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Abstract

First the notion of r-almost s-uniform tree is introduced which

includes both the case of finitely generated free groups and uniform

binary trees as special cases. The goal of the paper is to study pseu-

dorandomness of binary functions defined on r-almost s-uniform trees.

The measures of pseudorandomness of binary functions are introduced;

the connection between these measures is analyzed; the size of these

measures for truly random binary functions is studied; binary functions

with strong pseudorandom properties are constructed.

1 Introduction

Recently in a series of papers a new constructive approach has been de-

veloped to study pseudorandomness of binary sequences

EN = {e1, . . . , eN} ∈ {−1, +1}N .
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In particular, in [25] first the following measures of pseudorandomness are

introduced: the well-distribution measure of EN is defined by

W (EN) = max
a,b,t
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∣

∣
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where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,

the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D
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en+d1 . . . en+dk
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where the maximum is taken over all D = (d1, . . . , dk) and M such that

0 ≤ d1 < · · · < dk ≤ N − M , and the normality measure of order k of EN is

defined as

Nk(EN ) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣

∣

∣
|{n : 0 ≤ n < M, (en+1, en+2, . . . , en+k) = X}|

−
M

2k

∣

∣

∣
.

Then the sequence EN is considered to be a “good” pseudorandom sequence

if both W (EN) and Ck(EN) (at least for “small” k) are “small” in terms of N ;

in particular, both are o(N) as N −→ ∞ (they showed that the normality

measures can be estimated in terms of the correlation measures). Indeed,

later Cassaigne, Mauduit and Sárközy [5] proved that this terminology is

justified since for almost all EN ∈ {−1, +1}N , both W (EN) and Ck(EN ) are

less than N1/2(log N)c; see also [3]. It was also shown in [25] that the Leg-

endre symbol forms a “good” pseudorandom sequence. In some other paper

further sequences were tested for pseudorandomness, further constructions

were given for sequences with good pseudorandom properties, and the mea-

sures of pseudorandomness were studied (in the next sections we will present

some further details of these results).

Later this theory of pseudorandomness of binary sequences has been ex-

tended in various directions: pseudorandomness of binary vectors [31], bi-

nary lattices [17], [18], [19], [20], [21], [22], [24], [27], [29], [30], subsets of
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{1, 2, . . . , n} [6], [7], [8], subsets of Zn [9], [10], sequences of k symbols [1],

[4], [13], [26], [23], etc. have been studied. In this paper our goal is to con-

tinue this work by studying pseudorandomness of binary functions on finite

almost uniform trees. More precisely, we will study finite r-almost s-uniform

trees with r ≥ 2, s ≥ 2:

Definition 1 If r, s ∈ N and r ≥ 2, s ≥ 2, then a tree is called an r-almost,

s-uniform tree if the root has r children and, except for the vertices in the

last row, all the other vertices have s children.

If r = s then the tree is called s-uniform tree, and in the r = s = 2 special

case the tree is called uniform binary tree.

First we show a uniform binary tree:

• • • • • • • •

• • • •

• •

•

Figure 1.

Next we present a 4-almost 3-uniform tree:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • •

• • • •

•

Figure 2.

These are the most important special cases: the uniform binary trees and

the 4-almost 3-uniform trees. The importance of the uniform binary trees is

clear, while the significance of the 4-almost 3-uniform trees is that there is a
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bijection between the k-letter reduced words of a free group on two generators

and the paths (of length k) connecting the root of a 4-almost 3-uniform tree

of “height” k (of k + 1 rows) with one of the vertices in the last row. (See

[34].) Indeed, this connection with the free groups is the reason of that we

are also considering trees where the number of the children of the root is not

necessarily the same as the common number of children of all other vertices.

Denote the set of the vertices of a tree T by P(T ).

Definition 2 A binary function on the tree T is a function f of the type

f : P(T ) → {−1, +1}.

In this paper our goal is to study pseudorandomness of binary functions

defined on r-almost s-uniform trees. We will introduce measures of pseudo-

randomness of binary functions of this type; we will analyze the connection

between these measures; we will study the size of these measures for truly

random binary functions; and we will construct binary functions with strong

pseudorandom properties.

2 Notations, terminology, connection with bi-

nary sequences, the measures of pseudoran-

domness

Throughout this paper we will use the following notations:

Tree will always mean an r-almost s-uniform rooted tree for some r, s.

We will use the words path, distance, height, subtree in the usual sense.

Definition 3 If T is an r-almost s-uniform tree, then a rooted subtree T ′ of

T is called a proper subtree of T if either its root is the root of T and it is

an r′-almost s-uniform tree for some r′ ≤ r, or its root is different from the

root of T and it is an s-uniform tree.
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We will use the word row in the following sense: the root forms the first

row, the children of the root form the second row, and in general, the i-th row

consists of the children of the vertices in the i − 1-st row. Thus an r-almost

s-uniform tree of height k has k + 1 rows.

Consider an r-almost s-uniform tree, and draw it as in Figure 1 and

Figure 2: the root is on the top, and the rows are drawn in horizontal lines.

The j-th vertex from the left in the i-th row will be denoted by P (i, j) (so

that, starting from the left, the vertices in the i-th row are P (i, 1), P (i, 2),

P (i, 3), . . . ).

From now on, we will formulate some basic facts in forms of propositions.

It is an easy exercise to prove these facts (see [32], [35] for an approach of

this type), thus we will not present the proofs.

Proposition 1 The number of vertices in the i-th row of an r-almost s-

uniform tree is 1 if i = 1 (then this single vertex is the root P (1, 1)), and rsi−2

if i ≥ 2 (then these vertices are denoted by P (i, 1), P (i, 2), . . . , P (i, rsi−2)).

Proposition 2 The total number N = N(T ) of vertices of an r-almost s-

uniform tree T of height k(≥ 1) is

N = N(T ) = 1 + r + rs + rs2 + · · · + rsk−1 = 1 + r
sk − 1

s − 1
.

(The number of vertices of a tree T will be always denoted by N = N(T ).)

We will also use the following alternative notation for the vertices: The

root is denoted by Q1 : Q1 = P (1, 1), the vertices in the second row by

Q2, Q3, . . . , Qr+1 : Q2 = P (2, 1), Q3 = P (2, 2), . . . , Qr+1 = P (2, r); the

vertices in the third row by Qr+2, Qr+3, . . . , Q1+r(s+1) : Qr+2 = P (3, 1),

Qr+3 = P (3, 2), . . . , Q1+r(s+1) = P (3, rs), and so on; finally QN denotes the

last vertex in the last row: QN = P (k + 1, rsk−1).

Proposition 3 Define y(i), y′(i) so that Qy(i) = P (i, 1) is the first vertex in
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the i-th row and Qy′(i) = P (i, rsi−2) is the last one. Then we have

y′(1) = y(1) = 1

y′(i) = y(i) + rsi−2 − 1 for i > 1,

y′(i) = y(i + 1) − 1 for i ≤ k,

y′(k + 1) = N,

y(i) = 2 + r
si−2 − 1

s − 1
for i > 1,

y′(i) = 1 + r
si−1 − 1

s − 1
for i > 1

and the j-th vertex in the i-th row is

P (i, j) = Qy(i)+j−1 = Q
r si−2

−1
s−1

for i > 1.

To any binary function f : P(T ) → {−1, +1} defined on an r-almost

s-uniform tree T of height k one may assign the unique binary sequence

EN = EN(f, T ) = (e1, e2, . . . , eN) ∈ {−1, +1}N (2.1)

defined by

en = f(Qn) for n = 1, 2, . . . , N. (2.2)

Now we are ready to introduce the measures of pseudorandomness of

binary functions defined on r-almost s-uniform trees T .

The most natural way of measuring the uniformity of the distribution of

the binary function f over T relative to arithmetic progressions is to study

the analogous property of EN(f, T ).

Definition 4 The well-distribution measure of the binary function f over

T is defined by

W (f, T ) = W (EN(f, T )).

Note that k-ary functions on uniform trees (uniform trees coloured by

k colours instead of using 2 colours as we do) and arithmetic progressions
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also appear in a paper of Furstenberg and Weiss [11]. However, there are

two basic differences between their problem and the problem studied by us

here. First, they consider arithmetic progressions along paths only, while we

consider arithmetic progressions lying in (one or more) rows. Secondly, they

are looking for the extreme case of monochromatic arithmetic progressions,

while we are interested whether the distribution in arithmetic progression is

“typical”, “random type” or it is not.

The definition of correlation is not so simple. We propose the following

definition:

Definition 5 For k ≥ 2 and ℓ ≥ 2 the correlation measure Ck,ℓ(f, T ) of

height k and order ℓ of f over T is defined in the following way: consider ℓ

different isomorphic proper subtrees T1, T2, . . . , Tℓ of height k of T , denote the

set of their vertices by P1,P2, . . . ,Pℓ, and for t = 1, 2, . . . , ℓ let Pt = {Pt(i, j) :

i = 1, 2, . . . , k + 1, j = 1, 2, . . . , q(i)} = {Qt,n : n = 1, 2, . . . , N(Tt)} (note

that both the number of vertices in the i-th row and N(Tt) are independent

of t by the isomorphism), and write

U(T1, T2, . . . , Tℓ) =

k+1
∑

i=1

q(i)
∑

j=1

f(P1(i, j))f(P2(i, j)) · · ·f(Pℓ(i, j))

=

N(Tt)
∑

n=1

f(Q1,n)f(Q2,n) . . . f(Qℓ,n).

Then

Ck,ℓ(f, T ) = max
T1,T2,...,Tℓ

|U(T1, T2, . . . , Tℓ)|

where the maximum is taken over all ℓ-tuples T1, T2, . . . , Tℓ of proper subtrees

of the type described above.

Definition 6 The universal correlation measure of order ℓ of f over T is

defined by

C̃ℓ(f, T ) = max
k

Ck,ℓ(f, T ).

(The normality measure will be introduced and studied later.)
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3 The measures of f and the associated se-

quence EN . The measures of f in the truly

random case.

We will prove the following theorem:

Theorem 1 If T is an r-almost s-uniform tree of height K, f is a binary

function on T , and k, ℓ ∈ N 1 ≤ k ≤ K and ℓ ≥ 2, then

Ck,ℓ(f, T ) ≤ (k + 1)Cℓ(EN (f, T )). (3.1)

Corollary 1 For ℓ ≥ 2 we have

C̃ℓ(f, T ) <

(

log N/r

log s
+ 2

)

Cℓ(EN(f, T )). (3.2)

Proof of Theorem 1. Defining the isomorphic proper subtrees T1, T2, . . . , Tℓ

as in Definition 5, we have

U(T1, T2, . . . , Tℓ) =

k+1
∑

i=1

q(i)
∑

j=1

f(P1(i, j))f(P2(i, j)) . . . f(Pℓ(i, j)). (3.3)

For 1 ≤ t ≤ ℓ, let emt
denote the element of EN assigned to Pt(i, 1). Then

m1, m2, . . . , mℓ are distinct, since T1, T2, . . . , Tℓ are distinct; we may assume

that m1 < m2 < · · · < mℓ. Define dt by dt = mt − 1 for t = 1, 2, . . . , ℓ. Then

by Proposition 3 the absolute value of the inner sum in (3.3) is

∣

∣

∣

∣

∣

∣

q(i)
∑

j=1

f(P1(i, j))f(P2(i, j)) . . . f(Pℓ(i, j))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

q(i)
∑

j=1

em1+j−1em2+j−1 . . . emℓ+j−1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

q(i)
∑

j=1

ej+d1ej+d2 . . . ej+dℓ

∣

∣

∣

∣

∣

∣

≤ Cℓ(EN (f, t)). (3.4)
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It follows from (3.3) and (3.4) that

U(T1, T2, . . . , Tℓ) ≤ (k + 1)Cℓ(EN (f, T ))

which proves (3.1).

Proof of Corollary 1. By Proposition 2 we have

N > rsK−1

whence

K <
log n/r

log s
+ 1

and using this, (3.2) follows from (3.1).

It was shown in [5] (by using Weil’s theorem [36], that for almost all

EN ∈ {−1, +1}N , both W (EN) and Cℓ(EN ) are around N1/2 (in a slightly

sharper form); these results were sharpened in [3] where it was proved that

for every ℓ ∈ N, ε > 0 there is a δ > 0 such that for large N we have

P

(

δN1/2 < W (EN) <
1

δ
N1/2

)

> 1 − ε (3.5)

and

P

(

δ (ℓN log N)1/2 < Cℓ(EN ) <
1

δ
(ℓN log N)1/2

)

> 1 − ε. (3.6)

It follows from these results, Definition 4 and Corollary 1 that for every

ℓ ∈ N, ε > 0 there is a δ > 0 such for a large N and more than (1 − ε)2N

binary functions f : P(T ) → {−1, +1} (where again N = N(T )) we have

δN1/2 < W (f, T ) <
1

δ
N1/2

and

C̃ℓ(f, T ) <
1

δ
(ℓN)1/2(log N)3/2. (3.7)

On the other hand, it does not follow from the earlier results that for more

than (1 − ε)2N binary functions f : P(T ) → {−1, +1} we have

C̃ℓ(f, T ) > δN1/2.

Thus we will prove
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Theorem 2 For every ε > 0, ℓ ∈ N, ℓ ≥ 2, r, s ∈ N, r, s ≥ 2 there are

numbers δ = δ(ε, ℓ, r, s) and N0 = N0(ε, ℓ, r, s) such that if T is an r-almost

s-uniform tree with N = N(T ) > N0, then for more than (1 − ε)2N binary

functions f : P(T ) → {−1, +1} we have

δN1/2 < C̃ℓ(f, T ). (3.8)

(Note that there is a logarithm power gap between the lower bound (3.8)

and upper bound (3.7). One might like to close this gap; it is not clear which

one of the two bounds is closer to the truth.)

Proof of Theorem 2. Denote the height of T by k, and let f(Q1) =

f(P (1, 1)) = e1, f(Q2) = f(P (2, 1)) = e2, . . . , f(QN) = f(P (k +1, rsk−1)) =

eN be independent random variables of distribution

P (ei = +1) = P (ei = −1) =
1

2
. (3.9)

We have to show that

P
(

δN1/2 < C̃ℓ(f, T )
)

> 1 − ε (3.10)

(for δ small enough and N large enough in terms of ε, ℓ, r and s).

Now define the integer i so that the i-th row is the first row of T which

contains at least ℓ vertices. In other words, we have

i = 2, if ℓ ≤ r (3.11)

and i is defined by

rsi−3 < ℓ ≤ rsi−2 if ℓ > r. (3.12)

Let T1, T2, . . . , Tℓ denote the s-uniform subtrees of T whose roots are P (i, 1),

P (i, 2), . . . , P (i, ℓ) (the first ℓ vertices of the i-th row of T ) and whose height

is k − i + 1 (so that the vertices in their last rows belong to the last row of

T ). Moreover, for 1 ≤ t ≤ ℓ let T ′
t denote the s-uniform subtree of T that we
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get from Tt by dropping its last row (so that the root of T ′
t is P (i, t) and its

height is k − i). Finally, define m by

Qm+1 = P (k + 1, 1)

(in other words, the last vertex in the k-th row of T is Qm).

First we select the values of e1, e2, . . . , em and em+sk−i+1+1, em+sk−i+1+2, . . . , eN

(each of them are selected according to the law (3.9)). We will show that

independently of the choice of these ej ’s, the remaining ej ’s, i.e.,

em+1, em+2, . . . , em+sk−i+1 (3.13)

can be selected with probability > 1 − ε so that the event

δN1/2 < C̃ℓ(f, T ) (3.14)

holds.

For j = 1, 2, . . . , sk−i+1, write

gj =

ℓ−1
∏

t=1

f
(

P
(

k + 1, j + tsk−i+1
))

(

=

ℓ
∏

t=1

em+j+tsk−i+1

)

,

and define hj by

hj = em+jgj

(

for j = 1, 2, . . . , sk−i+1
)

. (3.15)

For every fixed choice of the ej ’s not in (3.13) i.e., for any g1, g2, . . . , gsk−i+1 ∈

{−1, +1}, the hj ’s in (3.15), together with the em+j ’s are distributed accord-

ing to the law in (3.9) so that

P (hj = −1) = P (hj = +1) =
1

2

(

for j = 1, 2, . . . , sk−i+1
)

. (3.16)

Write S = h1 + h2 + · · · + hsk−i+1. By (3.16), the expectation of S is 0, its

standard deviation is 1
2

(

sk−i+1
)1/2

, thus by the central limit theorem the limit

distribution of S/1
2

(

sk−i+1
)1/2

for sk−i+1 → ∞ (which follows from N → ∞)
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is Gaussian distribution. It follows that if N is large enough and δ(> 0) is

small enough in terms of ε, ℓ, r and s, then the probability of the event

|S|
1
2
(sk−i+1)1/2

> 8δ(ℓs)1/2 (3.17)

is greater, than 1− ε uniformly for any fixed choice of the ej ’s not in (3.13),

so that for a random choice of the binary function f : P(T ) → {−1, +1} we

have

P

(

|S|
1
2
(sk−i+1)1/2

> 8δ(ℓs)1/2

)

> 1 − ε.

Thus in order to prove (3.10), it suffices to show that the event (3.14) follows

from the event (3.17).

Assume that (3.17) holds. For t = 1, 2, . . . , ℓ, denote the vertices of

the subtrees Tt and T ′
t by Pt(r, j) (=the j-th vertex in the r’s row) and

P ′
t (r, j), respectively (so that Pt(r, j) = P ′

t (r, j) for r = 1, 2, . . . , k − i + 1,

j = 1, 2, . . . , sr−1). Then by (3.12),(3.17) and Proposition 2, we have

|U(T1, T2, . . . , Tℓ) − U(T ′
1, T

′
2, . . . , T

′
ℓ)| =

∣

∣

∣

∣

∣

k−i+2
∑

r=1

sr−1
∑

j=1

f(P1(r, j))f(P2(r, j)) . . .

f(Pℓ(r, j)) −
k−i+1
∑

r=1

sr−1
∑

j=1

f(P ′
1(r, j))f(P ′

2(r, j)) . . . f(P ′
ℓ(r, j))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sk−i+1
∑

j=1

f(P1(k − i + 2, j))f(P2(k − i + 2, j)) . . . f(Pℓ(k − i + 2, j))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

sk−i+1
∑

j=1

f(P (k + 1, j))f(P (k + 1, j + sk−i+1)) . . .

f(Pℓ(k + 1, j + (ℓ − 1)sk−i+1))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sk−i+1
∑

j=1

em+jgj

∣

∣

∣

∣

∣

∣

= |S|

> 4δ
(

ℓsk−i+2
)1/2

> 4δ
(

rsi−3sk−i+2
)1/2

= 4δ(rsk−1)1/2 = 2δ

(

2r
sk

s/2

)1/2

> 2δ

(

2r
sk − 1

s − 1

)1/2

≥ 2δN1/2.
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It follows from this inequality that

max{U(T1, T2, . . . , Tℓ), U(T ′
1, T

′
2, . . . , T

′
ℓ)} ≥ δN1/2

whence by Definitions 5 and 6,

C̃ℓ(f, T ) = max
j

Cj,ℓ(f, T ) ≥ max{Ck−i+1,ℓ(f, T ), Ck−i,ℓ(f, T )}

≥ max{U(T1, T2, . . . , Tℓ), U(T ′
1, T

′
2, . . . , T

′
ℓ)} ≥ δN1/2

which proves (3.14) (assuming (3.17)) and thus also (3.10).

Based on these facts, we may say that a binary function f : P(T ) →

{−1, +1} is a “good pseudorandom binary function”, “it possesses strong

pseudorandom properties” if W (f, T ) and C̃ℓ(f, T ) (at least for small ℓ) are

small in terms of N = N(T ); they must be o(N), and ideally they are

O(N1/2+ε).

Note that if T is an r-almost s-uniform tree with N = N(T ), then any

“good” pseudorandom binary sequence EN = (e1, e2, . . . , eN) ∈ {−1, +1}N

induces a “good” pseudorandom binary function f : P(T ) → {−1, +1}.

Namely, if we define f by f(Qn) = en (for n = 1, 2, . . . , N) and EN possesses

good pseudorandom properties, then by Definition 4 and Corollary 1 the

binary function f also possesses good pseudorandom properties.

Referring to the statement of the last paragraph, the referee of this paper

asked the following question: “What can be said about the converse?” The

answer to this question is that the converse of this statement is not true:

it may occur that the binary function f : P(T ) → {−1, +1} possesses

good pseudorandom properties but the associated binary sequence EN (f, T )

does not; more precisely, it may occur that both W (f, T )(= W (EN(f, T )))

and C̃ℓ(f, T ) (for almost all “small” ℓ) are “small”(= o
(

N1/2+ε
)

), however

C2(EN(f, T )) is “large” (≫ N). This can be shown by the following example:

Example 1 Consider the uniform binary tree T of height k, so that it has

N = N(T ) = 2k+1 − 1 vertices, and its vertices in the last row are Q2k =
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P (k + 1, 1), Q2k+1 = P (k + 1, 2), . . . , QN = Q2k+1−1 = P (k + 1, 2k). Define

the binary function f : P(T ) → {−1, +1} so that f (Q1) = f(P (1, 1)) =

e1 (∈ {−1, +1}), f (Q2) = f(P (2, 1)) = e2 (∈ {−1, +1}), . . . , f (Q2k+2k−1) =

f(P (k+1, 2k−1 +1)) = e2k+2k−1 (∈ {−1, +1}) in a truly random way, and let

f (Q2k+2k−1+i) = f(P (k + 1, 2k−1 + 1 + i)) = e2k+2k−1+i = e2k−1+i

= f(P (k + 1, i)) = f (Q2k+i−1) .

Then we have

C2(EN(f, T )) ≥

∣

∣

∣

∣

∣

∣

2k−1−1
∑

i=1

e2k−1+ie2k+2k−1+i

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2k−1−1
∑

i=1

1

∣

∣

∣

∣

∣

∣

= 2k−1 − 1 ≫ 2k+1 − 1 = N.

On the other hand, it is easy to see that with probability > 1 − ε we have

W (f, T ) ≪ N1/2(log N)c for some c > 0, and it could be shown with a

little work that for every fixed ℓ with probability > 1 − ε we also have

Cℓ(f, T ) ≪ N1/2(log N)c for some c = c(ℓ) > 0. (Observe that for this f

and e.g., ℓ = 2 the estimate of the sum in Definition 5 can be reduced to

O(log N) sums of form
M
∑

n=m

enen+d

where 1 ≤ m < m+M ≤ 2k +2k−1, and by the structure of the construction

we have d 6= 0.)

Thus, e.g., we may construct a “good” pseudorandom binary function f on

a given almost uniform tree T by using the Legendre symbol. Let N = N(T ),

and let p denote the smallest odd prime with N < p so that by Tchebycheff’s

theorem we have p ≤ 2N . Then consider the Legendre symbol sequence

Ep−1 = (e1, e2, . . . , ep−1) defined by

en =

(

n

p

)

for n = 1, 2, . . . , p − 1. (3.18)

14



It was shown in [25] that for this binary sequence Ep−1 we have

W (Ep−1) ≪ p1/2 log p (3.19)

and

Cℓ(Ep−1) ≪ ℓp1/2 log p (3.20)

(in [25] slightly different notation was used). Then consider the binary func-

tion

λ : P(T ) → {−1, +1} (3.21)

associated with the truncated binary sequence EN = (e1, e2, . . . , eN ). It

follows from definition 4, Corollary 1, (3.19) and (3.20) that for this binary

function we have

W (λ, T ) = W (EN(λ, T )) ≪ p1/2 log p ≪ N1/2 log N

(recall that p < N < 2p) and

C̃ℓ(λ, T ) ≪ (log N)Cℓ(EN (λ, T )) ≪ (log N)ℓp1/2 log p ≪ ℓN1/2(log N)2.

(3.22)

By Corollary 1, the correlation of order ℓ of a binary function f can be

estimated from above in terms of the correlation of order ℓ of the associated

sequence EN , i.e., if Cℓ(EN (f, T )) is small, then C̃ℓ(f, T ) also must be small.

One might like to know whether the converse of this is also true, i.e., if

C̃ℓ(f, T ) is small, then Cℓ(EN(f, T )) also must be small? We will show that

the answer to this question is negative. To simplify the discussion we will

restrict ourselves to uniform binary trees and to the special case ℓ = 2 but

the proof could be extended to the general case.

We will start out from a slight modification of the Legendre symbol con-

struction above. Consider a uniform binary tree T , write N = N(T ), and let

p denote the smallest prime p with 4N < p (so that now p is slightly greater

than above). Then we have

4N < p < 8N. (3.23)
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Define the Legendre symbol sequence (3.18) and the binary function λ in

(3.21) as above. Note that (3.22) also holds for this modified construction

(only the implicit constant changes).

Let T ′ denote the uniform binary tree obtained from T by adding one

more row: Denote the height of T ′ by H so that N = N(T ) = 2H − 1 and,

writing N ′ = N(T ′), we have N ′ = 2H+1 − 1. Let λ′ : P(T ′) → {−1, +1}

denote the extension of λ from T to T ′ defined by

λ′(P (i, j)) = λ(P (i, j)) for 1 ≤ i ≤ H, 1 ≤ j ≤ 2i−1

and

λ′(P (H + 1, 2j − 1)) = λ′(P (H + 1, 2j)) = λ(P (H, j)) for 1 ≤ j ≤ 2H−1

(so that λ′ assumes the same value on the vertices of the last row of T as

on their children). Then the binary sequences EN = EN(λ, T ) and EN ′ =

EN ′(λ′, T ′) are

EN = (e1, e2, . . . , eN) =

((

1

p

)(

2

p

)

, . . . ,

(

N

p

))

(3.24)

and

EN ′ = (e1, e2, . . . , eN ′) =

(

(

1

p

)(

2

p

)

, . . . ,

(

N

p

)

,

(

2H−1

p

)

,

(

2H−1

p

)

,

(

2H−1 + 1

p

)

,

(

2H−1 + 1

p

)

, . . . ,

(

2H − 1

p

)

,

(

2H − 1

p

)

)

. (3.25)

Theorem 3 Defining T ′, f ′ and N ′ in this way we have

C̃2(λ
′, T ′) ≪ N1/2(log N)2 (3.26)

and

C2(EN ′(λ′, T ′)) ≫ N ′. (3.27)
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Proof of Theorem 3. In order to prove (3.26) we have to show that defining

T1, T2 and U(T1, T2) as in Definition 5 with T ′, λ′ and 2 in place of T, f and

ℓ, the inequality

∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

≪ N1/2(log N)2 (3.28)

holds. To prove this we have to distinguish three cases.

CASE 1. T1, T2 are subtrees of T , i.e., no vertex of the last row of T ′ is

among the vertices of T1 and T2. Then by the construction we have

∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ(P1(i, j))λ(P2(i, j))

∣

∣

∣

∣

∣

∣

≤ C̃2(λ, T )

whence (3.28) follows by (3.22).

CASE 2. Assume that one of T1 and T2, say T1 is a subtree of T , but the

last row of the other one, T2 consists of consecutive elements of the last row

of T ′. Then we have
∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

k
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

q(k+1)
∑

j=1

λ′(P1(k + 1, j))λ′(P2(k + 1, j))

∣

∣

∣

∣

∣

∣

.

(3.29)

Here the first double sum can be estimated as the one in Case 1:
∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

≤ C̃2(λ, T ) ≪ N1/2(log N)2. (3.30)
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By (3.24), (3.25) and our assumption on T1 and T2, the last sum is of the

form

∣

∣

∣

∣

∣

∣

q(k+1)
∑

j=1

(

a + j

p

)

λ′(P ′(H + 1, 2b + j))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

q(k+1)
2
∑

u=1

(

a + 2u

p

)(

d + u

p

)

+

q(k+1)
2
∑

u=1

(

a + 2u − 1

p

)(

d + u

p

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

q(k+1)
2
∑

u=1

(

(a2−1 + u) (d + u)

p

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

q(k+1)
2
∑

u=1

(

((a − 1)2−1 + u) (d + u)

p

)

∣

∣

∣

∣

∣

∣

(3.31)

where a, d are integers with

0 ≤ a ≤ N − q(k + 1) = 2H − 1 − q(k + 1) (3.32)

2H−1 − 1 ≤ d ≤ N ′ − 1 = 2H+1 − 1 (3.33)

(and 2−1 denotes the multiplicative inverse of 2 modulo p).

Now we need the following well-known consequence of Weil’s theorem

[36]:

Lemma 1 If p is a prime, χ is a non-principal character modulo p of order

D, g(x) ∈ Fp[x] is not of the form a(h(x))d with a ∈ Fp, h(x) ∈ Fp[x], y ∈ Z,

z ∈ N and z ≤ p, then we have

∣

∣

∣

∣

∣

y+z
∑

n=y

χ(g(n))

∣

∣

∣

∣

∣

≤ 10tp1/2 log p

where t denotes the number of distinct zeros of g(x).

(See e.g. [12], [25], [33] for different versions of this lemma.)

To use this lemma (with χ(n) =
(

n
p

)

) for estimating the sums in (3.31),

we have to show that the polynomials of u there are not perfect squares, i.e.,

a2−1 6≡ d (mod p) and (a − 1)2−1 6≡ d (mod p)

18



or, in equivalent form,

a 6≡ 2d (mod p) and a − 1 6≡ 2d (mod p). (3.34)

By (3.23), (3.32) and (3.33) we have

−1 ≤ a − 1 < a ≤ 2H − 1 − q(k + 1) (3.35)

and

2H − 2 = 2
(

2H−1 − 1
)

≤ 2d ≤ N ′ − 1 = 2N + 1 ≤ 4N − 1 < p − 1. (3.36)

The case q(k + 1) = 1 is trivial (then the upper bound in (3.31) is O(1)).

Thus we may assume that q(k + 1) > 1. Then by (3.35) and (3.36) we have

−1 ≤ a − 1 < a < 2d < p − 1

and (3.34) follows from this. Thus the lemma can be applied, and then we

obtain from (3.31) that

∣

∣

∣

∣

∣

∣

q(k+1)
∑

j=1

λ′(P1(k + 1, j))λ′(P2(k + 1, j))

∣

∣

∣

∣

∣

∣

≪ p1/2 log p ≪ N1/2 log N (3.37)

(which also holds for q(k + 1) = 1).

(3.28) follows from (3.30) and (3.37).

CASE 3. Assume that the last row of both T1 and T2 consists of consec-

utive elements of the last row of T ′. Then as in (3.29) and (3.30) in Case 2,

we obtain
∣

∣

∣

∣

∣

∣

k+1
∑

i=1

q(i)
∑

j=1

λ′(P1(i, j))λ
′(P2(i, j))

∣

∣

∣

∣

∣

∣

≪ N1/2(log N)2

+

∣

∣

∣

∣

∣

∣

q(k+1)
∑

j=1

λ′
1(P1(k + 1, j))λ′

2(P2(k + 1, j))

∣

∣

∣

∣

∣

∣

. (3.38)
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The last term can be rewritten as
∣

∣

∣

∣

∣

∣

q(k+1)
2
∑

u=1

(

a + u

p

)(

b + u

p

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

q(k+1)
2
∑

u=1

(

(a + u)(b + u)

p

)

∣

∣

∣

∣

∣

∣

with some integers a, b such that

0 ≤ a < b < p.

Then again we may apply Lemma 1 to estimate this sum, and we obtain
∣

∣

∣

∣

∣

∣

q(k+1)
∑

j=1

λ′
1(P1(k + 1, j))λ′

2(P2(k + 1, j))

∣

∣

∣

∣

∣

∣

≪ p1/2 log p ≪ N1/2 log N. (3.39)

(3.28) follows from (3.38) and (3.39), and this completes the proof of (3.26).

Now we will prove (3.27). e1, e2, . . . , eN ′ are defined as in (3.25), then

C2(EN ′(λ′, T ′)) ≥

∣

∣

∣

∣

∣

N ′−1
∑

n=N+1

enen+1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

N+1≤n≤N ′−1
2|n

enen+1 +
∑

N+1≤n≤N ′−1
2∤n

enen+1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

N+1≤n≤N ′−1
2|n

1 +
2H−2
∑

m=2H−1

(

m

p

)(

m + 1

p

)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N ′ − N

2
+

2H−2
∑

m=2H−1

(

m(m + 1)

p

)

∣

∣

∣

∣

∣

∣

. (3.40)

Since N = 1
2
N ′ + O(1) and, by (3.23) and Lemma 1,
∣

∣

∣

∣

∣

∣

2H−2
∑

m=2H−1

(

m(m + 1)

p

)

∣

∣

∣

∣

∣

∣

≪ p1/2 log p ≪ N1/2 log N,

it follows from (3.40) that

C2(EN ′(λ′, T ′)) ≫ N
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which completes the proof of Theorem 3.

Numerous other properties of the measures of pseudorandomness of bi-

nary sequences have been studied [3], [2], [5], [14], [15], [16], [28]. In par-

ticular, min
EN∈{−1,+1}N

W (EN) and min
EN∈{−1,+1}N

Ck(EN) have been estimated; an

inequality between W (EN) and C2(EN) (and later Ck(EN)) has been proved;

for fixed k and ℓ, the connection between Ck(EN) and Cℓ(EN) has been an-

alyzed; an inequality between C2(EN ) and C3(EN ) has been proved. One

might like to look for analogues of these results for binary functions. How-

ever, these problems seem to be much more difficult for binary functions

than for binary sequences, and we have not been able to settle them. The

constructions, resp. the crucial ideas of the proofs which were used in the

case of binary sequences fail in the case of binary functions completely. Thus

we just do not know what to expect in the latter case. Before formulating

any conjectures in this directions, first one has to answer the following basic

questions (that we have not been able to settle either): Is it true, that if

r, s are fixed integers, 2k + 1 is a fixed odd integer, and N = N(T ) −→ ∞,

then min C̃2k+1(f, T ) = O(1) where the minimum is taken over all binary

functions defined on r-almost s-uniform trees of N vertices? Is it true, that

it follows from C̃2(f, T ) = o(N) that W (f, T ) = o(N)?

4 The normality measure

So far we have introduced and studied the well-distribution and corre-

lation measures of binary functions defined on r-almost s-uniform trees. In

this section we will introduce and study the normality measure of order k of

binary functions of this type. A simple way of defining the normality mea-

sure of order k of the binary function f : P(T ) → {−1, +1} would be to

define it in the same manner as the well-distribution measure (Definition 4),
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i.e., by

Nk(f, T ) = Nk(EN(f, T )).

However, this seems to be a rather artificial definition of not much use.

Instead, we propose to use the following more natural definition:

Definition 7 The normality measure Nk(f, T ) of order k (k ∈ N, k ≥

2) of the binary function f over the r-almost s-uniform tree T is defined

in the following way: Let τk denote the set of uniform binary subtrees of

height k of T . If G2k+1−1 = (g1, g2, . . . , g2k+1−1) ∈ {−1, +1}2k+1−1, then let

φ(f, T, G2k+1−1) denote the number of the subtrees T ′ ∈ τk such that the

binary sequence E2k+1−1 = E2k+1−1(f, T ′) assigned to the binary function

f : P(T ′) → {−1, +1} (restricted to T ′ and defined after Proposition 2) is

the given 2k+1 − 1 tuple G2k+1−1:

φ(f, T, G2k+1−1) = |{T ′ : T ′ ∈ τk, E2k+1−1(f, T ′) = G2k+1−1}| .

Then define Nk(f, T ) by

Nk(f, T ) = max
G

2k+1
−1

∈{−1,+1}2k+1
−1

∣

∣

∣

∣

φ

(

f, T, G2k+1−1) −
|τk|

22k+1−1

)
∣

∣

∣

∣

.

(So that Nk(f, T ) is defined as the maximal deviation between φ(f, T, G2k+1−1)

and its expected value for all the possible choices of G2k+1−1.)

As (3.6) shows, for fixed k, N → ∞ and a truly random binary sequence

EN ∈ {−1, +1}N one has

Cℓ(EN ) = O(N1/2+ε). (4.1)

It was proved in [25] (see Proposition 1) that for all N, EN and k < N we

have

Nk(EN) ≤ max
1≤t≤k

|Ct(EN)| . (4.2)
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Combining (4.1) and (4.2) we get that for fixed k, N → ∞ and a truly

random EN ∈ {−1, +1}N we have

Nk(EN ) = O(N1/2+ε).

One may expect that the measure Nk(f, T ) possesses an analogous property:

if k, r, s are fixed and we consider r-almost s-uniform trees T with N(T ) →

∞, then for a truly random binary function f over T one has

Nk(f, T ) = O
(

N(T )1/2+ε
)

. (4.3)

This is probably true but, unfortunately, we have not been able to prove

it. The difficulty is that the above argument cannot be adopted to binary

functions over trees: namely, there is no inequality of type (4.2) in other

words, it may occur that C̃t(f, T ) is small for all t ≤ k, however, Nk(f, T ) is

large. Indeed, we will show that this is the case for the especially important

Legendre symbol construction studied in (3.18) and (3.21) in Section 3. As

(3.22) shows, for this construction C̃t(λ, T ) is small for every fixed t, thus

it remains to show that Nk(λ, T ) is large (for fixed k). To simplify the

discussion we will restrict ourselves to uniform binary trees.

Theorem 4 Let k, K ∈ N, k ≤ K, let T denote uniform binary tree of

height K, and define the binary function λ : P(T ) → {−1, +1} by (3.18)

and (3.21). Then we have

Nk(λ, T ) >
22k+1−1−k − 1

22k+1−1

(

2K−k+1 − 1
)

. (4.4)

Note that for fixed k and K → ∞ this implies that

Nk(λ, T ) ≫ N(T )

(where the implicit constant factor depends on k).

Proof of Theorem 4. First we will compute |τk|. Denote the height of T

by K so that by Proposition 2 we have

N = N(T ) = 2K+1 − 1. (4.5)
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A subtree T ′ ∈ τk is uniquely determined by its root, and the root must

belong to one of the first K − k + 1 rows of T . Again by Proposition 2, the

total number of vertices of these rows is 2K−k+1 so that

|τk| = 2K−k+1 − 1. (4.6)

Let G denote the set of the 2k+1−1 tuples G2k+1−1 such that φ(λ, T, G2k+1−1) >

0, i.e., there is at least one T ′ ∈ τk with

E2k+1−1(λ, T ′) = (e′1, e
′
2, . . . , e

′
2k+1−1) = G2k+1−1. (4.7)

Now we will give an upper bound for |G|. Assume that G2k+1−1 =(g1, g2, g3, . . . , g2k+1−1) ∈

G, and there is a T ′ ∈ τk satisfying (4.7). We will show that

g1, g3, g5, . . . , g2k+1−1 (4.8)

uniquely determine

g2, g4, g6, . . . , g2k+1−2.

Indeed, assume that we are looking for g2ℓ with ℓ ∈ {1, 2, . . . , 2k − 1}. It

follows from (4.2) that

e′m = gm for m = 1, 2, . . . , 2k+1 − 1 (4.9)

and, in particular,

e′2ℓ = g2ℓ. (4.10)

Now consider a uniform binary tree T̃ . Denote its j-th vertex in the i-th

row by P̃ (i, j). We will say that P̃ (i, j) is an even vertex if j is even, and it is

said to be an odd vertex if j is odd. Note that if P̃ (i, j) is an odd vertex of T̃ ,

and it is also a vertex of a binary uniform subtree T̃ ′ of T̃ , then P̃ (i, j) is also

an odd vertex in T̃ ′. It follows from Proposition 3 that if a binary function

f : P(T̃ ) → {−1, +1} is given, and ẼN = ẼN(f, T̃ ) = (ẽ1, ẽ2, . . . , ẽN) (with

N = N(T̃ )) is the binary sequence associated with it (in the sense described

after Proposition 2), then we have

f
(

P̃ (i, j)
)

= ẽ2i−1+j−1. (4.11)
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It follows from this that the vertex P̃ (i, j) is odd if and only if the subscript

of the associated ẽn is even:

f
(

P̃ (i, j)
)

= ẽ2q (iff P̃ (i, j) is odd). (4.12)

Let us consider an odd vertex P (i, 2u−1) of T which is not the root; this

is the “left” child of the vertex P (i−1, u). Then by (3.18) and (4.11) we have

λ(P (i, 2u − 1)) = e2i−1+2u−2 =

(

2i−1 + 2u − 2

p

)

=

(

2

p

)(

2i−2 + u − 1

p

)

=

(

2

p

)

e2i−2+u−1 =

(

2

p

)

λ(P (i − 1, u)). (4.13)

Now we return to (4.10); then it follows from the discussion above that e′2ℓ

is associated with an odd vertex P ′(i, j) of T ′. Let us consider the directed

path starting from P ′(i, j) and ending with the root P ′(1, 1) of T ′. The root

P ′(1, 1) is an even vertex; let P ′(i, x, v) be the first even vertex along this

path. Denote the subscript of the element of E2k+1−1(λ, T ′) associated with

it by 2t − 1 (it must be odd by (4.12)) so that, by (4.9),

λ(P ′(i − x, v)) = e′2t−1 = g2t−1. (4.14)

Then using (4.13) repeatedly, we obtain from (4.14) that

g2ℓ = e′2ℓ = λ (P ′(i, j)) =

(

2

p

)x

λ (P ′(i − x, v)) =

(

2

p

)x

g2t−1

so that, indeed, g2ℓ is uniquely determined by g2t−1 (note that p is fixed, and

x is determined by ℓ).

The sequence (4.8) can be selected in at most 2k ways (since we have

gi ∈ {−1, +1} for all i) so that

|G| ≤ 2k. (4.15)

It follows from (4.15) by the pigeon hole principle that there is at least one

G2k+1−1 such that

φ(λ, T, G2k+1−1) ≥
|τk|

|G|
≥

|τk|

2k
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whence, by (4.6),

φ(λ, T, G2k+1−1) −
|τk|

22k+1−1
≥

|τk|

2k
−

|τk|

22k+1−1
=

22k+1−1−k − 1

22k+1−1
|τk|

=
22k+1−1−k − 1

22k+1−1

(

2K−k+1 − 1
)

which proves (4.4).

As we mentioned earlier, we conjecture that for truly random binary func-

tion f defined on a fixed r-almost s-uniform tree the normality measure of it

is small (more precisely, (4.3) holds) but we have not been able to prove this.

Thus one might like to present at least one example for a binary function with

small normality measure. In case of binary sequences the Legendre symbol

construction (3.18) is known to possess the best pseudorandom properties

(and in some other situations also the Legendre symbol provides the best

examples). However, as Theorem 4 shows here, somewhat unexpectedly, the

most natural Legendre symbol construction defined by (3.18) and (3.21) fails,

its normality measure is large. On the other hand, we will present another,

slightly more complicated Legendre symbol construction where the normality

measure (and the other pseudorandom measures as well) are small:

Theorem 5 Let p be a prime such that p > 3 and 2 is primitive root mod

p. Define the positive integer K by

2K+1 ≤ p < 2K+2, (4.16)

and let T denote the uniform binary tree of height K. Let c be a quadratic

non-residue modulo p, and define the binary function ρ : P(T ) → {−1, +1}

(where P(T ) = {Q1, Q2, . . . , QN}) by

ρ (Qn) =

(

n2 − c

p

)

for n = 1, 2, . . . , N = N(T ) = 2K+1−1(≤ p−1) (4.17)

(note that p ∤ n2 − c since c is quadratic non-residue modulo p, thus
(

n2−c
p

)

is defined). Then we have

Nk(ρ, T ) ≤ 20
(

2k−1 − 1
)

p1/2 log p(≪ 2kN1/2 log N) (4.18)
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for every k ∈ N with k ≤ K.

Note that it also follows from the results in [12], Definition 4 and Corollary

1 that W (ρ, T ) and C̃(ρ, T ) are also small. Moreover, we remark that it could

be shown that if (4.17) is replaced by

ρ (Qn) =

(

n − c

p

)

where |c| = O(1) and ℓ → +∞ slowly, then the normality measure of order

ℓ is large.

Proof of Theorem 5. We will use the notations of Section 1 and Definition

7. For

G2k+1−1 = (g1, g2, . . . , g2k+1−1) ∈ {−1, +1}2k+1−1,

we have to estimate φ(ρ, T, G2k+1−1), i.e., the number of the uniform binary

subtrees T ′ ∈ τk such that

E2k+1−1(ρ, T ′) =
(

e′1, e
′
2, . . . , e

′
2k+1−1

)

=
(

ρ(Q′
1), ρ(Q′

2), . . . , ρ(Q′
2k+1−1)

)

= G2k+1−1 = (g1, g2, . . . , g2k+1−1) (4.19)

where P(T ′) = {Q′
1, Q

′
2, . . . , Q

′
2k+1−1} is the vertex set of T ′. To simplify the

notation, write 2k+1 − 1 = H . Then (4.19) holds if and only if

e′t = ρ(Q′
t) = gt for 1 ≤ t ≤ H. (4.20)

Now consider a subtree

T ′ ∈ τk

whose root is the vertex Qn of T so that

Q′
1 = Qn, (4.21)

and, by (4.6) here the possible values of n are

n ∈ {1, 2, . . . , |τk|} = {1, 2, . . . , 2K−k+1 − 1}. (4.22)
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Since T and T ′ are uniform binary trees, it follows from (4.21) by Proposition

3 that the vertices of T ′ are

(Q′
1, Q

′
2, Q

′
3, Q

′
4, . . . , Q

′
H) = (Qn, Q2n, Q2n+1, Q4n, . . . , Q2kn+2k−1)

= (Qp1(n), Qp2(n), Qp3(n), Qp4(n), . . . , QpH(n), )

where pi(x) denotes the i-th polynomial in the sequence x, 2x, 2x+1, 4x, . . . , 2kx+

2k−1. Then by (4.17), (4.20) can be rewritten as

et′ = ρ(Q′
t) = ρ(Qpt(n)) =

(

pt(n)2 − c

p

)

= gt for 1 ≤ t ≤ H. (4.23)

Clearly for fixed T ′, i.e., for a fixed n satisfying (4.22) we have

1

2H

H
∏

t=1

(et′gt + 1) =
1

2H

H
∏

t=1

((

pt(n)2 − c

p

)

gt + 1

)

=







1 if (4.23) holds,

0 otherwise.

Since n may run over the integers in (4.22), thus writing M = |τk| = 2K−k+1−

1 we have
∣

∣

∣

∣

φ(ρ, T, G2k+1−1) −
|τk|

22k+1−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2H

M
∑

n=1

H
∏

t=1

((

pt(n)2 − c

p

)

gt + 1

)

−
M

2H

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2H

H
∑

ℓ=1

∑

1≤t1<···<tℓ≤H

M−1
∑

n=1

(

pt1(n)2 − c

p

)

gt1 . . .

(

ptℓ(n)2 − c

p

)

gtℓ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2H

H
∑

ℓ=1

∑

1≤t1<···<tℓ≤H

gt1 . . . gtℓ

M−1
∑

n=1

(

(pt1(n)2 − c1) . . . (ptℓ(n)2 − c)

p

)

∣

∣

∣

∣

∣

≤
1

2H

H
∑

ℓ=1

∑

1≤t1<···<tℓ≤H

|gt1 . . . gtℓ |

∣

∣

∣

∣

∣

M−1
∑

n=1

(

(pt1(n)2 − c1) . . . (ptℓ(n)2 − c)

p

)

∣

∣

∣

∣

∣

=
1

2H

H
∑

ℓ=1

∑

1≤t1<···<tℓ≤H

∣

∣

∣

∣

∣

M−1
∑

n=1

(

(pt1(n)2 − c1) . . . (ptℓ(n)2 − c)

p

)

∣

∣

∣

∣

∣

. (4.24)

Now we will apply Lemma 1 for estimating the innermost sum. To be able

to use this lemma with χ(n) =
(

n
p

)

, we have to show that here a typical

polynomial

f(n) = (pt1(n)2 − c1) . . . (ptℓ(n)2 − c) with 1 ≤ t1 < · · · < tℓ ≤ H(< p)

(4.25)
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is not of the form a(g(n))2 with a ∈ Fp, g(x) ∈ Fp[x].

The polynomial n2 − c is irreducible over Fp since c is a quadratic non-

residue modulo p. Thus for A 6= 0 a polynomial of form (An+B)2 − c is also

irreducible. It follows that the polynomials pi(n)2 − c are irreducible. Then

writing pi(n)2 − c as constant times a monic polynomial:

pi(n)2 − c = Ciqi(n)

(where the coefficient of the highest degree term of qi(n) is 1), the polynomials

qi(n) are irreducible. Now we will show:

Lemma 2 For 1 ≤ i < j ≤ H the polynomials qi(n), qj(n) are different.

Proof of Lemma 2 Let

pi(n) = 2un + v (with 1 ≤ u ≤ k < p, 0 ≤ v < 2u),

pj(n) = 2yn + z (with 1 ≤ y ≤ k < p, 0 ≤ z < 2y),

so that

pi(n)2 − c = 22u
(

n2 + 21−uvn + 2−2u(v2 − c)
)

= 22uqi(n)

and

pj(n)2 − c = 22y
(

n2 + 21−yzn + 2−2y(z2 − c)
)

= 22yqj(n)

If u = y then, by i 6= j, we must have v 6= z, so that clearly the coefficients

of n are different in qi(n) and qj(n), thus qi(n) and qj(n) are different.

If u 6= y, then we may assume that u < y. Write y − u = s (> 0) so that

2s < 2y ≤ 2k ≤ 2K ≤
1

2
p. (4.26)

Then qj can be rewritten as

qj(n) = n2 + 21−u−szn + 2−2u−2s(z2 − c).
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Assume that contrary to the conclusion of the lemma we have qi(n) = qj(n).

Then comparing the coefficients of n in qi(n) and qj(n) we get

21−uv ≡ 21−u−sz (mod p), (4.27)

2−2u(v2 − c) ≡ 2−2u−2s(z2 − c) (mod p). (4.28)

It follows from (4.27) that

z ≡ 2sv (mod p). (4.29)

By (4.28) and (4.29) we have

22s(v2 − c) ≡ z2 − c ≡ 22sv2 − c (mod p)

whence

22sc ≡ c (mod p),

22s ≡ 1 (mod p).

Since 2 is a primitive root modulo p, it follows that p − 1 | 2s so that by

s > 0, we have

p − 1 ≤ 2s

p − 1

2
≤ s

which contradicts (4.26), and this completes the proof of the lemma.

The polynomial f(n) in (4.25) can be written as

f(n) = C1C2 . . . Cℓq1(n)q2(n) . . . qℓ(n)

where C1C2 . . . Cℓ is constant and, by Lemma 2, q1(n), q2(n), . . . , qℓ(n) are

different irreducible polynomials. Then clearly, f(n) cannot be of the form

a(g(n))2 so that, indeed, we may apply Lemma 1 to estimate the innermost

sum in (4.24). Then we get from (4.24) that
∣

∣

∣

∣

φ(ρ, T, G2k+1−1) −
|τk|

22k+1−1

∣

∣

∣

∣

≤
1

2H

H
∑

ℓ=1

∑

1≤t1<···<tℓ≤H

10(2ℓ)p1/2 log p

< 20Hp1/2 log p = 20(2k−1 − 1)p1/2 log p
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which proves (4.18).
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