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ABSTRACT. In a given abelian group, let A and B be two finite subsets satisfying
the small sumset condition |A + B| < K|A|. We consider the problem of estimating
how large |A — B| can be in terms of |A| and K and the one of estimating the ratio
|X — B|/|X| when X runs over all the non-empty subsets of A.

1. Introduction and statement of the results

Let A and B be two non-empty and finite subsets of an abelian group G. The
cardinality of any finite set X is written | X|. As usual, we denote by A + B (resp.
A— B) the set of all sums a+b (resp. differences a—0b) where a € A and b € B. The set
of all sums of h elements of B is denoted by AB. In the last fifteen years, several papers
were concerning with the problem of comparing the relative sizes of A+ B and A — B.
We clearly have max(|A|, |B|) < |A+ B| < |A||B|. The upper bound is achieved when
A and B are generic sets, that is when the only solutions of a +b=a' + V', a,d’ € A,
b,/ € B are the trivial solutions (a,b) = (a’,t’). This shows that there is no non-trivial
solution for @ — b = a' — b, a,a’ € A, b,b' € B, thus we also have |[A — B| = |A||B].
If |[A+ B| = |A], then A+ B — B = A, which implies |A — B| = |A|. In this paper
we consider the question of comparing the size of A — B with that of A + B when
|A+ B| < K|A|.

For multiple addition or difference, sharp results have been obtained thanks to a
very efficient theorem of Pliinnecke. According to [4], this result known as Pliinnecke
inequalities, can be stated as follows:

(i) Assume that |A + B| < K|A|. Then for any positive integer h, there exists a
non-empty subset X of A such that

(1) X + hB| < K" X].
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(ii) Assume that for a positive integer j one has |A + jB| < K|A|. Then for any
integer h > j, there exists a non-empty subset X of A such that

(2) | X + hB| < K"7|X]|.
(i) Assume that |A+ B| < K|A|. Then for any nonnegative integers h,j, one has
\hB — jB| < K" A.

Assertion (i) is a particular case of (ii) and assertion (iii) is obtained by using (ii)
and the inequality (cf. [4])

X + Z||Y + Z|
2] ’

which is valid for any finite sets X, Y, Z. It is quite clear that in general the set X in (i)
and (ii) of Pliinnecke inequalities cannot be reduced to a singleton (just think A = B
being a large finite arithmetic progression). On the other hand, it is worth mentioning
that in general one cannot take X = A (see [6] for more details on this question).

Letting j = 0 and h = 2 in assertion (iii) of Pliinnecke inequality, we obtain |2B]| <
|A + BJ?/|A]. Thus we have

|A + B||2B| < A+ B]* (|A+B|2
| B| — |AllB| |Al| B

by using inequality (3). When |A|, |B| and |A + B| are of comparable size, this
inequality shows that |A — B| has also a bounded ratio with |A|. If we only assume
that |A + B| < K|A|, it is not true that |A — B|/|A| is bounded by some constant
depending on K, except in the special case K = 1. Indeed, the third-named author
proved in [6] the following result: There exists a real number 8 > 1 such that for any
K > 1 and arbitrarily large integers n, there are two sets of integers A and B satisfying

(5) |Al=n, |A+B|<K|A and |A— B|>c(K)|A+ B

where ¢(K) > 0.

The discussion above shows that the only way to extend this statement to K =1 is
to let ¢(1) = 0.

As shown in [6], the choice § = 2 — 1‘;2? = 1.0792... is admissible in (5). The proof
is based on a elementary construction which uses the fact that the set U = {0, 1, 3}
satisfies |U + U| =6 and |U — U| = 7. In this connection and for future references we

notice that (3) yields
(6) U-Ul<|U+U".

(3) X -Y[<

() A-B| < )|A+B|,

In [2], it is shown that for any A < % = 1.2715..., there exist sets A of non-

negative integers such that |A — A| < |A + A]*, but A does not fulfill the condition
|A+ A| < |A| any more. Nevertheless these sets allow us to show that the exponent 6
in (5) can be slightly improved as regards to the original result:
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Theorem 1. Let K > 1 be a real number. There exist a real number 6y > 1.14465 and
two sets of integers A and B with |A| arbitrarily large such that

5/4
(7) |A+ B| < K|A| and |A-B|> <%) |A+ B|%.

Using similar ideas, one can show that there exists a positive real number ¢(K') such
that for any positive integer n, there exists two sets of integers A and B for which (5)
holds with 8 = 6.

The easy bound [2B| < |B|? and (4) imply |A— B| < |A+ B||2B|"2. Since [3B|'/3 <
12B|/? (see [6, Theorem 7.2] and also [7]), the following result provides a strenghtened
estimate.

Theorem 2. Let A and B two finite sets in an abelian group. Then
(8) |A— B| < |A+ B||3B|'2.

In [7], the third-named author suggested that perhaps, the sequence (|hB|'/"),>; is
non-increasing. A natural problem is to find for which integers h we have

(9) A= B| < |A+ Bl[hB|"

for any sets A and B. Assume that this bound holds for some A > 1. By Pliinnecke
inequality, we have |hB| < K" 1A+ B|, where K = |A+ B|/|A|. Therefore |A— B| <
K'=Yh| A4 B|**Y/" This contradicts Theorem 1 for h > 7 (see also the remark at the
end of Section 2).

Using the trivial fact that |A||B| > |A — B, the bound |A — B| < |A + BJ*/2 follows
from (4). This estimate can be strengthened if we further assume that |A+ B| < K|A]:
Corollary 3. Let A and B be two finite sets such that |A+ B| < K|A|. Then

|A— B| < K*3|A+ B]*3.
Indeed, as [3B| < |A + B|?/|AJ? by Plinnecke inequality, Theorem 2 gives
A+ BJ? 2/3 4/3
|A — B| SWSK/ |A+ B|"3.

From Corollary 3 we deduce that the value of 6 in (5) and that of 6y in (7) cannot

be larger than 4/3.

We now consider the following related question: under the same assumption |A+B| <
K|A|, how large can be | X — B|/|X| where X runs over all the subsets of A? Using
Pliinnecke inequality (1), it is possible to obtain the following upper bound for this
ratio:

Theorem 4. Let A and B be non-empty and finite subset of some abelian group such
that |A + B| < K|A|. Then there exists some non-empty subset X of A such that

X - B
S < Kew (2v/Tlog K)(log 1)) .

(10)
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We observed above that |A — B|/|A| can be very large even in the case where |A +
B|/|A| is bounded. The following result shows that this fact is in some sense uniform
(see [6]): There exist two sets A and B with |A| arbitrarily large and |A + B| < 3|A]
such that for any X C A, one has | X — B| > +(log|A[)|X|. By a modification of the
argument, this result may be improved in the following way:

Theorem 5. Let K > 1 and 7 such that 0 <7 <1 —1/K, and define
f(r)=(=7logT — (1 — 7)log(1 —7)).

Then for any ¢ < \/gf(T) there exist two sets A and B with |A| arbitrarily large and

|A+ B| < K|A| such that for any non-empty subset X of A, one has

B 2 exp (oo/TogllT = 71 g AN g log [ 7)

As an immediate consequence, we obtain for K not too close to 1:

Corollary 6. Let K > 2. Then for any c < ﬁ\;%gQ, there exist two sets A and B with

|A| arbitrarily large and |A + B| < K|A| such that for any non-empty subset X of A,
one has

% = oXp (C\/(IOg(K/Q))(log |A])(log log |A|)*1> '

This uniform lower bound for | X — B|/|X| can be compared to the upper bound
(10) obtained in Theorem 4.

Acknowledgement. We are grateful to the referee for his valuable comments and sug-
gestions helping us to improve on the submitted version of the present paper.

2. Sumset and difference set
Proof of Theorem 1. The result will follow from

Lemma. Let K > 1 be a real number and let U be a finite, non-empty set of nonnegative
integers containing 0. Set s = [2U|, d = |U = U|, ¢ = 2maxU + 1 and § = 1 +
log(d/s)/logq. If d < q, then there exist pairs (A, B) of finite, non-empty integer sets
with |B| arbitrarily large such that |A+ B| < K|A| and

(11) |A— B| > (2(K — 1)/3K)**|A+ B’
Proof. We fix k any arbitrary large integer. Set

k-1
B:{Zujqj : ujeU,j:(),...,k—l},
=0

m

A=[1,L1U| J(a+B),

i=1

and
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where the a;’s are positive integers larger than L+¢* and such that a;—a; ¢ (B—B)U2B
unless i = j. Since max B < ¢*, we have
A|>L+1, |[A+B|=ms"+t, |A—B|=md"+t,

where ¢ := |[1, L] + B| = |[1, L] — B|. Since B C [O,%], we note that L <t < L + %.

We choose i
L= |3 |
2(K - 1)

Letting m = L(%)kj, we obtain [A+B| < ¢"+t < 3¢F+ L < 2??311) < K(L+1) < K|A]

and [A—B| > (£)k—dF +¢ > ()" if we assume further that d < ¢ and k is sufficiently
large. Consequently

d\* _ (20K — D)|A+ B[\
A-p > () 5 (AEDALS

s 3K

By (6), we have d < max(q, s*/?), thus
logd —1
(12) ] 4 080T 085 5
log q 4

We finally get (11). O

Remark. It is worth mentioning that (12) implies that the largest exponent 6 that
could be eventually obtained by this method is at most equal to 5/4.

By an exhaustive computational research, we got the set U = {0,1,3,6,13,17,21}
which satisfies (U + U| = 26, |U — U| = 39 and ¢ = 43, thus the exponent § =

5/4
1 4 le39-l0e26 _ 1 1078... is admissible in (5) with ¢(K) = (M> . This set U

log 43 3K
log d(U)~1 .
%{’Ug)sw) when U runs over all sets of nonnegative

integers of cardinality less than or equal to 11.
In order to improve the admissible exponent in (5), we will use some idea from [2].
We denote N the set of all nonnegative integers. Let

(13) V=V(m,L)={(z1,...,2,) e N" : 2y + -+ 2, <L}
Then by lemmas 1 and 2 of [2], we get

min(m,L) 2
m+ L m+ 2L m L+m-—k
14 = 2V| = - V= )
an wi= (") = (M) v evi= S () (Y

k=0

provides the optimal value of

Let A = (L;);>0 be the sequence defined by

By projection of V' on the set of nonnegative integers (zi,...,Zn,) — =1 + xoLl; +
x3Lo + -+ 2 Ly, 1, by which the number of sums and the number of differences are
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preserved, we get a set U verifying maxU = LL,,_1. Solving the linear recurrence
(15), we obtain L, = (ZQLL)Z_l, thus ¢(U) = 2maxU + 1 = % The choice
m =8, L =9 gives a set U with |U| = 24310, s(U) = 1562275, d(U) = 23301307 and
q(U) = 11668193551. This yields the exponent

logd(U) — log s(U)

log q(U)

=1+ =1.1165...
in (5).

We may observe that when projecting V' on the set of integers, we only need to
select a sequence A = (L) —o,..m—1 such that the number of sums (and hence also the
number of differences) are preserved. For this we can argue by induction applying the
following greedy algorithm: let Ly = 1, and assume that for some 1 < j < m — 1,
Ly < Ly < --- < Lj_y have been chosen so that the mapping p; : (z1,...,2;) — 21 +
xoly+x3Lo+- - -+x;L;_1 preserves the number of sums from S(j, L) := {(x1,...,z;) €
N ¢ @y +---+a; <L} Put U(j, L) :=p;(S(j, L)) and let

Ly ==min{l > LL;_y : 1 € U(j,L)+ U(j,L) — U(j, L) — U(j, L — 1)}.

Then the projection Pj+1 - (.Th c. 7.’L'j+1) — T+ .TQLl + .T3L2 + -t .Tij,l + .errle
preserves the number of sums from S(j + 1, L). Indeed let z,y,z,t € S(j + 1, L) such
that

(16) Pj+1(z) + pjt1(y) = pjra(2) + pjpa(t).
If 2j1 = yj41 = zj41 = tj41 = 0, then
(17) pj<1’17 e ,.ﬁlﬂ']) —|—p](y1, Ce ,y]) = pj(zla ooy ZJ) +pj<t17 e 7tj)7

hence by induction hypothesis 4+ y = z +¢. Otherwise, we may assume that ;1 +
Yj41 — Zj41 — tjy1 > 0 and x;41 > 1. Then (zy,...,z;) € S(j,L — 1) and by (16),
one has (211 + yj41 = 241 — tipa) Ly = pi(te, - 1) + 0z, %) =0y, y5) —
pj(l'l, s ’xj) S U(]a L) +U(]7 L) - U(]v L) _U(ja L— 1) Since maX(U(jv L) +U(]7 L) -
U(]a L)_U(jv L_l)) < 2LJ and L] Ql U(]a L)+U(]7 L)_U(jv L)_U(jv L_1)7 we clearly
have ;41 + yj+1 — zj+1 — tj41 = 0, giving (17) again. By the induction hypothesis, we
deduce (z1,...,2;) + (v1,...,y;) = (21,...,2j) + (t1,...,t;), and finally 2 +y = 2z + ¢.
For m =9 and L = 7, a short program gives the sequence

A = (1,15,211, 1590, 14976, 109870, 788046, 5535439, 38772709)

yielding by projection a sequence U of integers such that ¢(U) = 2maxU + 1 =
542817927. Since sums and differences are preserved in cardinality, of course by (14)
we have s(U) = (293) = 817190 and d(U) = 35 _, (2)2(169_]“) = 12494233. We thus get
6 = 1.135596 as an admissible exponent.

It is still possible to improve it by relaxing the definition of the sequence A =
(Lj)j=0,..m—1 by removing the condition L; > LL,_4, j > 1. We thus obtain a new
sequence A for which the projection p; : (z1,...,2;) — 21+ 2oLy +x3Lo+-- -+ ;L4
does not necessary preserve the number of sums nor the number of differences. However
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only a few number of sums and differences are lost through the projection p;. This
gives for m = 11, L = 7 and

A = (1,15,211, 1590, 14976, 109870, 605315, 3362489, 17767138, 80137194, 408850463)
a set U verifying

s(U) = 4455634, d(U) = 110205905, ¢(U)=2maxU + 1 = 5723906483.
This yields the admissible exponent 6§ = 1.144655. U

Proof of Theorem 2. The Pliinnecke inequality (i) given in the introduction has the
disadvantage not to give any information on the size of the subset X of A. However
by repeated application of it, it has been shown by the third-named author that an
analogue result holds with a large subset X of A (see [7, Theorem 3.3]). In a weaker
but more convenient form, it can be stated as follows:

Lemma. Let K and § be positive real numbers, h be a positive integer and A, B be
finite and non-empty subsets of an abelian group such that |A+ B| < K|A|. Then there
exists a subset X of A with |X|> (1 — §)|A| such that | X + hB| < 2K"§17h| Al

We now complete the proof of Theorem 2. We use the following notation: |A| = m,
|jB| =n;, |B| =n=mny, |A+ B| = s and |A — B| = d. We obviously have

(18) d < mn.
We also use several instances of (3). First we put X = A, Y = B, Z = B to obtain
STy
19 d< —.
(19) <

Next we put Y = B, Z = 2B to obtain
(20) X — B| < |X +2B| 2,
ng

We will use this for a large subset X of A for which X + 2B is small and in view of
(20) we will then estimate A — B by

\A_B|g|X_B|+|(A\X)_B|g|x+23|%+n(m_\xp.
2

For the set X given in the lemma with h = 2, we deduce

2n35°

(21) IA-B| < + Snm.

Tno0MMm

1/2
Choosing 6 = = (ﬂ) in this inequality, we find

2
|A— B2 < (25)2 ( ””3) .

ng

Multiplying this inequality with (19) and taking the cube root, we obtain d < 25n§/ 3,

which is the requested inequality apart from the factor 2. We can remove it as follows.
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Take our sets A, B and apply the result to the k-fold Cartesian products A* and B*.
Every quantity is then raised to the k-th power, and by taking k-th root we have our
theorem with the factor 2/%. By taking the limit we derive the theorem with the
factor 1. O

Remark. We saw in the introduction that the bound (9) is not true in general for
h>7. Let A= B =V (m,m/2) be the set defined in (13) with L = m/2. We have by
(14) the estimates log [2A4] = (2log2 + o(1))m, log |A — A| = (2log(1 + v/2) + o(1))m
as m tends to infinity (see [2] for more details). Moreover 6A = V(m,3m), thus, by
Stirling’s formula, we have |6A| = (4log4 — 3log3 + o(1))m as m tends to infinity.
Since 2log(1 + v/2) — 2log2 > “’Lﬁc’g‘g, we obtain that |4 — A| > |2A]|6A|'/6 for
m sufficiently large, disproving the bound (9) for h = 6. For h = 4 or 5, it is an open
question to decide whether or not (9) holds for any sets A and B.

3. How large can |X — B| be for X C A?
Proof of Theorem 4. For an integer N > 1 (to be specified later) put

A= min UEDB]
1<j<N - |5 B|

Then by Pliinnecke inequality, \V|B| < |(N + 1)B| < KN *1|A|, thus
1/N
A< KN <ﬂ> / .
- | B

Together with the trivial bound A\ < |BJ, we get A < K|A[YW™+Y. Therefore there
exists 7, 1 < j < N, such that

iB+ B < K|A[Y"V]jB].
Inequality (3) yields for any X C A,

(X +5Bl|(J +1)B]

X - B|< 4
| < j B

By Pliinnecke’s theorem, there exists a non-empty subset X C A such that | X +jB| <
K7|X]|, thus

|X— B‘ < Kj+1‘A|1/(N+1)|X‘ < KN+1|A‘1/(N+1)|X‘.

1/2
N Klogw) w L
log K

we finally obtain the bound (10). O

Taking
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Proof of Theorem 5. Let d > 1 be an integer. We will construct a pair of sets A and
B in Z? satisfying the conclusion of Theorem 5. Then by projection on Z, using for
instance the mapping (r1,...,24) — 1 + qra + --- + ¢* 24 where ¢ is sufficiently
large to have the number of sums and that of differences unchanged, we may obtain
the same result with A and B being sets of integers.

For a given d-tuple z = (z1,22,...,24) € N we denote by v(z) the number its
non-zero coordinates, and by o(z) the sum of all its coordinates:

viz)= > 1, o@)= )Y =

1<i<d 1<i<d
;70

Let (e;)1<i<q be the canonical basis of Z% and u € [1,d] be an integer. We let
A={z=(v1,29,...,24) €N : v(z) = J and o(z) = k},
and
B:{€i1+€i2+"'+€iu 1<y <22<<Zu§d}

The set A is formed with integral points of certains J-dimensional edges of a simplex
and the set B by some vertices of an hypercube. The sumset A + B has the same
structure than A and its size is controlled by the parameters k and wu: large k& and
small v make |A + B| close to |A|]. Now each element of A — B having exactly u
negative coordinates (all are equal to —1) belongs to a certain a — B, for an unique
a € A. It follows that choosing the parameter d — J as large as possible, in relation

with & and u, will imply a large lower bound for | X — B|/|X|, for any @ # X C A.
We have by easy combinatorical considerations

()

Put for i =0,1,...,u
Ci={z = (r1,29,...,24) €N’ : v(z) =J +iand o(z) = k + u}.
Then A+ B C |J;_, C;. We also have

d E+u—1
Gl = (J+i) <J+z'—1>'
From this and (22) we get

G| d=Nd=T=1)...d=J+i-1) (k+u—1D)(k+u—2).. . (k+u—1i)
Al (J+1)(J+2)...(J+9) ' J+i—1D(J+i—2)...J
(k+u—i—-1)(k+u—i—2)...k
k=J+u—i)(k—J+u—i—1)...(k—J+1)

()
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B () )

=0

Thus

If we assume
(d—J)(k—J) <

(23) <,
we get
A+ B il a1 (ktu)”
24 < <(1-
(24) IA] _Z\A|_< (R

For each x € A, there are (d — J) zero coordinates x;, thus there are at least (d;‘])
elements in x — B which are uniquely determined by z in A — B. This gives for any

XCA
d—
|X—B|z< J)|X|

We now come to the choice of the parameters. Let € > 0 such that (1 —7)K'™¢ > 1.

oN1/2
We introduce 6 = (M) , A =7 and put

uw=|70J], d=[(1+60)J], k=[1+XN)J].
Condition (23) is clearly fulfilled thus (24) holds. A short calculation yields

(1—7)"! (Z i 3) <=7 1= )K" (1+0(1) <K

as J tend to infinity, thus |A 4+ B| < K|A| can be achieved by taking J large enough.
Stirling’s formula gives

<d;<]) _ <LL709JJJJ) > exp ((f(7) + 0(1))8.J) ,

as J tends to infinity. Thus we have

|X‘)}|B| > exp ((£(r) + o(1))v/Tlog((1 = )K'5))

By (22), we obtain |A] < J27/(+°M) as J tends to infinity, hence

(25) log | A] < (g + 0(1)) Tlog ]

2+0(1) log | A|

Tog log [ A] Theorem 5 follows easily by choosing £ > 0 sufficiently small

giving J >
so that (1 — 8)1/2f(T)\/§ > ¢ and then by taking J large enough. O
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