisting of the verti
es of G together withthe edges of G whi
h are 
oloured with a prime p for whi
h(3.9) t < p < (2 log M)/ log 2.Suppose that G1 
ontains at least (n2/20)− (n/2) edges. The number of
olours of G1 is π(t)− 1 and, by the prime number theorem and (3.7), this isat most c2((log M)/ log log M)1/2. Thus there is a 
olour of G1 whi
h o

urson at least ((n2/20)− (n/2))/c2((log M)/ log log M)1/2 di�erent edges. Sin
e
M ≤ N we see from (3.5) that if(3.10) |A| > c3 log N,then there is a 
olour asso
iated with more than (n3/2 + n − n1/2)/2 edges.Therefore, by Lemma 2.3, G1 
ontains a mono
hromati
 
y
le of length 4.In parti
ular, there exist integers a1, a2, a3 and a4 from Am and a prime
p satisfying (3.8) for whi
h a1a2 + 1, a2a3 + 1, a3a4 + 1 and a1a4 + 1 are
p-th powers. Without loss of generality one may suppose that a1 < a3 and
a2 < a4. Thus, by Lemma 2.5,(3.11) a3a4 > (a1a2)

2.But a1, a2, a3 and a4 are in {22
m

, . . . , 22
m+1

− 1} and so
a3a4 < 22

m+2

≤ (a1a2)
2,whi
h 
ontradi
ts (3.11). A

ordingly either (3.10) is false, in whi
h 
ase ourresult follows, or G1 has fewer than (n2/20) − (n/2) edges. We may assumethe latter possibility and so G2 has at least n2/20 edges.It follows from (3.6), (3.9) and the prime number theorem that the numberof 
olours of G2 is at most c4(log M)/ log log M. Therefore sin
e N ≥ M and(3.5) holds, if |A| ex
eeds c5 log N then by Lemma 2.4, G2 
ontains a 
y
lethrough verti
es a1, a2, a3 and a4 for whi
h the edge between a1 and a2 andthe edge between a1 and a4 have the same 
olour and the edge between a2 and

a3 and the edge between a3 and a4 have the same 
olour. In parti
ular, thereexist primes p1 and p2 in the range given by (3.9) and integers x1, x2, x3 and
x4 for whi
h

a1a2 + 1 = xp1

1
, a2a3 + 1 = xp2

2
,

a3a4 + 1 = xp2

3
, a4a1 + 1 = xp1

4
.We observe, as in Lemma 3.1 of [8℄, that

(xp1

1
− 1)(xp2

3
− 1) = (xp2

2
− 1)(xp1

4
− 1),



6 K. GYARMATI AND C.L. STEWARThen
e(3.12) xp1

1
xp2

3
− xp2

2
xp1

4
= xp1

1
+ xp2

3
− xp2

2
− xp1

4
.Sin
e xp1

1
+xp2

3
−xp2

2
−xp1

4
= (a1 − a3)(a2 − a4) and sin
e the ai's are distin
twe see that
x−p1

1
x−p2

3
xp2

2
xp1

4
6= 1.Thus, if we put(3.13) Λ = p1 log(x4/x1) + p2 log(x2/x3)we see that Λ 6= 0. We may assume, without loss of generality, that

xp1

1
= max{xp1

1
, xp2

2
, xp2

3
, xp1

4
}.Therefore, by (3.12),(3.14) ∣

∣

∣

∣

xp2

2
xp1

4

xp1

1
xp2

3

− 1

∣

∣

∣

∣

≤
2

xp2

3

.Sin
e a3 and a4 are at least M1/2 in size
xp2

3
> M,and so, by (3.13) and (3.14),

∣

∣eΛ − 1
∣

∣ <
2

M
.Observe that if y is a real number and |ey − 1| < 1/8 then |y| < 1/2. Further

|ey − 1| ≥ |y|/2 for |y| < 1/2 and so, sin
e M ≥ 16,

|Λ| <
4

M
,when
e(3.15) log |Λ| < −

1

2
log M.We now apply Lemma 2.6 with α1 = x1/x4, α2 = x2/x3 and B =

max(p1, p2, 2). Note that, for i = 1, 2,

log H(αi) ≤ (2 logM)/t.By Lemma 2.6,
log |Λ| > −4C((log M)/t)2 log log M,and so, by (3.15),

t2 < 8C log M log log M.However, this 
ontradi
ts our 
hoi
e of t in (3.7). A

ordingly |A| is less than
c5 log N and the result follows.
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