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Abstract

Three constructions for binary lattices with strong pseudorandom

properties are given. These constructions are the two dimensional

extensions and modifications of three of the most important one di-

mensional constructions. The upper estimates for the pseudorandom

measures of the binary lattices constructed are based on the principle

that character sums in two variables can be estimated by fixing one of

the variables; then we get a character sum in one variable which can

be estimated by using Weil’s theorem.
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1 Introduction

Pseudorandom binary sequences have many applications. In particular,

they are used as the key stream in the classical stream cipher called Vernam

cipher and in wireless communication. In 1997 Mauduit and Sárközy [19]

(see also the survey paper [27]) initiated a new, constructive approach to

the theory of pseudorandomness. They defined and studied new measures

of pseudorandomness. In the last 10 years numerous binary sequences have

been tested for pseudorandomness. The 4 best constructions are, perhaps,

the following:

Let p be a prime number, f(x) ∈ Fp[x], and define the binary sequence

Ep = (e1, e2, . . . , ep) by

en =







(
f(n)

p

)

for (f(n), p) = 1

+1 otherwise
(1)
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where
(

f(n)
p

)

is the Legendre symbol (see [7], [19], [28] and [29]),

en =







+1 if 0 ≤ rp(f(n)) < p/2

−1 if p/2 ≤ rp(f(n)) < p
(2)

where rp(n) denotes the unique r ∈ {0, 1, . . . , p−1} such that n ≡ r (mod p)

(see [18]),

en =







+1 if (f(n), p) = 1 and 0 ≤ rp (f(n)−1) < p/2

−1 otherwise
(3)

where f(n)−1 denotes the multiplicative inverse of f(n) (see [20]) and

en =







+1 if (f(n), p) = 1 and 1 ≤ ind f(n) ≤ p−1
2

−1 otherwise
(4)

where ind a denotes the index or discrete logarithm of a modulo p with

respect to a given primitive root modulo p (see [8], [9], [10], [26]). (See [15],

[16], [17], [23], [24], [25] for further related results and constructions.)

In order to encrypt a 2-dimensional digital map or picture via the analog

of the Vernam cipher, instead of a pseudorandom binary sequence (as a key

stream) one needs a pseudorandom “binary lattice”. Thus one needs the n

dimensional extension of the theory of pseudorandomness. Such a theory

has been developed recently by Hubert, Mauduit and Sárközy [14]. They

introduced the following definitions:

Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or briefly an N -lattice. In [13]

this definition was extended to more general lattices in the following way: Let

u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate of
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ui is a positive integer and the other coordinates of ui are 0, so that, writing

zi = |ui|, ui is of the form (0, . . . , zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers

with 0 ≤ t1, t2, . . . , tn < N . Then we call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xizi ≤ ti(< N) for i = 1, . . . , n}

n-dimensional box N -lattice or briefly a box N -lattice.

In [14] the definition of binary sequences is extended to more dimensions

by considering functions of type

ex = η(x) : In
N → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).

Such a function can be visualized as the lattice points of the N -lattice

replaced by the two symbols + and −, thus they are called binary N -lattices.

Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption

of digital images.

In [14] Hubert, Mauduit and Sárközy introduced the following measure

of pseudorandomness of binary lattices (here we will present the definition

in the same slightly modified but equivalent form as in [13]):

Definition 1 Let

η : In
N → {−1,+1}.

Define the pseudorandom measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣
∣
∣
∣
∣

∑

x∈B

η(x + d1) . . . η(x + dℓ)

∣
∣
∣
∣
∣
, (5)

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

N-lattices B such that B + d1, . . . , B + dℓ ⊆ In
N .

Then η is said to have strong pseudorandom properties, or briefly, it is

considered as a “good” pseudorandom lattice if for fixed n and ℓ and “large”
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N the measure Qℓ(η) is “small” (much smaller, then the trivial upper bound

Nn). This terminology is justified by the fact that, as was proved in [14],

for a truly random binary lattice defined on In
N and for fixed ℓ the measure

Qℓ(η) is “small”; in particular, it is less than Nn/2 multiplied by a logarithmic

factor.

In one dimension, hence the case of binary sequences, many good con-

structions have been given. Typically, the really good constructions involve

Fp, additive or multiplicative characters and polynomials, and the crucial

tool in the estimation of the pseudorandom measures is Weil’s theorem [30].

Unfortunately, this approach in its original form does not readily apply in

n dimensions. The difficulty is that in n dimensions constructions involv-

ing Fp, characters and polynomials f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn] lead

naturally to the n dimensional analogues of Weil’s theorem, in particular,

they lead to the theorem of Deligne [4]. While Fouvry and Katz [6] have

simplified the requirements for applying Deligne’s theorem, the inconvenient

assumptions of nonsingularity are still required.

In spite of these difficulties in [14], [21], [22] good n-dimensional con-

structions were presented. In these papers the authors got around the dif-

ficulty described above in the following way: finite fields Fq with q = pn

and polynomials G(x) ∈ Fq[x] are considered. Character sums involving

G(x) and characters of Fq can be estimated by Weil’s theorem so that no

nonsingularity assumption is needed. On the other hand, if e1, e2, . . . , en

is a basis in Fq, then every x ∈ Fq has a unique representation in form

x = x1e1+x2e2+· · ·+xnen with x1, x2, . . . , xn ∈ Fq. Then g(x1, x2, . . . , xn) =

G(x1e1 + x2e2 + · · ·+ xnen) ∈ Fp[x1, x2, . . . , xn] is a well-defined polynomial,

and the estimate of n-fold character sums involving g(x1, x2, . . . , xn) can be

reduced to the estimate of character sums over Fq involving G, so that Weil’s

theorem can be used. (This principle goes back to Davenport and Lewis [3].)

This detour enables one to give sharp upper bounds, but it also has
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considerable disadvantages. Namely, in this way we get rather artificial con-

structions. More naturally arising constructions cannot be tested with this

approach. Secondly, the implementation of these artificial constructions is

more complicated. Thus one might like to look for a trade-off between appli-

cability of the method and sharpness of the result, i.e., for a method which is

much more flexible and applicable at the expense of providing weaker but still

nontrivial upper bounds. In [13], for n = 2 Gyarmati, Sárközy and Stewart

presented such a method based on the techniques introduced by Gyarmati

and Sárközy [12] to estimate certain related character sums involving poly-

nomials f(x, y) ∈ Fp[x, y]. They estimate these sums by fixing one of the

two variables, say, x. Then g(y) = f(x, y) is a polynomial of one variable, so

that one may try to apply Weil’s theorem to estimate the sum. Indeed, they

show that apart from a few “bad” polynomials f(x, y) (they give a simple

and complete description of these exceptional polynomials), for “almost all”

x we get a sum in y in this way which can be estimated by Weil’s theorem.

However, the price paid for the flexibility of this method is that the upper

bounds are not optimal (we get an upper bound pc with some 1 < c < 2

so that it improves on the trivial upper bound p2 but it is worse than the

expected optimal bound p(log p)c). In [13] this method was used for the fol-

lowing two dimensional analogue of the Legendre symbol construction (1):

Let p be an odd prime, f(x, y) ∈ Fp[x, y] be a polynomial of degree k, and

define the two dimensional binary p-lattice η : I2
p → {−1,+1} by

η(x, y) =







(
f(x,y)

p

)

if (f(x, y), p) = 1

1 if p | f(x, y).

They showed for a large class of polynomials f that if k, ℓ are “not very large”

in terms of p then we have

Qℓ(η) < 10kℓp3/2 log p.

In this paper our goal is to prove similar theorems on suitable extensions
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of constructions of (2), (3) and (4). Some elementary lemmas (Lemmas 3

and 7) of independent interest will play a crucial role in the proofs.

Throughout this paper we will use the following notations: Z and N

denote the set of the integers, resp. positive integers. p denotes an odd

prime. We write e(α) = e2πiα and ep(n) = e
(

n
p

)

. We will use Vinogradov’s

notation ≪: if f(x) = O(g(x)) then we also write f(x) ≪ g(x).

2 The two dimensional analogue of construc-

tion (2)

We will prove the following theorem:

Theorem 1 Let p be an odd prime, k an integer with 3 ≤ k < p, g(x) ∈ Fp[x]

and h(x) ∈ Fp[x] polynomials with deg f = deg g = k, and write f(x, y) =

g(x)h(y). Define the two dimensional binary p-lattice η : I2
p → {−1,+1} by

η(x, y) =







1 if 0 ≤ rp(f(x, y)) < p/2

−1 if p/2 ≤ rp(f(x, y)) < p.
(6)

Then for ℓ ∈ N,

2 ≤ ℓ ≤ k − 1 (7)

we have

Qℓ(η) ≪ kp3/2(log p)ℓ+1. (8)

Note that it was shown in [18] that in the one-dimensional case (2) the

correlation of “large” order can be large, so that an upper bound for ℓ like the

one in (7) is necessary. It could be shown that here the situation is similar

but we will not go into the details.

Proof of Theorem 1. The proof will be based on the same lemmas as in

the one dimensional case in [18].
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Lemma 1 For any polynomial F (x) ∈ Fp[x] of degree d ≥ 2 and any integers

M and K with 1 ≤ K < p we have
∣
∣
∣
∣
∣

M+K∑

n=M+1

ep(F (n))

∣
∣
∣
∣
∣
≪ dp1/2 log p.

Proof. This is a consequence of Weil’s theorem [30] and it is Lemma 1 in

[18].

Lemma 2 For n ∈ Z and p an odd prime we have

1

p

∑

|h|<p/2

vp(h)ep(hn) =







+1 if rp(n) < p/2,

−1 otherwise,

where vp(h) is a function of period p such that

vp(0) = 1, and vp(h) = 1 + i
(−1)h − cos(πh/p)

sin(πh/p)
for 1 ≤ |h| < p/2.

Furthermore, vp(h) satisfies

vp(h) =







O(1) if h is even

−2ip
πh

+O(1) if h is odd.

Proof. This is Lemma 2 in [18].

Lemma 3 Let p be a prime, 1 ≤ k < p, F (x) ∈ Fp[x] of degree d ≥ k, and

let x1, x2, . . . , xk be k different elements of Fp. Then for all (a1, . . . , ak) ∈

F
k
p \ (0, . . . , 0), the polynomial

G(x)
def
= a1F (x+ x1) + · · · + akF (x+ xk)

is of degree ≥ d− k + 1.

Proof. This is Lemma 3 in [18].

By (6) and Lemma 2 we have

η(x, y) =
1

p

∑

|h|<p/2

vp(h)ep(h(f(x, y))). (9)

7



Now consider the sum S(B,d1, . . . ,dℓ) in the definition of Qℓ(η) in (5), and

write

B = {(xz1, yz2) : 0 ≤ xz1 ≤ t1(< p), 0 ≤ yz2 ≤ t2(< p)},

di = (ri, si) for i = 1, 2, . . . , ℓ,

so that, by (9),

|S(B,d1, . . . ,dℓ)| =

∣
∣
∣
∣
∣

∑

x∈B

η(x + d1) · · ·η(x + dℓ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

η(xz1 + r1, yz2 + s1) · · ·η(xz1 + rℓ, yz2 + sℓ)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

[t1/z1]∑

x=0

[t2/z2]
∑

y=0

1

pℓ

∑

|h1|<p/2

· · ·
∑

|hℓ|<p/2

vp(h1) · · · vp(hℓ)

ep(h1f(xz1 + r1, yz2 + s1) + · · ·+ hℓf(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣

≤
1

pℓ

∑

|h1|<p/2

· · ·
∑

|hℓ|<p/2

|vp(h1)| · · · |vp(hℓ)|

[t1/z1]
∑

x=0

∣
∣
∣
∣
∣
∣

[t2/z2]
∑

y=0

ep(H(x, y, h1, . . . , hℓ))

∣
∣
∣
∣
∣
∣

(10)

where

H(x, y, h1, . . . , hℓ) = h1f(xz1 + r1, yz2 + s1) + · · · + hℓf(xz1 + rℓ, yz2 + sℓ)

= h1g(xz1 + r1)h(yz2 + s1) + · · · + hℓg(xz1 + rℓ)h(yz2 + sℓ).

(11)

Now we group the terms according to the value of si. More precisely, denote

the distinct values occurring among s1, . . . , sℓ by s′1, . . . , s
′
t, and for 1 ≤ j ≤ t

write

Ij = {i : 1 ≤ i ≤ ℓ, si = s′j}.
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Then (11) can be rewritten as

H(x, y, h1, . . . , hℓ) =
t∑

j=1




∑

i∈Ij

hig(xz + ri)



h(yz + s′j). (12)

Now consider an ℓ-tuple (h1, h2, . . . , hℓ) with

(h1, h2, . . . , hℓ) 6= (0, 0, . . . , 0). (13)

Let J denote the set of the integers 1 ≤ j ≤ t such that there is at least one

i ∈ Ij with hi 6= 0. Then by (13), the set J is nonempty, so that clearly we

have

0 < |J | ≤ t ≤ ℓ. (14)

For j ∈ J write uj(y) =
∑

i∈Ij
hig(y+ri) and Uj(x) = uj(xz1) =

∑

i∈Ij
hig(xz1+

ri). Then (12) can be rewritten as

H(x, y, h1, . . . , hℓ) =
∑

j∈J

Uj(x)h(yz2 + s′j) (15)

where by Lemma 3 and (7) (and since z1 6= 0),

degUj(x) = deg uj(y) ≥ deg g(x) − |Ij | + 1 ≥ k − ℓ+ 1 ≥ 2,

and clearly,

degUj(x) ≤ deg g(x) = k (16)

(for every j ∈ J). Denote the set of the zeros of U1(x) (which exist by

(14)) by X . Then for any fixed x with x ∈ Fp \ X we have U1(x) 6= 0,

thus again by Lemma 3 and (7) (and z2 6= 0) as before, the polynomial

Kx,h1,...,hℓ
(y)

def
=

∑

j∈J Uj(x)h(yz2 + s′j) in (15) is of degree

degKx,h1,...,hℓ
(y) ≥ deg h(y) − |J | + 1 ≥ k − ℓ+ 1 ≥ 2,

so the last sum in (10) can be estimated by using Lemma 1. Then estimating

the contribution of h1 = · · · = hℓ = 0, resp. the x values with x ∈ X in the
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trivial way, by Lemma 1, Lemma 2 and (16) we get from (10):

|S(B,d1, . . . ,dℓ)| ≪
1

pℓ




p

2 +




∑

|h|<p/2

|vp(h)|





ℓ 

|X | p+
∑

x∈Fp\X

kp1/2 log p










≪
1

pℓ

(
p2 + pℓ(log p)ℓ

(
kp + kp3/2 log p

))
≪ kp3/2(log p)ℓ+1

which proves (8).

3 A two dimensional construction using the mul-

tiplicative inverse

Now we will present a two dimensional analogue of construction (3).

Throughout this section p will denote a fixed odd prime. If f(x, y) ∈ Fp[x, y],

then the function g(x, y) = 1
f(x,y)

is defined on those pairs (a, b) ∈ Fp×Fp for

which f(a, b) 6= 0, and then g(a, b) is defined as the multiplicative inverse of

f(a, b) (mod p), denoted by f(a, b)−1.

Theorem 2 Let k ∈ N, k < p. Assume that g(x) ∈ Fp[x] and h(x) ∈ Fp[x]

have degree k and no multiple zero in Fp. Write f(x, y) = g(x)h(y), and

define the two dimensional binary p-lattice η : I2
p → {−1,+1} by

η(x, y) =







+1 if (f(x, y), p) = 1 and 0 ≤ rp (f(x, y)−1) < p/2,

−1 otherwise.

Assume also that ℓ ∈ N with 2 ≤ ℓ ≤ p, and one of the following conditions

holds:

(i) ℓ = 2,

(ii) (4k)ℓ < p.

Then we have

Qℓ(η) ≪ ℓkp3/2 (log p)ℓ+1 . (17)
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Proof of Theorem 2 Some parts of the proof will be similar to the proof of

Theorem 1, thus we will leave some details to the reader. We will use again

Lemma 2, but Lemmas 1 and 3 will be replaced by the following two lemmas:

Lemma 4 Let p be a prime, let Q/R be a nonzero rational function over

Fp, and let s be the number of distinct roots of the polynomial R in Fp.

Furthermore, let ψ be a nontrivial additive character of Fp and 1 ≤ N < p.

If degQ < degR, then
∣
∣
∣
∣
∣
∣
∣
∣

∑

0≤n<N
R(n)6=0

ψ(
Q(n)

R(n)
)

∣
∣
∣
∣
∣
∣
∣
∣

< (degR + s)p1/2

(
4

π2
log p+ 0.38 +

0.64

p

)

+
N

p

(
(degR + s− 2)p1/2 + 1

)
.

(Here and in what follows, Q(n)
R(n)

is defined for R(n) 6= 0 as Q(n)R(n)−1 where

again R(n)−1 is the multiplicative inverse of R(n) in Fp.)

Proof This is a part of Theorem 2 of Eichenauer-Hermann and Niederreiter

in [5].

Lemma 5 Assume that k, ℓ are defined as in Theorem 2, M ∈ N, M ≤ p,

F (x) ∈ Fp[x] has degree k, r ∈ N, r ≤ ℓ, H1, . . . , Hr are integers with

0 < |Hi| < p for i = 1, . . . , r, and D1, . . . , Dr are integers with 0 ≤ D1 <

· · · < Dr < p. Then writing

QH1,...,Hr
(n) =

r∑

t=1

Ht

∏

1≤j≤r
j 6=t

F (n+Dj)

and

RH1,...,Hr
(n) =

r∏

j=1

F (n+Dj)

(so that degRH1,...,Hr
(n) = kr), we have

H1F (n+D1)
−1 + · · ·+HrF (n+Dr)

−1 =
QH1,...,Hr

(n)

RH1,...,Hr
(n)
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(in Fp) for every n with F (n + D1) 6= 0, . . . , F (n + Dr) 6= 0 or, equiva-

lently RH1,...,Hr
(n) 6= 0, and here the polynomial QH1,...,Hr

(n) is not the 0

polynomial over Fp.

Proof Apart from the notation, this is Lemma 5 in [20].

Now define B,d1, . . . ,dℓ and S(B,d1, . . . ,dℓ) in the same way as at the

beginning of the proof of Theorem 1. In the same way as in (10), we get that

|S(B,d1, . . . ,dℓ)| =

∣
∣
∣
∣
∣

∑

x∈B

η(x + d1) . . . η(x + dr)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

x

∑

y

1

pℓ

∑

|h1|<p/2

· · ·
∑

|hℓ|<p/2

vp(h1) . . . vp(hℓ)ep(h1f(xz1 + r1, yz2 + s1)
−1

+ · · ·+ hℓf(xz1 + rℓ, yz2 + sℓ)
−1)

∣
∣
∣
∣
∣
+O(kℓp) (18)

where
∑

x denotes the summation over x such that 0 ≤ x ≤ t1/z1 and there

is no j with g(xz1 + rj) = 0, 1 ≤ j ≤ ℓ;
∑

y denotes the summation over y

such that 0 ≤ y ≤ t2/z2 and there is no j with h(yz2 + sj) = 0; finally, the

O(kℓp) term estimates the contribution of the terms with x, y such that

f(xz1 + rj , yz2 + sj) = g(xz1 + rj)h(yz2 + sj) = 0 for some 1 ≤ j ≤ ℓ. (19)

Indeed, all these terms contribute by a bounded error, and (19) holds if either

1 ≤ j ≤ ℓ, g(xz1 + rj) = 0 and x ∈ Fp (20)

or

1 ≤ j ≤ ℓ, h(yz2 + sj) = 0 and y ∈ Fp, (21)

and both (20) and (21) hold for at most ℓkp triples j, x, y.

It follows from (18) that

|S(B,d1, . . . ,dℓ)| ≤
1

pℓ

∑

|h1|<p/2

· · ·
∑

|hℓ|<p/2

|vp(h1)| . . . |vp(hℓ)|
∑

x
∣
∣
∣
∣
∣

∑

y

ep(H(x, y, h1, . . . , hℓ))

∣
∣
∣
∣
∣

(22)
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where

H(x, y, h1, . . . , hℓ) = h1g(xz1+r1)
−1h(yz2+s1)

−1+· · ·+hℓg(xz1+rℓ)
−1h(yz2+sℓ)

−1.

(23)

Now we group the terms in the same way as in (11). Defining s′1, . . . , s
′
t, I1, . . . , It

in the same way as there, we get from (23):

H(x, y, h1, . . . , hℓ) =

t∑

j=1




∑

i∈Ij

hig(xz1 + ri)
−1



h(yz2 + s′j)
−1. (24)

Consider an ℓ-tuple (h1, h2, . . . , hℓ) with

(h1, h2, . . . , hℓ) 6= (0, 0, . . . , 0). (25)

Let J denote the set of the integers 1 ≤ j ≤ t such that there is at least one

i ∈ Ij with hi 6= 0. Then by (25), the set J is nonempty, so that clearly we

have

0 < |J | ≤ t ≤ ℓ. (26)

For j ∈ J write uj(y) =
∑

i∈Ij
hig(y+ri)

−1 and Uj(x) = uj(xz1) =
∑

i∈Ij
hig(xz1+

ri)
−1. Then (24) can be rewritten as

H(x, y, h1, . . . , hℓ) =
∑

j∈J

Uj(x)h(yz2 + s′j)
−1 (27)

where by Lemma 5, Uj(x) is a nonzero rational function whose numerator is

of degree

≤ |J | k ≤ ℓk

by (14), thus it has at most ℓk zeros. Denote the set of the zeros of the

rational function U1(x) (which exist by (26)) by X so that

|X | ≤ ℓk. (28)

Then for any fixed x with x ∈ Fp \ X we have U1(x) 6= 0, thus again by

Lemma 5 for such an x, the rational function

Kx,h1,...,hℓ
(y)

def
=

∑

j∈J

Uj(x)h(yz2 + s′j)
−1
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in (27) is a nonzero rational function whose denominator is higher degree

than its numerator, and its denominator is again of degree ≤ |J | k ≤ ℓk by

(14). Thus for such an x the last sum in (22) can be estimated by using

Lemma 4, and then estimating the contribution of h1 = · · · = hℓ = 0, resp.

the x values with x ∈ X in the trivial way, by Lemma 2, Lemma 4 and (28)

we get from (22):

|S(B,d1, . . . ,dℓ)| ≪
1

pℓ




p

2 +




∑

|h|<p/2

|vp(h)|





ℓ 

|X | p+
∑

x∈Fp\X

ℓkp1/2 log p










≪
1

pℓ

(
p2 + pℓ(log p)ℓ

(
ℓkp+ ℓkp3/2 log p

))
≪ ℓkp3/2(log p)ℓ+1

which proves (17).

4 A two dimensional construction using the in-

dex

In this section we will extend construction (4) to two dimensions. As in

[13] this construction can be handled using multiplicative characters. Corre-

spondingly, we will use several ideas from [8], [9], [10], [13] and [26], and we

will skip some details.

Throughout this section let p be an odd prime and g be a fixed primitive

root modulo p. ind n is defined as the unique integer with

gind n ≡ n (mod p)

and 1 ≤ ind n ≤ p− 1.

Theorem 3 Let p be an odd prime, f(x, y) ∈ Fp[x, y] be a polynomial of

degree k. Suppose that f(x, y) is squarefree and it is not of the form

r∏

j=1

fj(αjx+ βjy) (29)
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where αj , βj ∈ Fp and fj(x) ∈ Fp[x] is a one variable polynomial for j =

1, 2, . . . , r. Assume also that ℓ ∈ N and one of the following conditions holds:

a) f(x, y) is irreducible;

b) ℓ = 2;

c) (4k)ℓ ≤ p.

Define the two dimensional binary p-lattice η : I2
p → {−1,+1} by

η(x, y) =







+1 if (f(x, y), p) = 1 and 1 ≤ ind f(x, y) ≤ p−1
2

−1 otherwise
(30)

Then

Qℓ(η) ≪ ℓkp3/2(log p)ℓ+1.

We remark that the use of index (discrete logarithm) makes the appli-

cation of this construction very slow and impractical. However, as in one

dimension, one can make this construction much faster and more practical

along the lines presented in [8] and [10].

Proof of Theorem 3

The theorem is trivial for k2 ≫ p or ℓ2 ≫ p, thus we may assume

(k + ℓ)(k + ℓ− 1)/2 ≤ p.

We will use the following lemma.

Lemma 6 Let p ≥ 5 be a prime and χ be a multiplicative character of order

d. Suppose that h(x1, x2) ∈ Fp[x1, x2] is not of the form cg(x1, x2)
d with

c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2]. Let k be the degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattice B ⊆ I2
p .

Proof of Lemma 6 This is Lemma 2 in [13].
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In the same way as in [26] we get

η(x, y) =
2

p− 1

∑

χ 6=χ0

χ(f(x, y))

(p−1)/2
∑

k=1

χk(g)

=
2

p− 1

∑

χ 6=χ0

χ(f(x, y))
χ(g)− χ(p+1)/2 (g)

1 − χ(g)
(31)

Now consider the sum S(B,d1, . . . ,dℓ) in the definition of Qℓ(η) in (5)

and write

B = {(xz1, yz2) : 0 ≤ xz1 ≤ t1(< p), 0 ≤ yz2 ≤ t2(< p)}

di = (ri, si) for i = 1, 2, . . . , ℓ,

so that, by (5),

|S(B,d1,d2, . . . ,dℓ)| =

∣
∣
∣
∣
∣

∑

x∈B

η(x + d1) · · ·η(x + dℓ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

η(xz1 + r1, yz2 + s1) · · ·η(xz1 + rℓ, yz2 + sℓ)

∣
∣
∣
∣
∣
∣

.

By this, (31) and the triangle-inequality

|S(B,d1,d2, . . . ,dℓ)| ≤
2ℓ

(p− 1)ℓ

∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

∑

χ1 6=χ0

· · ·
∑

χℓ 6=χ0

χ1(f(xz1 + r1, yz2 + s1)) . . . χℓ(f(xz1 + rℓ, yz2 + sℓ))

ℓ∏

j=1

χj(g) − χ
(p+1)/2
j (g)

1 − χj(g)

∣
∣
∣
∣
∣

≤
2ℓ

(p− 1)ℓ

∑

χ1 6=χ0

· · ·
∑

χℓ 6=χ0

∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

χ1(f(xz1 + r1, yz2 + s1)) . . . χℓ(f(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ℓ∏

j=1

1 − χ
(p−1)/2
j (g)

1 − χj(g)

∣
∣
∣
∣
∣
.

(32)

Now, let χ be a generator of the group formulated by the modulo p (multi-

plicative) characters, e.g., χ can be chosen as the character uniquely defined
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by χ(g) = e
(

1
p−1

)

. Then the order of χ is p− 1. Let

χu = χδu for u = 1, 2, . . . , ℓ (33)

where, by χ1 6= χ0, . . . , χℓ 6= χ0, we may take

1 ≤ δu < p− 1 for u = 1, 2, . . . , ℓ.

Thus in (32) we have

χ1(f(xz1 + r1, yz2 + s1)) · · ·χℓ(f(xz1 + rℓ, yz2 + sℓ)) =

χδ1(f(xz1 + r1, yz2 + s1)) · · ·χ
δℓ(f(xz1 + rℓ, yz2 + sℓ)) =

χ(f δ1(xz1 + r1, yz2 + s1) · · ·f
δℓ(xz1 + rℓ, yz2 + sℓ)).

By Lemma 6 it follows that if f δ1(xz1 + r1, yz2 + s1) · · ·f
δℓ(xz1 + rℓ, yz2 + sℓ)

is not a perfect p− 1-st power, then
∣
∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

χ1(f(xz1 + r1, yz2 + s1)) · · ·χℓ(f(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

χ(f δ1(xz1 + r1, yz2 + s1) · · ·f
δℓ(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣
∣

≪ kp3/2 log p.
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By this, (32), (33) and the triangle-inequality we have

|S(B,d1,d2, . . . ,dℓ)| ≤
2ℓ

(p− 1)ℓ

∑

χ1 6=χ0

· · ·
∑

χℓ 6=χ0

∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

χ1(f(xz1 + r1, yz2 + s1)) . . . χℓ(f(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ℓ∏

j=1

1 − χ
(p−1)/2
j (g)

1 − χj(g)

∣
∣
∣
∣
∣

=
2ℓ

(p− 1)ℓ

p−2
∑

δ1=1

· · ·

p−2
∑

δℓ=1

∣
∣
∣
∣
∣

∑

0≤x≤t1/z1

∑

0≤y≤t2/z2

χ(f δ1(xz1 + r1, yz2 + s1) · · · f
δℓ(xz1 + rℓ, yz2 + sℓ))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ℓ∏

j=1

1 − χδj(p−1)/2(g)

1 − χδj (g)

∣
∣
∣
∣
∣

≤
2ℓ

(p− 1)ℓ

p−2
∑

δ1=1

· · ·

p−2
∑

δℓ=1

kp3/2 log p

∣
∣
∣
∣
∣

ℓ∏

j=1

1 − χδj(p−1)/2(g)

1 − χδj (g)

∣
∣
∣
∣
∣

+
2ℓ

(p− 1)ℓ

∑

1≤δ1,...,δℓ≤p−2
fδ1 (xz1+r1,yz2+s1)···fδℓ (xz1+rℓ,yz2+sℓ)

is a perfect p − 1-st power

(p− 1)2

∣
∣
∣
∣
∣

ℓ∏

j=1

1 − χδj(p−1)/2(g)

1 − χδj (g)

∣
∣
∣
∣
∣

=
2ℓ

(p− 1)ℓ

∑

1
+

2ℓ

(p− 1)ℓ

∑

2
. (34)

By [13, p.384] we have

2ℓ

(p− 1)ℓ

∑

1
≪ kℓ4ℓp3/2(log p)ℓ+1. (35)

It remains to prove that
∑

2 = 0. We will prove this by adapting the method

used in [13].

Lemma 7 Suppose that the conditions of Theorem 3 hold. Let z1, z2, r1, . . . , rℓ,

s1, . . . , sℓ ∈ Fp and 1 ≤ δ1, . . . , δℓ ≤ p− 2. Then

f δ1(xz1 + r1, yz2 + s1) · · ·f
δℓ(xz1 + rℓ, yz2 + sℓ) ∈ Fp[x, y]

is not a constant times the p− 1-st power of a polynomial.

Proof of Lemma 7 We will need the following definitions:
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Definition 2 Let A and B be multisets of the elements of F
n
p . If A + B

represents every elements of F
n
p with multiplicity divisible by p-1, i.e., for all

c ∈ F
n
p , the number of solutions of

a+ b = c, a ∈ A, b ∈ B

(the a’s and b’s are counted with their multiplicities) is divisible by p − 1,

then A + B is said to have property P.

Definition 3 If r, ℓ, p ∈ N, where p is a prime and r, ℓ ≤ p−1, then (r, ℓ, p−

1) is said to be an admissible triple if there are no A,B ⊆ F
2
p such that A

contains r, B contains ℓ distinct elements, and A + B possesses property P.

Similarly to the proof of Theorem A in [7], we introduce an equivalence

relation:

Definition 4 Two polynomials ϕ(x, y), ψ(x, y) ∈ Fp[x, y] are equivalent, ϕ ∼

ψ, if there are a1, a2 ∈ Fp such that

ψ(x, y) = ϕ(x+ a1, y + a2).

Write f(x, y) as a product of irreducible polynomials in Fp[x, y]. Let us

group these factors so that in each group the equivalent irreducible factors

are collected. Consider a typical group ϕ(x + a1,1, x2 + a2,1), ϕ(x + a1,2, y +

a2,2), . . . , ϕ(x+a1,s, y+a2,s). Since f(x, y) is squarefree, each ϕ(x+a1,i, y+a2,i)

has multiplicity 1 in the factorization f(x, y). Then f(x, y) is of the form

f(x, y) = ϕ(x+ a1,1, y + a2,1) · · ·ϕ(x+ a1,s, y + a2,s)g(x, y),

where g(x, y) has no irreducible factor equivalent with any ϕ(x+a1,i, y+a2,i)

(1 ≤ i ≤ s).

We will use the following lemma:
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Lemma 8 Let ϕ(x, y) ∈ Fp[x, y] be nonzero and let c, a1, a2 ∈ Fp with

(a1, a2) 6= (0, 0) be such that

ϕ(x, y) = cϕ(x+ a1, y + a2). (36)

Suppose that the degree of ϕ(x, y) is < p. Then ϕ(x, y) is of the form

ϕ(x, y) = g(a2x− a1y) (37)

for a polynomial g(x) ∈ Fp[x].

Proof of Lemma 8. This is Lemma 6 in [13].

Now we are ready to complete the proof of Lemma 7. Let h(x, y) =

f δ1(xz1 + r1, yz2 + s1) · · ·f
δℓ(xz1 + rℓ, yz2 + sℓ). Let f̃(x, y) = f(xz1, yz2) and

x = (x, y), then h(x) = f̃ δ1(x + d1) · · · f̃
δℓ(x + dℓ).

First we study the case when condition a) holds in Theorem 3, i.e., when

f(x, y) is irreducible in Fp[x, y]. Then f(x, y) and so f̃(x, y) are not of the

form (29). Then f(x, y) is not of the form g(a2x−a1y) for a polynomial g(x) ∈

Fp[x]. Using Lemma 8 we get that the irreducible polynomials f̃(x + dj) are

distinct. There is unique factorization in Fp[x, y], thus the product h(x) can

be a constant multiple of the p − 1-st power of a polynomial if and only if

p − 1 | δ1, . . . , δℓ. Since we assumed that 1 ≤ δ1, . . . , δℓ ≤ p − 2 thus this

cannot hold.

Now we assume that b) or c) holds in Theorem 3. Since f(x, y) is not

of the form (29), in the factorization of f̃(x, y) there is an irreducible factor

u(x, y) which can not be written in form

u(x, y) = uj(αjx+ βjy). (38)

Consider the polynomials u(x + ai) for i = 1, 2, . . . , r which are equivalent

with u(x) and appear in the factorization of u(x).

We prove by contradiction that h(x) = f̃ δ1(x + d1) · · · f̃
δℓ(x + dℓ) is not

a constant multiple of the p− 1-st power of a polynomial. Again we suppose
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that h(x) = f̃ δ1(x+d1) · · · f̃
δℓ(x+dℓ) is the constant multiple of the p−1-st

power of a polynomial.

Write h(x) as a product of irreducible polynomials in Fp[x, y]. Then all

polynomials u(x + ai + dj) (1 ≤ i ≤ s, 1 ≤ j ≤ ℓ) occur amongst the

factors. These polynomials u(x+ai +dj) are equivalent, and no other factor

belonging to this equivalence class will occur amongst the irreducible factor

of h(x). Write A = {a1, . . . , ar} and D = {d1, . . . ,d1
︸ ︷︷ ︸

δ1 times

, . . . ,dℓ, . . . ,dℓ
︸ ︷︷ ︸

δℓ times

} ⊆ F
2
p,

where r ≤ k. By Lemma 8 all polynomials u(x + c) for c ∈ F
2
p are distinct

since u is not of form (38). Thus in the collection, formed by the equivalent

factors u(x+ai+dj), every polynomial u(x+c) must occur with multiplicity

divisible by p− 1. Then A + D possesses property P.

Lemma 9 Let s(s− 1)/2 < p and

di = (d′i, d
′′
i ) ∈ F

2
p (1 ≤ i ≤ s)

be different vectors. Then there exists a λ ∈ F
∗
p such that

d′i + λd′′i ∈ Fp (1 ≤ i ≤ s)

are different.

Proof of Lemma 9 This is Lemma 7 in [13].

By Lemma 9 we may choose λ ∈ Fp so that both the sums a′ + λa′′

with (a′, a′′) ∈ A and d′ + λd′′ with (d′, d′′) ∈ D are distinct. Write now

A′ = {a′ + λa′′ : (a′, a′′) ∈ A} and let D′ be the multiset which contains

ri + λsi with multiplicity δi where di = (ri, si) ∈ D with multiplicity δi:

D′ = {ri + λsi
︸ ︷︷ ︸

δi times

: (ri, si) ∈ D}.

Lemma 10 A′ + D′ possesses property P.
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Proof of Lemma 10 In order to prove the lemma we have to show that for

any c ∈ Fp the number of solutions

a + d = c, a ∈ A′, d ∈ D′ (39)

is divisible by p− 1. Indeed, it is clear that the number of solutions of (39)

is the same as the number of solutions of

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

c′ + λc′′ = c. (40)

Since A+D possesses property P, for any (c′, c′′) ∈ F
2
p the number of solutions

of the equation

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

is divisible by p− 1. Thus the number of solutions of the system (40) is also

divisible by p − 1, and equivalently, the number of solutions of (39) is also

divisible by p− 1. This proves Lemma 10.

By Lemma 10 A′ + D′ possesses property P. Thus (r, ℓ, p − 1) is not an

admissible triple. By the following lemma this is not possible:

Lemma 11 (i) For every prime p and r ∈ N the triple (r, 2, p) is admissible.

(ii) If p is prime, r, ℓ ∈ N and

(4k)ℓ < p,

then (r, ℓ, p− 1) is admissible.

(iii) If p is a prime such that 2 is primitive root modulo p, then for every

pair (r, ℓ) ∈ N with r < p, ℓ < p the triple (r, ℓ, p− 1) is admissible.

Proof of Lemma 11 This is proved in the proof of Lemma 1 in [8]. Note

that replacing Lemma 9 by Lemma 4 in [21], it could be shown that (ii) in

Lemma 11 and thus c) in Theorem 3 also holds if the inequalities are replaced

by 4k+ℓ < p.
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So we get a contradiction, thus we have proved that b) and c) in Theorem

3 also imply the conclusion of Lemma 7.

Note that the implementation and handling of this construction is rather

complicated and slow, since there is no fast algorithm computing the index.

Gyarmati [8], [10] worked out a fast version of the one dimensional construc-

tion (4); in a similar manner one could work out a fast version of construction

(30) in Theorem 3.

5 Remarks

In each of the three constructions we estimated the only pseudorandom

measure Qℓ(η). One may also introduce and study further, independent

measures of pseudorandomness and, indeed, in a forthcoming series this will

be our goal. One may also study the connection between different measures

of pseudorandomness. E.g., in the one dimensional case Brandstätter and

Winterhof [2] were the first to observe that from the upper bounds for the

correlation of “not very large” order of a binary sequence one can deduce

a lower bound for the linear complexity of it, and later Andics [1] proved

another similar inequality. One might like to look for the multidimensional

analogues of these results. Then the first problem is how to extend the notion

of linear complexity to n-dimensional lattices? The simplest although not

quite satisfactory way would be to stretch the lattice into a binary sequence

in the way described and studied in [11] (first we take the elements of the

first row of the lattice, then we continue with the elements of the second row,

etc.), and then to study the linear complexity of the binary sequence obtained

in this way. One might like to go beyond this simple way and also introduce

and study notion(s) of more multidimensional nature of linear complexity of

lattices.

All our constructions and results presented in this paper could be ex-

tended from two dimensional lattices to n-dimensional ones at the expense
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of extending some technical lemmas from two dimensions to n dimensions

(and working with lenghtier formulas). In general in n dimensions the trivial

upper bound for the pseudorandom measure Qℓ(η) of an N -lattice is O(Nn),

our approach gives O(Nn−1/2+o(1)), and the expected optimal bound would

be O(Nn/2+o(1)) (so that while in two dimensions our estimates roughly halve

the gap between the trivial resp. optimal bound, as the dimension increases

the saving relative to the size of the gap decreases rapidly).

As we referred to it earlier, to close this gap one would need the appli-

cation of Deligne’s theorem. Unfortunately, in order to apply this result one

needs the inconvenient assumption of nonsingularity. This requirement could

be ensured in the estimate of Q1(η), but no matter how strong assumptions

(absolute irreducibility, etc.) we have on our polynomials f(x, y), for ℓ ≥ 2

the estimate of Qℓ(η) leads to character sums involving a large set of com-

plicated polynomials and one cannot guarantee that all these polynomials

satisfy the nonsingularity requirement.
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