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1 Introduction

In this paper I will improve on a generalization of an inequality of Mauduit
and Sarkozy [6]. They introduced the following measures of pseudorandom-
ness in [3]:

For a binary sequence
EN = {61, ey eN} € {—1, +1}N,

write

ENat a, b Zetﬂ—]b

and, for D = (dy, ..., d;) with non-negative integers 0 < d; < --- < dy,
V(Ey, M, D) Zenm. Cnidy-
Then the well-distribution measure of Ey is defined as

E €a+ijb

W(EyN) = maX|U(EN,t a,b)| = max

a::

Y




where the maximum is taken over all a,b,t such that a € Z, b,t € N and
1<a+b<a+th <N, while the correlation measure of order k of Ey is

defined as

M
E en-i—dl; .. €n+dk

n=1

Y

Cr(En) = max |V (Ew, M, D)| = max

where the maximum is taken over all D = (di,...,d) and M such that
M +di < N.

In [6] Mauduit and Sarkozy proved that for all sequences Ey € {—1,+1}
we have W (Ey) < /NCy(Ey). Later in [3] this inequality was generalized
by me to correlation measure of any even order: If 3¢2 < N and Ey €
{=1,4+1}" then W(Ey) < 3¢N'=1/20 (Cyy(Ey))"Y. In the present paper
I will improve on the factor 3¢ showing that this inequality even holds with

an absolute constant factor:
Theorem 1 Ife >0, N > 18(/e%, then for all Ex € {—1,+1}" we have
W(EN) S (\/§+E)lel/(Zi)C2e(EN)l/(2ﬁ)‘

Mauduit and Sarkozy |6] also proved that their inequality is sharp by
using probabilistic arguments. In [3] I presented an explicit construction
for which the generalized inequality is sharp apart from a v/¢ factor. This
construction was based on the notion of index (discrete logarithm): Denote
ind n the index of n» modulo p, defined as the unique integer with

gnin =p (mod p),

and 1 <ind n < p—1, where ¢ is a fixed primitive root modulo p. Let ind*n

be the modulo m residue of ind n:

ind*n =ind n  (mod m) (1)



with 1 <ind*n < m.

Construction 1 Let m | p — 1 and ind*n be the function defined by (1).

Then let the sequence E,_ = {e1,...,ep,_1} be

+1 if1 <ind*f(n) < %, @
en =
-1 if 3 <ind"f(n) <m orp| f(n),

where f(z) € Fy[z] is a polynomial with the degree k.
In Theorem 1 and 3 in [3] I gave estimates for the well-distribution mea-

sure and correlation measures of this sequence E,_; if some, not too restric-

tive conditions hold on the polynomial f(z). Then

W(Ep_1) > pl—l/(”) (C%(Ep_l))l/(%) (3)

1
N

follows from these theorems, where the implied constant factor is absolute.
This inspired me to consider the simplest polynomial f(z) = z in Con-

struction 1, hoping that inequality (3) holds with a factor larger than ﬁ

Indeed we will study the following sequence:

Construction 2 Let m | p — 1 and ind*n be the function defined by (1).

Then let the sequence E,_y = {e1,...,e,_1} be

+1 4f1<ind'n < %,
€n = (4)
-1 if F <ind'n < m.

For this sequence we have:
Theorem 2 If m is even then the sequence in Construction 2 satisfies

W (E,_,) < 36p*?logplog(m + 1)
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while for odd m we have

-1
W(E,1) == + 0(p"*1ogplog(m + 1)).

m
Indeed, this is Theorem 1 in [3] in the special case when k, the degree of
the polynomial is 1.
In case of the correlation measure we will give slightly better upper bound

than in Theorem 3 (in the special case k = 1) in [3]:

Theorem 3 If m is even then the sequence in Construction 2 satisfies:
Cy(Ey-1) < 904" logp (logm)"

while for odd m we have

CelBy1) = - + O(5'p log p(log m)").

It follows from Theorems 2 and 3:

Corollary 1 For every € > 0 there exist positive constants po(e) and co(€)

such that if p > po(e) and m is an odd divisor of p — 1 with

m < co(s)% (5)
¢ (logp)
(s0 2 > 5¢pt/2log p (logm)"), then
W(Epr) > (1— )00 (Co(Bpr)) 0 (©

I remark that to make sure that condition (5) holds, first we fix an odd
integer m, and after this we look for a prime number p with m | p—1 and (5).

This is possible by Dirichlet’s theorem on primes in arithmetic progressions.
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So, indeed Theorem 1 is best possible apart from a constant factor. The
interesting feature of this proof is that it is explicit, we give a sequence for
which (6) holds. In the most cases there is only an existence proof for the

sharpness of an inequality between pseudorandom measures.

2 Proofs of Theorem 1 and 3

Proof of Theorem 1
It follows from the definition of W (Ey) that there exist a € Z, b,t € N
with 1 <a+b < a+th < N such that
wE=| Y e (7)

a+b<i<a+tb
i=a+b (mod b)

For 0 < h < b let

Dh d:ef ( Z 62')% -2/ Z €iy - - Ciyyp- (8)

a+b<i<a+tb a+b<11 < <i9p<a-+tb
i=h (mod b) h=i1=--=iy (mod b)

Using the multinomial theorem we get that D; is a sum of products of
the form c-e;, ...e;, where ¢ > 0. Thus D), takes his maximum when all e;’s
are +1 (or all ¢;’s are -1). So:

Dhg( Y 1)%—26! Y 1

a+b<i<a-+tb a+b<i1 <---<igp <a-+tb
i=h (mod b) h=i1=---=iy (mod b)

<t (t—1)(t—2)...(t—20) <t — (t —20)% < 44?1,



By this, (7) and (8) we have

(W(EN))ZZ < ( Z ei)ﬂ

h=0  a+b<i<a+tb
i=h (mod b)

(Dh + 20! Z €iy v em)

a+b<11 < <i9p<a-+tb
h=i1=---=is¢ (mod b)

>
Il
)

i

1

< (4£2t21£—1 + 20! Z €iy - - .em)

h=0 a+b<i1 < <iop<a+tb
h=i1=---=iy¢ (mod b)
= 4b£2t2£71 + 20! E €iy - - Eiyyp-
a+b<i1 < <igp<a-+tb
11=-=ig (mod b)

From this replacing i5 by 41 +dy, i3 by %1 +d> and so on, finally i9p by 41 +dor_1

we obtain

(W (En))* < 4b62¢%1 + 201

a+tb—dag 1

E E €iy €iytdy - - - Ciytdyg_ s - (9)

1<di <+ <dgg_1 <(t—1)b i1=a+b
d1=-=d2y—1=0 (mod b)

By the definition of the correlation measure we have
a+tb—dag—1

E : €i1€Ciy+dy - - Cigtdap
i1=a+b

By th < a+tb < N we have 4b0?t>~1 = 4¢%(tb)t**~2 < 4>N*~1 | and so from

< CyEy. (10)

(9) and (10) we obtain
201

20 < 2 A720—1 !
(W (Ex))? < 42N%*-1 4 20 =Ty

Cy(EN)

2/
=214+ —""— | N*1Cy(Ep).
( C%(EN)) 2¢(En)

From this by the binomial theorem we get:

W(EN) < (26)1/(%) <1 + ) Nl—l/(%) (CQZ(EN))I/(%) )

Co(EN)
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Kohayakawa, Mauduit, Moreira and V. Rédl [4] proved that Cy(Ey) >

MT]\;I) holds for all Ey € {—1,+1}" by this and since (2£)Y/() < /2 we

get:
3(2¢+1)

W(EN) < V2 (1 + N

) lel/(ﬂ) (Cg[(EN))l/(%) )

If N > 18//? > 6(2¢ + 1)/&? then this completes the proof of the theorem.
Proof of Theorem 3
The proof of the theorem is very similar to the proof of Theorem 1 in [2].

By the formula

1 » 1 ifm |ind @ — ind b,
= 3 X(a)x(b) =
m x:xm=1 0 ifm )[ ind ¢ — ind b,
we obtain
2 - i
(=2 Y, l-l=— > x(m)x(g’) — 1.
1<i<m/2 1<i<m/2 xxx™=1
i=ind n  (mod m)
Thus
2 o . —-1)m™ -1
=2 Y Y xone)+ T
1<i<m/2 x#xo:x™=1
To prove Theorem 3, consider any D = {di,ds,...,ds} with non-negative

integers d; < dy < --- < dy and positive integer M with M +d, < p — 1.



Then arguing as in [7, p. 382] with m in place of p — 1 from (11) we obtain:

¢ M (£ _1\m
Ve D)= 2T S Y w e + L

n=1j=1 | 1<i<m/2 x;#Xo0,
Xj'=1

(B E (5 s s

k=0 1<j1<-<jp <l Xj; 7X0r X, X0,

Xj; =1 X7, =1
M
Y Xi(ntdg) .. X, (n+di) [ ] ( > ij-(ge*)) ) :
n=1 t=1 \ 1<, <m/2

(12)

LetSO:M,VO:(%)eandforlgkgﬂlet

M
ZY1(n+dj1) . Yk(n'i_ djk)

n=1

S = max
X1ZX0y-XkFEX0
1<g1 << gp <L

and

Lk k
1
b X (3) T T I X wen
1< <<jp <L Xj X0 Xj, #X0, t=1 [1<l:<m/2
X5 =1 Xj, =1

Then by the triangle-inequality, the value of (_1{# and (12) we obtain that

if m is even then

2@
V(En, M, D)| < —55:Ve (15)
and
2 9t &
V(Ex,M,D) = — SV +0 | — D SV (16)
k=1

Next we give an upper bound for S;. In order to do this we will use the

following lemma:



Lemma 1 Suppose that p is a prime, x is a non-principal character modulo
p of order z, f € Fy[x] has s distinct roots in Fp, and it s not a constant
multiple of a z-th power of a polynomial over IF,. Lety be a real number with

0 <y <p. Then for any x € R:

< 9:3;01/2

> x(f()

z<n<lz+y

log p.

Poof of Lemma 1

This is a trivial consequence of Lemma 1 in [1]. Indeed, there this result
is deduced from Weil’s theorem, see [8].

Now let x be a modulo p character of order m; for simplicity we will
choose x as the character uniquely defined by x(g) = e (%)

Returning to the estimate of S, let %, = x% for v = 1,2, ..., ¢, whence

by X1 # Xos - - -, X¢ # Xo, we may take
1 <6, <m.

Thus in (13) we have

M M
Y Xintdi) . X+ di)| = DX+ dyy) . X (0 dy,)
n=1 n=1
M
=D x((n+di)™ ... (n+d;,)%)|.
n=1

Since (n +dj)" ... (n+ d;, )% is not a perfect m-th power, this sum can be

estimated by Lemma 1, whence

S < 9kp'/2log p. (17)



By (14) we have

1\ &k [m/2] _
Vo= Y (5) YD X
1<g1<jp <t X#xo, | =1
x"=1
Lemma 2
[m/2] 2

Z ZX Z T=x(o)] <2mlog(m+1).
x#xal, Jj=1 x;éXO,

Y=

Proof of Lemma 2 This is Lemma 3 in [2] with m in place of d and m/2
in place of (p — 1)/2, and it can be proved in the same way.

Using Lemma 2 we obtain

s 3 (2) (omtontm 1)) = B () oom + 1)

1< <jp <Ll
(18)
By (15), (16), (17) and (18) we obtain that if m is even then
V(Ew, M, D)| < 904p'/*logp (log(m + 1))",
and if m is odd then

V(EN,M,D):%+O( 1/210gpzk( ) log(m+1))>

M Ip'/?1
:_+O<M

- P (amlog(on + 1))

M
=310 (52191/2 log p (log(m + 1))2) ’

which completes the proof of the theorem.
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