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Abstract

C. Mauduit and A. Sarkozy proposed the use of well-
distribution measure and correlation measure as measures of
pseudorandomness of finite binary sequences. In this paper
we will introduce and study a further measure of pseudoran-
domness: the symmetry measure. First we will give upper and
lower bounds for the symmetry measure. We will also show that
there exists a sequence for which each of the well-distribution,
correlation and symmetry measures are small. Finally we will
compare these measures of pseudorandomness.
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1 Introduction

In this paper we will study the symmetry property of finite binary
sequences. C. Mauduit and A. Sarkézy [2, pp. 367-370] introduced
the following measures of pseudorandomness:

For a binary sequence
En ={ei,...,en} € {—1,+1}",
write

U EN,t a b) Zea—Hb

and, for D = (dy,...,d;) with non-negative integers 0 < d; < --- <

dka

V EN,M D Z€n+d1 ---Entd-

Then the well-distribution measure of Ey is defined as

t

E €a+jb

j=1

W(EN) = maX|U(EN,t a,b)| = max

a,, aaa

I

where the maximum is taken over all a,b,t such that a € Z, b,t € N
and 1 <a+b<a+thb < N, while the correlation measure of order k

of E is defined as

Cyx(ENn) = maX|V(EN,M D)| = max

§ €ntdiy- - - Entdy

n=1

I

where the maximum is taken over all D = (dy,...,d;) and M such

thatM—i—dng.



A. Sarkézy and C. Mauduit [2, p. 372] observed that if a finite
sequence contains a relatively large symmetrical subsequence (namely
it contains a subsequence of the form {e,es,...,en,€n,...,€2,€1} OF
of the form {ej, ez, ...,y 1, €n,€n 1,...,€2,€1}), then this sequence
certainly cannot be a "typical" random sequence, and this symmetric
structure may lead difficulties in certain applications. This observa-
tion inspired us to propose a new measure of pseudorandomness.

We will define the symmetry measure of Ex by

[(b—a)/2]-1
S(En) = 122,5( z; €atj€h—j| = Izlgag( |H(En,a,b)|,
]:
where
[(b—a)/2]-1
H(Ey,a,b) = Z €a+j€b—j

§=0

is defined for all 1 < a < b < N. Considering the sequence Ey =

{1,1,...,1} we see that I%aXS(EN) = [%] We expect that for a
N

truly random sequence Ejp, the symmetry measure is small. First we

will prove that the symmetry measure of Ey is around v N for almost

all EN € {—1,+1}N.
Theorem 1 There is an integer Ny such that for N > Ny we have
7
S(Ey) > 2—0\/N.

While for large N, S(Ey) is always greater than a constant times
v/N, the upper bound holds for only the majority of the sequences

Ey € {—1, +1}N



Theorem 2 For all € > 0 there are numbers Ny = Ny(e) such that

for N > Ny we have
P (S(Ey) < 4.25 (Nlog N)'/?) > 1 —e.

We need the following measures of pseudorandomness introduced
in [2, p. 371-372]. Combined (well-distribution-correlation) PR-

measure of order k:

t

Qk(EN) = Hl}fti% E €a+jb+di€atjbtds - - - Catjbtdy | o
ai "™ .
J=0

where a, b, t, D = (di,ds,...,d;) are such that all the subscripts

a+ jb+ d; belong to {1,..., N}. Combined PR-measure:

Q(EN) = max Qk(EN)

k<(log N/log2)

C. Mauduit and A. Sarkézy [2, p. 373] proved that there is a number

po such that if p > pg is a prime number, k € N, k < p and if we write

5= () G)(50))

then

Qr(Ep 1) < 9kp'*logp
so that, writing N = p — 1, we have

Q(Ex) < 27N2(log N)?

It follows that for the Legendre symbol both the well-distribution

measure and the correlation measure of order 2 are smaller than



18N'/2log N, while the combined PR-measure is smaller than
27NY/?(log N)2. As for all 1 < k < 21 we have (’%k) = (’71) (%),
the symmetry measure of the Legendre symbol E,_; is (p — 1)/2. We

will show that the symmetry measure of the half of the sequence E,, ,

is small.

Theorem 3 If p is an odd prime, and we write

Foun=(()- () (*5))

then we have
S(Ep-1y2) < 18p'"logp.

Finally, we will compare the correlation measure of order 2 with
well-distribution and symmetry measures. We expect that these mea-
sures of pseudorandomness are relatively independent. In order to
show this we will give constructions where one measure is large while
the others are small. The following two examples are variants of the
ones in [2, p. 371-372].

EXAMPLE 1. Consider a sequence Eyx = (ey,...,e,) € {—1,+1}*
such that each of the symmetry, correlation and well-distribution mea-
sure of it are possibly small (by Theorem 1 and 2 in [1] and our The-
orem 2, all these measures can be O ((N log N)"/ 2) simultaneously)

and define B}y = (e, ¢€),...,ehy) € {—1,+1}*N by

e for1<n <N,

en—ny for N <n<2N.



Then it easy to see that the well-distribution measure of E}, are less
than a constant times the corresponding measure of Ey and S(E}y) <

S(En) + Ca2(En), but

N
Co(Ey) > Zel enin| = N.
n=1
EXAMPLE 2. Consider a sequence Eyx = (ey,-..,e,) € {—1,+1}¥

such that each of the correlation measure of order 2, well-distribution
measure and symmetry measure of it are possibly small and define

EéN (elana'--aeéN) € {_1a+1}2N by

en for1<n<N,

ean—_n for N <n <2N.

Then the correlation measure of order 2 is less than a constant times

E :6 e2Nn

C. Mauduit and A. Sark6zy in 3] expressed the connection between

the well-distribution measure and the correlation measure of order 2
in a quantitative form. Accordingly, in the following two theorems
we will give a similar quantitative form of the connection between the

well-distribution measure and the symmetry measure.
Theorem 4 For all N € Ey, and Ex € {—1,+1}" we have

W (Ey) < 3(NS(En))"”. (1)



Finally, we will show that this result is sharp; there exists a se-
quence whose well-distribution measure is large and both the correla-
tion measure and the symmetry measure are possibly small. Since the
proof of the next theorem is nearly the same as the one in [3| (indeed
we have to write S(Ey) in place of C5(Ey)), thus we will only sketch

the proof.
Theorem 5 Ifk,N € N, N > Ny and
N <E<N (2)
then there is a sequence Ey € {—1,+1}Y with
W(EN) = k (3)
and
max{C>(En), S(En)} < 120 max{%, (N log N)*/2}. (4)

From Theorem 5 we get that if & > N%“(log N)'/4, then

N1/2 E2\ /2
Eyx) >k = 121—
W( N) >k 11 ( N) >

> 1—11 (N max{Cy(Ey), S(Ex)})"/2. (5)

This means that (1) is the best possible apart from a constant
factor.

One might like to study the generalizations of these measures of
pseudorandomness. One possibility is to define the following measure:

My B > enmenm enm (6)

f1(n),f2(n),....fj(n) M1<fi(n)<M2
(i=1,..-.5)



where the maximum is taken over all 1 < M; < M, < N integers and
fi(n), fo(n),. .., fj(n) polynomials with integer coefficients such that
M; < fi(n) < My holds for all 1 < n < N, 1 <13 < j. Of course
this generalization also covers certain pathological cases (e.g., fi(n) =
fa(n) = -+ = f;(n)), thus to introduce a pseudorandom measure
of this type one has to pose certain restrictions on the polynomials
fi,--., fj involved; we do not go into the details of this here.

When j = 1 or 2, for the special values of the polynomials f;(n),
(6) can give the well-distribution measure, the correlation measure of
order 2 and the symmetry measure.

Throughout the paper we write e(x) = e2™.

2 Proofs

Proof of Theorem 1
Let Ey = {e1,...,en}, f(z) = 3N e,z". Using the Cauchy-

n=1

Schwarz inequality and Parseval formula we obtain:

def/ £ (e |da></ If (e |da) =N (7)



Using the Parseval formula again we get:

d= / 1 (e()) ! da = / 1 imim((n .

_ /0 3 3 enern | e(ka)| da =

k=2 \max{l, k—N}<n<min{N,k—1}
2

2N
= E E €n€k—n
k=2

max{1l, k—N}<n<min{N,k—1}

By the definition of symmetry measure we have

3 enehn| < 2S(En) + 1.

max{1l, k—N}<n<min{N,k—1}

Therefore
J < (2N —1)(25(En) + 1)°. (8)

So that, in view of (7) and (8), and since clearly S(Ex) > 1, for large

N we have
7
%\/N < S(Ey).

Proof of Theorem 2

Write L = 4.25 (N log N)*/2, then we have:

P(S(En) > L) = P(max |H(Ey,a,b)| > L) <

< 3" P(H(Ex,a,b)] > L) < ({j ) max P(|H(Ex,a.b) > L),

a<b

where both the maximum and the summation are taken over all a,b €

N such that 1 < a < b < N. Thus in order to prove the theorem, it

9



suffices to show that for all 1 < a < b < N we have:

[(b—a)/2]— 2
P(|H(Ey,a,b)| > L) <‘Z( 2 Ceasics | > L) < (9

Let t = [(b—a)/2], if t < L then the probability in (9) is trivially

0 so that we may assume:

=[(b—a)/2] > L = 4.25 (Nlog N)'/2, (10)
Write
M = 6(tlogt)'/?
and
Hj: 0<j<t—1, egyjerj =—1} =h. (11)
Then we have:
Zetﬁ—jeb—j ={j: 0<j<t—1, eqpjerj =1}~

—|{j OS]St—l, eaﬂ-eb_j:—l}\:(t—h)—h:

=t—2h.

(11) holds with probability & (;) so that

P s> M) = % 5(3) =

h: |[t—2h|>M

-5 X,

h: |h—t/2|>M/2

(12)

N——

10



An easy computation shows that if t — oo and k& < t?/3, then we have

(721 1) = () = (‘% * O(f_j)) |

Using also the fact that (f) is increasing in i for 0 < i < ¢/2, it follows

easily that for V large enough (so that ¢t = [(b — a)/2] is also large by

(10)),

t t
> ()- X (1)
h: |h—t/2|>M/2 h: |h—t/2|>3(tlog t)1/2

t([tm it logt)1/2]> <
< () o0 (-2 6010807 o) =

t

t 2
= t([t/2]) exp (—18logt + o(1)) < 416" (13)

Since M < L, it follows from (10), (12) and (13) that

t—1 t—1
P (‘ijo ea—l—jeb—j‘ > L) < P (‘ijo eaﬂ-eb_j‘ > M) <

12 1 1 1 2e

g~ g < i~ oye) <

which proves (9) and this completes the proof of Theorem 2.
Proof of Theorem 3

We shall need the following lemma:

Lemma 1 If p is a prime number, f(z) € F,lz] is a polynomial of
degree k such that it is not of the form f(z) € b(g(z))?® with b € F,,

9(z) € Fplz], and X, Y are real numbers with 0 <Y < p, then writing

(2) for p) =1,
0 forp|n,

Xp(n) =

11



we have

< 9kp*/?logp.

Y xf(n)

X<n<X+Y

Proof of Lemma 1
See [2, p. 373|. (Indeed, there this result is deduced from Weil’s
theorem [4].)

By the definition of H we have:

~~

2]-1

[(b—a)/2]— . .
a—+ b—
H(Ep-1)/2,a,b) = ( J) ( ]> =

- p p

/21 <_j2 +(b—a)j + ab) . (14)

<.
Il

[(b—a

o

=0 P
Let f(z) = —2® + (b—a)x + ab € F,[z]. It is easy to see that f(z)

is the form of b(g(z))? if and only if a+b = 0 (p). In the present case

this is impossible as 1 < a < b < (p — 1)/2. Applying Lemma 1 with

0 and (b —a)/2 in place of X and Y we get:

> X;(f(n))‘ = [(b_i/ﬂ_l <_j2 tb-a)it ab) <

X<n<X+Y §=0 p

1/2

< 18p*/“logp. (15)

From (14) and (15) we obtain S(E(,_1)2) < 18p*/2logp, which
proves the theorem.
Proof of Theorem 4

There exist a,b and t natural numbers such that:

t—1
W(EN) = |U(EN7taa'ab)| = Zea—l—jb = Z en-‘
Jj=0 a<n<a+(t—1)b

n=a (b)

12



For all n € N let r(n) be the smallest natural number with 7(n) =n

(mod b). Let
a+(t-1)b b—1
f(a) & Z ene (r(n)a) = Z ( en) e(ka).
n=a k=0 \ a<n<a+(t—1)b

The following lemma is well known and very simple.

Lemma 2 If T(a) = Yoy cke(ka) then

h b—1
T(=)| = 2,
(b) bgkk\

b—1 2

h=0

By Lemma 2 we have:

b—1 h 2 b—1
(5) =X X oalz] ¥ o
h=0 k=0 | a<n<a+(t—1)b a<n<a-+(t—1)b
n=k (b) n=a (b)
= bW?(Ey). (16)

On the other hand:

. a+(t—1)ba+(t—1)b r(n) + r(m)
ri)- X 2 e () -

n=a m=a b
b—1 /a+(t—1)b a+(tzl)b (k h) b—1 (k h)
= entm | € -] = Crel\K~+),
k=0 n=a m=a b k=0 ’ b
- 7 nt+m=k (b) -

where ¢;, = Zf;g_l)b ZZ%_::II%I’U)) enem. Replacing n+m = jb+ k we

13



get:

a+(t—1)b a+(t—1)b

|ck| = Z Z €ntm

nim=k (b)

[25%]  min{jb+k—aat+(t-1)b}

= E E €n€ib+k—n

j= [%" n=max{a,jb+k—(a+(t—1)b)}

[2Nb_k] min{jb+k—a,a+(t—1)b}

E E €n€jib+k—n

j= [%—I n=max{a,jb+k—(a+(t—1)b)}

VAN

2N7k]
Y (2S(En)+1) < <%¥-+1>(mew)+1)
=[]

N
< 9-S(B).

IN

Using (17) and Lemma 2 with the function Y r_¢ cze(ke), where cy

has defined above, we get:

(+)

Thus from the Cauchy-Schwarz inequality and (16) we have:

b—1
2_|F

h=0

2
_bZ\ck\ <s1™ 52(EN)

a2 |e (B 21 (Xl (2)) 2
> (W2(Ew))” = 8*(Ew),
whence:
wim) < (Vo) <aovsm)

which was to be proved.

Proof of Theorem 5

14



If k > I then (4) holds trivially for all Ey satisfying (3), thus we

may assume that
k< — (18)
Write
k2
A = 30 max {ﬁ’ (NlogN)1/2}
so that (4) can be written as
maX{Cz(EN),S(EN)} S 4A.

If A is a finite set of positive integers, and d € N, then denote the

number of solutions of

a—ad =d,ac A d €A, (19)
by f(A,d), and denote the number of solutions of

a+a =d,ac A, d €A, (20)
by g(A,d).

Lemma 3 Assume that k satisfies (2) and N is large enough. Then

there is an A C {1,2,..., N} such that
A=k (21)

and

2
max{f(A,d),g(A,d)} < 30% M for aall 1 <d<2N —1. (22)

15



Proof of Lemma 3

Write

F={A: AC{L,2,...,N},|A| =k},
]:d:{A: AEJ:) f(A’d)ZM}a
Ga={A: AcF, g(Ad) > M).

Then, clearly, any set A belonging to
F\ (VL R u Ui, 16a) (23)

satisfies (21) and (22). Thus it suffices to show that the set in (23) is
non-empty. To prove this we have to give upper bounds for |F4| and

|Gal|. In [3] it was proved that

11\ 1M
< | — .
mi<(m) (3)

Er (24)

We will obtain by similar but easier calculations than in [3] that:

e () nl) e

Consider a set

From this we get

A€ G,. (26)

It follows from g(A, d) > M that there exist [ M| different numbers

a; (1=1,2,...[M]) with the property that

aiGA, d—(ZiEA.

16



Let
Ao = A\ (UM e d - ai}) -
Then A is the disjoint union of the sets

{al, d— al}, {02, d— a,z}, ceay {a[M],d - a[m}, .Ao.

Here we may choose a1, as,...,a5 from {1,2,...,N} in at most
([%) ways, these numbers determine d — a;,d — ay,...,d — apa

uniquely, and since |Ag| = k& — 2 [M], the elements of Ay can be

N—2|'M])

chosen from the remaining N — 2 [M| numbers in at most (k—2[M1

ways. It follows that

5 < () (¥ ~a )

Carrying out similar calculations as in [3], we get:

k2MM1 N
94l < TR 2 AT (k)

By Stirling formula and (18) we get:

s (%)fm _ (10%2>er7

2

k 3
N-2|M|>N-70—=2>_—N.
[M] = 70N_10

So we have:

o (D (<" () < &)

Using this, (24) and the fact that |F| = () we get that the set in

(23) is non-empty, and this completes the proof of Lemma 3.

17



Now we fix a set A C {1,2,..., N} satisfying (21) and (22) in
Lemma 3, and let ¢ denote the set of the binary sequences En €

{—1,+1}" with
e, =+1 forne A

so that

BEPARSES A

We consider a "random" element Ey of €, i.e., we choose each Ey €
¢ with probability 1/2¥=*. In other words, we consider the binary
sequence Ey = {ej,es,...,en} where for n € A we have e, = +1

while for n values with n ¢ A the e,’s are chosen independently with

P(E,=+1)=P(E,=-1)=— (forn ¢ A).

DO | =

C. Mauduit and A. Sarkézy [3]| proved that

POV (Ex) 2 ) 2 5,
P(Cy(Ey) > 4A) < % (27)
By the definition of S(Ey) we have
P(S(En) > 4A) = P(n;%x |H(Ey,a,b)| > 4A)
<> P(|H(En,a,b)| > 4A). (28)

a,b

18



For all Ex € € we have

H(Ey,a,b) = Y earjer i+ Y earjor g
0<j<[(b—a)/2]-1 0<5<[(b—a)/2]-1
atjeA, b=jcA atjcA, b—jgA

+ Z €atj€b—j + Z €atj€b—j
0<j<[(b~a)/2]-1 0<j<[(b—a)/2]-1
atj¢A, b—jcA a+j¢A, b—jgA

SDIEDIED DD 3 )

It can be proved in the same way as in [3] with the change that we
write eqyj€,j in the place of e, 4, €44, and estimating P(|>_,| > A)

we use Lemma 3 in place of [3, Lemma 1] that

P(‘Zl‘ > A) =0,

and for ¢ = 2, 3,4 we have

P(I%

From this and (29) we get:

>A)<%.

> A) <3 30

P(H(Ey,a,b)] > 48) <3P (|3, -

Using (28) and (30) we have:

P(IS(Ex)| > 4A) <

3
<+ (31)

It follows from (27) and (31) that (3) and (4) hold simultaneously with

probability

L =

_ 8
N

N =

19



for N large enough, so that there is at least one Ey € {—1,+1}"
satisfying both (3) and (4), and this completes the proof of Theorem
3.

I would like to thank Professor Andras Sarkozy for the valuable

discussions.
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