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Abstract. In a given abelian group, let A and B be two finite subsets satisfying
the small sumset condition |A + B| ≤ K|A|. We consider the problem of estimating
how large |A − B| can be in terms of |A| and K and the one of estimating the ratio
|X − B|/|X | when X runs over all the non-empty subsets of A.

1. Introduction and statement of the results

Let A and B be two non-empty and finite subsets of an abelian group G. The
cardinality of any finite set X is written |X|. As usual, we denote by A + B (resp.
A−B) the set of all sums a+b (resp. differences a−b) where a ∈ A and b ∈ B. The set
of all sums of h elements of B is denoted by hB. In the last fifteen years, several papers
were concerning with the problem of comparing the relative sizes of A + B and A−B.
We clearly have max(|A|, |B|) ≤ |A±B| ≤ |A| |B|. The upper bound is achieved when
A and B are generic sets, that is when the only solutions of a + b = a′ + b′, a, a′ ∈ A,
b, b′ ∈ B are the trivial solutions (a, b) = (a′, b′). This shows that there is no non-trivial
solution for a − b′ = a′ − b, a, a′ ∈ A, b, b′ ∈ B, thus we also have |A − B| = |A| |B|.
If |A + B| = |A|, then A + B − B = A, which implies |A − B| = |A|. In this paper
we consider the question of comparing the size of A − B with that of A + B when
|A + B| ≤ K|A|.

For multiple addition or difference, sharp results have been obtained thanks to a
very efficient theorem of Plünnecke. According to [4], this result known as Plünnecke
inequalities, can be stated as follows:

(i) Assume that |A + B| ≤ K|A|. Then for any positive integer h, there exists a

non-empty subset X of A such that

(1) |X + hB| ≤ Kh|X|.
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(ii) Assume that for a positive integer j one has |A + jB| ≤ K|A|. Then for any

integer h ≥ j, there exists a non-empty subset X of A such that

(2) |X + hB| ≤ Kh/j|X|.
(iii) Assume that |A + B| ≤ K|A|. Then for any nonnegative integers h, j, one has

|hB − jB| ≤ Kh+j|A|.
Assertion (i) is a particular case of (ii) and assertion (iii) is obtained by using (ii)

and the inequality (cf. [4])

(3) |X − Y | ≤ |X + Z||Y + Z|
|Z| ,

which is valid for any finite sets X, Y, Z. It is quite clear that in general the set X in (i)
and (ii) of Plünnecke inequalities cannot be reduced to a singleton (just think A = B
being a large finite arithmetic progression). On the other hand, it is worth mentioning
that in general one cannot take X = A (see [6] for more details on this question).

Letting j = 0 and h = 2 in assertion (iii) of Plünnecke inequality, we obtain |2B| ≤
|A + B|2/|A|. Thus we have

(4) |A − B| ≤ |A + B||2B|
|B| ≤ |A + B|3

|A||B| =

( |A + B|2
|A||B|

)

|A + B|,

by using inequality (3). When |A|, |B| and |A + B| are of comparable size, this
inequality shows that |A − B| has also a bounded ratio with |A|. If we only assume
that |A + B| ≤ K|A|, it is not true that |A − B|/|A| is bounded by some constant
depending on K, except in the special case K = 1. Indeed, the third-named author
proved in [6] the following result: There exists a real number θ > 1 such that for any

K > 1 and arbitrarily large integers n, there are two sets of integers A and B satisfying

(5) |A| = n, |A + B| ≤ K|A| and |A − B| ≥ c(K)|A + B|θ,
where c(K) > 0.

The discussion above shows that the only way to extend this statement to K = 1 is
to let c(1) = 0.

As shown in [6], the choice θ = 2 − log 6
log 7

= 1.0792 . . . is admissible in (5). The proof

is based on a elementary construction which uses the fact that the set U = {0, 1, 3}
satisfies |U + U | = 6 and |U − U | = 7. In this connection and for future references we
notice that (3) yields

(6) |U − U | ≤ |U + U |4/3.

In [2], it is shown that for any λ < log(1+
√

2)
log 2

= 1.2715 . . . , there exist sets A of non-

negative integers such that |A − A| ≍ |A + A|λ, but A does not fulfill the condition
|A + A| ≍ |A| any more. Nevertheless these sets allow us to show that the exponent θ
in (5) can be slightly improved as regards to the original result:
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Theorem 1. Let K > 1 be a real number. There exist a real number θ0 > 1.14465 and

two sets of integers A and B with |A| arbitrarily large such that

(7) |A + B| ≤ K|A| and |A − B| ≥
(

2(K − 1)

3K

)5/4

|A + B|θ0.

Using similar ideas, one can show that there exists a positive real number c(K) such
that for any positive integer n, there exists two sets of integers A and B for which (5)
holds with θ = θ0.

The easy bound |2B| ≤ |B|2 and (4) imply |A−B| ≤ |A+B||2B|1/2. Since |3B|1/3 ≤
|2B|1/2 (see [6, Theorem 7.2] and also [7]), the following result provides a strenghtened
estimate.

Theorem 2. Let A and B two finite sets in an abelian group. Then

(8) |A − B| ≤ |A + B| |3B|1/3 .

In [7], the third-named author suggested that perhaps, the sequence (|hB|1/h)h≥1 is
non-increasing. A natural problem is to find for which integers h we have

(9) |A − B| ≤ |A + B||hB|1/h

for any sets A and B. Assume that this bound holds for some h ≥ 1. By Plünnecke
inequality, we have |hB| ≤ Kh−1|A+B|, where K = |A+B|/|A|. Therefore |A−B| ≤
K1−1/h|A + B|1+1/h. This contradicts Theorem 1 for h ≥ 7 (see also the remark at the
end of Section 2).

Using the trivial fact that |A||B| ≥ |A−B|, the bound |A−B| ≤ |A + B|3/2 follows
from (4). This estimate can be strengthened if we further assume that |A+B| ≤ K|A|:
Corollary 3. Let A and B be two finite sets such that |A + B| ≤ K|A|. Then

|A − B| ≤ K2/3|A + B|4/3.

Indeed, as |3B| ≤ |A + B|3/|A|2 by Plünnecke inequality, Theorem 2 gives

|A − B| ≤ |A + B|2
|A|2/3

≤ K2/3|A + B|4/3.

From Corollary 3 we deduce that the value of θ in (5) and that of θ0 in (7) cannot
be larger than 4/3.

We now consider the following related question: under the same assumption |A+B| ≤
K|A|, how large can be |X − B|/|X| where X runs over all the subsets of A? Using
Plünnecke inequality (1), it is possible to obtain the following upper bound for this
ratio:

Theorem 4. Let A and B be non-empty and finite subset of some abelian group such

that |A + B| ≤ K|A|. Then there exists some non-empty subset X of A such that

(10)
|X − B|

|X| ≤ K exp
(

2
√

(log K)(log |A|)
)

.



4 KATALIN GYARMATI, FRANÇOIS HENNECART, AND IMRE Z. RUZSA

We observed above that |A − B|/|A| can be very large even in the case where |A +
B|/|A| is bounded. The following result shows that this fact is in some sense uniform
(see [6]): There exist two sets A and B with |A| arbitrarily large and |A + B| ≤ 3|A|
such that for any X ⊂ A, one has |X − B| ≥ 1

3
(log |A|)|X|. By a modification of the

argument, this result may be improved in the following way:

Theorem 5. Let K > 1 and τ such that 0 < τ < 1 − 1/K, and define

f(τ) = (−τ log τ − (1 − τ) log(1 − τ)).

Then for any c <
√

2
3
f(τ) there exist two sets A and B with |A| arbitrarily large and

|A + B| ≤ K|A| such that for any non-empty subset X of A, one has

|X − B|
|X| ≥ exp

(

c
√

(log((1 − τ)K))(log |A|)(log log |A|)−1
)

.

As an immediate consequence, we obtain for K not too close to 1:

Corollary 6. Let K > 2. Then for any c <
√

2 log 2√
3

, there exist two sets A and B with

|A| arbitrarily large and |A + B| ≤ K|A| such that for any non-empty subset X of A,

one has
|X − B|

|X| ≥ exp
(

c
√

(log(K/2))(log |A|)(log log |A|)−1
)

.

This uniform lower bound for |X − B|/|X| can be compared to the upper bound
(10) obtained in Theorem 4.

Acknowledgement. We are grateful to the referee for his valuable comments and sug-
gestions helping us to improve on the submitted version of the present paper.

2. Sumset and difference set

Proof of Theorem 1. The result will follow from

Lemma. Let K > 1 be a real number and let U be a finite, non-empty set of nonnegative

integers containing 0. Set s = |2U |, d = |U − U |, q = 2 maxU + 1 and θ = 1 +
log(d/s)/ log q. If d < q, then there exist pairs (A, B) of finite, non-empty integer sets

with |B| arbitrarily large such that |A + B| ≤ K|A| and

(11) |A − B| ≥ (2(K − 1)/3K)5/4|A + B|θ.
Proof. We fix k any arbitrary large integer. Set

B =

{

k−1
∑

j=0

ujq
j : uj ∈ U, j = 0, . . . , k − 1

}

,

and

A = [1, L] ∪
m
⋃

i=1

(ai + B),
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where the ai’s are positive integers larger than L+qk and such that ai−aj 6∈ (B−B)∪2B
unless i = j. Since max B < qk, we have

|A| ≥ L + 1, |A + B| = msk + t, |A − B| = mdk + t,

where t := |[1, L] + B| = |[1, L] − B|. Since B ⊂ [0, qk

2
], we note that L ≤ t ≤ L + qk

2
.

We choose

L =

⌊

3qk

2(K − 1)

⌋

.

Letting m = ⌊
(

q
s

)k⌋, we obtain |A+B| ≤ qk +t ≤ 3
2
qk +L ≤ 3Kqk

2(K−1)
≤ K(L+1) ≤ K|A|

and |A−B| ≥ ( qd
s
)k−dk +t ≥ ( qd

s
)k if we assume further that d < q and k is sufficiently

large. Consequently

|A − B| ≥
(

qd

s

)k

≥
(

2(K − 1)|A + B|
3K

)1+ log d−log s

log q

.

By (6), we have d ≤ max(q, s4/3), thus

(12) 1 +
log d − log s

log q
≤ 5

4
.

We finally get (11). �

Remark. It is worth mentioning that (12) implies that the largest exponent θ that
could be eventually obtained by this method is at most equal to 5/4.

By an exhaustive computational research, we got the set U = {0, 1, 3, 6, 13, 17, 21}
which satisfies |U + U | = 26, |U − U | = 39 and q = 43, thus the exponent θ =

1 + log 39−log 26
log 43

= 1.1078 . . . is admissible in (5) with c(K) =
(

2(K−1)
3K

)5/4

. This set U

provides the optimal value of log d(U)−log s(U)
log q(U)

when U runs over all sets of nonnegative

integers of cardinality less than or equal to 11.
In order to improve the admissible exponent in (5), we will use some idea from [2].

We denote N the set of all nonnegative integers. Let

(13) V = V (m, L) = {(x1, . . . , xm) ∈ N
m : x1 + · · ·+ xm ≤ L}.

Then by lemmas 1 and 2 of [2], we get

(14) |V | =

(

m + L

m

)

, |2V | =

(

m + 2L

m

)

, |V − V | =

min(m,L)
∑

k=0

(

m

k

)2(
L + m − k

m

)

.

Let Λ = (Lj)j≥0 be the sequence defined by

(15) L0 = 1, Lj+1 = 2LLj + 1, j ≥ 0.

By projection of V on the set of nonnegative integers (x1, . . . , xm) 7→ x1 + x2L1 +
x3L2 + · · ·+ xmLm−1, by which the number of sums and the number of differences are
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preserved, we get a set U verifying maxU = LLm−1. Solving the linear recurrence

(15), we obtain Lm−1 = (2L)m−1
2L−1

, thus q(U) = 2 maxU + 1 = (2L)m+1−1
2L−1

. The choice

m = 8, L = 9 gives a set U with |U | = 24310, s(U) = 1562275, d(U) = 23301307 and
q(U) = 11668193551. This yields the exponent

θ = 1 +
log d(U) − log s(U)

log q(U)
= 1.1165 . . .

in (5).
We may observe that when projecting V on the set of integers, we only need to

select a sequence Λ = (Lj)j=0,...,m−1 such that the number of sums (and hence also the
number of differences) are preserved. For this we can argue by induction applying the
following greedy algorithm: let L0 = 1, and assume that for some 1 ≤ j ≤ m − 1,
L0 < L1 < · · · < Lj−1 have been chosen so that the mapping pj : (x1, . . . , xj) 7→ x1 +
x2L1+x3L2+· · ·+xjLj−1 preserves the number of sums from S(j, L) := {(x1, . . . , xj) ∈
N

j : x1 + · · ·+ xj ≤ L}. Put U(j, L) := pj(S(j, L)) and let

Lj := min{l > LLj−1 : l 6∈ U(j, L) + U(j, L) − U(j, L) − U(j, L − 1)}.
Then the projection pj+1 : (x1, . . . , xj+1) 7→ x1 + x2L1 + x3L2 + · · · + xjLj−1 + xj+1Lj

preserves the number of sums from S(j + 1, L). Indeed let x, y, z, t ∈ S(j + 1, L) such
that

(16) pj+1(x) + pj+1(y) = pj+1(z) + pj+1(t).

If xj+1 = yj+1 = zj+1 = tj+1 = 0, then

(17) pj(x1, . . . , xj) + pj(y1, . . . , yj) = pj(z1, . . . , zj) + pj(t1, . . . , tj),

hence by induction hypothesis x + y = z + t. Otherwise, we may assume that xj+1 +
yj+1 − zj+1 − tj+1 ≥ 0 and xj+1 ≥ 1. Then (x1, . . . , xj) ∈ S(j, L − 1) and by (16),
one has (xj+1 + yj+1 − zj+1 − tj+1)Lj = pj(t1, . . . , tj) + pj(z1, . . . , zj)− pj(y1, . . . , yj) −
pj(x1, . . . , xj) ∈ U(j, L)+U(j, L)−U(j, L)−U(j, L−1). Since max(U(j, L)+U(j, L)−
U(j, L)−U(j, L−1)) < 2Lj and Lj 6∈ U(j, L)+U(j, L)−U(j, L)−U(j, L−1), we clearly
have xj+1 + yj+1 − zj+1 − tj+1 = 0, giving (17) again. By the induction hypothesis, we
deduce (x1, . . . , xj) + (y1, . . . , yj) = (z1, . . . , zj) + (t1, . . . , tj), and finally x + y = z + t.
For m = 9 and L = 7, a short program gives the sequence

Λ = (1, 15, 211, 1590, 14976, 109870, 788046, 5535439, 38772709)

yielding by projection a sequence U of integers such that q(U) = 2 maxU + 1 =
542817927. Since sums and differences are preserved in cardinality, of course by (14)

we have s(U) =
(

23
9

)

= 817190 and d(U) =
∑6

k=0

(

9
k

)2(16−k
9

)

= 12494233. We thus get
θ = 1.135596 as an admissible exponent.

It is still possible to improve it by relaxing the definition of the sequence Λ =
(Lj)j=0,...,m−1 by removing the condition Lj > LLj−1, j ≥ 1. We thus obtain a new
sequence Λ for which the projection pj : (x1, . . . , xj) 7→ x1 +x2L1 +x3L2 + · · ·+xjLj−1

does not necessary preserve the number of sums nor the number of differences. However
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only a few number of sums and differences are lost through the projection pj . This
gives for m = 11, L = 7 and

Λ = (1, 15, 211, 1590, 14976, 109870, 605315, 3362489, 17767138, 80137194, 408850463)

a set U verifying

s(U) = 4455634, d(U) = 110205905, q(U) = 2 maxU + 1 = 5723906483.

This yields the admissible exponent θ = 1.144655. �

Proof of Theorem 2. The Plünnecke inequality (i) given in the introduction has the
disadvantage not to give any information on the size of the subset X of A. However
by repeated application of it, it has been shown by the third-named author that an
analogue result holds with a large subset X of A (see [7, Theorem 3.3]). In a weaker
but more convenient form, it can be stated as follows:

Lemma. Let K and δ be positive real numbers, h be a positive integer and A, B be

finite and non-empty subsets of an abelian group such that |A+B| ≤ K|A|. Then there

exists a subset X of A with |X| ≥ (1 − δ)|A| such that |X + hB| ≤ 2Khδ1−h|A|.
We now complete the proof of Theorem 2. We use the following notation: |A| = m,

|jB| = nj , |B| = n = n1, |A + B| = s and |A − B| = d. We obviously have

(18) d ≤ mn.

We also use several instances of (3). First we put X = A, Y = B, Z = B to obtain

(19) d ≤ sn2

n
.

Next we put Y = B, Z = 2B to obtain

(20) |X − B| ≤ |X + 2B| n3

n2
.

We will use this for a large subset X of A for which X + 2B is small and in view of
(20) we will then estimate A − B by

|A − B| ≤ |X − B| + |(A r X) − B| ≤ |X + 2B| n3

n2
+ n(m − |X|).

For the set X given in the lemma with h = 2, we deduce

(21) |A − B| ≤ 2n3s
2

n2δm
+ δnm.

Choosing δ = s
m

(

2n3

nn2

)1/2

in this inequality, we find

|A − B|2 ≤ (2s)2

(

2nn3

n2

)

.

Multiplying this inequality with (19) and taking the cube root, we obtain d ≤ 2sn
1/3
3 ,

which is the requested inequality apart from the factor 2. We can remove it as follows.
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Take our sets A, B and apply the result to the k-fold Cartesian products Ak and Bk.
Every quantity is then raised to the k-th power, and by taking k-th root we have our
theorem with the factor 21/k. By taking the limit we derive the theorem with the
factor 1. �

Remark. We saw in the introduction that the bound (9) is not true in general for
h ≥ 7. Let A = B = V (m, m/2) be the set defined in (13) with L = m/2. We have by
(14) the estimates log |2A| = (2 log 2 + o(1))m, log |A − A| = (2 log(1 +

√
2) + o(1))m

as m tends to infinity (see [2] for more details). Moreover 6A = V (m, 3m), thus, by
Stirling’s formula, we have |6A| = (4 log 4 − 3 log 3 + o(1))m as m tends to infinity.
Since 2 log(1 +

√
2) − 2 log 2 > 4 log 4−3 log 3

4
, we obtain that |A − A| > |2A||6A|1/6 for

m sufficiently large, disproving the bound (9) for h = 6. For h = 4 or 5, it is an open
question to decide whether or not (9) holds for any sets A and B.

3. How large can |X − B| be for X ⊂ A?

Proof of Theorem 4. For an integer N ≥ 1 (to be specified later) put

λ = min
1≤j≤N

|(j + 1)B|
|jB| .

Then by Plünnecke inequality, λN |B| ≤ |(N + 1)B| ≤ KN+1|A|, thus

λ ≤ K1+1/N

( |A|
|B|

)1/N

.

Together with the trivial bound λ ≤ |B|, we get λ ≤ K|A|1/(N+1). Therefore there
exists j, 1 ≤ j ≤ N , such that

|jB + B| ≤ K|A|1/(N+1)|jB|.
Inequality (3) yields for any X ⊂ A,

|X − B| ≤ |X + jB||(j + 1)B|
|jB| .

By Plünnecke’s theorem, there exists a non-empty subset X ⊂ A such that |X + jB| ≤
Kj|X|, thus

|X − B| ≤ Kj+1|A|1/(N+1)|X| ≤ KN+1|A|1/(N+1)|X|.
Taking

N =

⌈

(

log |A|
log K

)1/2
⌉

− 1,

we finally obtain the bound (10). �
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Proof of Theorem 5. Let d ≥ 1 be an integer. We will construct a pair of sets A and
B in Z

d satisfying the conclusion of Theorem 5. Then by projection on Z, using for
instance the mapping (x1, . . . , xd) 7→ x1 + qx2 + · · · + qd−1xd where q is sufficiently
large to have the number of sums and that of differences unchanged, we may obtain
the same result with A and B being sets of integers.

For a given d-tuple x = (x1, x2, . . . , xd) ∈ N
d, we denote by ν(x) the number its

non-zero coordinates, and by σ(x) the sum of all its coordinates:

ν(x) =
∑

1≤i≤d
xi 6=0

1, σ(x) =
∑

1≤i≤d

xi.

Let (ei)1≤i≤d be the canonical basis of Z
d and u ∈ [1, d] be an integer. We let

A = {x = (x1, x2, . . . , xd) ∈ N
d : ν(x) = J and σ(x) = k},

and

B = {ei1 + ei2 + · · ·+ eiu : 1 ≤ i1 < i2 < · · · < iu ≤ d}.
The set A is formed with integral points of certains J-dimensional edges of a simplex
and the set B by some vertices of an hypercube. The sumset A + B has the same
structure than A and its size is controlled by the parameters k and u: large k and
small u make |A + B| close to |A|. Now each element of A − B having exactly u
negative coordinates (all are equal to −1) belongs to a certain a − B, for an unique
a ∈ A. It follows that choosing the parameter d − J as large as possible, in relation
with k and u, will imply a large lower bound for |X − B|/|X|, for any ∅ 6= X ⊂ A.

We have by easy combinatorical considerations

(22) |A| =

(

d

J

)(

k − 1

J − 1

)

.

Put for i = 0, 1, . . . , u

Ci = {x = (x1, x2, . . . , xd) ∈ N
d : ν(x) = J + i and σ(x) = k + u}.

Then A + B ⊂ ⋃u
i=0 Ci. We also have

|Ci| =

(

d

J + i

)(

k + u − 1

J + i − 1

)

.

From this and (22) we get

|Ci|
|A| =

(d − J)(d − J − 1) . . . (d − J + i − 1)

(J + 1)(J + 2) . . . (J + i)
· (k + u − 1)(k + u − 2) . . . (k + u − i)

(J + i − 1)(J + i − 2) . . . J

· (k + u − i − 1)(k + u − i − 2) . . . k

(k − J + u − i)(k − J + u − i − 1) . . . (k − J + 1)

≤
(

d − J

J

)i
(k + u)u

J i(k − J)u−i
.
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Thus
u

∑

i=0

|Ci|
|A| ≤

(

k + u

k − J

)u u
∑

i=0

(

(d − J)(k − J)

J2

)i

.

If we assume

(23)
(d − J)(k − J)

J2
≤ τ,

we get

(24)
|A + B|

|A| ≤
u

∑

i=0

|Ci|
|A| ≤ (1 − τ)−1

(

k + u

k − J

)u

.

For each x ∈ A, there are (d − J) zero coordinates xi, thus there are at least
(

d−J
u

)

elements in x − B which are uniquely determined by x in A − B. This gives for any
X ⊂ A

|X − B| ≥
(

d − J

u

)

|X|.

We now come to the choice of the parameters. Let ε > 0 such that (1 − τ)K1−ε > 1.

We introduce θ =
(

log((1−τ)K1−ε)
J

)1/2

, λ = τ
θ

and put

u = ⌊τθJ⌋, d = ⌊(1 + θ)J⌋, k = ⌊(1 + λ)J⌋.
Condition (23) is clearly fulfilled thus (24) holds. A short calculation yields

(1 − τ)−1

(

k + u

k − J

)u

≤ (1 − τ)−1(1 − τ)K1−ε(1 + o(1)) ≤ K

as J tend to infinity, thus |A + B| ≤ K|A| can be achieved by taking J large enough.
Stirling’s formula gives

(

d − J

u

)

=

( ⌊θJ⌋
⌊τθJ⌋

)

≥ exp ((f(τ) + o(1))θJ) ,

as J tends to infinity. Thus we have

|X − B|
|X| ≥ exp

(

(f(τ) + o(1))
√

J log((1 − τ)K1−ε)
)

.

By (22), we obtain |A| ≤ J
3
2
J(1+o(1)) as J tends to infinity, hence

(25) log |A| ≤
(

3

2
+ o(1)

)

J log J,

giving J ≥ 2+o(1)
3

log |A|
log log |A| . Theorem 5 follows easily by choosing ε > 0 sufficiently small

so that (1 − ε)1/2f(τ)
√

2
3

> c and then by taking J large enough. �
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