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Abstract

In 1997 Sárközy and Mauduit introduced the well-distribution mea-

sure (W ) and the correlation measure of order ℓ (Cℓ) of binary se-

quences as measures of their pseudorandomness. For a truly random

binary sequence these measures are small (≪ N1/2(log N)c for a se-

quence of length N). Several constructions have been given for which

these measures are small, namely they are ≪ N1/2(log N)c, so the

sequence EN has strong pseudorandom properties. But in certain ap-

plications, e.g. in cryptography, it is not enough to know that the se-

quence has strong pseudorandom properties, it is also important that

the subsequences EM (where EM is of the form {ex, ex+1, ..., ex+M−1})

also have strong pseudorandom properties for values M possibly small

in terms of N . In this paper I will deal with this problem in case of

values M ≫ N1/4+ε.
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1 Introduction

C. Mauduit and A. Sárközy [12] introduced the following measures of

pseudorandomness:

For a finite binary sequence EN = {e1, e2, . . . , eN} ∈ {−1, +1}N write

U(EN , t, a, b) =

t−1
∑

j=0

ea+jb (1)

and, for D = (d1, . . . , dℓ) with non-negative integers d1 < · · · < dℓ,

V (EN , M, D) =
M
∑

n=1

en+d1
en+d2

. . . en+dℓ
. (2)

Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤

a + (t − 1)b ≤ N . The correlation measure of order ℓ of EN is defined as

Cℓ(EN) = max
M,D

|V (EN , M, D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1
en+d2

. . . en+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, d2, . . . , dℓ) and M such that

0 ≤ d1 < d2 < · · · < dℓ < M + dℓ ≤ N .

A sequence EN is considered a “good” pseudorandom sequence if each of

these measures W (EN), Cℓ(EN ) (at least for small ℓ) is “small” in terms of

N (in particular all are o(N) as N −→ ∞). Indeed, it was proved in [4]

that for a truly random sequence EN ⊆ {−1, +1}N each of these measures

is ≪ √
N log N and ≫

√
N . Later these bounds were sharpened by Alon,

Kohayakawa, Mauduit, Moreira and Rödl [2].
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Numerous binary sequences have been tested for pseudorandomness by

several authors. In the best constructions we have W (EN) ≪
√

N(log N)c1

and Cℓ(EN ) ≪
√

N(log N)cℓ with positive constants c1 and cℓ. From this it

follows that

|U(EN , t, a, b)| ≪ N1/2(log N)c1 (3)

and

|V (EN , M, D)| ≪ N1/2(log N)cℓ (4)

(for all t, a, b, M, D). For every M and t, we trivially have

max
EN∈{−1,+1}N

|U(EN , t, a, b)| = t,

max
EN∈{−1,+1}N

|V (EN , M, D)| = M.

If |U(EN , t, a, b)| is large compared with t or |V (EN , M, D)| is large compared

with M , then it may occur that our sequence EN has a “part” with weak

pseudorandom properties. Indeed, if t or M is smaller than
√

N then the

estimates (3) and (4) are trivial. Thus it may occur that, say, we want to

encrypt a message of estimated length slightly less than N , thus we use an

N bit sequence possessing strong pseudorandom properties. However, it may

turn out that the text to be encrypted is of length less than, say,
√

N . In

this case we use only a short part (of length
√

N) of the sequence although

we do not have any control over the pseudorandom properties of the short

subsequences. In this paper we would like to present constructions with

non-trivial estimates for V (EN , M, D) in case of small M ’s.
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Theorem 1 For every N there is a binary sequence EN ∈ {−1, +1}N such

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2 are such that 0 ≤ d1 < d2 < · · · <

dℓ < M + dℓ ≤ N , then we have

|V (EN , M, D)| ≪ ℓ2N1/4 log N. (5)

From this follows that for 1 ≤ M ≤ N we have

|V (EN , M, D)| ≪ ℓ2

⌈

M

N1/2

⌉

N1/4 log N.

Corollary 1 For the binary sequence EN ∈ {−1, +1}N constructed in the

proof of Theorem 1 we have

Cℓ(EM ) ≪ ℓ2

⌈

M

N1/2

⌉

N1/4 log N (6)

for every M ≤ N and EM ⊆ EN (so EM is of the form {ex, ex+1, . . . , eM}).

It is an interesting question whether similar results hold for U(EN , t, a, b)?

Theorem 1 is not optimal in the sense that it follows from (6) for the

sequence EN which satisfies the conditions of Theorem 1 that

Cℓ(EN ) ≪ ℓ2N3/4 log N,

while in the best constructions we have Cℓ(EN ) ≪ N1/2(log N)cℓ . Next we

will show the existence of such a sequence.

Theorem 2 For every N there is a binary sequence EN ∈ {−1, +1}N such

that if D = (d1, d2, . . . , dℓ) and M ≤ N1/2 satisfy 0 ≤ d1 < d2 < · · · < dℓ <

M + dℓ ≤ N , then we have

|V (EN , M, D)| ≪ ℓ2N1/4 log N. (7)
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Moreover

Cℓ(EN) ≪ ℓ2N1/2(log N)2 (8)

and

W (EN) ≪ N3/4 log N (9)

holds.

From (7) follows that for 1 ≤ M ≤ N we have

|V (EN , M, D)| ≪ ℓ2

⌈

M

N1/2

⌉

N1/4 log N.

Corollary 2 For the binary sequence EN ∈ {−1, +1} constructed in the

proof of Theorem 2 we have

Cℓ(EM ) ≪ ℓ2

⌈

M

N1/2

⌉

N1/4 log N

for every M ≤ N and EM ⊆ EN (where EM is of the form

{ex, ex+1, . . . , ex+M−1}). Moreover

Cℓ(EN) ≪ ℓ2N1/2(log N)2

and

W (EN) ≪ N3/4 log N

holds.

The proofs of Theorem 1 and 2 are constructive. The construction

in Theorem 2 uses two-dimensional binary lattices. The multidimensional

theory of pseudorandomness was developed by Hubert, Mauduit and Sárközy

[9]. They introduced the following definitions:
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Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [8]

this definition was extended to more general lattices in the following way: Let

u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate of

ui is a positive integer and the other coordinates of ui are 0, so that, writing

zi = |ui|, ui is of the form (0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers

with 0 ≤ t1, t2, . . . , tn < N . Then we call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xizi ≤ ti(< N) for i = 1, . . . , n}

n-dimensional box N-lattice or briefly a box N-lattice.

In [9] the definition of binary sequences was extended to more dimensions

by considering functions of type

ex = η(x) : In
N → {−1, +1}. (10)

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).

Such a function can be visualized as the lattice points of the N -lattice

replaced by the two symbols + and −, thus they are called binary N -lattices.

Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption

of digital images.

Hubert, Mauduit and Sárközy [9] introduced the following measure of

pseudorandomness of binary lattices (here we will present the definition in

the same slightly modified but equivalent form as in [8]):
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Definition 1 Let

η : In
N → {−1, +1}.

be a binary lattice. Define the pseudorandom measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) . . . η(x + dℓ)

∣

∣

∣

∣

∣

, (11)

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

N-lattices B such that B + d1, . . . , B + dℓ ⊆ In
N .

Then η is said to have strong pseudorandom properties, or briefly, it is

considered a “good” pseudorandom lattice if for fixed n and ℓ and “large” N

the measure Qℓ(η) is “small” (much smaller, then the trivial upper bound

Nn). This terminology is justified by the fact that, as was proved in [9],

for a truly random binary lattice defined on In
N and for fixed ℓ the measure

Qℓ(η) is “small”; in particular, it is less than Nn/2 multiplied by a logarithmic

factor. Later Gyarmati, Mauduit and Sárközy [6] introduced a new measure

of pseudorandom binary lattices: The correlation measure of order ℓ of the

lattice η : In
N → {−1, +1} is defined by

Cℓ(η) = max
B′,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B′

η(x + d1) · · ·η(x + dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

lattices B′ of the special form

B′ = {x = (x1, x2, . . . , xn) : 0 ≤ x1 ≤ t1(< N), . . . , 0 ≤ xn ≤ tn(< N)}

such that B′ + d1, . . . , B
′ + dℓ ⊆ In

N . Note that it follows trivially from the

definition that for all binary lattice η and all integer ℓ we have

Cℓ(η) ≤ Qℓ(η) (12)
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(but Qℓ is usually much greater than Cℓ).

In [7] we reduced the two dimensional case to the one dimensional one by

the following way: To any 2-dimensional binary N -lattice

η(x) : I2
N → {−1, +1} (13)

we may assign a unique binary sequence EN2 = EN2(η) = {e1, e2, . . . , eN2} ∈

{−1, +1}N by taking the first (from the bottom) row of the lattice (13) then

we continue the binary sequence by taking the second row of the lattice, then

the third row follows, etc.; in general, we set

eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N − 1, j = 1, 2, . . . , N. (14)

In [7] we asked if it is true that if EN2(η) is a “good” pseudorandom binary

sequence then η is a “good” pseudorandom 2-dimensional lattice? The answer

to this question is negative; we showed that it may occur that the pseudoran-

dom measures of the sequence EN2(η) are small, however, the corresponding

pseudorandom measures of the lattice η are large. Here we study the oppo-

site. We will prove that if the lattice η has small correlation measure, then

the corresponding E2
N(η) sequence has small correlation measures as well.

Theorem 3 Let η be an arbitrary binary lattice. Then

Cℓ(EN2(η)) ≤ (ℓ + 2)Cℓ(η).

By Cℓ(η) ≤ Qℓ(η) it follows that

Corollary 3 Let η be an arbitrary binary lattice. Then

Cℓ(EN2(η)) ≤ (ℓ + 2)Qℓ(η).
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In the proof of Theorem 2 we will use Theorem 3. But Theorem 3 is of

independent interest: by using Theorem 3 we can construct pseudorandom

binary sequences by using pseudorandom binary lattices.

We remark that one may obtain similar results for shorter intervals in

Theorem 2: If t is an integer then for M ≤ N1/t we have |V (EN , M, D)| ≪

N1/(2t) log N in place of (7) while Cℓ(EN ) ≪ N1/2(log N)cℓ and W (EN) ≪

N3/4(log N)c1 also holds. However the proof of this result would be lengthy

(we would need more sophisticated sums as the ones in Lemma 4 and the

relation between the pseudorandom measures of the binary lattices and the

associated binary sequences is more complicated) thus we ommit here the

details, but one might return to this problem in a continuation of the present

paper.

Throughout the paper [a, b] will denote the set {a, a + 1, . . . , b}.

2 Proofs

Proof of Theorem 1

For N = 2 the theorem is trivial. For N ≥ 3 by Chebysev’s theorem

there exists an odd prime p such that

N1/2 < p < 2N1/2. (15)

For an irreducible polynomial f(x) ∈ Fp[x] of degree k ≥ 2, we define a

binary sequence Ep(f) = {e1, e2, . . . , ep} by the following way:

en =

(

f(n)

p

)

.
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(We remark that since f is irreducible, for an integer n, f(n) is never divisible

by p thus
(

f(n)
p

)

always assumes ±1.) Next we will construct a pseudorandom

binary sequence for which (5) holds. Let f1(x), f2(x), . . . , fp(x) be different

irreducible polynomials of degree k ≥ 2 and for 1 ≤ i ≤ p let fi(x) be of the

form

fi(x) = xk + ai,k−2x
k−2 + ai,k−3x

k−3 + · · ·+ ai,0 (16)

with ai,j ∈ Fp. (so the coefficient of xk−1 is 0 in fi(x)). We remark that the

number of monic irreducible polynomials of degree k < p over the finite field

Fq is

Lq(k) =
1

k

∑

d|k

µ

(

k

d

)

qd

see [5, pp. 602-629]. For k ≥ 4

Lq(k) ≥ 1

k
qk − 1

k

[k/2]
∑

d=1

qd ≥ 1

k
qk − 1

k
q
qk/2 − 1

q − 1
≥ 1

k

(

qk − q(k+2)/2
)

≥ 1

2k
qk.

For every j ∈ Fq consider f(x + j). Between these q different irreducible

polynomials there is exactly one which is of the form

f(x + j) = xk + ak−2x
k−2 + · · ·+ a0

(so the coefficient of xk−1 is 0 in f(x + j)). Thus for k ≥ 4 and p ≥ 3 the

number of irreducible polynomials which are of the form xk + ak−2x
k−2 +

· · · + a0 is

Nq(k)
def
=

1

q
Lq(k) ≥ 1

2k
qk−1. (17)

For k ≥ 4, p ≥ 3 we have Np(k) ≥ p, thus there exist p different irreducible

polynomials f1(x), f2(x), . . . , fp(x) which are of the form (16). Let

Ep2

def
= {Ep(f1), Ep(f2), . . . , Ep(fp)} (18)
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where Ep2 is a binary sequence of length p2 obtained by writing the elements

of Ep(f1), Ep(f2), . . . , Ep(fp) successively. Let Ep2 = {e1, e2, . . . , ep2} and

since by (15) we have

N < p2 < 4N,

we may define EN by the sequence of the first N elements of Ep2:

EN = {e1, e2, . . . , eN}.

If M < p, D = (d1, . . . , dℓ)

V (EN , M, D) = V (Ep2, M, D)

= e1+d1
e1+d2

. . . e1+dℓ
+ e2+d1

e2+d2
. . . e2+dℓ

+ · · · + eM+d1
eM+d2

. . . eM+dℓ
.

Next we will prove that for each 1 ≤ i ≤ ℓ and 1 ≤ n < M , there exist

integers ai, bi and intervals Ii = {1, 2, . . . , bi} and Ji = {bi +1, bi +2, . . . , M}

such that

en+di
=











(

fai
(n+di)

p

)

if n ∈ Ii,
(

fai+1(n+di)

p

)

if n ∈ Ji,

(19)

(if bi = M then Ji = ∅). Indeed, let mp(x) denote the least nonnegative

integer with

x ≡ mp(x) (mod p),

so 0 ≤ mp(x) ≤ p − 1. Then

n + di =

[

n + di − 1

p

]

p + mp(n + di − 1) + 1.

Thus

en+di
= f[n+di−1

p ]+1
(mp(n + di − 1) + 1) = f[n+di−1

p ]+1
(n + di). (20)
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In (19) 0 ≤ n ≤ M < p. Let di = qip + si where 0 ≤ si ≤ p − 1. Then

[

n + di − 1

p

]

=

[

qip + si + n − 1

p

]

= qi +

[

si + n − 1

p

]

=











qi if n ≤ p − si,

qi + 1 if n > p − si,

(21)

which proves (19) with ai = qi + 1 and bi = max{p − si, M}, so Ii = [1, bi],

Ji = [bi+1, M ] (if bi = M then Ji = ∅). Then {1, b1+1, b2+1, . . . , bℓ+1, M+1}

is a multiset which contains integers 1 = c1 < c2 < · · · < cm = M + 1 where

m ≤ ℓ + 2. (22)

Then [0, M ] = ∪m−1
j=1 [cj , cj+1 − 1]. By the definition of the cj’s, cj < bi + 1 <

cj+1 is not possible, thus cj+1 − 1 ≤ bi or bi ≤ cj − 1, so [cj, cj+1 − 1] ⊆ [0, bi]

or [cj, cj+1 − 1] ⊆ [bi + 1, M ]. Hence

V (EN , M, D) =

M
∑

n=1

en+d1
. . . en+dℓ

=

m−1
∑

j=1

∑

n∈[cj ,cj+1−1]

en+d1
. . . en+dℓ

. (23)

Now each interval [cj , cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ.

Thus for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exists

fixed numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) such that

for n ∈ [cj , cj+1 − 1]

en+d1
en+d2

. . . en+dℓ
=

(

fh1
(n + d1)

p

)(

fh2
(n + d2)

p

)

. . .

(

fhℓ
(n + dℓ)

p

)

=

(

fh1
(n + d1)fh2

(n + d2) . . . fhℓ
(n + dℓ)

p

)
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Next we estimate

∑

n∈[cj,cj+1−1]

en+d1
en+d2

. . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1
(n + d1)fh2

(n + d2) . . . fhℓ
(n + dℓ)

p

)

.

Here fh1
(x + d1), . . . , fhℓ

(x + dℓ) are different polynomials. Indeed if

fhr
(x + dr) = fht

(x + dt),

then substituting x + dr by x we get

fhr
(x) = fht

(x + dt − dr). (24)

It is easy to see that there is exactly one among the polynomials

fht
(x), fht

(x + 1), . . . , fht
(x + p − 1) for which the coefficient of xk−1 is 0,

and this one is fht
(x). From this and (24) follows that

dr ≡ dt (mod p). (25)

Thus from (24) we get

fhr
(x) = fht

(x).

Since the polynomials f1, f2, . . . , fℓ are different, from this

hr = ht (26)

follows. Now we compute the value hr = ht. By (20) for n ∈ [cj, cj+1 − 1]

en+dr
= fhr

(n + dr), en+dt
= fht

(n + dt) where

hr =

[

n + dr − 1

p

]

+ 1,

ht =

[

n + dt − 1

p

]

+ 1. (27)
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By (26) and (27)
[

n + dr − 1

p

]

=

[

n + dt − 1

p

]

. (28)

Now

n + dr = qrp + sr, n + dt = qtp + st (29)

where 0 ≤ sr, st ≤ p − 1. By (25)

sr = st. (30)

Now

[

n + dr − 1

p

]

+ 1 =

[

qrp + sr − 1

p

]

+ 1 = qr + 1 +

[

sr − 1

p

]

.

Similarly
[

n + dt − 1

p

]

= qt + 1 +

[

st − 1

p

]

.

By this, (28) and (30) we have

qr = qt.

By this, (29) and (30)

dr = dt,

which is a contradiction. So indeed, the irreducible polynomials fh1
(x +

d1), . . . , fhℓ
(x + dℓ) are different. Thus the product fh1

(x + d1)fh2
(x +

d2) . . . fhℓ
(x+dℓ) is not of the form cg2(x). We will use the following lemma:

Lemma 1 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f ∈ Fp[x] has s distinct roots in Fp, and it is not a constant
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multiple of the d-th power of a polynomial over Fp. Let y be a real number

with 0 < y ≤ p. Then for any x ∈ R:
∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< p1/2 log p. (31)

Poof of Lemma 1

This lemma is the one-dimensional case of Lemma 10 due to Winterhof

[17], who derived it from Weil theorem [16]. We mention that a slightly

weaker version of the lemma can be found in Lemma 1 in [1] where 9sp1/2 log p

is proved in place of the right hand side of (31). (In the case f(x) = x the best

constant factor is achieved by Bourgain, Cochrane, Paulhus and C. Pinner

in [3], and their method also works for higher degree polynomials.)

Since later in the proof we will also use Weil’s theorem, we state it here

as a lemma (see in [11] and [16]):

Lemma 2 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f ∈ Fp[x] has s distinct roots in Fp, and it is not a constant

multiple of the d-th power of a polynomial over Fp. Then:
∣

∣

∣

∣

∣

∣

∑

n∈Fp

χ(f(n))

∣

∣

∣

∣

∣

∣

< sp1/2.

By Lemma 1 we get

∑

n∈[cj,cj+1−1]

en+d1
en+d2

. . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

(

fh1
(n + d1)fh2

(n + d2) . . . fhℓ
(n + dℓ)

p

)

.

≤ 9ℓkp1/2 log p.
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By (22) and (23) we get

|V (EN , M, D)| ≪ ℓ2kp1/2 log p ≪ ℓ2kN1/4 log N. (32)

Since k, the degree of the polynomials f1(x), f2(x), . . . , fp(x) can be chosen

as k = 4, from (32) we get (5), which was to be proved.

Proof of Theorem 2 First we will need some technical preparation in order

to be able to estimate character sums of the type which appear later in the

proof of our theorem. First Katz [10] and Perelmuter-Shparlinski [14] studied

character sums over subfields of a finite field. Their result was generalized

by Wan [15] who proved the following very general theorem:

Lemma 3 Let the fi(T ) with 1 ≤ i ≤ n be pairwise coprime polynomials.

Let D be the degree of the largest squarefree divisor of
∏n

i=1 fi(T ). Let χi be

a multiplicative character of the field Fqm for 1 ≤ i ≤ n. Suppose that for

some 1 ≤ i ≤ n, there is a root ξi of multiplicity mi of fi(T ) such that the

character χmi is non-trivial on the set NormFqm [ξi]/Fqm (Fq[ξ]). Then we have
∣

∣

∣

∣

∣

∣

∑

a∈Fq

χ1(f1(a)) . . . χn(fn(a))

∣

∣

∣

∣

∣

∣

≤ (mD − 1)q1/2.

Part a) of the following lemma is a consequence of Lemma 3, while the

estimate in part b) - the incomplete case - is new and I will derive it directly

from Weil’s theorem. (At the same time I will also give an alternative proof

for part a), since in order to do so I just need to add one more sentence to

the proof of part b).)

Lemma 4 Let p be an odd prime, q = p2 and denote the quadratic character

of Fq by γ. Clearly Fp ⊆ Fq. Let I = [a, a + 1, a + 2, . . . , b] ⊆ Fp and
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f(x) ∈ Fq[x] be a polynomial which is not of the form cg(x)h2(x) with c ∈ Fq,

g(x) ∈ Fp[x] and h(x) ∈ Fq[x]. Suppose that f(x) has m distinct zeros in its

splitting field over Fp. Then

a)

∣

∣

∣

∣

∣

∣

∑

x∈Fp

γ(f(x))

∣

∣

∣

∣

∣

∣

≤ 2mp1/2, (33)

b)

∣

∣

∣

∣

∣

∑

x∈I

γ(f(x))

∣

∣

∣

∣

∣

≤ 2mp1/2(1 + log p). (34)

Proof of Lemma 4 Let n ∈ Fp be a quadratic non-residue modulo p, so

(

n

p

)

= −1. (35)

The polynomial x2 − n ∈ Fq[x] = Fp2[x] is reducible in Fq[x], let θ ∈ Fq be

an element for which

θ2 = n (36)

in Fq. Since n is quadratic non-residue modulo p, θ 6∈ Fp. Then {1, θ} is a

basis of Fq over Fp, so every element of Fq can be written uniquely in the

form x + θy with x, y ∈ Fp. Then define the conjugate of x + θy by

x + θy
def
= x − θy.

Then for a, b ∈ Fq we have

ab = a · b,

a + b = a + b,

and

aa ∈ Fp. (37)
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It is easy to check that

x + θy = (x + θy)p, (38)

since by using the Euler lemma for x, y ∈ Fp we have

(x + θy)p = xp + θpyp = xp +
(

θ2
)p−1/2

θyp = x +
(

θ2
)p−1/2

θy

= x + n(p−1)/2θy = x +

(

n

p

)

θy = x − θy.

Thus the conjugation is an automorphism of Fq which can be extended to an

automorphism of Fq by

Fq → Fq,

ε → εp.

This is the Froebenius automorphism.

Lemma 5 For x, y ∈ Fp

γ(x + θy) =

(

(x + θy)(x + θy)

p

)

=

(

x2 − ny2

p

)

.

Proof of Lemma 5 Using (38) and the Euler lemma we get

γ(x + θy) = (x + θy)(q−1)/2 = (x + θy)(p2−1)/2

= (x + θy)(p2−p)/2(x + θy)(p−1)/2

= ((x + θy)p)(p−1)/2 (x + θy)(p−1)/2

=
(

x + θy
)(p−1)/2

(x + θy)(p−1)/2

= (x − θy)(p−1)/2(x + θy)(p−1)/2

=
(

x2 − θ2y2
)(p−1)/2

=
(

x2 − ny2
)(p−1)/2

,

18



which proves Lemma 5.

By Lemma 5
∑

x∈I

γ(f(x)) =
∑

x∈I

(

f(x)f(x)

p

)

.

Since I ⊆ Fp, if f(x) = akx
k + · · ·+ ao, then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

)

(akxk + · · ·+ ao)

p

)

=
∑

x∈I

(

(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

p

)

.

Here the coefficients of
(

akx
k + · · ·+ ao

) (

akx
k + · · ·+ ao

)

are in Fp, since

f(x) can be written in the form p(x)+θr(x) with p(x), r(x) ∈ Fp[x] and then

f(x) = akx
k + · · · + ao = p(x) − θr(x) so f(x)f(x) = (p(x) + θr(x))(p(x) −

θr(x)) = p2(x) − nq2(x) ∈ Fp[x].

Let b(x) =
(

akx
k + · · · + ao

) (

akx
k + · · ·+ ao

)

. Then

∑

x∈I

(

f(x)f(x)

p

)

=
∑

x∈I

(

b(x)

p

)

.

Here we need Weil’s theorem. If the conditions of Lemma 1 and Lemma 2

hold, then using these lemmas we get (33) and (34) which was to be proved.

So indeed, we need to prove that the conditions of Lemma 1 and Lemma 2

hold for b(x), so b(x) is not of the form ch2(x), with c ∈ Fp, h(x) ∈ Fp[x].

Let

f(x) = ak(x − ε1)(x − ε2) . . . (x − εk)

where ak ∈ Fq, ε1, . . . , εk ∈ Fp. Then for x ∈ Fp

f(x) = ak (x − ε1) · · · (x − εk)

= ak (x − ε
p
1) · · · (x − ε

p
k) .
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Then b(x) = f(x)f(x) = akak(x− ε1) · · · (x− εk)(x− ε
p
1) · · · (x− ε

p
k). Clearly

by (37) we have akak ∈ Fp. The next question is that when is a product

(x− ε1) · · · (x− εk) (x − ε
p
1) · · · (x − ε

p
k) of the form n2(x) with n(x) ∈ Fp[x].

Let α1, α2, . . . , αt be the different elements among ε1, . . . , εk which have odd

multiplicity in the factorization of f(x) = ak(x − ε1) . . . (x − εk). Writing

g(x) = (x−α1) . . . (x−αt) we get that f(x) is of the form akg(x)h2(x) where

g(x) has no multiple roots and g(x), h(x) ∈ Fp[x]. Then

b(x) = akak(x − α1) . . . (x − αt)(x − α
p
1) . . . (x − α

p
t )s

2(x)

with s(x) ∈ Fp[x]. Here (x−α1) . . . (x−αt)(x−α
p
1) . . . (x−α

p
t ) is of the form

u2(x) with u(x) ∈ Fp[x] if and only if {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t}.

If {α1, α2, . . . , αt} = {αp
1, α

p
2, . . . , α

p
t} then for every symmetric polynomial

v ∈ Fp[x1, x2, . . . , xt] we have

v(α1, . . . , αt) = v(αp
1, . . . , α

p
t ) = vp(α1, . . . , αt).

Thus v(α1, . . . , αt) ∈ Fp. So the coefficients of g(x) = (x − α1) . . . (x − αt)

are the elements of Fp. Thus the coefficients of h2(x) = f(x)
akg(x)

are in Fq.

Let h(x) = xf +bf−1x
f−1+· · ·+b0. We will prove by induction that bf−i ∈

Fq. Indeed the coefficient of x2f−1 in h2(x) is 2bf−1, thus bf−1 ∈ Fq. Suppose

that bf−1, bf−2, . . . , bf−v ∈ Fp. We will prove that bf−v−1 ∈ Fp also holds.

Indeed the coefficient of x2f−v−1 is of the form 2bf−v−1+j(bf−1, bf−2, . . . , bf−v)

with j ∈ Fp[x1, x2, . . . , xv]. Thus 2bf−v−1 + j(bf−1, bf−2, . . . , bf−v) is in Fq,

and by the inductive hypothesis j(bf−1, bf−2, . . . , bf−v) is in Fq, thus bf−v−1

is in Fq. So we proved that h(x) ∈ Fq[x]. Thus b(x) = akak(x − ε1) . . . (x −

εk)(x − ε1) . . . (x − εk) is of the form cn2(x) with c ∈ Fq, n(x) ∈ Fq[x] if and
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only if f(x) is of the form cg(x)h2(x) with c ∈ Fq, g(x) ∈ Fp[x], h(x) ∈ Fq[x],

which was to be proved.

In order to prove Theorem 2 we need one more lemma. Namely:

Lemma 6 Let f(x) ∈ Fp2 [x] be an irreducible polynomial in Fp2[x] of degree

k, which is of the form

f(x) = xk + ak−1x
k−1 + · · · + a0,

where ak−1 ∈ Fp but f(x) 6∈ Fp[x], so there is an 1 ≤ i ≤ k − 2 such that

ai 6∈ Fp. Then for d1, d2, . . . , dℓ ∈ Fp2 we have

f(x + d1)f(x + d2) . . . f(x + dℓ) 6∈ Fp[x].

Proof of Lemma 6 Every f(x) ∈ Fp2[x] can be uniquely written in the form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

with ai ∈ Fp2. Then define

τ(f(x))
def
= akx

k + ak−1x
k−1 + · · ·+ a0.

Clearly,

τ(τ(f(x))) = f(x)

τ(f(x) + g(x)) = τ(f(x)) + τ(g(x))

τ(f(x)g(x)) = τ(f(x))τ(g(x)).

Lemma 7 If f(x) ∈ Fp2[x] is irreducible in Fp2[x], then τ(f(x)) ∈ Fp2[x] is

also irreducible in Fp2[x] .
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Proof of Lemma 7 Whenever

τ(f(x)) = g(x)h(x) with g(x), h(x) ∈ Fp2[x],

then

f(x) = τ(τ(f(x))) = τ(g(x))τ(h(x)).

Since f(x) is irreducible it follows that τ(f(x)) or τ(g(x)) is constant. From

this follows that f(x) or g(x) is constant. But then τ(f(x)) is irreducible.

Lemma 8 If f(x) ∈ Fp2 [x] is an irreducible polynomial in Fp2[x] with leading

coefficient 1, but f(x) 6∈ Fp[x] then g(x)
def
= f(x)τ(f(x)) is in Fp[x] and g(x)

is irreducible in Fp[x].

Proof of Lemma 8 Define n and θ as in (35) and (36). Then every f(x) ∈

Fp2 [x] can be uniquely written in the form

f(x) = a(x) + θb(x)

with a(x), b(x) ∈ Fp[x]. Then

τ(f(x)) = a(x) − θb(x).

Thus

f(x)τ(f(x)) = (a(x) + θb(x))(a(x) − θb(x)) = a2(x) − nb2(x) ∈ Fp[x].

Suppose that f(x)τ(f(x)) is not irreducible in Fp[x], so

f(x)τ(f(x)) = g(x)h(x) (39)

with g(x), h(x) ∈ Fp[x], where the leading coefficients of g(x) and h(x) are 1

and deg g(x), deg h(x) ≥ 1. Then (39) also holds in Fp2[x] since Fp ⊆ Fp2. But
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there is a unique factorization in Fp2 [x], and f(x) and τ(f(x)) are irreducible

polynomials in Fp2[x] with leading coefficients 1, thus

f(x) = g(x), τ(f(x)) = h(x)

or

f(x) = h(x), τ(f(x)) = g(x).

In both cases we get f(x) ∈ Fp[x], which is a contradiction.

Now we are ready to prove Lemma 6. Suppose that

f(x + d1) . . . f(x + dℓ) ∈ Fp[x].

Let α ∈ Fp be a root of f(x + d1), then f(α + d1) = 0, thus

f(α + d1) . . . f(α + dℓ) = 0.

But then the minimal polynomial of α in Fp[x] divides f(x+d1) . . . f(x+dℓ) ∈

Fp[x]. Next we determine the minimal polynomial of α in Fp[x]. α is a root

of f(x + d1)τ(f(x + d1)) and by Lemma 8 this polynomial is irreducible in

Fp[x]. So the minimal polynomial of α is f(x+d1)τ(f(x+d1)) in Fp[x]. Thus

f(x + d1)τ(f(x + d1)) | f(x + d1) . . . f(x + dℓ) in Fp[x].

But Fp[x] ⊆ Fp2[x], so

f(x + d1)τ(f(x + d1)) | f(x + d1) . . . f(x + dℓ) in Fp2[x].

Thus

τ(f(x + d1)) | f(x + d2) . . . f(x + dℓ) in Fp2[x].
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By Lemma 7, τ(f(x + d1)) is irreducible in Fp2 [x] and its leading coefficient

is 1, thus by the unique factorization in Fp2[x], there is an 2 ≤ i ≤ ℓ such

that

τ(f(x + d1)) = f(x + di).

Without the loss of generality we may assume

τ(f(x + d1)) = f(x + d2). (40)

By the definition of f(x) it is of the form

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0

where ak = 1, ak−1 ∈ Fp[x]. Then

f(x + d1) =

k
∑

i=0

(

(

k

i

)

akd
k−i
1 +

(

k − 1

i

)

ak−1d
k−1−i
1

+

(

k − 2

i

)

ak−2d
k−2−i
1 + · · ·+

(

i

i

)

ai

)

xi

and

f(x + d2) =
k
∑

i=0

(

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2

+

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai

)

xi

By the definition of τ

τ(f(x + d1)) =
k
∑

i=0

(

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · · +
(

i

i

)

ai

)

xi.
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By (40) we get that for 0 ≤ i ≤ k

(

k

i

)

akd1
k−i

+

(

k − 1

i

)

ak−1d1
k−1−i

+

(

k − 2

i

)

ak−2d1
k−2−i

+ · · ·+
(

i

i

)

ai

=

(

k

i

)

akd
k−i
2 +

(

k − 1

i

)

ak−1d
k−1−i
2 +

(

k − 2

i

)

ak−2d
k−2−i
2 + · · ·+

(

i

i

)

ai.

(41)

For i = k − 1 this gives

(

k

k − 1

)

akd1 +

(

k − 1

k − 1

)

ak−1 =

(

k

k − 1

)

akd2 +

(

k − 1

k − 1

)

ak−1. (42)

By the conditions of Lemma 6 we have ak = 1 and ak−1 ∈ Fp, thus ak = ak

and ak−1 = ak−1, so from (42)

d1 = d2 (43)

follows.

Next we prove by induction that ai ∈ Fp. Indeed, by the conditions of

Lemma 6, ak and ak−1 ∈ Fp. Next suppose that ak, ak−1, . . . , ai+1 ∈ Fp. We

will prove that ai ∈ Fp. Indeed by ak, ak−1, . . . , ai+1 ∈ Fp then

ak = ak, ak−1 = ak−1, . . . , ai+1 = ai+1

By this, (41) and (43) we get

ai = ai,

so ai ∈ Fp which was to be proved. Thus ak, ak−1, . . . , a0 ∈ Fp. But then

f(x) ∈ Fp[x], which is contradiction. Thus we proved Lemma 6.

Next we return to the proof of Theorem 2. For N = 2 the theorem is

trivial. For N ≥ 3 let p be an odd prime for which

N1/2 < p < 2N1/2. (44)
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(By Chebysev’s theorem such a prime p exists.) Let q = p2 and let n be a

quadratic non-residue modulo p, so
(

n
p

)

= −1. Let θ ∈ Fp2 be a number for

which

θ2 = n

in Fq. Then {1, θ} is a basis of Fq over Fp.

Let f(x) be an irreducible polynomial of degree k ≥ 2 which is of the

form

f(x) = xk + ak−2x
k−2 + · · ·+ a0

(so the coefficient of the term xk−1 is 0) but

f(x) 6∈ Fp[x].

By (17) the number of such polynomials is

R
def
= Np2(k) − Np(k) ≥ 1

2k
p2k−1 − 1

k
pk−1 > 0,

thus such a polynomial exists, indeed.

Define the binary lattice η : I2
p → {−1, +1} by

η(x) = η((x1, x2)) = γ(f(x1 + θx2)).

Lemma 9

Qℓ(η) ≤ kℓ
(

p(1 + log p)2
)

≪ kℓN1/2(log N)2. (45)

Proof of Lemma 9 We remark that this construction is a shifted version

of the construction in Theorem 1 in [13]. We cannot use Theorem 1 in [13]

because none of the conditions a), b) and c) holds in Theorem 1 in [13].
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However, similarly to the proof of Theorem 1 in [13], it is easy to prove that

(45) holds:

Write di = (d
(i)
1 , d

(i)
2 ) (for i = 1, . . . , ℓ), and consider the general term of

the n-fold sum in (11):

∑

x∈B

η(x + d1) . . . η(x + dℓ)

=

[t1/b1]
∑

j1=0

[t2/b2]
∑

j2=0

η
(

(j1b1 + d
(1)
1 , j2b2 + d

(1)
2 )
)

. . . η
(

(j1b1 + d
(ℓ)
1 , j2b2 + d

(ℓ)
2 )
)

, (46)

where B is a box-lattice of form

B = {x = (j1b1, j2b2) : 0 ≤ j1b1 ≤ t1(< p), 0 ≤ j2b2 ≤ t2(< p), j1, j2 ∈ N}.

Now write

z = j1b1 + j2b2θ (47)

so that z belongs to the box

B′ = {j1b1 + j2b2θ : 0 ≤ j1b1 ≤ t1, 0 ≤ j2b2 ≤ t2, j1, j2 ∈ N}, (48)

and set

zi = d
(i)
1 + d

(i)
2 θ. (49)

If z ∈ B′ then f(z + z1) . . . f(z + zk) 6= 0, and by the definition of η and

the multiplicativity of γ, the product in (46) is

γ
(

f(z + z1)
)

. . . γ
(

f(z + zk)
)

= γ
(

f(z + z1) . . . f(z + zk)
)

.

Then from (46) we get

∑

x∈B

η(x + d1) . . . η(x + dℓ) =
∑

z∈B′

γ (f(z + z1) . . . f(z + zℓ)) (50)

Now we need the following result of Winterhof:
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Lemma 10 Let p be a prime, n ≥ 1 be an integer, q = pn and let

v1, v2, . . . , vn be a basis of the vector space Fpn over Fp. Let χ be a multiplica-

tive character of Fq of order d > 1, f ∈ Fq[x] be a nonconstant polynomial

which is not a d-th power of a polynomial of Fp[x] and which has m distinct

zeros in its splitting field over Fq, and k1, . . . , kn are non-negative integers

with k1 ≤ p, . . . , kn ≤ p, then, writing B =
{ n
∑

i=1

xivi : 0 ≤ ji < ki

}

, we have

∣

∣

∣

∣

∑

z∈B

χ(f(z))

∣

∣

∣

∣

< mq1/2(1 + log p)n.

Proof of Lemma 10 This is a part of Theorem 2 in [17] (where its proof

was based on A. Weil’s theorem [16]).

Write h(z) = f(z+z1) . . . f(z+zk). Then in order to prove (45), it suffices

to show:

Lemma 11 h(x) has at least one zero in Fp whose multiplicity is odd.

Proof of Lemma 11 Since z1, z2, . . . , zℓ are different the irreducible poly-

nomials f(z +z1), . . . , f(z +zℓ) are different. (Indeed, the coefficients of xk−1

are different.) So h(x) has a zero in Fq whose multiplicity is odd. Thus h(x)

cannot be the constant multiple of a square. Applying Lemma 10 we obtain

from (50)

∑

x∈B

η(x + d1) . . . η(x + dℓ) ≪ kℓp(1 + log p)2 ≪ kℓN1/2(log N)2,

which was to be proved.

In [7] we reduced the two dimensional case to the one dimensional one by

the following way: To any 2-dimensional binary p-lattice

η(x) : I2
p → {−1, +1} (51)
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we may assign a unique binary sequence Ep2 = Ep2(η) = {e1, e2, . . . , ep2} ∈

{−1, +1}p2

by taking the first (from the bottom) row of the lattice (51) then

we continue the binary sequence by taking the second row of the lattice, then

the third row follows, etc.; in general, we set

eip+j = η((j − 1, i)) = γ(f((j − 1) + iθ))

for i = 0, 1, . . . , p − 1, j = 1, 2, . . . , p.

Thus we obtain a sequence of length p2

Ep2

def
= {e1, e2, . . . , ep2}.

Now N < p2 < 4N . Consider the first N elements of Ep2, they form a

sequence of length N:

EN
def
= {e1, e2, . . . , eN}.

We state that EN satisfies the conditions of the lemma.

First we estimate |V (EN , M, D)|. Let mp(x) denote the unique integer x

for which

mp(x) ≡ x (mod p), 0 ≤ mp(x) < p.

Then

en+di
= e[n+di−1

p ]p+mp(n+di−1)+1

and so

en+di
= η

(

mp(n + di − 1),

[

n + di − 1

p

])

= γ

(

f

(

n + di − 1 +

[

n + di − 1

p

]

θ

))

. (52)
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If 1 ≤ n ≤ M < p then
[

n+di−1
p

]

may take two different values, namely qi

and qi + 1. Indeed, define qi and si by di = qip + si where 0 ≤ si ≤ p − 1.

Then

[

n + di − 1

p

]

=

[

qip + si + n − 1

p

]

= qi +

[

si + n − 1

p

]

=











qi if n ≤ p − si,

qi + 1 if n > p − si.

Moreover there exists a number bi = min{M, p−si} such that for n ≤ bi ≤ M
[

n+di−1
p

]

= qi and for bi < n ≤ M we have
[

n+di−1
p

]

= qi + 1. Let Ii = [0, bi],

Ji = [bi + 1, M ] (if bi = M then Ji = ∅).

Then {1, b1 + 1, b2 + 1, . . . , bℓ + 1, M + 1} is a multiset which contains

integers 1 = c1 < c2 < · · · < cm = M + 1 with m ≤ ℓ + 2. Then [0, M ] =

∪m−1
j=1 [cj, cj+1 − 1].

V (EN , M, D) =

M
∑

n=1

en+d1
. . . en+dℓ

=

m−1
∑

j=1

∑

n∈[cj,cj+1−1]

en+d1
. . . en+dℓ

(53)

By the definition of the cj ’s, cj < bi+1 < cj+1 is not possible, thus cj+1−1 ≤ bi

or bi ≤ cj − 1, so [cj , cj+1 − 1] ⊆ [0, bi] or [cj, cj+1 − 1] ⊆ [bi + 1, M ]. Each

interval [cj, cj+1 − 1] is either ⊆ Ii or ⊆ Ji for every 1 ≤ i ≤ ℓ. Thus

for every d1, d2, . . . , dℓ and for every interval [cj , cj+1 − 1] there exist fixed

numbers h1, h2, . . . , hℓ (depending only on d1, d2, . . . , dℓ and j) such that for
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n ∈ [cj , cj+1 − 1]

en+d1
en+d2

. . . en+dℓ
= γ (f(n + d1 − 1 + h1θ)) γ (f(n + d2 − 1 + h2θ)) . . .

γ (f(n + dℓ − 1 + hℓθ))

= γ
(

f(n + d1 − 1 + (h1 + 1)θ)f(n + d2 − 1 + (h2 + 1)θ)

. . . f(n + dℓ − 1 + (hℓ + 1)θ)
)

.

Hence

∑

n∈[cj ,cj+1−1]

en+d1
. . . en+dℓ

=
∑

n∈[cj ,cj+1−1]

γ (f(n + d1 − 1 + h1θ) · · ·f(n + dℓ − 1 + hℓθ)) . (54)

Next we prove that the irreducible polynomials f(x + d1 − 1 +

h1θ), · · · , f(x + dℓ − 1 + hℓθ) are different. Since if i 6= j and

f(x + di − 1 + hiθ) = f(x + dj − 1 + hjθ),

then

hi ≡ hj (mod p) and di ≡ dj (mod p). (55)

This can be proved by considering the coefficient xk−1 in the polynomials

f(x + di − 1 + hiθ) and f(x + dj − 1 + hjθ). By (52) we have hi =
[

n+di−1
p

]

and hj =
[

n+dj−1

p

]

for n ∈ [cj , cj+1 − 1]. hi ≡ hj (mod p), by 0 ≤ hi =
[

n+di−1
p

]

, hj =
[

n+dj−1

p

]

< p then hi = hj. So for n ∈ [cj , cj+1 − 1]

[

n + di − 1

p

]

=

[

n + dj − 1

p

]

(56)

By (55),

n + di − 1 ≡ n + dj − 1 (mod p). (57)
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We get from (56) and (57) that

n + di − 1 = n + dj − 1

So

di = dj

which is a contradiction. Thus

qj(x)
def
= f(x + d1 − 1 + h1θ)f(x + d2 − 1 + h2θ) · · · f(x + dℓ − 1 + hℓθ) (58)

has no multiple root. Here by definition f(x) 6∈ Fp[x], by using Lemma 6

qj(x) 6∈ Fp[x] and it has no multiple root. Thus it is not of the form cg(x)h2(x)

with c ∈ Fp, g(x) ∈ Fp[x], h(x) ∈ Fq[x]. By the triangle inequality, Lemma

4, (53), (54) and (58) we get

|V (EN , M, D)| ≤
m−1
∑

j=1

∣

∣

∣

∣

∣

∣

∑

n∈[cj ,cj+1−1]

γ(qj(n))

∣

∣

∣

∣

∣

∣

≪
m−1
∑

j=1

(deg qj)p
1/2 log p

≪ ℓ(deg qj)p
1/2 log p ≪ ℓ2kp1/2 log p

≪ ℓ2kN1/4 log N

which proves (7), since we may choose degf = k as k = 4.

Next we prove (8). By Lemma 9 we have Qℓ(η) ≪ kℓN1/2(log N)2.

By Theorem 3 (which we will prove later) Cℓ(EN ) ≪ Cℓ(Ep2) ≪

kℓ2N1/2(log N)2 ≪ kℓN1/2(log N)2, since k can be chosen as k = 4 this

proves (8).

Next we prove (9). We split EN into
[

N−1
p

]

+ 1 different subsequences:

E(1) = {e1, e2, . . . , ep}, E(2) = {ep+1, ep+2, . . . , e2p},. . . , E([N−1

p ]+1) =
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{e([N−1

p ]p+1), . . . , eN}. By the triangle-inequality

W (EN) ≤
[N−1

p ]+1
∑

j=1

W (Ej). (59)

Here Ej = {e(j−1)p+1, . . . , ejp} = {f1, f2, . . . , fp} for 1 ≤ j ≤
[

N−1
p

]

and

Ej = {e(j−1)p+1, . . . , eN} = {f1, f2, . . . , fN−(j−1)p} for j =
[

N−1
p

]

+ 1. By

Lemma 4

W (Ej) = max
a,b,t

∣

∣

∣

∣

∣

t
∑

n=0

fa+bn

∣

∣

∣

∣

∣

= max
a,b,t

∣

∣

∣

∣

∣

t
∑

n=0

e(j−1)p+a+bn

∣

∣

∣

∣

∣

= max
a,b,t

∣

∣

∣

∣

∣

t
∑

n=0

γ

(

f

(

(j − 1)p + a + bn − 1 +

(

j − 1 +

[

a + bn − 1

p

])

θ

))

∣

∣

∣

∣

∣

= max
a,b,t

∣

∣

∣

∣

∣

t
∑

n=0

γ (f (a + bn + (j − 1)θ))

∣

∣

∣

∣

∣

≪ kp1/2 log p ≪ kN1/2 log N.

By this and (59)

W (EN) ≪ N

p
kp1/2 log p ≪ N

N1/2
kN1/4 log N ≪ kN3/4 log N.

Since k can be chosen as k = 4 we proved Theorem 2.

Proof of Theorem 3 For x ∈ Z let

x = rN(x)N + mN (x)

where mN (x) ≡ x (mod N), 0 ≤ mN (x) ≤ N − 1 and rN(x) =
[

x
N

]

.

By definition

exN+y+1 = η(y, x) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1

and thus

en = η(mN(n − 1), rN(n − 1)).
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Then for 1 ≤ i ≤ ℓ

en+di
= η(mN(n + di − 1), rN(n + di − 1)). (60)

Here

n + di − 1 = (rN(n − 1) + rN(di))N + mN (n − 1) + mN(di).

Thus if 0 ≤ mN (n − 1) + mN(di) ≤ N − 1 then

rN(n + di − 1) = rN(n − 1) + rN(di)

mN (n + di − 1) = mN(n − 1) + mN (di)

and if N ≤ mN(n − 1) + mN (di) then

rN(n + di − 1) = rN(n − 1) + rN(di) + 1

mN (n + di − 1) = mN(n − 1) + mN (di) − N.

Thus we get that there exists an ai
def
= N − 1−mN(di) such that for mN (n−

1) ≤ ai

rN(n + di − 1) = rN(n − 1) + rN(di)

mN (n + di − 1) = mN(n − 1) + mN (di) (61)

and for ai + 1 ≤ mN (n − 1)

rN(n + di − 1) = rN(n − 1) + rN(di) + 1

mN (n + di − 1) = mN(n − 1) + mN (di) − N. (62)

Then {1, a1 + 1, a2 + 1, . . . , aℓ + 1, mN(M − 1) + 1, N} is a multiset which

contains integers 1 = c1 < c2 < · · · < cm ≤ N where m ≤ ℓ + 3. By (61) and
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(62) we get that for cj ≤ n ≤ cj+1 − 1 there exist numbers bi,j and fi,j such

that

rN(n + di − 1) = rN(n) + rN(di − 1) + bi,j

mN (n + di − 1) = mN(n) + mN(di − 1) − fi,j (63)

where bi,j ∈ {0, 1} and fi,j ∈ {0, N}. Moreover, if bi,j = 0 then fi,j = 0 and

if bi,j = 1 then fi,j = N . Now

[0, M ] =

= {n = TN + x + 1 : T = 0, 1, . . . ,

[

M − 1

N

]

, x = 0, 1, . . . , mN(M − 1)}

∪ {n = TN + x + 1 : T = 0, 1, . . . ,

[

M − 1

N

]

− 1, x = mN (M − 1) + 1,

. . . , N − 1}

Thus

[0, M ] = ∪m−1
j=1 {n : n = rN(N − 1)N + mN (n − 1) + 1,

cj ≤ mN(n − 1) ≤ cj+1 − 1, rN(n − 1) ∈ {0, 1, 2, . . . , Tj}} (64)

where Tj =
[

M−1
N

]

if cj+1 ≤ mN (M − 1) + 1 and Tj =
[

M−1
N

]

− 1 if mN(M −

1) + 1 ≤ cj. (Since mN (M − 1) + 1 ∈ {c1, c2, . . . , cm} and c1 < c2 < · · · < cm

thus cj < mN(M − 1) + 1 < cj+1 is not possible.) By this, (60) and (61)

V (EN , M, D) =
M
∑

n=1

en+d1
. . . en+dℓ

=
m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

en+d1
. . . en+dℓ

=
m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

ℓ
∏

i=1

η(mN(n − 1) + mN(di) − fi,j, rN(n − 1) + rN(di) + bi,j)
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By (64)

{(mN(n − 1), rN(n − 1)) : 1 ≤ n ≤ M and cj ≤ mN (n − 1) ≤ cj+1 − 1} =

{(x, y) : 0 ≤ x ≤ Tj and cj ≤ y ≤ cj+1 − 1}.

Using this and (63) we get

V (EN , M, D) =

m−1
∑

j=1

Tj
∑

x=0

cj+1−1
∑

y=cj

ℓ
∏

i=1

η(x + mN (di) − fi,j, y + rN (di) + bi,j) ≤ (m − 1)Qℓ(η)

≤ (ℓ + 2)Qℓ(η)

which was to be proved. Here we used the fact that the pairs (mN (di) −

fi,j , rN(di) + bi,j) are different for fixed j as i runs over 1, 2, . . . , ℓ. Indeed if

(mN(di1) − fi1,j, rN (di1) + bi1,j) = (mN (di2) − fi2,j, rN(di2) + bi2,j),

then

N(rN (di1) + bi1,j) + mN(di1) − fi1,j = N(rN (di2) + bi2,j) + mN(di2) − fi2,j.

Since if bi,j = 0 then fi,j = 0 and if bi,j = 1 then fi,j = N , from this we get

NrN(di1) + mN(di1) = NrN (di2) + mN (di2)

di1 = di2

which is a contradiction.
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