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Abstract

In an earlier paper Hubert, Mauduit and Sárközy introduced pseu-

dorandom measures for pseudorandomness of binary lattices, and they

gave constructions for binary lattices with strong pseudorandom prop-

erties. They gave nearly optimal upper bounds for the pseudorandom

measures of the lattices constructed. However, these early construc-

tions also have disadvantages: they are rather artificial, and their im-

plementation is complicated. Thus another construction is presented

here which is based on the use of the Legendre symbol. This construc-

tion is much more natural and flexible than the earlier ones, and it

can be implemented more easily. However, there is a price paid for

this: to give upper bounds for the pseudorandom measures one needs

the flexibility and generality of Weil’s theorem, and here in the two

dimensional situation this approach leads to weaker bounds than the

optimal ones.
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1 Introduction

Pseudorandom binary sequences have many important applications. In

particular, they are used as a key stream in the classical stream cipher called

the Vernam cipher. The standard approach to the theory of pseudoran-

domness of binary sequences is based on complexity theory. However, this

approach has certain limitations and weak points. Thus recently Mauduit

and Sárközy [9] (see also the survey paper [12]) initiated a new, constructive

approach to the theory of pseudorandomness. They defined and studied new

measures of pseudorandomness. These measures provide a quantitative char-

acterization of pseudorandomness of a given binary sequence. In the last 10

years numerous binary sequences have been tested for pseudorandomness.

In order to encrypt a 2-dimensional digital map or picture via the analog

of the Vernam cipher, instead of a pseudorandom binary sequence (as a key

stream) one needs a pseudorandom “binary lattice”. Thus one needs the

n-dimensional extension of the theory of pseudorandomness. Such a theory

has been developed recently by Hubert, Mauduit and Sárközy [7]. They

introduced the following definitions:

Denote by In
N the set of n-dimensional vectors whose coordinates are

integers between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. Here we

will extend this definition to more general lattices in the following way: Let

u1,u2, . . . ,un be n linearly independent vectors, where the i-th coordinate

of ui is non-zero, and the other coordinates of ui are 0, so ui is of the form

(0, . . . , 0, zi, 0, . . . , 0). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N .
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Then we will call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi |ui| ≤ ti(< N) for i = 1, . . . , n}

an n-dimensional box N-lattice or briefly a box N-lattice.

In [7] the definition of binary sequences is extended to more dimensions

by considering functions of type

ex = η(x) : In
N → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will slightly sim-

plify the notation by writing η(x) = η(x1, . . . , xn).

Such a function can be visualized as the lattice points of the N -lattice

replaced by the two symbols + and −, thus they are called binary N-lattices.

Binary 2 or 3 dimensional pseudorandom lattices can be used in encryption

of digital images.

In [7] Hubert, Mauduit and Sárközy introduced the following pseudo-

random measure of binary lattices (here we will present the definition in a

slightly modified but equivalent form):

Definition 1 Let

η : In
N → {−1,+1}.

The pseudorandom measure of order ℓ of η is defined by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · ·η(x + dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ In
N and all box

N-lattices B such that B + d1, . . . , B + dℓ ⊆ In
N .

Then η is said to have strong pseudorandom properties, or briefly, it is

considered as a good pseudorandom lattice if for fixed n and ℓ and large N
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the measure Qℓ(η) is small (much smaller, than the trivial upper bound Nn).

This terminology is justified by the fact that, as was proved in [7], for a truly

random binary lattice defined on In
N and for fixed ℓ the measure Qℓ(η) is

small: It is less than Nn/2 multiplied by a logarithmic factor.

In one dimension, hence in the case of binary sequences, many good con-

structions have been given. Typically, the really good constructions involve

Fp, additive or multiplicative characters and polynomials, and the crucial

tool in the estimation of the pseudorandom measures is Weil’s theorem. Un-

fortunately, this approach in its original form does not readily apply in higher

dimensions. The difficulty is that in n dimensions constructions involving Fp,

characters and polynomials f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn], lead natu-

rally to the n-dimensional analogues of Weil’s theorem. In particular they

lead to the theorem of Deligne. While Fouvry and Katz [3] have simplified

the requirements for applying Deligne’s theorem the inconvenient assumption

of nonsingularity is still required in order to obtain sharp bounds.

In spite of these difficulties, in [7] and [8] good n-dimensional construc-

tions were presented. In these papers the authors got around the difficulty

described above in the following way. Finite fields Fq with q = pn and

polynomials G(x) ∈ Fq[x] are considered. Character sums involving G(x)

and characters of Fq can be estimated by Weil’s theorem so that no non-

singularity assumption is needed. On the other hand, if e1, e2, . . . , en is a

basis in Fq, then every x ∈ Fq has a unique representation in the form

x = x1e1+x2e2+· · ·+xnen with x1, x2, . . . , xn ∈ Fp. Then g(x1, x2, . . . , xn) =

G(x1e1 + x2e2 + · · ·+ xnen) ∈ Fp[x1, x2, . . . , xn] is a well-defined polynomial,

and the estimate of n-fold character sums involving g(x1, x2, . . . , xn) can be

reduced to the estimate of character sums over Fq involving G, so that Weil’s

theorem can be used. (This principle goes back to Davenport and Lewis [2].)
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This detour enables one to give sharp upper bounds, but it also has

considerable disadvantages. In particular, in this way we get rather artifi-

cial constructions. More natural constructions cannot be tested with this

approach. Secondly, the implementation of these artificial constructions is

more complicated. Thus one might like to look for a trade-off between ap-

plicability of the method and sharpness of the result, in other words, for a

method which is much more flexible and applicable at the expense of provid-

ing weaker but still nontrivial upper bounds. We will show that in the case

when n = 2, there is such a method, based on the techniques introduced by

Gyarmati and Sárközy [5] to estimate certain related character sums. This

method allows us to give a simple description of the exceptional polynomials,

see Section 2. But the price paid for the flexibility of this method is that the

upper bounds are not optimal. For a two dimensional p-lattice they are, up

to logarithmic factors, p3/2 instead of the optimal bound of p. On the other

hand, they improve on the trivial bound of p2 considerably.

In one dimension the best and most intensively studied construction is

based on the use of the Legendre symbol, see [4], [6], [9], [13]. Let p be

a prime, f(x) ∈ Fp[x] be a polynomial, and define the sequence Ep =

{e1, . . . , ep} by

en =







(

f(n)
p

)

if (f(n), p) = 1,

+1 if p | f(n).
(1.1)

We will identify the elements of Fp with the residue classes modulo p, and

we will not distinguish between the residue classes and their representing

elements. The natural two dimensional extension of this construction is the

following.

Construction 1 Let p be an odd prime, f(x1, x2) ∈ Fp[x1, x2] be a polyno-

mial in two variables. Define η : I2
p → {−1,+1} by
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η(x1, x2) =







(

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

+1 if p | f(x1, x2).
(1.2)

First, in Section 2, we will show that in two dimensions there are new

difficulties arising, and there are many ”bad” polynomials f(x1, x2). Then, in

Section 3, we will formulate Theorem 1, our main result. We will also present

several sufficient criteria for a polynomial f(x1, x2) for which the correspond-

ing binary p-lattice (1.2) possesses strong pseudorandom properties. The rest

of this paper will be devoted to the proof of this main result.

In Part II of this paper we will study (1.2) in the case when f(x1, x2) is

one of the degenerate polynomials described in Section 2. Moreover, we will

also study implementation problems related to some constructions based on

Theorem 1.

2 Negative examples

In this section we will present examples of polynomials f(x1, x2) ∈ Fp[x1, x2]

for which the binary p-lattice defined in (1.2) has weak pseudorandom prop-

erties.

Example 1 If

f(x1, x2) = c (g(x1, x2))
2

with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2], then every element of the lattice defined

in (1.2) is
(

c
p

)

except the zeros of f(x1, x2). It follows that if the degree of

f(x1, x2) is not very large, then Q1(η) is large.

Example 2 If f(x1, x2) = g(x1) with a polynomial g(x) ∈ Fp[x] of one

variable, then we have

η(x1, x2)η(x1, x2 + 1) =

(

g(x1)

p

)(

g(x1)

p

)

= +1
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(except the zeros of g(x1)) from which it follows that Q2(η) is large.

Example 3 If f(x1, x2) = g(x1)h(x2) with polynomials g(x), h(x) ∈ Fp[x],

then it can be shown by a little computation that Q4(η) is large.

The polynomials f(x1, x2) occurring in examples 1-3 are special cases of

the following:

Definition 2 The polynomial f(x1, x2) is called degenerate if it is of the

form

f(x1, x2) =

(

r
∏

j=1

fj(αjx1 + βjx2)

)

g(x1, x2)
2, (2.1)

where αj , βj ∈ Fp, fj(x) ∈ Fp[x] for j = 1, . . . , r, and g(x1, x2) ∈ Fp[x1, x2].

A polynomial f ∈ Fp[x, y] which can be expressed in the form (2.1) is

said to be degenerate and otherwise it is said to be non-degenerate.

As examples 1, 2 and 3 show, if f is degenerate then it may be that

the associated binary p-lattice (1.2) has weak pseudorandom properties. We

shall analyse the situation when f is degenerate in more detail in a sequel

to this paper. In the balance of this paper we shall restrict our attention to

binary p-lattices (1.2) for which f is non-degenerate.

3 Sufficient conditions

In one dimension Goubin, Mauduit and Sárközy [4] gave sufficient con-

ditions on the polynomial f(x) to guarantee small pseudorandom measures.

Let Fp denote an algebraic closure of Fp.

Theorem A Let f(x) ∈ Fp[x] be a polynomial of degree k(> 0) which has

no multiple zero in Fp. Define the sequence Ep ∈ {−1,+1}p by (1.1). Then
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W (Ep), the “well-distribution measure” of Ep, satisfies

W (Ep) < 10kp1/2 log p.

Moreover assume that one of the following 3 conditions holds:

a) ℓ = 2,

b) 2 is a primitive root modulo p,

c) (4k)ℓ < p or (4ℓ)k < p,

Then Cℓ(Ep), ”the correlation measure of order ℓ,” satisfies

Cℓ(Ep) ≤ 10kℓp1/2 log p.

(See [9] for the definition of well-distribution measure and correlation mea-

sure.)

We extend their result to the 2 dimensional case:

Theorem 1 Let f(x1, x2) ∈ Fp[x1, x2] be a polynomial of degree k. Suppose

that f(x1, x2) cannot be expressed in the form (2.1) and one of the following

5 conditions holds:

a) f(x1, x2) is irreducible in Fp[x1, x2],

b) ℓ = 2,

c) 2 is a primitive root modulo p,

d) 4k+ℓ < p,

e) ℓ and the degree of the polynomial f(x1, x2) in x1 (or in x2) are odd.

Then for the binary p-lattice η defined in (1.2) we have

Qℓ(η) ≤ 11kℓp3/2 log p.

The rest of this paper is devoted to the proof of this theorem.
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4 Proof of Theorem 1

For k > p1/2/10 the theorem is trivial. Thus we may suppose that

k ≤ p1/2/10. (4.1)

Similarly, we may suppose that

k2 + ℓ2 < p, (4.2)

otherwise the theorem is trivial since

4k2ℓ2 > k2 + ℓ2 ≥ p,

and so

10kℓp3/2 log p > p2.

Lemma 1 If F is a field, then in F[x1, x2, . . . , xn] every polynomial has a

factorization into irreducible polynomials which is unique apart from constant

factors and reordering.

Proof of Lemma 1 See, for example [11, Theorem 207].

If f(x1, x2) ∈ Fp[x1, x2], then we will also write f(x1, x2) = f(x) with

x = (x1, x2).

Lemma 2 Let p ≥ 5 be a prime and χ be a multiplicative character of order

d. Suppose that h(x1, x2) ∈ Fp[x1, x2] is not of the form cg(x1, x2)
d with

c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2]. Let k be the degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattice B ⊆ I2
p .
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We remark that the upper bound in the lemma is nearly sharp: it is easy

to see that there are polynomials h(x1, x2) of the form h(x1, x2) = f(x1) (so

that h(x1, x2) depends only one of the two variables) for which the left hand

side of the inequality in the lemma with F
2
p in place of B is > c(k)p3/2.

Proof of Lemma 2

It follows easily from Lemma 1 that h(x1, x2) cannot be of form both

g1(x1)p1(x1, x2)
d and g2(x2)p2(x1, x2)

d simultaneously with g1(x), g2(x) ∈

Fp[x] and p1(x1, x2), p2(x1, x2) ∈ Fp[x1, x2]. Thus by symmetry reasons we

may suppose that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d.

Since B is a box p-lattice, write it in the form

B = {x = (v1b1, v2b2) : v1, v2 ∈ N, 0 ≤ v1b1 ≤ t1, 0 ≤ v2b2 ≤ t2} (4.3)

with b1, b2 ∈ N and 0 ≤ t1, t2 < p. Then by the triangle inequality

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

≤
∑

0≤v2≤[t2/b2]

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.

For fixed v2, b1 and b2, the polynomial h(v1b1, v2b2) is a polynomial of one

variable in v2. We will use the following consequence of Weil’s theorem [14]:

Lemma 3 Suppose that p is a prime, χ is a non-principal character modulo

p of order d, f(x) ∈ Fp[x] has s distinct roots in Fp, and it is not the constant

multiple of the d-th power of a polynomial in Fp[x]. Let y be a real number

with 0 < y ≤ p. Then for any x ∈ Fp:

∣

∣

∣

∣

∣

∑

x<n≤x+y

χ(f(n))

∣

∣

∣

∣

∣

< 9sp1/2 log p.

Proof of Lemma 3

This is an immediate consequence of Lemma 1 in [1].
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If, for fixed v2, b1, b2, the polynomial h(xb1, v2b2) ∈ Fp[x] of one variable

is not of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x], then by Lemma 3
∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ 9kp1/2 log p.

We will show that for fixed b1 and b2 there are only few values of v2 for which

the polynomial h(xb1, v2b2) ∈ Fp[x] is of the form cg(x)d. For this we need

Lemma 4 Let h(x, y) ∈ Fp[x, y] be a polynomial of two variables, which is

not of the form q(y)p(x, y)d with q(y) ∈ Fp[y], p(x, y) ∈ Fp[x, y]. Denote by

n and m the degree of the polynomial h(x, y) in x and y, respectively. Then

there are at most nm+m values y0 ∈ Fp such that

h(x, y0) ∈ Fp[x]

is of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x].

Proof of Lemma 4 This is Lemma 4 in [5].

Let n and m be the degree of h(x1, x2) in x1 and x2 respectively. We have

assumed that h(x1, x2) is not of the form g2(x2)p2(x1, x2)
d, thus by Lemma

4, there are at most nm+m values of v2 such that h(xb1, v2b2) is of the form

cg(x)d for some c ∈ Fp, g(x) ∈ Fp[x]. Let V denote the set of these v2’s.

Then

|V| ≤ mn +m ≤ k2 + k. (4.4)

By (4.3)

∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

≤
∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

+
∑

v2∈Fp\V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

.
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For v2 ∈ V we use the trivial estimate p for the inner sum. By Lemma 4 and

(4.4)

∑

v2∈V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

≤ (k2 + k)p.

For v2 ∈ Fp \ V we use Lemma 3 to deduce that

∑

v2∈Fp\V

∣

∣

∣

∣

∣

∣

∑

0≤v1≤[t1/b1]

χ (h(v1b1, v2b2))

∣

∣

∣

∣

∣

∣

< 9kp3/2 log p.

Thus by (4.1)
∣

∣

∣

∣

∣

∑

x∈B

χ (h(x))

∣

∣

∣

∣

∣

< (k2 + k)p+ 9kp3/2 log p < 10kp3/2 log p

which completes the proof of Lemma 2.

Lemma 5 Suppose that f ∈ Fp[x1, x2] is a polynomial such that there are

no distinct d1, . . . ,dℓ ∈ F
2
p with the property that f(x + d1) . . . f(x + dℓ) is

of the form cg(x)2 with c ∈ Fp, g ∈ Fp[x1, x2]. Let k be the degree of the

polynomial f(x1, x2). Then for the binary p-lattice η defined in (2.1) we have

|Qℓ(η)| < 11kℓp3/2 log p.

Proof of Lemma 5 We have

Qℓ(η) = max
B,d1,...,dk

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · · η(x + dℓ)

∣

∣

∣

∣

∣

,

where the maximum is taken over all distinct d1, . . . ,dℓ ∈ I2
p and box p-

lattices B such that B + d1, . . . , B + dℓ ⊆ I2
p . Let B be the box p-lattice,

d1, . . . ,dℓ ∈ I2
p be the vectors for which this maximum is attained so that

Qℓ(η) =

∣

∣

∣

∣

∣

∑

x∈B

η(x + d1) · · · η(x + dℓ)

∣

∣

∣

∣

∣

.
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Write h(x) = f(x + d1) · · · f(x + dℓ), then

Qℓ(η) ≤

∣

∣

∣

∣

∣

∑

x∈B

(

h(x)

p

)

∣

∣

∣

∣

∣

+
∑

x∈B
h(x)=0

1.

h(x) is a polynomial of degree kℓ. Estimating the number of zeros of h(x)

we find that

∑

x∈B
h(x)=0

1 ≤ kℓp. (4.5)

By assumption h(x) is not of the form cg(x)2 and its degree is ℓk. Thus

by Lemma 2 and (4.5) we have

Qℓ(η) ≤ 10ℓkp3/2 log p+ ℓkp,

which was to be proved.

Suppose that one of the 5 conditions in Theorem 1 holds. We will prove

that the product

h(x) = f(x + d1) . . . f(x + dℓ)

cannot be the constant multiple of a perfect square. Then by Lemma 5 we

get Theorem 1.

Next we will introduce three definitions.

Definition 3 Let G be a group with respect to addition. Let A and B be

subsets of G and suppose that for all c in G the number of solutions of

a+ b = c,

with a in A and b in B is even. Then (A,B) is said to have property P.
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Definition 4 Let r, ℓ, and m be positive integers with r, ℓ ≤ m. The triple

(r, ℓ,m) is said to be admissible if there are no A,B ⊆ Zm such that |A| = r,

|B| = ℓ, and (A,B) possesses property P.

We shall also introduce an equivalence relation on Fp[x1, x2] as in the

proof of Theorem A in [4].

Definition 5 Two polynomials ϕ(x1, x2), ψ(x1, x2) ∈ Fp[x1, x2] are equiva-

lent if there are a1, a2 ∈ Fp such that

ψ(x1, x2) = ϕ(x1 + a1, x2 + a2).

Write the polynomial f(x1, x2) in the theorem as a product of irreducible

polynomials in Fp[x1, x2]. (Recall that the lattice η is determined by this

polynomial f(x1, x2), the definition of η is presented in (1.2).) Let us group

these factors so that in each group the equivalent irreducible factors are

collected. Consider a typical group ϕ(x1 + a1,1, x2 + a2,1), ϕ(x1 + a1,2, x2 +

a2,2), . . . , ϕ(x1 + a1,s, x2 + a2,s). Then f(x1, x2) is of the form

f(x1, x2) = ϕ(x1 + a1,1, x2 + a2,1) · · ·ϕ(x1 + a1,s, x2 + a2,s)g(x1, x2),

where g(x1, x2) has no irreducible factor equivalent with any ϕ(x1 +a1,i, x2 +

a2,i) (1 ≤ i ≤ s).

We will use the following lemma:

Lemma 6 Let ϕ(x1, x2) ∈ Fp[x1, x2] be nonzero and let c, a1, a2 ∈ Fp with

(a1, a2) 6= (0, 0) be such that

ϕ(x1, x2) = cϕ(x1 + a1, x2 + a2), (4.6)

for all (x1, x2) in F
2
p. Suppose that the degree of ϕ(x1, x2) is less than p. Then

there is a polynomial g ∈ Fp[x] such that

ϕ(x1, x2) = g(a2x1 − a1x2). (4.7)
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Proof of Lemma 6. We will use repeatedly the fact that if two poly-

nomials of degree less than p in each variable define the same polynomial

function, then they must also be identical polynomials.

By considering the highest degree terms in (4.6), we get c = 1 so that

ϕ(x1, x2) = ϕ(x1 + a1, x2 + a2).

It follows from this that for every t ∈ Fp

ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2). (4.8)

One of a1 and a2 is nonzero and, without loss of generality, we may suppose

that a2 6= 0. Then write ϕ(x1, x2) in the form

ϕ(x1, x2) = ϕ(a−1
2 ((a2x1 − a1x2) + a1x2), x2)

= qn(a2x1 − a1x2)x
n
2 + qn−1(a2x1 − a1x2)x

n−1
2 + · · · + q0(a2x1 − a1x2),

(4.9)

where qi(x) ∈ Fp[x] are polynomials of one variable. For fixed x1, x2 write

A = ϕ(x1, x2) and Qi = qi(a2x1 − a1x2) = qi(a2(x1 + ta1) − a1(x2 + ta2)).

Then by (4.8) and (4.9) for every t ∈ Fp:

A = ϕ(x1, x2) = ϕ(x1 + ta1, x2 + ta2) = Qn(x2 + ta2)
n + · · · +Q0.

Both A and the expression on the right above are polynomials in t of degree

at most p. These polynomials define the same function and so they are the

same polynomials, which is possible only if n = 0. It follows that

q0(a2x1 − a1x2) − ϕ(x1, x2) = Q0 − A = 0,

for every x1, x2 ∈ Fp. Since both q0 and ϕ have degree less than p in x1 and

x2, thus

q0(a2x1 − a1x2) = ϕ(x1, x2)
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as formal polynomials, which proves (4.7).

First we study the case when condition a) holds in Theorem 1, so when

f(x1, x2) is irreducible in Fp[x1, x2]. As before let d1, . . . ,dℓ be distinct ele-

ments of I2
p and put h(x) = f(x + d1) · · ·f(x + dℓ). Then by Lemma 6 the

irreducible polynomials f(x + dj) are different since f(x1, x2) is not of the

form (2.1). By Lemma 1, there is unique factorization in Fp[x1, x2], thus h(x)

cannot be the constant multiple of a perfect square. By using Lemma 5 we

get the statement.

Next we prove parts b), c) and d) in Theorem 1. Write f(x1, x2) in the

form u(x1, x2)(v(x1, x2))
2 where u(x1, x2) is squarefree, so, in other words,

there is no non-constant irreducible polynomial h(x1, x2) with (h(x1, x2))
2 a

divisor of u(x1, x2). Since f(x1, x2) is not of the form (2.1), in the factor-

ization of u(x1, x2) there is an irreducible factor u(x1, x2) which cannot be

written in the form

u(x1, x2) = u(αx1 + βx2). (4.10)

Consider the polynomials u(x + ai) for i = 1, 2, . . . , r which are equivalent

with u(x) and appear in the factorization of u(x).

We shall prove that h(x) = f(x + d1) · · · f(x + dℓ) is not a constant

multiple of a perfect square. We shall suppose that h(x) is the constant

multiple of a perfect square. Then h1(x) = u(x + d1) · · ·u(x + dℓ) is also a

constant multiple of a perfect square.

Write h1(x) as a product of irreducible polynomials in Fp[x1, x2]. Then

all polynomials u(x + ai + dj) (1 ≤ i ≤ s, 1 ≤ j ≤ ℓ) occur amongst the

factors. These polynomials u(x+ai+dj) are equivalent, and no other factors

belonging to this equivalence class will occur amongst the irreducible factors

of h1(x). By Lemma 6 all polynomials u(x + c) for c ∈ F
2
p are distinct since

u is not of the form (4.10). Thus in the collection, formed by the equivalent
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factors u(x+ai +dj), every polynomial must occur an even number of times.

As a consequence every c ∈ F
2
p occurs an even number of times in the form

ai + dj with 1 ≤ i ≤ r and 1 ≤ j ≤ ℓ.

Lemma 7 Let s(s− 1)/2 < p and

di = (d′i, d
′′
i ) ∈ F

2
p (1 ≤ i ≤ s)

be different vectors. Then there exists a λ ∈ F
∗
p such that

d′i + λd′′i ∈ Fp (1 ≤ i ≤ s)

are different.

Proof of Lemma 7 Suppose that for some pair (i, j) with 1 ≤ i < j ≤ ℓ

we have

d′i + λd′′i = d′j + λd′′j .

Then d′′i 6= d′′j , otherwise we obtain (d′i, d
′′
i ) = (d′j, d

′′
j ). Thus for every i 6= j

at most one λ exists such that

d′i + λd′′i = d′j + λd′′j .

The number of pairs (i, j) with 1 ≤ i < j ≤ ℓ is ℓ(ℓ − 1)/2. Thus at most

ℓ(ℓ− 1)/2 values of λ exist such that

d′i + λd′′i = d′j + λd′′j

for some i 6= j. Since ℓ(ℓ− 1)/2 < p the lemma follows.

We have A = {a1, . . . , ar} and D = {d1, . . . ,dℓ} ⊆ F
2
p, where r ≤ k. By

Lemma 7 we may choose λ ∈ Fp such that both sets

A′ = {a′ + λa′′ : (a′, a′′) ∈ A}
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and

D′ = {d′ + λd′′ : (d′, d′′) ∈ D}

contain different elements.

Lemma 8 (A′,D′) possesses property P.

Proof of Lemma 8 In order to verify the lemma we need to prove that for

any c ∈ Fp the number of solutions

a+ d = c, a ∈ A′, d ∈ D′ (4.11)

is even. Indeed, it is clear that the number of solutions of (4.11) is the same

as the number of solutions of

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

c′ + λc′′ = c. (4.12)

Since (A,D) possesses property P, for each (c′, c′′) ∈ F
2
p the number of solu-

tions of the equation

(a′, a′′) + (d′, d′′) = (c′, c′′), (a′, a′′) ∈ A, (d′, d′′) ∈ D

is even. Thus the number of solutions of the system (4.12) is also even,

and equivalently, the number of solutions of (4.11) is also even. This proves

Lemma 8.

By Lemma 8 (A′,D′) possesses property P. Thus (r, ℓ, p) is not an admis-

sible triple. By contrast we have the following lemma.

Lemma 9 (i) For every prime p and r ∈ N the triple (r, 2, p) is admissible.

(ii) If p is prime, r, ℓ ∈ N and

4ℓ+r < p,
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then (r, ℓ, p) is admissible.

(iii) If p is a prime such that 2 is a primitive root modulo p, then for

every pair (r, ℓ) ∈ N with r < p, ℓ < p the triple (r, ℓ, p) is admissible.

Proof of Lemma 9 Parts (i) and (iii) are Theorem 2 in [4] while part (ii)

is Theorem 2 in [10].

Since (r, ℓ, p) is not admissible parts b), c) and d) of Theorem 1 follow

from Lemma 9. In the proofs of b) and d) we could have replaced Lemma 8

by Lemma 4 in [10], however the lemma there does not suffice to prove part

c) in Theorem 1, thus we have preferred to prove Lemma 8 here.

In order to prove part e) in Theorem 1 we note that the degree of the

polynomial h(x1, x2) in x1 is odd, thus it cannot be the constant multiple of

a perfect square. Using Lemma 5 again part e) follows.
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Eötvös Loránd University

H-1117 Budapest, Pázmány Péter sétány 1/c
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