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Abstract

The connection between the pseudorandomness of binary se-
quences and binary lattices (i.e., binary square matrices) is studied.
From a binary N-lattice (N x N matrix) one can make a unique bi-
nary sequence of length N? by taking first the first row of the matrix,
then continuing the sequence by the second row of the matrix, etc.
One might like to answer the following question: is it true that if
the binary sequence constructed in this way possesses strong pseudo-
random properties, then the lattice also does? It is shown that the
answer is negative; negative examples are presented, and the connec-
tion between the pseudorandom measures of the sequence and the
lattice is analyzed.
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1 Introduction

Pseudorandom binary sequences play a role of basic importance in ap-
plications, in particular, in cryptography. The notion of pseudorandomness
is usually defined in terms of computational complexity (see, e.g., [8]). This
approach has certain weak points, thus Mauduit and Sarkozy [4] initiated
another, more constructive approach (see [10] for a survey of the related
work and for the comparison of the two approaches).
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In the applications (e.g., in connection with image or bit map encryption)
one also needs the multidimensional extension of this theory. Thus Hubert,
Mauduit and Sarkozy [3], [5], [6] extended the constructive theory of pseu-
dorandom binary sequences to the multidimensional situation by studying
pseudorandom binary lattices. It turns out that the multidimensional case
is much more difficult than the one dimensional case; it takes a considerable
effort to generalize the one dimensional methods, results and constructions,
and in the most cases only much weaker partial results are achieved. Thus
it is a natural question to ask: does one really need the multidimensional
theory? Can one not utilize the simpler and more effective one dimensional
theory in the multidimensional case? Are there no simple and cheap but, in
the same time relatively satisfactory ways to convert the one dimensional
results and constructions into multidimensional ones? In general, what is
the connection between the one dimensional and multidimensional cases?
In this paper our goal is to study these questions. More precisely, since the 2
dimensional case is simpler and more important than the 3 or higher dimen-
sional cases, thus we will restrict ourselves to the study of the links between
the one dimensional and two dimensional cases. However, with a little work

our results and constructions could be extended to higher dimensions.

2 Some basic definitions and results in one,
resp. n dimensions
In [4] Mauduit and Sarkézy studied finite binary sequences
En = {ei,e,...,en} € {—1,+1}". (2.1)

They introduced the following measures of pseudorandomness of binary

sequences of this form: the well-distribution measure of the sequence (2.1)
is defined by

t—1

E €a+jb

7=0
where the maximum is taken over all a,b,t € Nwith 1 <a <a+(t—1)b <
N, and the correlation measure of order k of Ey is defined as

M
E €ntds " " Entdy
n=1

where the maximum is taken over all D = (dy,...,d) and M such that
0<dy <---<dy <N— M. The combined (well-distribution-correlation)

W(Ey) = max

Ck(EN) = I]{llé’)ﬁ(
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pseudorandom measure of order k£ was also introduced:

Qr(En) = max

t
E €ja+d; * * * €Ejatd,
=0

where the maximum is taken over all a,t and D = (dy,dy, ..., dy) with d; <
dy < -+ < dj such that all the subscripts ja+d, belong to {1,..., N}. (Note
that clearly Q1(Ex) = W(En).) Then the sequence Ey is considered to be
a “good” pseudorandom sequence if W (Ey) and, for “small” k, both Cy(FEy)
and Q(Ey) are “small” in terms of N (in particular, both are o(N) as N —
00.) Indeed, later Cassaigne, Mauduit and Sarkozy [2| showed that this
terminology is justified since for fixed k for almost all Ey € {—1,+1}", the
measures W (Ey), Cr(Ex) and Qi (Ey) are less than N'/2(log N)¢, where
the constant ¢ depends on k (see also [1]). It was also shown in [4] that the
Legendre symbol forms a “good” pseudorandom binary sequence:
Theorem A There is a number py such that if p > po is a prime number,
keN, k<p and if we write

5= (G)-G) - (57)

(where (%) denotes the Legendre symbol), then

Qr(Ep-1) < 9/6;01/2 log p.

The crucial tool in the proof of this theorem was the following consequence
of Weil’s theorem [12]:

Lemma 1 Suppose that p is a prime number, x is a non-principal character
modulo p of order d (so that d | p — 1), f(z) € F,lz] (F, being the field
of modulo p residue classes) has degree k and factorization f(z) = b(x —
x1)% - (z — 35)% (where x; # x; for i # j) in T, (the algebraic closure of
F, ) with

(d,dy,...,ds) =1. (2.2)

Let X, Y be real numbers with 0 <Y < p. Then

> x(f(n) 2

X<n<X+Y

< 9kp*'*logp.

Note that the same conclusion also holds if assumption (2.2) on f(z) is
replaced by

f(z) is not of the form cg(z)* with ¢ € F,, g(z) € F,[7] (2.3)



(see [7], [11)).

In [3] Hubert, Mauduit and Sarkozy extended this constructive theory
of pseudorandomness from one dimension to n dimensions (see also [5], [6]).
Let I} denote the set of the n-dimensional vectors all whose coordinates
are selected from the set {0,1,..., N — 1}:

IN={z=(x1,...,2) : x1,...,2, € {0,1,...,N — 1} }.

We call this set n-dimensional N-lattice or briefly (if n is fixed) N-lattice.
A function of the type

n(z): Iy — {-1,+1} (2.4)

is called n-dimensional binary N-lattice or briefly binary lattice. (Note that
in the n = 1 special case these functions are the binary sequences Ey €
{—=1,+1}".) In [3] the use of the following measures of pseudorandomness
of binary lattices was proposed: if n = n(z) is an n-dimensional binary
N-lattice of form (2.4), k¥ € N, and u; (i = 1,2,...,n) denotes the n-
dimensional unit vector whose ¢-th coordinate is 1 and the other coordinates
are 0, then write

t1 tn
Z...Zn(jlblgl+...+jnbngn+c_ll)...

j1:0 jn:()

n(jlblﬂl +e ]nbnﬂn + dk)

where the maximum is taken over all n-dimensional vectors B = (by, ..., b,),
dyy...,dp, T = (t1,...,t,) such that their coordinates are non-negative
integers, by, ..., b, are non-zero, d,,...,d, are distinct, and all the points

Jibiuy + - -+ + Jpbru, + d; occurring in the multiple sum belong to the n-
dimensional N-lattice Iy. Then Q(n) is called the pseudorandom (briefly
PR) measure of order k of . (Note that in the one-dimensional special case
Qx(n) is the combined PR-measure @, of order .)

It was proved in [3| that for a fixed & € N and for a truly random
n-dimensional binary N-lattice n(z) we have

N™2 < Qk(n) < N™? (log N™)'/?

with probability > 1 — &, while the trivial upper bound for Qx(n) is N™.
Thus an n-dimensional binary N-lattice n can be considered as a “good”
pseudorandom lattice if the PR measure of order k£ of n is “small” in terms
of N (in particular, Qx(n) = o(N™) for fixed n and N — 00) for small k.



Moreover in [3] an example was given (by using the quadratic character
of a finite field) for a “good” n-dimensional binary lattice (for any n).

In the rest of the paper we will restrict ourselves to the n = 2 special
case, i.e., to two dimensional binary lattices.

3 Binary lattices whose rows are “good” PR
binary sequences

Suppose we want to construct a “good” PR two dimensional lattice.
As we have mentioned earlier, it is easier to construct binary sequences
than binary lattices. Thus one might like to construct a binary lattice by
combining binary sequences. More precisely, assume that a sequence of
“good” PR binary sequences EW, EQ ... EY = (e, ... e, .. is
given; then it is a natural idea is to consider the two dimensional binary
lattice n whose j-th row is the vector E](\z) as a candidate for being a “good”
PR two dimensional binary lattice, i.e.,

n((i,7 —1)) —eerl forj=1,2,...,N, i=0,1,...,N — 1. (3.1)
If, say, E](\}) = E](\?) =...= E](VN), then the binary lattice n is certainly not

of PR type. Thus in order to ensure the pseudorandomness of 1 one needs

(4)

an assumption on the connection between the sequences Ey’. A natural

assumption of this type is that the vectors E](é)

the scalar products (E](\?, E](\J,)) are “small”:

are near orthogonal, i.e.,

‘(E](\?, E](\J,))‘ = ‘egi)egj) + egi)egj) + eg\i,)e%) is “small” for 1 < i< j < N.
(3.2)
So the question is: if E(l) E(Q) ...,E](VN) are “good” PR binary sequences,
and (3.2) also holds, then does this imply that the lattice n in (3.1) is a
“good” PR binary lattice? We will show by an example that the answer to
this question is negative. This example shows clearly that from “good” PR
binary sequences we cannot construct a “good” lattice in this manner.

Theorem 1 Let p be a prime number, and for j = 1,2,...,p define the

binary sequence E,(,j) (e7 () eg),..., (])) by

G) _ (%) forpti+j,
+1 forpl|i+j.



Define the binary lattice n by (3.

1) (with p in place of N) so that, for

(z,y) € {0,1,...,p—1}?
(Ly”> forptz+y+2,
n(@,y) =e’ =1 V7
+1 forp|z+y+2.
Then fork e N, k<p, 7=1,2,...,p we have

Qr(EY) < 10kp'/* logp (3.3)
(so that E;,gl), E](,Q), . ,E,()p ) are “good” PR binary sequences) and
(ES,E9)| < 4p'? for 1 <i<j<p (3.4)
(so that (3.2) also holds), however, we have
Qa(n) > (p— 1) (3.5)
Proof. Denote the quadratic character of I, by x*:
(ﬂ> for p1n,
X'(n)=q \*
0 for p | n.
Then we have
Q E(J) lgltag Z eza—|—d1 : za—l—dk
< max Z ((]+m+d1)---(j+za+dk))
a,t,D , P
0<i<t
pH(+ia+dr)-(j+ia+dy)
+ > 1
0<i<t
pl(j+ia+di)-(j+iat+dg)
t
< max ( ;X*((j+ia+d1)---(j+ia+dk)) +k>

whence by Lemma 1, (3.3) follows.
Moreover, for 1 < ¢ < j < p we have

p
B0, E9) = Y| <| X (
=1 1<t<p
p(E+i)(e+7)

IN

p
Zx* ((L+i)(L+7))
=1

+2.

L+ 0+
(L+a)( +J)> n Z 1
p 1<e<p
p|(¢+l)(ﬂ+J)
(3.6)



It follows from Weil’s theorem [12]| (see also Lemma 2C in [11]) that the
first sum is < 2p'/2. Thus (3.4) follows from (3.6).
Finally it follows from the definition of Q(7n) that

Q2(n) 2 Zn ji, J2) + (0,0))n (1, j2) + (+1,—1))
- __ > () (G + 2 = 1) 37

We have

(1, 72))n (G + 1,72 = 1)) = (jl +g];2 . 2) (jl +22 : 2)

=+41forptji+jo+2

and

N1, 32))n (G + 1,52 = 1)) = (+1)(+1) = +1 for p | ji +jo + 2

so that, from (3.7)

p—2 p—1

m=> > 1=p-1)@p-1)=(p-1)

J1=0 j2=1

which proves (3.5) and this completes the proof of Theorem 1.
Remark 1 We note that the construction presented in Theorem 1 is a spe-
cial case of a more general construction: Let E(l) (1) eg ), cees eg\l,)} €
{-1 +1}N be a truly random binary sequence, and for 2 < j < n
let E be a translated versmn of E](V), SO E(J {e1 ,62’ ye )} =
{eg ), 521,.. e%),eg ),eg),.. , j 1} Then the E(J)’s satisfy 1nequa]1t1es
of type (3.3) and (3.4) (with N in place of p and with upper bounds
O (N'/2(log N)¢)) with probability 1. Define the lattice n by

n(z,y) = e;(ffll) e£2($+y+1), (for (z,y) € {0,1,...,p—1}?)
where ry(z + y + 1) denotes the least positive residue of x 4+ y + 1 modulo
N. Similarly to (3.7) we easily get

Q2(n) = (N —1)*

In Theorem 1 we presented a special case of the above construction,
where E](\}) was defined by the Legendre symbol, and then indeed (3.3) and
(3.4) hold.



4 Trying to reduce the two dimensional case to
the one dimensional one: the PR measures
of order 1

The simplest and more natural way to reduce the two dimensional case
to the one dimensional one is the following:
To any 2-dimensional binary N-lattice

n(z): Iy — {-1,+1} (4.1)

we may assign a unique binary sequence Ey2 = En2(n) = (e1,€9,...,en2) €
{—1,+1}" by taking the first (from the bottom) row of the lattice (4.1) then
we continue the binary sequence by taking the second row of the lattice, then
the third row follows, etc.; in general, we set

eive; =1((j —1,4)) fori=0,1,...,N—1, j=1,2,...,N. (4.2)

It is a natural question to ask: is it true that if Ey2(n) is a “good” PR binary
sequence then 7 is a “good” PR 2-dimensional lattice? Namely, then “good”
PR binary sequences would generate “good” PR-binary lattices automati-
cally, thus it would be sufficient to study binary sequences, there would be
no need for developing a theory of pseudorandomness of binary lattices. Un-
fortunately, the answer to this question is negative; we will show in sections
4 and 5 that it may occur that the PR measures of sequence FEy2(n) are
small, however, the corresponding PR-measures of the lattice n are large.

We will denote the PR measures of Enz(n) by W, Cy, Qk, while we write
@,. for the pseudorandom measure of order k of 7. First we will compare
the PR measures of order 1, i.e., Q; = W and Q;.

Theorem 2 For every even number N = 2R € N there is a binary lattice
n such that Q1(Enz(n)) is “small”

Q1(En2(n)) = W(En2(n)) < 4N, (4.3)
however, Q,(n) is large: ,
Qi(n) > 5N”. (4.4)

Proof. Define the N-lattice of of type (4.1) by

+1 fori=0,1,...,R—1andj=0,1,...,N —1,

n((%,7)) =
(G,5) -1 fori=R,R+1,...,.N—1landj=0,1,...,N—1.



We will show that this lattice 1 satisfies (4.3) and (4.4).
By the definition of W and ); we have

Q1(En2(n)) = W(En2(n)) = max

a,b,t

t—1
E €a+jb
Jj=0

where the maximum is taken over all a,b,t € Nwith 1 <a<a+(t—1)b <
N2. Take one of the sums Zﬁ;g €q+jb considered here. There are unique

integers u, v with

0<u<v<N-1,
a € (uN,uN + NJ,
a+ (t—1)be (vN,vN + NJ.

Then we have

t—1
E €atijb = E €a+ijb T E E €a+tjb
j=0

0<j<t—1 u<w<v 0<j<t
a+jbe(uN,(u+1)N] a+jbe(wN,(w+1)N]
+ E €a+jb (45)
0<j<t—1

a+3jbE(wN,(v+1)N]

Clearly

> €atjp| < > 1< N, (4.6)

0<j<t—1 a+jbe(uN,(u+1)N]
a+jb€(uN,(u+1)N]

> Catsp| < > 1<N (4.7)

0<j<t—1 a+5be(uN,(v+1)N]
a+jbe(vN,(v+1)N]




and, for u < w < v, by the definition of n and Ey-,

S eanl=| Y n(a+jb—wN - 1,w)

j: a+j3be(wN,(w+1)N] j: a+jbe(wN,wN+R]

+ Z n((a+ jb — wN — 1, w))
j: a+jbe(wN+R,(w+1)N]

= > 1— > 1

J: a+jbe(wN,wN+R)] J: a+jbe(wN+R,(w+1)N]
=[{m: m=a (modbd), wN <m < wN + R}|
—{m: m=a (modbd), wN+R<m< (w+1)N}|
=|({m: m=a (modb), wN <m < wN + R} — R/b)
—({m: m=a (modbd), wN+R<m< (w+1)N}| —R/b)]
<1+1=2 (4.8)

It follows from (4.5), (4.6), (4.7) and (4.8) that

t—1

E €a+5b

J=0

<N+2w—u—1)+N < 4N

which proves (4.3).
On the other hand, we have

R—-1N-1 R-1N-1
i) > zzn«ﬁ,m\ Yo g e
Jj1=0 j2=0 41=0 j2=0

which proves (4.4).
Remark 2 It is easy to see that in the example above we have

Q2(En2(n)) > Co(En2(n)) > N2,

One might like to give a construction where we also have Q(En2)(n) =
o(N?) or at least Co(Enz)(n) = o(N?). We have not be able to give such a
construction. So we arrive to the following natural question:

Problem 1 Is it true that

Ca(En2)(n) = o(N?) = Q(n) = o(N*)?
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5 Trying to reduce the two dimensional case to
the one dimensional case: the PR measures

of order 2

One might like to save the above idea on reducing the two dimensional
case to the one dimensional one by also considering the PR measures of
order 2. So one may ask the question: is it true that if W(Ey2(n)) and
Cy(En2(n)) are small, then n must be a “good” PR binary lattice? Again,
the answer is negative:

Theorem 3 For every even number N = 2R € N there is a binary lattice
n such that Q1(Enz(n)) and Cy(Enz2(n)) are small:

Qi(Ey2(n)) = W(Ey2(n)) < 6N(log N)'/? (5.1)
and
Cy(En>(n)) < 12N (log N)'/2, (5.2)
however, Q,(n) is large: X
Qo) > T2 (5.

Proof. We will present a probabilistic construction, more precisely we
will consider all the binary N-lattices n satisfying certain conditions and
chosen with equal probability, and then we will show that for ¢ > 0 and
N > Ny(e), such a lattice n satisfies (5.1), resp. (5.2) with probability
greater than 1 — ¢, and all these lattices 1 also satisfy (5.3).

Define the N-lattice n so that
(i)for0 <z < N—-1,0 <y < R-—1 the numbers n(z,y) are independent
random variables with distribution

P(n(z,y) = +1) = P(n(z,y) = —-1) = 1/2, (5-4)

moreover, we have

(i) n(z,y) = —n(z,y—R)for R<z < N—-1, R<y<N—1and
(iii) n(z,y) =n(z,y—R)for 0<z<R—-1, R<y< N-1.

The structure of this binary lattice n is the following:

Y | -Z
Y | Z

Then defining the binary sequence Eyn2 = En2(n) = (e1,€a,...,en2) by
(4.2), it is easy to check that eq, es, ..., ey2 posses the following properties:

11



(P1) For n = 1,2,..., N? the number ¢, is a random variable with
distribution
P(e, =+1) = P(e, = —1) =1/2.

(P2) If1 <n<n+d< N?and d# RN, then the random variables e,
and e, 4 are independent.

(P3)If1 <n<n+d< N? d= RN, and we write n in the form N + j
with i € {0,1,...,R—1}, 5 € {1,2,..., N}, then we have

6n+d:€nf0r1SjSR

and
entd = —€, for R < j < N(=2R).

We will denote the mean value and standard deviation of the random
variable & by M(&) and D(€), respectively. We will need Bernstein’s in-
equality [9, Ch.7]:

Lemma 2 If &,...,&, are independent random variables with M (&) =
My, D(&) = Dy and |§ — My| < K for (k = 1,2,...,m), then, writing
E=&+ - +&n, M =M + -+ My, and D = (D} +--- 4+ D})'/?, for
any positive number p with p < % we have

12
P(l¢—-M|>uD) <2 - |-
(1€ = M| =z uD) < exp( 2(1+%)2)

To estimate W (Ey2(n)), fix positive integers a,b,t with 1 < a < a +
(t —1)b < N?, and consider the sum

S(a,b,t) Zea+]b

Denote by t* the largest integer for which

N2

Let
t*—1
Sl(a,b t Z €a+jb, SQ CL b t Z€a+]b.
j=0 j=t*
Then

S(a,b,t) = Si(a,b,t) + Sa(a, b, t).

By properties (P1) and (P2) we may use Lemma 2 with e, x—1), in place
of & for k=1,...,t" and for k =t*+1,...,t so that now My =0, Dy = %,

12



= 0 and in the first case D = 1¢*'/2 and in the latter case

=1(t— ¢)"/2. Then using Lemma 2 with = 12(log N)'/? we easily get
1/2

P (|Si(a,b,t)| > 6N (log N)*/?) < SN

1/2 i
P (|S5(a,b,t)| > 6N (log N)'/?) < SN

uniformly in a, b,t for N > N,. By this and the triangle-inequality we get
P (|S(a,b,t)| > 12N(log N)*/?) < P (|Si(a, b, t)| > 6N (log N)'/?)

1

+ P (|S2(a, b, )| > 6N (log N)*/?) < i

Thus we have

P(W(Eyz) > 12N (log N)'/?) = P (maX|S(a b, t)| > 12N(10gN)1/2)

d,,

<> P (|S(a,b,t)| > 12N (log N)"/?)

a,b,t

1 1
< D wemaNe (5.5)

1<a,b,t< N2

Now we will estimate Co(En2(n))

E , €n+di En+dy

Cy(En2(n)) = max
( Ldl,dz

(5.6)

= max

E €nCntd

where the maximum is taken over all U, V,d with1 < U <V < V4+d < N2
Consider one of these sums ZZ:U enen+d- We have to distinguish two cases.
CASE 1. Assume first that

d# RN. (5.7)
Define the sets A; and Ay by
A ={U,U+1,...,V} % {2kd+1,2kd + 2,...,(2k + 1)d}
and
Ay ={U,U+1,...,V}ni2{(2k+1)d+ 1,2k + 1)d + 2,...,(2k + 2)d}

so that we have

E €nCn+d

E enen+d+ E Enlntd| S

neA; neAs

E €nCn+td +

neA;

E €EnCn+d

neAs

(5.8)

13



say. It follows from the properties (P1), (P2) and (5.7) that the terms of
the ), are independent random variables of distribution

1
P(epenta=+1) = Plepenia = —1) = 5 (for n € A;).

Thus the terms of the sum ), can be estimated by using Lemma 2 (in the
same way as we did in the estimate of W(Eyz)). We obtain for large N
that

P (‘21‘ > 6N(1ogN)1/2) < ﬁ (5.9)

for N > Ny. In the same way we get

P (‘ZQ‘ > 6N(logN)1/2) < ﬁ (5.10)

It follows from (5.8), (5.9) and (5.10) that for every U,V and d (satisfying
(5.7)) we have

( } €n€ntd

n=U

> 12N (log N) 1/2> <P ‘Zl‘ > 6N (log N)1/2)

—i—P(‘Z ‘ > 6N (log N)*/?)
1 !
< N® 2N8 L

whence

v

E €n€ntd
n=U

1%

E €nCnitd

> 12N (log N)1/2>

P max
U,V,d£RN

sZP(

>12N(logN)1/2>< Z %

U,V,dARN n=U U,V,dARN
5 1
< (N?) 5= N2 (for N > Np). (5.11)

CASE 2. Assume that
d = RN. (5.12)

Let K, and K, denote the smallest and greatest integer K with

(KN, (K + 1)N]N[U,V] #0

14



respectively. Then by property (P3) and (5.12) we have

174 K1—|—1 Ko—1 K—|—1
Zenen—l—d = Z €n€n+d T Z Z €n€nid + Z €nCnid
n=U K=Ki+1n=KN+1 n=KoN+1
(Ka+1)N Ky—1 KN+R (K+1)N
S Z 1|+ Z Z €n€nid + Z €n€n+td
n=U K=Ki+1 |[n=KN+1 n=KN+R+1
v Ks—1 | KN+R (K+1)N
SID IR E I S [ IEEIND DI FY
n=KoN+1 K=Ki+1 |n=KN+1 n=KN+R+1
= 2N (for d = RN). (5.13)

Finally, by (ii) we have

R—1 R—1
Qy(n) > n((41, J2) + (0,0))n((41, j2) + (0, R))
J1=0j2=0
R—1 R—1 R—1 R—1
SR \ ST iow- "
j1=0j2=0 J1=0 j2=0

By (5.5), (5.11) and (5.13), for N > Ny(e) both (5.1) and (5.2) hold with
probability greater than 1 — ¢, and by (5.14) for all lattices n considered
(5.3) also holds, and this completes the proof of Theorem 3.

Remark 3 In Theorem 3 we could have replaced Co(FEn2) by Qo(FEn2) but
this would have been lengthier, thus we preferred to present this simpler
version. It is easy to see that in the construction of Theorem 3 we have

Q4(En2(n)) > Cu(En2(n)) > N2,
Thus one might like to answer the following question:
Problem 2 Is it true that Qu(Ex>(n)) = o(N?) implies Q,(n) = o(N?)?

Remark 4 Theorem 3 could be extended from Cy(En2) to Cyx(En2) (and
beyond that to Qx(En2)) by using the following generalization of our con-
struction: Let N = 2kR where k, R € N. Define the N-lattice 1 so that
(i)for0 <z < N-1,0<y < (2k —2)R — 1 the numbers n(x,y) are
independent random variables with distribution

P(z,y) = +1) = P(n(z,y) = -1) = 1/2,

moreover we define
k-1

(i) n(z,y) = [ [ n((z,y — 2iR))

=1
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for0<z<kR-1, (2k—2)R<y< N —1 and
k—1

(iii) n(z,y) = = [ [ n((z,y — 2iR))

i=1
forkR<z<N-1, 2k—2)R<y<N-1.
The structure of this lattice 7 is the following:

2R{ [1Y, — 1%
2R{ Yi1 Ly
2R{ Y3 Z3
2R{ Y, Zy
ZR{ Y1 Zl

(Here []Y; means that the j-th element in the ¢-th row of this 2R x kR
matrix is the product of the corresponding elements of the matrices
Y1,Ys, ..., Y, 1; the meaning of [[ Z; is similar.)

It is easy to see that in this construction we have

Qo (En2(n)) > Cox(En2(n)) > N

This motivates the following question:

Problem 3 Is it true that if Qox(En2(n)) = o(N?) for some fived k > 1,
then we have Q,(n) = o(N?)?

By Theorem 3 it may occur that Co(Ey2) is small but Q,(n) is large.
The opposite of this cannot be occur:

Theorem 4 For every binary N-lattice n and k € N we have

Qk(En>(m) < 3N (Qu(m) .

Note that as it was shown in 3], for a truly random 2-dimensional N-
lattice 7 the order of magnitude of Q. (n) is IV, so that the right hand side is
O(N3/?). Thus in general this theorem gives the nontrivial bound O(N%/2)
for Qu(Exe(1).

Proof. By the definition of Q(En2(n)) there exist a,t and D =
(dy,da, ..., d) with 0 < d; < dy < --- < dj such that

t
Qe(Ex>(n) = | CjatdrCiatds *** Cjasdy | » (5.15)
=0
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where all subscripts ja+d, belong to {1,2,..., N*}. We split {1,2,..., N?}
into subsets. For 0 <7 < N — 1 the ¢ + 1-st subset is

L={iN+1,iN+2,...,(i+1)N}.
For 0 < j <t the minimum value of ja + d; is d;. Write d; in form
d1 = YminN + 1 where 0 < z; < N — 1.

For 0 < j <t the maximum value of ja + d; is ta + d;. Write ta 4+ d; in
form
ta + di = YmaxN + £9 where 0 < 29 < N — 1.

Then

Ymax

Qr(En2(n)) = Z Z Cjatdr ** " Cjatdy,

1=Ymin . 0<y<t
jat+di€l;

IN

E €ja+ds " " " Cjatdy

0<5<¢
ja+di elymin Ulymax

ymaxfl

+ E E €jatd; """ €jatdy

jat+di€l;

ymax_l

SOANAH| D D CjararCata

jatdi€1;

a—1 Ymax— 1

=2N+ Z Z €jatd: " " Cjatdy

£=0 i=Ymin+1 0<;<t
i=¢ (mod a) ja+di€l;

a—1 ymaxfl

<2N + Z Z Z €ja+dy """ Cjatdy | - (516)

i=¢ (mod a) ja+di1€l;

It is easy to check that if 0 < / < a and

{eju—l—dl : ja' + dl € IZ? .7 € N} = {n('TZ:Z)’ 77(er + CL,E), s 777(‘T€ + téaa E)}:
(5.17)

then for i = ¢ (mod @) we have

{eja—f—dl : ja' + dl € Iia .7 € N} = {n(ibi): 77(306 +a, Z)a .- -;77(9% + tea, 2)}
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In (5.16) j assumes values from the interval [0,¢]. By the definition of ¥y,
and Ymax, (517)7 =y (mOd CL) and Ymin T 1< < Ymax — 17 then

{€jata, : ja+di € L;, 0< 5 <t}

= {n(xg, 1), n(xze+ a,i),...,n(xe+ tea,i)}.
Write d; — d; in form

di —dy = di s N + dip with 0 < djp < N — 1

and define
d; | = (d;i1,d;2).

Then ¢ = ¢ (mod a) and Ymin + 1 < @ < Ymax — 1 we have

E Cjiat+dr " " Cjatdy

0<5<t
ja+di€l;

= > e+ o, e+ o)+ ) n((oet o)+ )

Let
{Z i=/ (moda), ymin+1SiSymax_1}:{yfay€+aa---ay€+sla}'

Then

ymaxfl

E E €jatdy " " €Cjatdy

i=¢ (mod a) ja+di€l;

se b

=33 n(ze + ja, ye + ia))n((ze + ja, ye + ia) + dy) - - -
i=0 j=0

n((ze + ja, ye + ia) + d, ).

By the definition of @, (1) we have

Ymax— 1

E E €ja+d; " " €Cjatdy

i=¢ (mod a) ja+di€l;

se bty

=D 0w+ ja,ye + ia))n((e + ja, ye + ia) + dy)
i=0 j=0

(@ + ja, ye + ia) + di_y)| < Qp(n). (5.18)
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Using (5.16) and (5.18) we get

Qr(En2(n)) < 2N + aQy(n).

On the other hand, the number of terms in (5.15) is

N2
t+1<2t< =,

a
thus N2
Qr(Enz(n)) < “a
Then
a < 27
~ Q(En2(n))
Using this and (5.19)
2N?Qy(n)
QB ) < 2N G B )’

which was to be proved.
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