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Chapter 1
Introduction

The generation of pseudorandom numbers plays an important role in
many fields of mathematics and physics, in particular in the problems of
cryptography or numerical analysis.

For example, in cryptography one of the most secure encrypting algorithm
is the one-time pad: First we convert the message into a bit sequence Ay =
{ai,...,an} € {0,1}" (e.g., to every letter of the alphabet we assign a
number represented in diadic form with the same number of digits), then
Ay is called plain-tert. Next, we generate a random binary sequence Ey =
{e1,...,en} € {0,1}¥ (called key-stream) with the same length of the plain-
text. We encrypt the plain-text Ay bitwise, by adding its elements modulo 2
to the elements of E. Then we get the encrypted message Fy = {f1,... fn}
which is called cipher-tezt. Indeed, f; = a;®e; where & is the bitwise addition
modulo 2 (XOR function)

AN: {ala"':a'N}
@ENI {61,...,6]\]}
=Fy: {fl,"'afN}'

Thus without knowing the key-stream FE, from the cipher-text Fy we
can not compute the plain-text Ay, while if we know the key-stream Ey, it is
a very easy exercise to compute Ay by using again bitwise addition modulo
2: a; = f; De.



The one-time pad is unconditionally secure regardless of the statistical
distribution of the plain-text, and is optimal in the sense that its key is the
smallest possible among all symmetric-key encryption schemes having this
property.

The one-time pad was widely used in the second world war and cold war.
The source of the random bits (which make up the one time pad) was usually
a physical device with two possible outputs occurring with (hopefully) equal
probability and varying in a (hopefully) random way, say, a diode. However,
random bit generators which are based on natural sources of randomness are
subject to influence by external factors, and also to malfunction. Thus it is
advised that these random bit generators must be tested by using statistical
tests (“frequency test”, “poker test”, “autocorrelation test”). Testing of this
type called “aposteriori testing” by Knuth [15].

So the use of the one-time pad is: a bit string is produced by a physical
device; the string is tested by statistical tests, each of the communicating
partners get a copy of the string, after use, they destroy it.

An obvious drawback of the one-time pad is that the key should be as long
as the plain-text which increases the difficulty of key-distribution and key
management. This motives the design of stream ciphers where the key-stream
is pseudorandomly generated from a smaller secret key, with the intent that
the key-stream appears random to a computationally bounded adversary.
Such stream ciphers do not offer unconditional security, but the hope is that

they are computationally secure. More exactly:

Definition 1 A pseudorandom bit generator is said to pass all polynomial
time statistical tests if no polynomial time algorithm can correctly distinguish
between an output sequence of the generator and a “truly” random sequence

of the same length with probability significantly greater than 1/2.

This definition could be disputed. For example, when we would like
to generate a finite pseudorandom binary sequence, say, of length N, then
this definition can not be used: it says nothing about the polynomial in
the “polynomial time algorithm”, there is no restriction for the degree or

the coefficients of the polynomial. How do they depend on N? Another
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problem with this definition is that the criterion measures only the quality of
the pseudorandom bit generator, but not that of the sequences constructed.
Finally, the non-existence of a polynomial time algorithm has never been
shown yet. Consequently no unconditional proof for the cryptographical
security of a pseudorandom bit generator has been given yet.

The first not very successfull attempts to define the pseudorandomness
of a single sequence was made by Golomb [7], resp. Knuth [15]. Then Kol-
mogorov and Chaitin introduced the notion of so-called Turing-Kolmogorov-
Chaitin complexity. While this complexity measure is of theoretical interest,
there is no algorithm known for computing it, hence it has no apparent prac-

tical significance. More interesting is:

Definition 2 The linear complezity of a finite binary sequence Ey, denoted
by L(Ey), is the length of the shortest linear feedback shift register (linear

recursion over Fy ) that generates a sequence having Ey as its first N terms.

For a “truly” random sequence Ey we have L(Ey) ~ % The linear
complexity measures an important pseudorandom property, but large linear
complexity is not enough to consider Ey to be random. It makes a good,

but far not satisfactory pseudorandom measure.

New mesures of pseudorandomness

In 1997 Mauduit and Sarkoézy [21] introduced the following measures
of pseudorandomness of binary sequences: Consider finite binary sequences
Ex = {e1,...,ex} € {—1,+1}" (by technical reasons, we switch from bits
to £1’s). Then

Definition 3 The well-distribution measure of En is

E €a+5b

where the mazimum is taken over all a,b,t such that a,b,t € N and1 < a <
a+ (t—1)b < N.

W(Ey) = max\U(EN(t a,b)| = max

avbv a, bt




Definition 4 The correlation measure of order k of En is defined as

M
Ck(EN) = %%( ‘V(EN, M, D)| = HJ\}I%( ; €n+d; Entdys - - - Entdy,
where the mazimum is taken over all D = (dy,ds, - ..,dy) and M such that

1<di<dy<---<dp, <M-~+d, <N.

Cassaigne, Mauduit and Sarkozy [6] proved that for the majority of the
sequences Ey C {—1,+1}" both W(Ey) and Ci(Ey) are < v/N(log N)®.
Thus a sequence Ey is considered as a “good” pseudorandom sequence if both
W (Ey) and Cy(Ey) (at least for “small” k) are “small” in terms of V.

There are several ways to define pseudorandom measures like W and Cs,
there is no perfect universal measure of pseudorandomness; one may pose fur-
ther and further criteria for pseudorandomness (and in certain applications,
one can forced to do this), and correspondingly, one may introduce further
pseudorandom measures. However, it would be more and more difficult to
handle these measures; besides posing too many pseudorandom requirements,
it may occur that there is no pseudorandom sequence of a given size at all.
This difficulty is discussed in [15] in details and, indeed, it is well described
in terms of the theory of Kolmogorov complexity. Thus one has to draw the
limit somewhere and to focus on certain basic pseudorandom criterias play-
ing the most important role in applications and studied most intensively; we
mainly drew this limit by restricting ourselves to the well-distribution and
correlation measure, but in several chapters of this thesis we will also study
a further pseudorandom measure: the symmetry measure.

The necessity of this new measure is based on the following observation of
Mauduit and Sarkozy: if a finite sequence contains a relatively large symmet-
rical subsequence (i.e., it contains a subsequence of the form {ey, es, ..., e,
€n,---,€2,e1} or of the form {e,...,e, 1,€n,€n_1,---,€1}), then this se-
quence certainly cannot be a "typical" random sequence, and this symmetric
structure may lead difficulties in certain applications. This observation in-
spired me to propose a new measure of pseudorandomness in [12]; this is the

second chapter of the thesis.



It was shown in |21] that the Legendre symbol forms a “good” pseudoran-

dom sequence. More exactly, let p be an odd prime, and

N=p-1, en=<2>,EN={el,...,eN}. (1.1)
p

Then by Theorem 1 in [21] we have
W(Ey) < p?logp < NY?1log N

and
Cy(En) < kp*?logp < kNY?log N.

Numerous other binary sequences have been tested for pseudorandom-
ness by J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkozy.
However, these constructions produce only “few” pseudorandom sequences,
while in many applications, e.g., in cryptography one needs “large” families of
“good” pseudorandom sequences. Very recently L. Goubin, C. Mauduit, A.
Sarkozy [8] succeeded in constructing large families of pseudorandom binary

sequences, generalizing the construction (1.1) by replacing n by a polynomial

f(n):
o { (H2) for (f(n).p) =1 w2)
" +1 for p | f(n).

In this case there are no general upper bounds for W(Ey) and Ci(Ey),
however under some, not too restrictive conditions on the polynomial f(z),
these measures can be estimated by /N (log N)¢.

In the third chapter of the thesis (see also [10]) I will generate another
type of large family of pseudorandom sequences based on the notion of index
(discrete logarithm). If p is a fixed prime and g is a fixed primitive root
modulo p, and (a,p) = 1, then let ind a denote the index of a:

ind a —

9" “=a (mod p)
with 1 <ind @ < p — 1. Then define the sequence E, ; = {e1,...,€,_1} by

. { +1 if1< ind f(n) < (p—1)/2 13)

-1 if (p+1)/2< ind f(n) <p—1orp| f(n).
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The sequences in this family have as strong pseudorandom properties as the
sequences in (1.2). However, these sequences can be generated very slowly,
since no fast algorithm is known to compute ind n. The purpose of the fourth
chapter (see also [11]) is to modify this family slightly so that the members
of the new family can be generated much faster, and they have almost as
good pseudorandom properties as the sequences in the original family.

It is also a very important question weather these measures of pseudoran-
domness are independent. Mauduit and Sarkozy [21] gave examples where
one of the measures Cy and W is “large” while the other is “small”.

Next we will study the minimum value of these measures. Roth [25]
proved that W(Ey) > N'* always holds, and much later Matousek and
Spencer [18| proved that this result is sharp; there exists a sequence Ey €
{—1,+1}" for which W(Ey) < N4 It was a long standing problem
whether Cy(Ey) > v/N holds for all sequences Ey € {—1,+1}". Finally
Alon, Kohayakawa, Mauduit, Moreira and V. R6dl [3| by using tricky linear
algebra arguments proved the following: If 1 < k < N are integers, then we

have Cor(En) > 4/ [Q(TNH)} for any Ey € {—1,+1}". Later in [4] they also

studied the typical value of Ci(Fy), by proving that for almost all sequences

En € {-1,+1}Y, Cx(Ey) is between two constant multiples of 4/ N log (IZ)
The correlation measure of odd order can be small: for the sequence Ey =

{-1,41,-1,41,...} we have Co1(En) = 1. For this special sequence Ey
we have Cy(Ey) = erj:_f éneny1 = N — 1 Cassaigne, Mauduit and Sarkozy
[6] asked the following:

Problem 1. For N — oo, are there sequences Ey such that Cy(Ey) =
O(V/'N) and Cs3(Ey) = O(1) hold simultaneously?

Recently, Mauduit [19] asked another closely related question
Problem 2. Ts it true that for every Ey € {—1,+1}" we have
Co(En)C3(En) > N

or at least
Cy(En)Cs(EN) > N°¢ (1.4)
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with some % <c<1?

In the fifth chapter (see also [13]) I will settle both Problem 1 and Problem
2 in the weaker form (1.4) with the constant ¢ = 2/3.

Returning to the question of measures of pseudorandomness it turns out
that there is a weak connections between them. Mauduit and Sarkozy [22]
proved the following inequality involving the pseudorandom measures W and
Cs: For all sequence Ey € {—1,+1}" we have W(Ey) < 3y/NCy(Ey). In
the last chapter (see also [9]) I will generalize this inequality to correlation
measure of higher even order: For Ey € {—1,+1}" we have W(Ey) <
N1—1/(2/,)(C%(EN))l/(%)_

Mauduit and Sarkozy [22] proved that their inequality is sharp by us-
ing probabilistic arguments. Here, I will present an explicit construction (a
sequence of the family described in the fourth chapter) for which even the
generalized inequality is sharp apart from a constant factor.

The next 5 chapters of the thesis are papers [12], [10], [11], [13] and [9]
written by me. Except [11] all papers are fully contained, but in the fourth
chapter I omit some part, of the the paper [11], since the improved version of
these results can be found in [9], which is the last chapter the thesis.

Acknowledgements I would like to thank to my supervisor Professor
Andrés Sarkoézy and my French supervisor Professor Joél Rivat, drawing my
attention to the generation of pseudorandom numbers. I have learned a
great deal from our consultations, without their valuable advice, problems

and questions I would never have been able to write this thesis.



Chapter 2

On a pseudorandom property of

binary sequences

Abstract

C. Mauduit and A. Sarkoézy proposed the use of well-distribution measure
and correlation measure as measures of pseudorandomness of finite binary
sequences. In this paper we will introduce and study a further measure of
pseudorandomness: the symmetry measure. First we will give upper and
lower bounds for the symmetry measure. We will also show that there exists
a sequence for which each of the well-distribution, correlation and symmetry
measures are small. Finally we will compare these measures of pseudoran-
domness.

2000 AMS Mathematics subject classification number: 11K45.

Key words and phrases: Pseudorandom, symmetry.

2.1 Introduction

In this paper we will study the symmetry property of finite binary se-
quences. C. Mauduit and A. Sarkozy [21, pp. 367-370| introduced the fol-

lowing measures of pseudorandomness:



For a binary sequence
EN = {61, PPN eN} € {—1, +1}N,

write

t
U(En,t,0,b) = eqsss
j=1
and, for D = (dy, ..., d;) with non-negative integers 0 < d; < -+ < dy,
M
V(En,M,D) = enid, ---€ntd,.
n=1
Then the well-distribution measure of Fy is defined as
t
Z €a+jb
j=1

where the maximum is taken over all a,b,t such that a € Z, b,t € N and
1<a+b<a+tb <N, while the correlation measure of order k of Ey is
defined as

W(EN) = ml?i( |U(EN7 l,a, b)| = mg’i(

a,0, a,0,

Y

M
Cy(En) = max \V(Ey, M, D)| = max ;en+d1, e entdy |
where the maximum is taken over all D = (di,...,d,) and M such that

M +d, < N.

A. Sarkozy and C. Mauduit [21, p. 372| observed that if a finite se-
quence contains a relatively large symmetrical subsequence (namely it con-
tains a subsequence of the form {e;j,es,...,€pn,€n,...,€2,e1} or of the form
{e1,€9,... €4 1, €n,€n 1,...,6€3,€1}), then this sequence certainly cannot be
a "typical" random sequence, and this symmetric structure may lead diffi-
culties in certain applications. This observation inspired us to propose a new
measure of pseudorandomness.

We will define the symmetry measure of En by

[(b—a)/2]-1
SN =mar| 2 Conats) = e H e )
‘7:
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where
[(b—a)/2] -1

H(ENaa: b) = Z €at+j€b—j

=0
is defined for all 1 < a < b < N. Considering the sequence Ey = {1,1,...,1}
we see that max S(En) = [%] We expect that for a truly random sequence
N

En, the symmetry measure is small. First we will prove that the symmetry
measure of Ey is around v/N for almost all Ey € {—1,+1}".

Theorem 1 There is an integer Ny such that for N > Ny we have

7
S(Ey) > —=VN.
20
While for large N, S(Ey) is always greater than a constant times v/N, the
upper bound holds for only the majority of the sequences Ey € {—1,+1}*.

Theorem 2 For all ¢ > 0 there are numbers Ny = Ny(e) such that for
N > Ny we have

P (S(En) <425 (NlogN)'/?) > 1 —e.

We need the following measures of pseudorandomness introduced in |21,
p. 371-372|. Combined (well-distribution-correlation) PR-measure of order
k:

t

Qr(En) = max E €atjbtdi Catibidy - - - atjbidy |
a’ ¥ .
Jj=0

where a, b, t, D = (dy,ds,...,dy) are such that all the subscripts a + jb+ d;
belong to {1,..., N}. Combined PR-measure:

Q(EN) = max Qk(EN)

k<(log N/log 2)

C. Mauduit and A. Sarkézy |21, p. 373| proved that there is a number py
such that if p > py is a prime number, k£ € N, k < p and if we write

(). (5)
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then
Qi(E, 1) < 9kp*?logp

so that, writing N = p — 1, we have
Q(Ex) < 27TN'%(log N)?

It follows that for the Legendre symbol both the well-distribution measure
and the correlation measure of order 2 are smaller than 18 N'/?log N, while
the combined PR-measure is smaller than 27N'/2(log N)2. As for all 1 <
k< ’%1 we have (’%) = (%) (%), the symmetry measure of the Legendre
symbol E,_; is (p — 1)/2. We will show that the symmetry measure of the

half of the sequence E,_; is small.

Theorem 3 If p is an odd prime, and we write

Fon=((5)- ) ("))

S(Egp-1)2) < 18p"*logp.

then we have

Finally, we will compare the correlation measure of order 2 with well-
distribution and symmetry measures. We expect that these measures of
pseudorandomness are relatively independent. In order to show this we will
give constructions where one measure is large while the others are small. The
following two examples are variants of the ones in [21, p. 371-372].

EXAMPLE 1. Consider a sequence Ey = (ey,...,e,) € {—1,+1}"
such that each of the symmetry, correlation and well-distribution measure
of it are possibly small (by Theorem 1 and 2 in [6] and our Theorem
2, all these measures can be O ((N log N)"/ 2) simultaneously) and define
Eyy = (€, .. ehy) € {—1,+1}*N by

, €n for1 <n <N,
€ =
" en_ny for N <n <2N.

Then it easy to see that the well-distribution measure of E}, are less than

a constant times the corresponding measure of Ey and S(E}y) < S(Ey) +

12



02 (EN): but

n n—|—N

EXAMPLE 2. Consider a sequence Exy = (e1,...,e,) € {—1,+1}¥
such that each of the correlation measure of order 2, well-distribution mea-

sure and symmetry measure of it are possibly small and define Ei, =
(€hyehy . chy) € {~1,+1}2" by

;) en for1<n <N,
ean—_p for N <n <2N.

Then the correlation measure of order 2 is less than a constant times S(Ey)+
Cy(Ey), while W(EL,) < 2W(Ey). But

C. Mauduit and A. Sarkézy in |22] expressed the connection between
the well-distribution measure and the correlation measure of order 2 in a
quantitative form. Accordingly, in the following two theorems we will give
a similar quantitative form of the connection between the well-distribution

measure and the symmetry measure.
Theorem 4 For all N € Ey, and Ey € {—1,+1}" we have
W(EN) < 3(NS(Ey))Y2. (2.1)

Finally, we will show that this result is sharp; there exists a sequence
whose well-distribution measure is large and both the correlation measure
and the symmetry measure are possibly small. Since the proof of the next
theorem is nearly the same as the one in |22| (indeed we have to write S(Ey)

in place of Cy(Ey)), thus we will only sketch the proof.
Theorem 5 Ifk,N € N, N > N, and

N3/4* <k <N (2.2)

13



then there is a sequence Ey € {—1,+1}" with
W(En) > k (2.3)
and
max{C,(Ey), S(Eyx)} < 120 max{%Z, (Nlog N)'/?}. (2.4)

From Theorem 5 we get that if & > N3/*(log N)/*, then

N1/2 £2\ /2
W(EyN) > k= (121—) >

> 11—1 (N max{Cy(Ey), S(Ex)}) 2. (2.5)

This means that (2.1) is the best possible apart from a constant factor.
One might like to study the generalizations of these measures of pseudo-
randomness. One possibility is to define the following measure:

max Y enmCrm e m; (2.6)

My, My
ijl (n)an(n)aﬂf] (n) M, Sfl(n)SMZ
(=1, )

where the maximum is taken over all 1 < M; < M, < N integers and
fi(n), fa(n), ..., fj(n) polynomials with integer coefficients such that M; <
fi(n) < Mj holds for all 1 <n < N, 1 < i< j. Of course this generalization
also covers certain pathological cases (e.g., fi(n) = fa(n) =--- = f;(n)), thus
to introduce a pseudorandom measure of this type one has to pose certain
restrictions on the polynomials fi,..., f; involved; we do not go into the
details of this here.

When j = 1 or 2, for the special values of the polynomials f;(n), (2.6)
can give the well-distribution measure, the correlation measure of order 2
and the symmetry measure.

Throughout the paper we write e(z) = ™.

2.2 Proofs
Proof of Theorem 1
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Let Exy = {e1,...,en}, f(2) = 22[:1 e,z". Using the Cauchy-Schwarz

inequality and Parseval formula we obtain:

def/ (e |da>(/ If (e(a)))? da) = N2 (2.7)

Using the Parseval formula again we get:

1= [ 17 e[ da= [

1| 2N

_ /0 3 3 enern | e(ka)| da =

k=2 \max{l, k—N}<n<min{N,k—1}

2

do =

N N

Z Z eneme((n +m)a)

n=1 m=1

2

2

2N
- E E En€r—n
k

=2 |max{l, k—N}<n<min{Nk—1}

By the definition of symmetry measure we have

> enehn| < 25(Ex) + 1.

max{1l, k—N}<n<min{N,k—1}
Therefore
J< (2N —1)(2S(Ey)+1)*. (2.8)
So that, in view of (2.7) and (2.8), and since clearly S(Ey) > 1, for large N
we have .
%\/N < S(Ew).
Proof of Theorem 2
Write L = 4.25 (N log N)'/2, then we have:

P(S(Ex) > L) = P(max |H(Ey, a,b)| > L) <

N
<SS P(H(E 00> 1) < (3 ) max P(a(Ev, 0.0 > 1),
where both the maximum and the summation are taken over all a,b € N

such that 1 < a < b < N. Thus in order to prove the theorem, it suffices to
show that for all 1 < a < b < N we have:

[(b—a)/2]—
P(|H(En,a,b)| > L) (‘Z eaﬂeb —j

>L> ]2\; (2.9)

15



Let t = [(b— a)/2], if t < L then the probability in (2.9) is trivially 0 so

that we may assume:

t=1[(b—a)/2] > L =425 (Nlog N)/2 (2.10)

Write
M = 6(tlogt)'/?

and
Hj: 0<j<t—1, €atjCh_j = —1} = h. (2.11)

Then we have:
t—1
D earjeri=1{j: 0<j<t—1, earjer; =1} -
=0

—‘{] OS_]St—l, ea—f—jeb—j:_l}‘:(t_h)_h:

=1t —2h.
(2.11) holds with probability 5 (;) so that
t—1 1/t
P el 20) = 52 (i)
h: |t—2h|>M

= % > (Z) (2.12)

h: |h—t/2|>M/2

An easy computation shows that if ¢ — oo and k < t?/3, then we have

(721 ) = (o) = (‘% * Of_j)) '

Using also the fact that (f) is increasing in ¢ for 0 < i < ¢/2, it follows easily
that for N large enough (so that ¢t = [(b — a)/2] is also large by (2.10)),

h: htz/2:|>M/2 <Z> ) Z 1/2 GL) )

h: |h—t/2|>3(tlogt)

< t([t/m B 1ogt>1/21> <
t ) exp (—2 (3(tlogt)'/?) % + 0(1)) =

t

) exp (—18logt + o(1)) < (2.13)

tT6.
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Since M < L, it follows from (2.10), (2.12) and (2.13) that

t—1 t—1
P (‘ijo €a+tjCo—j| > L) < P (‘Zg’:o €atjCh_j| > M) <
12t 11 1. %
i =~ < - ) <
which proves (2.9) and this completes the proof of Theorem 2.
Proof of Theorem 3

We shall need the following lemma:

Lemma 1 If p is a prime number, f(x) € F,[z] is a polynomial of degree k
such that it is not of the form f(z) € b(g(z))? with b € F,, g(z) € F,[z], and
X, Y are real numbers with 0 <Y < p, then writing

x;(n) = { (g> for (n,p) =1,
0 forp|n,

Y x(f(n)

X<n<X+Y

we have

1/2

< 9kp/*logp.

Proof of Lemma 1

See [21, p. 373|. (Indeed, there this result is deduced from Weil’s theorem
[28].)

By the definition of H we have:

[(b—a)/2]—1 . .
a+ b—
H(Eg_1)2,0,b) = < 9) ( J) _

p p

-1,
< 72+ (b—a)j +ab>' (2.14)

=0 p

Let f(z) = —2® + (b — a)z + ab € Fy[z]. It is easy to see that f(x) is
the form of b(g(x))? if and only if a+ b= 0 (p). In the present case this is
impossibleas 1 < a < b < (p—1)/2. Applying Lemma 1 with 0 and (b—a)/2

in place of X and Y we get:
R (o)
p

J=0

. x%(fn)

X<n<X+4Y

< 18p'"%log p. (2.15)

17



From (2.14) and (2.15) we obtain S(E(,—1)/2) < 18p'/?log p, which proves
the theorem.
Proof of Theorem 4

There exist a,b and ¢ natural numbers such that:

t—1

E €a+5b

§=0

W (Ey) = |U(E,t,a,b)| = = Y e
a<n<a+(t—1)b
n=a (b)

For all n € N let 7(n) be the smallest natural number with r(n) = n (mod b).
Let

o a+(t—1)b b—1
fla) = Z ene (r(n)a) = Z ( Z en) e(ka).
n=a k=0 \ a<n<a+(t—1)b
n=k (b)

The following lemma is well known and very simple.

Lemma 2 IfT(a) = Zz_:t cre(ka) then

b—1 2 b—1

h 2
T (5) =b) el
h=0 k=0
By Lemma 2 we have:
b—1 B\ |2 b—1 2 2
f <5> =b en| 20 D en

h=0 k=0 | a<n<a+(t—1)b a<n<a+(t—1)b

n=k (b) n=a (b)

= bW?(Ey). (2.16)

n=a m=a b
b—1 a+(t—1)b a+(t—1)b L b—1
= ( Z Z enem)e <k5> => ce(k-), (2.17)
k=0 n=a m=a k=0



where ¢, = Zf;gf_l)b Z::i%_::l/%b(b) eném- Replacing n +m = jb + k we get:

a+(t—1)b  a+(t—1)b
lex| = €nCm
n+m k (b)

[2Nb_k] min{jb+k—a,a+(t—1)b}

= E E EnCib+k—n

j= [%1 n=max{a,jb+k—(a+(t—1)b)}

[22%2] | min{jb+k—a,at(t—1)b}
S Z Z En€jbt+k—n
j= [@1 n=max{a,jb+k—(a+(t—1)b)}
[2N7k
- 2N
< ) (2S(En)+1)< <—+1) (2S(Ex) +1)
. 2a—k b
=[252]
< 9--5(En)

Using (2.17) and Lemma 2 with the function Zi;t cre(ka), where ¢ has

defined above, we get:

# (i)

Thus from the Cauchy-Schwarz inequality and (2.16) we have:
b

(510 (2) -

b—1

D

h=0

2

b—1 N2
=b 2 <812 _S2%(Ey).
Z|Ck| > b ( N)

2 b—1 2 -1

>

=0
whence:

which was to be proved.
Proof of Theorem 5

If k > J& then (2.4) holds trivially for all Ey satisfying (2.3), thus we
may assume that

N
F< o (2.18)
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Write 12
A =30 max{ﬁ, (NlogN)l/Q}

so that (2.4) can be written as
maX{Cg(EN), S(EN)} S 4A.

If A is a finite set of positive integers, and d € N, then denote the number
of solutions of

a—d =d,ac A d €A, (2.19)
by f(A,d), and denote the number of solutions of

a+d =d, a€ A d €A, (2.20)
by g(A, d).

Lemma 3 Assume that k satisfies (2.2) and N is large enough. Then there
is an A C {1,2,...,N} such that

Al =k (2.21)
and
k% et

max{f(A,d),g(A,d)} < BON =M foraal 1 <d<2N-1. (2.22)

Proof of Lemma 3
Write

F={A: AC{1,2,...,N},|A|l =k},
Fa={A: A€ F, f(Ad) > M},
Gi={A: AeF, g(A,d) > M}.

Then, clearly, any set A belonging to

F\ (Ui Fau Ui 6a) (2.23)
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satisfies (2.21) and (2.22). Thus it suffices to show that the set in (2.23) is

non-empty. To prove this we have to give upper bounds for |F,| and |G4|. In

[22] it was proved that
11\ """ /N
< | — .

| Fa| < ﬁ <JZ> (2.24)

From this we get

We will obtain by similar but easier calculations than in [22]| that:
1\ /Ny 1 (N
<= < — . 2.2
W) A e

A€ G (2.26)

Consider a set

It follows from g(A,d) > M that there exist [M] different numbers q;
(1=1,2,...[M]) with the property that

aiEA, d—aiEA.

Let
Ao = A\ (Uz[fﬂ{ai, d— ai}> .

Then A is the disjoint union of the sets

{a1,d — ai}, {as, d — as}, ..., {ajar, d — apan }, Ao-

Here we may choose a1, a, . .., ar from {1,2,..., N} in at most (ij/r”) ways,
these numbers determine d — a;,d — ag,...,d — aja uniquely, and since
|Ag| = k — 2[M], the elements of Ay can be chosen from the remaining

N — 2[M] numbers in at most (ZZ_*;[(%W) ways. It follows that

5 < (o) (3 Zapan))
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Carrying out similar calculations as in [22], we get:

k2IM] N
9l < TR 2 Tan) (k)

By Stirling formula and (2.18) we get:

M\ 1M1 52\ 1M1
M > (=) =(10%
ez (5) = (ox)
3

N—2[M]> N =70 > —N.

So we have:

ai< ()" ()< ()7 () <)

Using this, (2.24) and the fact that |F| = (}) we get that the set in (2.23)
is non-empty, and this completes the proof of Lemma 3.
Now we fix aset A C {1,2,..., N} satisfying (2.21) and (2.22) in Lemma

3, and let £ denote the set of the binary sequences Ex € {—1,+1}" with
e, =+1 forne A

so that

|€‘ — 2N7\A| — 2ka.

We consider a "random" element Ey of €, i.e., we choose each Ey € ¢
with probability 1/2¥=%. In other words, we consider the binary sequence
En = {e1,e,...,ex} where for n € A we have e, = +1 while for n values

with n ¢ A the e,’s are chosen independently with

P(E, = +1) = P(E, = —1) = % (for n ¢ A).
C. Mauduit and A. Sarkozy [22] proved that
PV(Ex) > k) > 5,
P(Cy(E) > 4A) < % (2.27)
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By the definition of S(Ey) we have

P(S(Ex) > 4A) = P(max |H(Ey, a,b)| > 44)

<> P(H(Ex,a,b)| > 4A). (2.28)
a,b
For all Ey € € we have
H(En,a,b) = Y earjenj+ > earien
0<5<[(b~a)/2]-1 0<5<[(b—a)/2]-1
atjeA, b—jeA atjeA, b=j¢A
+ Z €a+5€b—j + Z €a+jCb—j
0<5<[(b—a)/2]-1 0<j<[(b—a)/2]-1
atj¢A, b-jeA at+ji¢A, b-j¢A

— Zl +ZQ+Z3+Z4_ (2.29)

It can be proved in the same way as in [22| with the change that we
write e, €,—; in the place of e, 4, €n+4, and estimating P(|>_,| > A) we use

Lemma 3 in place of |22, Lemma 1] that
P (‘Zl‘ ~ A) =0
and for ¢ = 2, 3,4 we have
1
P (‘Zz > A) <3

From this and (2.29) we get:

3
> A) <= (2.30)

4
P(|H(Ex,a,b)| >48) <Y P (‘Z
i=1
Using (2.28) and (2.30) we have:

P(IS(Ex)| > 4A) < (2.31)

=1

It follows from (2.27) and (2.31) that (2.3) an
with probability

o

(2.4) hold simultaneously

S
N

DN | =

>

Wl
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for N large enough, so that there is at least one Ey € {—1,+1}" satisfying
both (2.3) and (2.4), and this completes the proof of Theorem 5.

I would like to thank Professor Andras Sarkozy for the valuable discus-

sions.
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Chapter 3

On a family of pseudorandom

binary sequences

Abstract

Recently, numerous constructions have been given for finite pseu-
dorandom binary sequences. However, in many applications, e.g., in
cryptography one needs “large” families of “good” pseudorandom sequences.
Very Recently L. Goubin, C. Mauduit, A. Sarkozy succeeded in constructing
large families of pseudorandom binary sequences based on the Legen-
dre symbol. In this paper we will generate another type of large family

of pseudorandom sequences by using the notion of index (discrete logarithm).

2000 AMS Mathematics Subject Classification: 11K45
List of keywords and phrases: pseudorandom, index, discrete logarithm,

correlation, linear complexity.

3.1 Introduction

In a series of papers C. Mauduit and A. Sarkézy (partly with coauthors)

studied finite pseudorandom binary sequences

Ey = {e,€,...,en} € {-1,+1}".
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In particular, in part I [21] first they introduced the following measures
of pseudorandomness:
Write

U(En,t,a,b) = Zeaﬂb

and, for D = (dy, ..., dg,) with non-negative integers d; < --- < dy,

V EN,M D E €n+di1€n+day - - - Cntdy-

Then the well-distribution measure of Ey is defined as

t—1

E €a+jb

where the maximum is taken over all a, b, ¢t such that a,b,t € Nand 1 <a <
a+ (t —1)b < N, while the correlation measure of order k of Ey is defined

W(Ey) = maX|U(EN(t a, b)| = max

a‘!! a‘!!

as

M
Cr(En) = I]IVlIaX‘V(EN,M D)| = max 2€n+d1€n+d2;- - Cntd,
where the maximum is taken over all D = (d;,dy, ...,d;) and M such that

M +di < N.

Then the sequence Ey is considered as a “good” pseudorandom sequence
if both these measures W(Ey) and Ci(Fy) (at least for small k) are “small”
in terms of N (in particular, both are o(NN) as N — o0).

Moreover it was shown in |21] that the Legendre symbol forms a “good”

pseudorandom sequence. More exactly, let p be an odd prime, and

N=p-1, en:(@>,EN:{eq,...,eN}. (3.1)
p
Then by Theorem 1 in [21] we have
W(Ey) < p/?logp < N'/?log N

and
Cy(En) < kp*?logp < ENY?log N.
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In [12] was introduced the symmetry measure of Ey:

[(b—a)/2-1
S(Ew) =max| D corsers| = max|H(Ew,a,b)]
‘7:

In [12] it was also shown that for the half of the Legendre symbol sequence,

i.e., for the sequence

Fo0n={ (o) G) - (F57) 1

where p is an odd prime, we have
S(Egp-1)/2) < 18p'/*logp.

Numerous other binary sequence have been tested for pseudorandom-
ness by J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkozy.
However, these constructions produce only “few” pseudorandom sequences,
while in many applications, e.g., in cryptography one needs “large” families of
“good” pseudorandom sequences. Very recently L. Goubin, C. Mauduit, A.
Sarkozy [8] succeeded in constructing large families of pseudorandom binary
sequences, generalizing the construction (3.1). Their most important results

can be summarized as follows:

Theorem 1 If p is a prime number, f(x) € F,[x] (F, being the field of the
modulo p residue classes) has degree k > 0 and no multiple zero in F, (=the

algebraic closure of F,), and the binary sequence E, = {e,, ..., e,} is defined

by

o { (£22) for (f(n),p) =1 3.

+1 for p | f(n),
then we have

W(E,) < 10kp'/?log p.

Moreover, assume that for £ € N one of the following assumption holds:
(i) L =2;

(ii) £ < p and 2 is a primitive root modulo p;
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(iii) (4k)¢ < p.
Then we also have
Cy(E,) < 10kfp'/?log p.

This theorem generates “large” families of “good” pseudorandom binary se-
quences. However, in most applications it is also very important that the
“large” family F of “good” pseudorandom sequences had a “complex” struc-
ture, there are many “independent” sequences in it. In [1] a quantitative

measure for this property of families of binary sequences was introduced.

Definition 1 The complezity C(F) of a family F of binary sequence Ey €
{—1,+1}¥ is defined as the greatest integer j so that for any 1 < i1 <
io < -+ < 1; < N, and for e1,€9,...,6; € {—1,+1}, we have at least one
En ={e1,...,en} € F for which

€, = €1y €j5 = E92y...,6;

]:Ej.

It is clear from Definition 1 that for j < C(F), there exist at least 2¢()~7
sequence Ey € F with

€y = &1, €4y :52,---,€ij = &j.

In [1] it was also proved that the complexity measure of the family of the
sequence E, defined by (3.2) is large. More precisely: consider all the poly-
nomials f(z) € F,[z] with

0<degf(r) <K

(where deg f(z) denotes the degree of f(x)) and f(z) has no multiple zero
in F,. For each of these polynomials f(x), consider the binary sequence
E, = E,(f) = {e1...,e,} € {—1,+1}? defined by (3.2), and let F denote
the family of all binary sequences obtained in this way. Then we have

C(F) > K.

In this paper, extending a construction given by A. Sarkozy in [26], we

will generate a large family of pseudorandom sequences based on the notion
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of the index (discrete logarithm). The following pseudorandom sequence was
introduced and studied in [26].

If p is a fixed prime and g is a fixed primitive root modulo p, and (a, p) = 1,
then let ind a denote the (modulo p) index of a (to the base g) so that

ind a —

g™ “=a (mod p),
and to make the value of index unique, we may add the condition
1<inda<p-—1.
Write N = p — 1 and define the sequence Ey = {e,...,en} by

41 1< indn< (p—1)/2
"]l -1 if(p+1)/2< indn<p—1.

Then we have
W (E,) < 4p**(logp)? < 20N'/2 (log N)?
and, for all k € N, k£ < p,
Cr(Ey) < 9k4%p'/?(log p)**! < 27k8F N2 (log N)* .

We will generate a large family of pseudorandom sequences analogously
to Theorem 1, i.e. replacing n by f(n).

Definition 2 Let p be an odd prime, g a primitive root modulo p. Define
indn, by 1 <indn <p-—1andn=g¢g"" (mod p). Let f(z) € F[p| be a
polynomial of the degree k. Then define the sequence E,_; = {e1,...,ep_1}
by

. { +1 if1< ind f(n) < (p—1)/2 5.3

-1 if (p+1)/2< ind f(n) <p—1orp]| f(n).

This paper is devoted to the study of family described in Definition 2.
Throughout this paper we will use these notations: the numbers p, k, g the
polynomial f and the sequence E, ; will be defined as in Definition 2. First
we give estimates for the well-distribution measure, the correlation measure

and the symmetry measure of the sequence E,_;.
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Theorem 2 For all f(z) € Fp[z] we have
W (E,_1) < 38kp'/*(log p)>.

Unlike the corresponding part of Theorem 1, here in Theorem 2 there is no
condition on the roots of the polynomial f(x). The case of the correlation
measure will be slightly more difficult. As in Theorem 1, the upper bound
holds under certain assumptions. The last two conditions are very similar
to the conditions of Theorem 1, since these theorems are based on a similar

addition lemma.
Theorem 3 Suppose that at least one of the following 4 condition holds:
a) f is irreducible.

b) If f has the factorization f = ¢ 3% ..., % where a; € N and ; is
irreducible over F,, then there exists a 8 such that exactly one or two

©;’s have the degree 3;
c) L=2;
d) (40)* < p or (4k)* < p.
Then Cy(E,_1) < 10k£44p*/? (logp)**.
Clearly, condition b) implies condition a); however, the proof in case a)

is simpler, and all the other cases will follow from it in several steps.

Next we will study the symmetry measure.

Theorem 4 Let f(x) = apa® +ap_12* 1+ -+ +ag, ax Z0 (mod p), k < p,
and define t by
kagt = —2a;_1  (mod p).
Let
Ey i1 ={ew €ut1,...,en} CE,
where e; was defined in Definition 2. Ift < 2u ort > 2v or f(x) # +f(t—x),
then
S(Ey_yy1) < 88kp'/?(log p)®.
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Suppose that f(z) = £f(¢' — x) for some t'. Considering the coefficients of
zF and 2F71 in f(z) and f(#' — x) we get

kt'a, = —2ax_; (mod p).

Thus it follows from f(z) = £f(t' — z) (mod p) that ¢ =t (mod p).
It is trivial from the definition of the e;-s, that in the case of f(x)
+f(t —x) (mod p) we have

Il

H(E, . ,ut—u)=[(t—2u)/2] ift <u+w,
and
H(E, ,.,t—v,0)=[(2v—1)/2] ift>u+wv.
Therefore S(E;_, ;) > min{t —2u,2v—t}. So the condition of Theorem 4 is

necessary apart from an additional term O(p'/2 (logp)®), i.e., the conclusion
of the theorem fails if the inequalities ¢ < 2u, ¢ > v are replaced by ¢t <
2u+ci1p'/?(logp)3, t > 2v—cip'/?(log p)®, where ¢, is a large enough constant.

Remark 1 All these theorems are trivial if k > p'/?, thus throughout the

paper we will assume that k < p*/?.

Finally we will study the complexity measure of the family of pseudoran-

dom sequences defined by (3.3).
Theorem 5 Consider all the polynomials f(z) € Fplz] with

0<degf(zr) <K

For each of these polynomials f(x), consider the binary sequence E, = E,(f)
defined by (3.3), and let F denote the family of all binary sequences obtained
wn this way. Then we have

C(F)> K.

3.2 Proofs

Proof of Theorem 1.

We will need the following lemmas:
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Lemma 1 Let f(z) be a polynomial in F,|x], and let d be a divisor of p— 1.

The following 3 conditions are equivalent:
(i) f(z) =b(2(x))* with b € F,, 2(z) € F,[x],
(ii) f(z) = (h(2))* with h(z) € Fy[z],

(iii) f(z) = b(x — 1) (z — 22)** ... (x — 25)* with z; € F, and d |

(o, e, .., q8).

Proof of Lemma 1.
See in [27, p. 51].

Lemma 2 Suppose that p is a prime, x is a non-principal character modulo
p of order d, f(x) € Fy[z] has s distinct roots in F,, and it is not a constant
multiple of a d-th power of a polynomial over F,. Lety be a real number with
0 <y <p. Then for any x € R:

1/2

> x(f(n)

z<n<z+y

< 9sp/“log p.

Poof of Lemma 2

This is a trivial consequence of Lemma 1 and Lemma 2 in [2]. Indeed,
there this result is deduced from Weil’s theorem [28].

Now, we will prove Theorem 1. Let f(z) = b(x —z1)* ... (x—z5)* where
z; # r;. By Lemma 1, there exists a polynomial z(z) with f(z) = b(z(z))?
where d = (o, ..., ;). It is also obvious from Lemma 1 that f(x) is not a

constant multiple of any d’-th power for any d’ | d. Assume now that
1<a<a+(t—-1)b<p-1.

The following computations and inequalities can be obtained in the same

way as in [26], replacing a + jb there by f(a + jb).

U(EBwtab) == |3 ( y<f<a+jb)) ¥ (9)



By the triangle inequality we have

t—1 (p—1)/2
U(Ex,ta,b) < —— Z( Y(f(a+jb)> )

P15

p—1

= Z + Z (3.4)

Next we give an upper bound for ), in the same way as in [26]. If we
consider a typical term in )_,: (Z;;E X(f(a +jb))) < -1/ X’“(g)) then
the order of x does not divide d because x¢ # 1. Let the order of x be d'.
d' tdso f(z) is not a constant multiple of a d’-th power. Thus we may use

Lemma 2:
t—1

> x(f(a+5b))

j=0

< 9sp*? logp. (3.5)

We need an upper bound for Zxd 21

D23k (g) ‘

Lemma 3 Let1<d<p-—1andd|p—1. Then

(p—1)/2
Z x*(g) Z |1_ <2d10g(d+1).
x#m k=1 x#xO
x4=1 x4=1

Proof of Lemma 3.
The proof is nearly the same as in |27, p. 380-381]. The only difference
is in [27, p. 381] at (10), where now we have:

d—1 1 1d—l 1 1[d/2] 1
2 = T e S 12 <32
X;éxou— = e(n/d)] = 1= [njdl] = 22 [[n/d]
x4=

[d/2]
1 d
=52 < 5d(1+1log(d/2)) < dlog(d +1)
=1

which completes the proof.
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Since x is a multiplicative character of order p—1, thus we have y?~1 = 1.

Applying Lemma 3 with d = p — 1 we get:

> w2 X
k
x"(g)] < —<2(p—1)
Xx#xo | k=1 X#X0 ‘1 X(g)|
It follows that 5
1/2 2
-1 Y < 36sp/*(logp)”.

Finally we give an upper bound for ) .:

(p—

X (bg"(a + jb)))

(p—1

log(p)-

(3.6)

1)/2

> ¥(g)

k=1

/2

x"(9)

Using Lemma 3 we get:

2

—" 22 < %tdlogd < 4dlogd.

Using that d is less than the degree of f, which is &, and k < p/? we get
2
p—1

From (3.4), (3.6) and (3.7) we get

Zz < 4klogk < 2p'/%logp. (3.7)
U(Ew,t,a,b)| < 38kp'/*(log p)”.

Proof of Theorem 2.
We will use addition theorems as in [8]. First we need the following

definition:
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Definition 3 Let A and B be multi-sets of the elements of Z,. If A+ B
represents every element of Z, with multiplicity divisible by p—1, i.e., for all

¢ € Zyp, the number of solutions of
a+b=c a€ A beB

(the a’s and b’s are counted with their multiplicities) is divisible by p-1, then
the sum A + B is said to have property P.

Lemma 4 Let A = {ai,...,a1,...,0,...,a,} and D =
{di,...,dv,...,dg,...,di} be multi-sets of the elements of Z, where
the multiplicity of a; is o; in A and the multiplicity of d; is 6; in D. If one

of the following two conditions holds:

(i) min{r,¢} <2 and max{r,{} <p—1,
(ii) (40)" < p or (4r)* < p,

then there exists ¢ € Z, such that

a+d=c a€ A deD

has ezactly o;6; solutions for some 1 <i <r, 1 <j </ (i.e. the solution is

unique apart from the multiplicities).

Proof of Lemma 4.

Consider the simple sets A" = {a1,a9,...,a,}, D' = {di,ds,...,d.}. Tt
was proved in [8, Theorem 2| that under any of these conditions there is a
¢ € Z, such that

a+d=c ac A, deD

has exactly one solution. The statement of the lemma follows easily from
this.

To prove Theorem 2, consider any D = (dy,dy, ..., d;) with non-negative
integers d; < dy < --- < dy and positive integers M with M 4+ d; < N. Then
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arguing as in [26, p. 382] with f(z + d;) in place of n + d;, we have

V(En, M, D)| _12 Yooy

X17£X0 Xe7#X0
(p—-1)/2

X H Z : (3.8)

£i=1

le (@ +d1)) -~ xe(f (z + dy))

z=1

Now, let x be a generator of the group modulo p characters, e.g. x can be
chosen as the character x uniquely defined by x(g) = e (ﬁ) The order of
x is p — 1. Let
Yu = X foru=1,2,....¢
where, by x1 # Xo,---, X¢ F Xo, We may take
1<, <p—1 foru=1,2,..., ¢

Thus in (3.8) we have

flz+di)...xef (x+ dy) X" fz + dy)

Yf(x+dy)...
X(f (z + dy)

2.
> X

- f(z +d4))‘

If fo'(z +dy)--- f%(x + dy) is not a perfect p — 1-th power, then this sum

can be estimated by Lemma 3, whence

(x4dy)--- fo(x 4 dp))| < 9stp*/?log p.

Therefore by (3.8) and the triangle-inequality we get:

9¢ ¢ [(p-1)/2 ‘
|V(EN,M,D)| S W Z Z 93£p1/2]0ng thj(géj)
P X1#EXo  Xe#Xo =1 \ =1
2@ 0 (p—1)/2
T > -] X" (g")
p 1§61,...,(5{Sp72, jzl ljZl

fOL(z+d1)- O (z+dy) is
a perfect p — 1-th power

_162 _1152 (3'9)
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By [26, p.384| we have
9t
(p—1)°
It remains give an upper bound for ) ,. If f is irreducible it is obvious
that fou(x + dy)...f%(xz + dy) is a perfect p — 1-th power if and only if
p—1101,...,00. Butin ), we have 1 < §y,...,8, < p—2, therefore >, =0

which proves theorem 2 in case a). In case b), c), d) we will prove that ),

Zl < 9504%p*? (log p) £+ (3.10)

is small. We need the following lemma to estimate ) _,.

Lemma 5 For all1 <6y,...,0, < p—2 such that fo'(z+dy) ... f%(x +dy)
is a perfect p— 1-th power, there is a §; (1 < i < ¥{) and an integer 1 < a < k
(where k is the degree of the polynomial f(x)) such that p—1 | ad;.

We will prove lemma 5 later. Now, from this lemma we verify that

2 201 -1
-1y ZQ < k(k+1)¢2° *(logp)~ .
Consider a fixed (-tuples {4, ..., 8} for which fo'(x +dy)... fo(z + dy)
is a perfect p — 1-th power and 1 < 41,...,9, < p — 2. By Lemma 5, then
there exits a §; with

p—1|5i()j.

But 0 < ad; < a(p— 1) and o < k:

p—1<da<(a—1)(p—1)
1 .
—< 0 <1—l
a p—17— «

1 1 0;

- < -<

kK~ a |lp—1

By |1 —e(a)| >4 || a || we have
2 2 1 k

()| < <35

1=x%)|  [M—el@/(p=1) ~ 2[5/(e-DI 2

By Lemma 5, we have

(3.11)

>, <0-03Y, 312
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where
(p—1)/2

>, > II| > X%

1<61,...,0p<p—2, Jj=1| ¢;=1
FOL(a+dr)-- fOL (+dy) is
a perfect p — 1-th power,
3 1<a<k, p—1lad;

By (3.11) and ‘Ze “PP X0 (g8)| < —2 j ve get:

= |1-x% ()
Elmé > IIH— 5 4] > 1. (3.13)

1<51; 751 1751+17 76[<p 2 J#Z ISJZSp_za
S (ztdr)- [t (z+dy) is
a perfect p — 1-th power

o | =

Next we give an upper bound for

>

1<6;<p-2,
fo1(ztdr)--fO (z+dy) is
a perfect p — 1-th power

For fixed 61,...,0;-1,0i01,-..,0plet 1 < 27y < 22 < -+ < x, < p—2
denote the numbers for which fo(z+d;) -« fo-1(z+d;_1) f% (x+d;) fo+ (x+
diy1) -+ f%(x + dy) is a perfect p — 1-th power. It is clear that the quotient

of two polynomials of this form is a p — 1-th power, so
fr%-Y(x + d;) (for j =2,3,...,7)

is a perfect p — 1-th power. The degree of f%~%i-1(x + d;) is (v; — zj_1)k,
ant, this degree is divisible by p — 1, therefore

p—1
Tj— Xj_ 1>—.

k
S0
—1
_1>$">Z —Tj_1) (r—l) e

By this:

}: l=r<k+1.

1<6;<p-2,
Fo1(z+dr)- O (z+dy) is
a perfect p — 1-th power
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Thus we get from (3.13):

k(k+1
ORI DI | (e

1<61; -0i— 1;61+15 551<p 2]?&7'

-1
k(k+1 k(k+1) 0 1( : ) |
X#XO‘ B

By Lemma 3 we have

k(k+1)_, ) _
>, < RE 1)1 — 1)1 (log )

From this and (3.12):

>, < k(k+1)€27%(p - 1)(logp)*™!

By this, (3.9), (3.10) and k < p'/2 — 1, we get the statement of Theorem 2.
It remains to prove Lemma 5.
Proof of Lemma 5.

The following equivalence relation was defined in [8]: We will say that
the polynomials (), ¢ (z) € F,[z] are equivalent, if there is an a € F}, such
that ¥(z) = ¢(x + a). Clearly, this is an equivalence relation.

Write f(z) as the products of irreducible polynomials over F,. Let us
group these factors so that in each group the equivalent irreducible factors
are collected. Consider a typical group ¢(x + a1),...,d(x + a,). Then f(x)
is of the form f(z) = ¢ (z + a1)...9* (z + a,)z(x,) where z(z) has no
irreducible factors equivalent with any ¢(x + a;) (1 <7 <r).

Let h(z) = fo(z +dy) - - fO(z + dy). be a perfect p — 1-th power where
1 < §y,...00 < p— 2. Then writing h(z) as the product of irreducible
polynomials over F,, all the polynomials ¢(z + a; + d;) wit 1 < i < r,
1 <i<r,1<j </l occur amongst the factors. All these polynomials are
equivalent, and no other irreducible factor belonging to this equivalence class
will occur amongst the irreducible factors of h(zx).

Since distinct irreducible polynomials cannot have a common zero in
the algebraic closured of F},, therefore each of the zeros of h is of multi-
plicity divisible by p — 1, if and only if in each group, formed by equiv-
alent irreducible factors ¢(z + a; + d;) of h(z), every polynomial of form
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©(z + ¢) occurs with multiplicity divisible by p — 1. In other words writing
A={ay,...,a1,...,0,...,0.},D={dy,...,d1,...,dy,...,de} where g; has
the multiplicity «; in A («; is the exponent of ¢(x + a;) in the factorization
of f(z)) and d; has the multiplicity ¢; in D, then for each group A 4+ D must
possess property P.

If condition b) holds in Theorem 2, then considering the degrees of the
irreducible factors of f(x), we see that there exists a group for which r < 2,
i.e., A contains at most two distinct elements. So if one of the conditions of
Theorem 2 holds then there exists a group for which the multi-sets .4 and D

satisfy the conditions of Lemma 4, we get that there exists a ¢ such that
a+d=c a€ A deD

has exactly o;6; solution for some 1 < i <rand 1 <j </ But A+D
possess property P, therefore p — 1 | ;0. Because «; is the exponent of an
irreducible factor in f(z), we also have 1 < «; < k. Which completes the
proof of Lemma 5.

Proof of Theorem 3.

We will use the following lemma.

Lemma 6 If f(z) = £f(t — z) mod p, then there ezists a permutation
{z1...,zs} of the distinct roots of f(z) such that

=21+ 25 =22+ Xs—1 =+ = T[s/2] T Ts+1-[s5/2]

and denoting the multiplicity of the root x; by o; (1 < i < s) we also have

O = Olsq1—4-

Proof of Lemma 6.
This is a consequence of the fact every polynomial has unique factorization

over F,. Now we can return to the proof of Theorem 3.
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In the same way as the estimates of the correlation measure we obtain:

(p—1)/2
1/2
H(Ey,a,b) S P17 Z Z 18sp long Z
X17X0 X27X0 lj=1
4 (p—1)/2
MECESIE > -] X3(9")
p 1<61,6:<p-2, i=1| =1

o1 (a+xz)fO2(b—x) is a
perfect p — 1-th power

4 4
= =1 Zl +(p ~y ZQ. (3.14)

Again as in [26, p. 384] we have

4
(p—1)2

To give an upper bound for ), we have to handle the case when the poly-

21 < 72kp'/?(log p)®. (3.15)

nomial f%(a + z)f% (b — ) is a perfect p — 1-th power. Suppose that there

is no permutation {z; ..., zs} with
=21+ 25 =20+ 25 1 =+ = T[s/2] + Tstr1-[ss/2]-

Then there exists a root of f(a + ) which is not the root of f(b— ) (x is
the variable). Denote this root by x; — a and let «; the multiplicity of the
root 7; — a in f(a + ). Then p — 1 | a;0; because fo'(a + z)f% (b — z) is a
perfect p — 1-th power. But also 1 < «; < k, so in this special case in the

same way as we get the result of Theorem 2 from Lemma 5, we obtain:

S <1 1)(logp)?.
(5T 2 < 16k(k +1)(logp)
From this, (3.14), (3.15) we get

H(Ey,a,b) < 88kp'/*(logp)®.

The case when

=21+ 25 =20+ 251 = - = T[s/2] + Tsp1-[ss/2]-
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holds is slightly more difficult. Considering the multiplicity of the roots x; —
a=b—T,1 i Ts11 i—0a = b—x; mod p in the polynomial fo(a+z)f% (b—x)
we get:

p— 1] 0105+ dasq1i,

p—1]610511-; + a0y

Taking the sum and the difference we obtain

p—1] (01— d2)(s — sy1-4),
D — 1 ‘ (51 + 52)(&1 + a5+1,i) (1 S 1 S 8). (316)

By Lemma 6 we know that there exists an ¢ for which o; # asy1-;. By
1 <oy —aspi-i] <k, 1 < |oy+ asii—i| < 2k and (3.16), we obtain that
both §; — d, and §; + d, may assume at most 2k different values. Therefore
at most (2k)? pairs {d;,d2} exist for which f°'(a + z)f%(b — z) is a perfect
p — 1-th power.

By [1 —e(a)| >4 || a||, xi = x%, we have:

2 |(p—-1)/2 4 1
< (3.17)
]Hl ]Zzl |1—X‘51(g)| 1=x%()] ~ 41250 11211

Next we will prove:

= || X (3.18)
—1 —1

Lemma 7 If z,y € N, y # 0, p—1 | zy, but p — 1 { = then we have
[ | I
Proof of Lemma 7.

Let z =r(p—1) +q where 1 < ¢ <p—2. Then

rip—1y <zy < (r+1)(p—1y.

But p — 1 | zy, so:
P=Dry+1) <zy<(p-1(ry+y-1),

1 x 1
r+-<—~_<r+4+1--2-,
y p—1 Yy
' 1
Z_

y

p_
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which was to be proved.

Ifp—11]6—0p and p—1 | & + Jo then by 1 < 61,00 < p — 2 we

have §; = 6, = ’%1 and (3.18) is trivial. We may suppose that at least

one of §; — &9, §; + d9 is not divisible by p — 1. If p — 1 1 §; — 0, then
p—1| (8 —)(; — as11-4), and using Lemma 8 we get:
1

> >
\az' - as—|—lfz"

01 — 0
p—1

x| =

If p— 14061+ 02 then p— 1| (61 + 02)(c; + @s11-4), and using again Lemma

8 we get:
61 + 62 1 S i
P=1 7 o+ aspaml ~ 2k
By the triangle-inequality in both cases we have:
01 " 0o S 01 + 9 i
p—1| lp—1] " llp-11~ 2k
But ;ﬁ < ||1%||7 ”1%“’ so trivially

01 o 1 1
> p—
p—1| [|[p—=1| ~ 2k(p—1) — 2kp

from which (3.18) follows. By (3.17
pairs for which f°(a+ z)f%2(b—=x

>, < > (p—1)

1<61,02<p—2,
o1 (a+x)fo2 (b—z) is a
perfect p — 1-th power

~—

, (3.18), and since there are at least (2k)?

is a perfect p — 1-th power, we have

MlH SN—r

(p — 1)pk(2k)* = 2(p — 1)pk>.

DN | —

pk <

(3.19)
From (3.14), (3.15) and (3.19) we get
H(Ey, a,b) < 88kp'/*(logp)’

which proves the theorem.

Proof of Theorem 4. The proof is exactly the same as in [1, Theorem
1], the only difference is in the definitions of ¢ and r: now we choose ¢, r as
integers with (¢,p) = (r,p) =1 and 1 <ind ¢ < ’%1, ]%1 <indr<p-1.
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3.3 Numerical Calculations

In this chapter our goal is to carry out numerical calculations. Partly
to see how far our theoretical estimates are from the probable truth, partly
to gather numerical data in cases when we cannot prove any theoretical
estimates (linear complexity and the correlation measure of higher order). In
particular, one might like to gather information on the linear complexity (see,
e.g. |23]) which is another characteristic closely related to pseudorandomness.

The linear complexity is defined as it follows.

Definition 4 The linear complexity of a finite binary sequence
{s0,---,snv_1} € {0,1}" is the smallest integer L for which there ez-

ist numbers c1,...,cp—1 € {0,1} such that
Sp = C18p 1+ Sy o+ -+ CL 15p—(L—1) + Spr Mod 2 for alln > L.

We construct a sequence {so,...,s,—2} € {0,1}"! from our sequence
Ey_1 ={er,...,ep_1} € {—1,+1}P"! in the following way: s; = 5 (1 — €;41)
for all 0 < ¢ < p — 2. One might like to study the linear complexity of
this sequence. Unfortunately we haven’t been able to prove any non-trivial
theoretical result. Thus all we can do in this direction is, again, to carry
out numerical computations; we will use the Berlekamp-Massey algorithm
[5],]17] (L denotes the linear complexity).
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p prime | ,/p polynomial Wl C | C3 | Cy | S| L
1009 | 31.764 2+ 1 38 | 98 | 132 | 152 | 72 | 503
24 +5112%2+1232+851 | 45 | 102 | 138 | 157 | 68 | 504
122z* + 10002* +
2222 + 6262 + 500
21220 + 567" +
333z% 4+ 9z + 12
1013 | 31.827 2241 38 | 123 | 129 | 151 | 84 | 507
24 +511224+1232+851 | 40 | 104 | 136 | 146 | 67 | 508
1222* 4+ 10002° +
2222 + 6262 + 500
212220 + 567213 +
333z% 4+ 9z + 12

37| 88 | 126 | 158 | 75 | 505

60 | 96 | 130 | 146 | 72 | 504

42 | 102 | 128 | 165 | 77 | 506

59 | 103 | 144 | 150 | 72 | 508

p prime VP polynomial W | C, S L
100069 | 316.336 2341 623 | 1284 | 923 | 50036
4 4 7563822 + 54322
T v T | 689 | 1348 | 1150 | 50034
81512
4 4 348793 + 9853712
T Tt T 402 | 1373 | 861 | 50034
123782 + 68921

2190 + 4562328 +
9825453 4+ 74563230 + 445 | 1365 | 963 | 50033

78346217
100237 | 316.602 2341 885 | 1392 | 919 | 50117
4 1 543322 + 5432
T ORI A ORILTH | aea | 1997 | 859 | 50118
93789

z* + 5000023 +
2865722 + 112211z + 854
2" + 2% 4 45678927 +

27 4 8789z* 4 4

410 | 1367 | 975 | 50118

614 | 1315 | 970 | 50119

The data above seem to point to the direction that our condition on &

and ¢ can be relaxed considerably, and that the correlation of not very high
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order tends to be relatively small also for &, £ values not covered by Theorem
2. Perhaps this data also indicate that the dependence on the degree of the
polynomial in the upper bounds for the pseudorandom measures need not be
as strong as in our theorems. Most of the time the linear complexity seems
to be around p/2 as it would happen for truly random sequences, so that our

sequence also satisfies the requirement of high linear complexity.

3.4 Conclusion

By using the notion of index (discrete logarithm) we have constructed
large families of binary sequences with strong pseudorandom properties.
However, the weak point of this construction is that the generation of these
sequences is very slow (since there is no fast algorithm for computing the dis-
crete logarithm). One might like to improve on this construction by trying to
modify the construction so that we should obtain sequences which still have
relatively good pseudorandom properties, however, they can be generated
much faster. I will return to this problem in a subsequent paper.

I would like to thank Professors Julien Cassaigne, Joél Rivat, Andras

Sarkozy for the valuable discussions.
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Chapter 4

On a fast version of a

pseudorandom generator

Abstract

In an earlier paper I constructed a large family of pseudorandom se-
quences by using the discrete logarithm. While the sequences in this con-
struction have strong pseudorandom properties, they can be generated very
slowly since no fast algorithm is known to compute ind n. The purpose of this
paper is to modify this family slightly so that the members of the new family
can be generated much faster, and they have almost as good pseudorandom
properties as the sequences in the original family.

2000 AMS Mathematics Subject Classification: 11K45

List of keywords and phrases: pseudorandom, index, discrete logarithm,

correlation.

4.1 Introduction

In this work I will continue the work initiated in [10]. C. Mauduit and A.
Sarkozy [21, pp. 367-370] introduced the following measures of pseudoran-

domness:
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For a finite binary sequence Ey = {ej, ey,...,ex} € {—1,+1}¥ write
U(Ey,t,a,b) = Zeaﬂb
and, for D = (dy, ..., d;) with non-negative integers d; < - - - < dj,

V EN, M D E €n+di1€n+das - - - Cntdy, -

Then the well-distribution measure of Ey is defined as

t—1
W (Ey) = max |U(Ex(t,a,b)| = max Z;eﬁ-jb :
‘]:

where the maximum is taken over all a, b, t such that a,b,t € Nand 1 <a <
a+ (t—1)b < N. The correlation measure of order k of Ey is defined as

Ci(En) = max |V (Ew, M, D)| = max

Y

E €n+diEn+dsy - - - €n+dk
=1

where the maximum is taken over all D = (d,dy, ...,d;) and M such that
M +di < N. In [12] I introduced a further measure: Let

[(b—a)/2]-1
H(EN,G, b) = z €a+5€b—j)

J=0

and then the symmetry measure of Ey is defined as

[(b—a)/2]-1
S(En) = lsrang))éN |H(En,a,b)| = lgrt?jéN ZO €atjCh—j| -
J:

A sequence E is considered as a “good” pseudorandom sequence if each of
these measures W (Ey), Cx(Ey) (at least for small k) and S(Ey) is “small” in
terms of N (in particular all are o(IN) as N — o0). Indeed, it was proved in
[6, Theorem 1, 2] and in [12, Theorem 1, 2] that for a truly random sequence
En C {—=1,+1}" each of these measures is < v/NIog N and > v/N.
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Throughout the paper we will use the following notations: || z || is the
distance of z from the closest integer, e(a) = €2™®, F, is the algebraic clo-
sured of the field F,. Finally, if p is a prime, o and m are natural numbers
we say that p® || m if p* | m but p**™ t m.

Numerous binary sequences have been tested for pseudorandomness by
J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sarkézy. The se-
quences with the strongest pseudorandom properties have been constructed
in [8], [10], [21], [20] and [26]. As concerning the strength of the pseudo-
random properties these constructions are nearly equally good. But in the
construction given by A. Sarkozy in [26] and extended by me in [10], the gen-
eration of the sequences in question is much more slowly than in the other
constructions. Indeed Sarkozy’s construction is the following:

Let p be an odd prime, N = p — 1 and define Ey = {ey,...,en} C
{=1,4+1}" by

+1 if 1 <indn <22,

4.1
-1 if’%lgindngp—l. (41)

€n =

Here ind n denotes the index or discrete logarithm of n modulo p, defined as

the unique integer with
g™ ™ =n  (mod p), (4.2)

and 1 <ind n < p — 1, where g is a fixed primitive root modulo p. In [10] I
extended this construction to a large family of binary sequences with strong
pseudorandom properties by replacing n by a polynomial f(n) in (4.1) (in
the same way as the Legendre symbol construction in [21] was extended in
[8].)

Indeed in [10] I proved for the generalized sequence:
Theorem A For all f € Fy[z] with k = deg f we have

W (E,-1) < 38kp'/*(logp)®.

Moreover if one of the following conditions holds:

a) f is irreducible;
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b) If f has the factorization f = ¢ p3* ... ¢%, where a; € N and the p;’s
are irreducible over F,, then there exists a B such that exactly one or

two @;’s have the degree [3;
c) L=2;
d) (40)% < p or (4k)¢ < p.

Then
Co(Ep_1) < 10kL4p"? (log p) e+,

Finally, if f(z) # f(t — z) for allt € Z,, then
S(E, 1) < 88kp'/?(logp)®.

As we pointed out earlier these constructions are nearly as good as the
others, but the problem is that it is slow to compute e,, since no fast algorithm
is known to compute ind n. The Diffie-Hellman key-exchange system utilizes
the difficulty of computing ind n.

In this paper my goal is to improve on the construction in Theorem A by

replacing the sequence

o { +1 if1<ind f(n) < L, (4.3)

—1 if 27 <ind f(n) <p—1lorp| f(n)

by a sequence which can be generated faster. I will show that this is possible
at the price of giving slightly weaker upper bounds for the pseudorandom
measures. Throughout this paper we will use the following:

Notation Let p be an odd prime, g be a primitive root modulo p. Define
ind n by (4.2). Let f € F,[z] be a polynomial of degree k > 1, and f = ch®
where ¢ € F, and h € F,[z] is not a perfect power of a polynomial over F,[x].
Moreover let

m|p—1

with m € N, and let x be relative prime to m: (x,m) = 1.

The crucial idea of the construction is to reduce ind n modulo m:
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Construction 1 Let ind*n denote the following function: For all 1 < n <

p—1

ind n =2z -ind*n (mod m)
(ind*n ezists since (x,m) = 1.) Define the sequence Ep,_1 = {e1,...,€p_1}
by

m

+1 if1 <ind*f(n) < %, (4.4)
=1 if 5 <ind"f(n) <m orp| f(n). .

€n

Note that this construction also generalizes the Legendre symbol con-
struction described in [8| and [21]|. Indeed in the special case m =2, z =1

the sequence e, defined in (4.4) becomes

+1f (A = -1,
on = i (1
-1 if () =1orp| f(n)

(In the special case m = p — 1, = = 1 we obtain the original construction
given in (4.3)).

We will show that the construction presented above has good pseudo-
random properties, each of the measures W(E,_;), Cx(E,_1) is small under
certain conditions on the polynomial f. In the case of the well-distribution

measure we can control the situation completely.

Theorem 1 If m/(m,d) is even we have
W(E, 1) < 36kp'/*logplog(m + 1).
While in the other case, when m/(m,d) is odd we have:
W(Ep—1) = 1%1 + O(kp'*log plog(m + 1)).

In the case of the correlation measures the situation is slightly more dif-

ficult. When the order of the correlation measure is odd we have:

Theorem 2 If f € F,, k =deg f and { are odd integers while m is an even

integer, then we have

Co(E,1) < 9ke4*p?(logp)“Ht.
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Otherwise we need the same conditions on the polynomial f as in [10] in
the original construction. If the degree of the polynomial is small depending
on m, the same upper bound holds as in [10], while in the general case I will

prove a slightly weaker result.

Theorem 3 i) Suppose that m is even or m is odd with 2m | p — 1, and at

least one of the following 4 conditions holds:
a) f is irreducible;

b) If f has the factorization f = ¢ @5 ... 0% where a; € N and the @;’s
are irreducible over I,, then there exists a 8 such that exactly one or

two ;’s have the degree [3;
c) L=2;
d) (40)% < p or (4k)¢ < p.

Then
€,1/2 41 QD
Cg(Ep_l) < 9k¢4*p (Ing) + Tp (45)

ii) Moreover if we also have 2° || m and k = deg f < 2° then
Ce(By1) < 9kL4p'/?(log p) .

For fixed m by Heath-Brown’s work on Linnik’s theorem [14] the least
prime number p with m | p — 1 is less than ¢m®°. Thus the condition
deg f < 2% || m | p—1is not too restrictive.

If m?* >> p holds, then the first term majorizes the second term in (4.5),
thus the upper bound becomes O (p'/?(log p)**!) where the implied constant
factor may depend on k£ and /.

The study of the symmetry measure also considered in [10] would lead to
further complications and I could control it only under the further assumption
deg f < 282 where §3 is defined by 22 || m. Thus, I do not go into the details
of this here.

In applications one should balance between the strength of the upper

bounds and the speed of the generation of the sequence depending on our
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priorities. By the Pohlig-Hellman [24] algorithm we will show in section 3
that the sequence described in (4.4), in particular ind *f(n), can be com-
puted faster than the original construction. Indeed, if the prime factors of
m are smaller than logp then ind*f(n) can be computed by O((logp)?) bit
operations.

In [1] R. Ahlswede, L.H. Khachatrian, C. Mauduit and A. Sarkozy intro-
duced the notion of f-complexity of families of binary sequences as a measure

of applicability of the constructions in cryptography.

Definition 1 The complezity C(F) of a family F of binary sequence Ey €
{—=1,+1}" is defined as the greatest integer j so that for any 1 < i1 < iy <
-+ <1; <N, and forey, eq,...,€;, we have at least one Ey = {eq,...,en} €
F for which

€y = &1, €y =E2,...,64

]:é‘j.

We will see that the f-complexity of the family constructed in (4.4) is
high.
Theorem 4 Consider all the polynomials f € F,[z] with

0 <deg f < K.

For each of these polynomials f, consider the binary sequence E, 1 = E, (f)
defined by (4.4), and let F denote the family of all binary sequences obtained
wn this way. Then we have

C(F) > K.

4.2 Proofs

4.2.1 Proof of Theorem 1.

First we note that the sequence defined in (4.4) by the polynomial f = h¢
and the modulus m, remains the same sequence if we replace in Construction
1 the polynomial f = h¢ by the polynomial A% (™% and the modulus m by
the modulus m/(m, d). Thus in order to prove this theorem it is sufficient to

study the case when (m,d) = 1.
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The proof of the theorem is very similar to the proof of Theorem 1 in
[12]. By the formula

1 , 1 if m|ind a —ind b,
LS Y = { |

0 if m{ind a — ind b,

x:xm=1
we obtain
2 = T
en =2 > I=1== 3% > X(f(m)x(g"™) -1
1<j<m/2 1<j<m/2 xix™=1
jz=ind f(n) (mod m)
Thus 5 (1) — 1
en="— Y > XU m)x(g7) + —5— (4.6)
m 4 2m
1<5<m/2 x#xo:x™=1
Assume now that 1 <a <a+ (t —1)b < N. Then we have
5 -1 [m/2] \\
U(Ey-1,t,a,b)| = ‘E > ( x(f(aﬂb))) > x'(g")
X#xo:x™m=1 \1i=0 j=1 }
(=)™ -1t
4.7
+ o (4.7)
We will prove the following:
wr | 1 t—1 [m/2]
SEI— >, ( Y(f(aﬂb))) > X (")
X#xo:x™=1 \1i=0 j=1
< 18kp*/?(log p)?. (4.8)

If m is even we obtain the statement of Theorem 1 immediately from (4.7)

and (4.8). If m is odd using the triangle inequality we get
t
U(Ep-1,t,0,b)| = — + O(kp'/*(log p)*)

which completes the proof of Theorem 1. Thus in order to prove Theorem 1,
we have to verify (4.8).
We will use the following lemma:
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Lemma 1 Suppose that p is a prime, x is a non-principal character modulo
p of order z, f € F,[z] has s distinct roots in Fp, and it s not a constant
multiple of a z-th power of a polynomial over IF,. Lety be a real number with
0<y<p. Then for any x € R:

1/2

> x(f(m)

z<n<lz+y

< 9sp/“logp.

Poof of Lemma 1

This is a trivial consequence of Lemma 1 in [2]. Indeed, there this result
is deduced from Weil theorem, see |28].

Consider 37_0 X(f(a + b)) in (4.7), and here, let the order of x be z.
Since Y™ = 1 we have z | m. On the other hand f = ch? is not a constant
multiple of a z-th power of a polynomial over F,, since 1 = (m,d) = (z,d)
(because of z | m) and h is not a perfect power of any polynomial over F,.

Using Lemma 1 we have:

t—1

D " X(f(a+ib))

=0

< 9kp'*logp

and thus by (4.8)

[m/2]
9kp/?logp _—
§< 2P 8P NN N i)

m ,
x#Fxo:x™=1| j=1

Lemma 2
[m/2] . 9
Z Z Xﬂ(gw) < Z m < 2m log(m —+ 1).
XZAxo:x™m=1| j=1 XEx0:x™m=1

Proof of Lemma 2 This is Lemma 3 in [10] with m in place of d, m/2 in
place of (p — 1)/2 and ¢* in place of g, respectively, and it can be proved in
the same way.

Using Lemma 2 we obtain
S < 18kp'/?log plog(m + 1)
which proves (4.8) and this completes the proof of Theorem 1.
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4.2.2 Proof of Theorem 2 and 3

In this section we may suppose that m is even: In Theorem 2 m cannot
be odd. If m is odd in Theorem 3, then considering 2m in place of m and f?
in place of f in Construction 1 we generate the same sequence; however in
this case we have (2m,2d) > 1

To prove Theorems 2 and 3, consider any D = {d;,dy, ..., d;} with non-
negative integers d; < dy < --- < d; and positive integers M with M + d, <
p— 1. Then arguing as in |26, p. 382| with f(n+d;) in place of n+d;, m in

place of p — 1, and ¢* in place of g from (4.6) and since m is even we obtain:

1% (EN,MD\<— Z Z ZX1 fn+di))-- xe(f(n+de))

x#xa x#xa n=1
x7'=1 X¢'=

<[] Z X;(g79)] - (4.9)

Now let x be a modulo p character of order m; for simplicity we will
choose x as the character uniquely defined by x(g) = e (%) where zx* =
(mod m). Then

m

x(g") =e (i> : (4.10)

Let xu = x% for u = 1,2,...,¢, whence by x1 # Xo,---,X¢ # Xo, We may
take
1 <6, <m.

Thus in (4.9) we have

ZX1 fn+dy))...xe(f(n+dp))

=Zx‘” Fnt d) . X+ do)

= Zx(f‘51<n+d1)---f’”<"+d“))"
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If f%(n+dy)---f%n +dyp) is not a perfect m-th power, then this sum can
be estimated by Lemma 1, whence

M
ZX(fél(n +dy) -+ fo(n+dp))| < 9stp'/?logp.
n=1

Therefore by (4.9) and the triangle-inequality we get:

m/2

2 \

\V(En,M,D)| < —; Z 9slp*? log p Zx‘sj(g”')
m X1EX0  XeFX0 J=1 \}=1 )

+2W Z (r—1)

1<d1,...,0¢<m,
1 (n4dy)--foe(n+dy) is
a perfect m-th power

=> > (4.11)

From Lemma 2 the same way as in [26, p.384] we have

Zl < 9kL4*p % (log p) . (4.12)

J

L [m/2 \‘
> X% (95”7)

1 lj=1

It remains to estimate ) _,. First we claim that in Theorem 2 and in Theorem
3 (ii) we have ), = 0.

Indeed in these cases I will show that if fo'(n +dy)... f%(n +dy) is a
perfect m-th power, then there exists a d; which is even. Then, if §; is even,
by (4.10) and m {6; (1 < J; < m — 1) we have

m/2 m/2
S (g 52

0; ( %l — § : e g —
15-:1X ) e-:le ( m/2 ]> "

which means that in ), the product is 0, whence ), = 0. From this, (4.11)
and (4.12) Theorem 2 and 3 (ii) follows.

Let us see the proof of those cases for which all §;’s are odd. In the case
of Theorem 2 if fo(n +d;)--- f%(n + dy) is a perfect m-th power, then m
divides the degree of f% (n +d;)--- f%(n + dg) which is k(6; + - -- + &;). If
k and ¢ are also odd we get that k(d; + --- + J¢) is odd, which contradicts
2| m | k(61+---+0;). In the case of Theorem 3 (ii) we will use the following

lemma, which is Lemma 5 of [10] with m in place of p — 1.
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Lemma 3 Suppose that the conditions of Theorem 8 hold. Then if 1 <
81,--,00 <m—1, and fo'(n+dy)--- f%(n + dy) is a perfect m-th power,
then there is a §; (1 <1 <{) and an integer 1 < a < k such that m | ;.

By Lemma 3 we have

m | ad;,

T s

(m, @)

By the conditions of Theorem 3 we have 2° || m and k < 2°. Thus (m, a) <
o < k < 28, Therefore 2 | %, whence ¢; is even. This completes the proof
of Theorem 2 and Theorem 3 (ii).

In order to prove Theorem 3 (i) we need a generalization of Lemma 3.

This is the following:

Lemma 4 Suppose that the conditions of Theorem 3 (i) hold. If 1 <
81,...,00 <m—1and f(n+dy)--- fo(n+dy) is a perfect m-th power, then
there is a permutation (p1, ..., pe) of (01,...,00) such that for all 1 < i </

there exists an o; with 1 < o; < k' and
m | aip;.

We postpone the proof of Lemma 4. Now, from this lemma we verify
that ), < Ak 1. Consider a fixed (-tuple (61,--.,6;) for which f%(n +

mt

dy) ... fo%(n+dy) is a perfect m-th power. We will prove that

¢ |m/2 oe+1)/2

s k
IS e <20 (413
J=11 ¢;

Indeed, by Lemma 4 we have a permutation (pi, ..., pe) of (d1,-..,d,) such
that for all 1 < ¢ < ¢ there exists an «; with 1 < oy < k* and

m | a;p;.

o8



By this, 0 < a;p; < aym and o < k' we get

m < a;p; < (; — 1)m,

1 ; 1

a; m (67}
1 1 ;
—.<—<‘&
k'~ o; — Ilm

By this, (4.10) and |1 — e(a)| > 4 ||«|| we have
Uik 2 2 1 ki

EJZ_IXPJ‘(QM) < 11— x*i (¢7)| = 1= e(p;/m)| < 21Tps /] < 5 (4.14)

Taking the term-wise product in (4.14) for j = 1,...,£¢ we obtain (4.13).

Thus
Lle+1)/2

>, S 3 1. (4.15)

13515“'751Sm7
fo1(ntdy)- Ot (ntdy) is
a perfect m-th power

Next we give an upper bound for

r & 3 1. (4.16)

1561 yeees0f <m,
FO1(ntd)- 2t (ntdy) is
a perfect m-th power

The number of different permutations (py,...,p¢) of (d1,...,d,) is £!. Con-
sider a fixed permutation (pi,...,p;). Then by Lemma 4 we have m | a;p;
where 1 < o; < k'. Thus ﬁ | pi- Since 1 < p; < m we have that p; may
assume (m, o;) < a; < k¢ values. Therefore

l
r< O]+ = kD, (4.17)
=1

By (4.15), (4.16) and (4.17) we have

Kt £+1)

(
>, st —p

which proves Theorem 3 (i). It remains to prove Lemma 4.

Proof of Lemma 4

We will need the following definition and lemma:
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Definition 2 Let A and B be multi-sets of the elements of Z,. If A+ B
represents every element of Z, with multiplicity divisible by m, i.e., for all

¢ € Zyp, the number of solutions of
a+b=c a€ A beB

(the a’s and b’s are counted with their multiplicities) is divisible by m, then

the sum A + B is said to have property P.

Lemma 5 Let A= {ay,az,...,a,}, D={di,dy,...,de} CZy. If one of the
following two conditions holds

(i) min{r, ¢} <2 and max{r,{} <p—1,

(ii) (46 < p or (4r) <p,

then there exist ¢y, ..., ¢, € Ly, and a permutation (qu,-..,q¢) of (di,...,ds)
such that for all1 <i </

a+d=c¢ ac A, deD

has at least one solution, and the number of solutions is less or equal to 1.
Moreover for all solution a € A, d € D we have d € {q1,q92.-.,¢}, and

d=q;, a = c; — q; 1S always a solution.

Proof of Lemma 5
We will prove Lemma 5 by induction on . It was proved in [8, Theorem
2] that for all sets A and D with the conditions of Lemma 5, we have a ¢ € Z,
such that
a+d=c a€A deD

has exactly one solution.

This proves Lemma 5 in the case 1 = 1. Suppose that Lemma 5 holds for
i = j. Then we will prove that it also holds for : = j + 1. By the induction
hypothesis we have ¢,...,c; and a permutation (¢1,...,¢q;) of (di,...,d;)
according to Lemma 5. Let D' =D \ {qi,...¢;}. Since Lemma 5 is true for

© = 1 we have that there exists ¢;;; € Z, such that
at+d=cjy1 a€cA deD

60



has exactly one solution. Let this unique solution be o = ;11 and d = g;4.

Then for the solution of
a+d=cju ac A deD

we have d € {¢1,¢2, ..., ¢j+1} which completes the proof of Lemma 5.

Now we return to the proof of Lemma 4. The following equivalence rela-
tion was defined in [8] and also used in [10]: We will say that the polynomials
o(x),¥(z) € F,[z] are equivalent, ¢ ~ 1, if there is an a € F, such that
Y(z) = p(z + a). Clearly, this is an equivalence relation.

Write f as the product of irreducible polynomials over F,. Let us group
these factors so that in each group the equivalent irreducible factors are
collected. Consider a typical group ¢(z + a1),...,¢(z + a,). Then f is of
the form f(z) = ¢ (z+ay) ... 9" (z+a,)g(x) where g(x) has no irreducible
factors equivalent with any ¢(z +a;) (1 <i<7).

Let h(n) = f*(n+d;)--- f%(n+ d;) be a perfect m-th power where 1 <
d1,...,0¢ < m. Then writing h(z) as the product of irreducible polynomials
over F,, all the polynomials ¢(z + a; + d;) with 1 <7 <r, 1 < j < £ occur
amongst the factors. All these polynomials are equivalent, and no other
irreducible factor belonging to this equivalence class will occur amongst the
irreducible factors of h(z).

Since distinct irreducible polynomials cannot have a common zero, each
of the zeros of h is of multiplicity divisible by m, if and only if in each group,
formed by equivalent irreducible factors ¢(x + a; + d;) of h(x), every polyno-
mial of form ¢(x + ¢) occurs with multiplicity divisible by m. In other words
writing A = {a1,...,a1,...,0,...,0a,}, D = {dy,...,dy,...,dyg,...,ds}
where @; has the multiplicity «; in A (o; is the exponent of ¢(z + a;)
in the factorization of f(z)) and d; has the multiplicity §; in D (where
h(n) = fo*(n +dy)--- f%(n + dy) is a perfect m-th power), then for each
group A + D must possess property P.

Let A’ and D’ be the simple set version of A and D, more exactly, let
A" ={ay,...,a,} and D' = {dy,...,ds}. A" and D' satisfy the conditions
of Lemma 5. So by Lemma 5 for the sets A and D we have the following:
There exist ci,...,c, € Z, and a permutation (qi,...,q) = (dj,,...,d;,) of

61



(dy,...,d;) such that if
a+d=c¢ a€cA, deD,

then we have

de{q,...,a} ={dj,...,d;}
and d = ¢;, a = ¢; — ¢; is a solution. Here (ji,...,j¢) is a permutation of
(1,...,¢). Define p;’s by p; = 6;, (so (p1,...,pe) = (8;,,--.,9;,) is the same
permutation of (d1,...,0,) as the permutation (¢1,...,¢) = (dj,,...,d,,) of
(dy,...,dp)). Returning to the multi-set case, using these notation we get

that the number of the solutions
a+d=¢ a€A deD

is of the form

€;,105,101 T €205 202 + - - - + €0 ;0

where ¢;; € {0,1}, o € {a1,...,a,.} for 1 < j <iand¢; =1. (We study
the number of the solutions by multiplicity since A and D are multi-sets).

Since A + D posses property P we have that for all 1 <7 </
m | €;,105101 + €,205002 + - F €005 (4.18)
By induction on 7 we will prove that
m| o109, ..., 0P (4.19)

Indeed, for i = 1 by (4.18) and €;; = 1 we get m | a1,1p1. We will prove that
if (4.19) holds for 7 < j — 1, then it also holds for i = j.
By the induction hypothesis we have

m | ayip, m|aoeaps, .., m| ey ... a1 1pio. (4.20)
Multiplying (4.18) for ¢ = j by a1 ... j_1 -1 we get:

m |6j,101j,1011,1 < QG,5-1P1 + € 2020011 ... Q1 j—1P2 + ...

T €,50G,500,1 - - - Q1,515
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From this using (4.20) and €;; = 1 we get
m| a0

which was to be proved.
i, .., 0 € {a1, ..., } where ;s are exponents of irreducible factors
of f, thus 1 S (7% S deg f = k. Therefore o110 ... Q4 S ]CZ and by (419)

this completes the proof of Lemma 4.

4.2.3 Proof of Theorem 4

The proof is exactly the same as in [1, Theorem 1|, the only difference
is in the definitions of ¢ and r: now we choose ¢, as integers with (¢, p) =
(’I",p) =land1 S lnd*q < %, % < ind*r S m.

4.3 Time analysis

Construction 1 depends on the key ¢ where g is a primitive root and
(x,m) = 1. We only need ¢7, it is not necessary to know the value of g or z.
First we prove that it is easy to find a key ¢”.

Suppose that the factorization of m is known: m = pi*...p% where
p1,-..,pr are primes. The condition (z,m) = 1 is equivalent with that
y = ¢* is not a perfect p;-th power for any 1 <7 <r in F,. In other words,

using Fermat’s theorem we have that
y®P=V/Pi =1 (mod p) (4.21)

does not hold for all 1 < ¢ < r. By using the iterated squaring method to
check (4.21), it takes O ((logp)?) bit operations (see e.g. in [16]).
We will choose a random y € Z,, and by (4.21) we check that y = ¢°

weather satisfies (x,m) = 1 or not. For a fix primitive root g, the number of

p
loglogp”

we will find a suitable key g with high probability.

x’s with this property is go(m)f”%1 > Thus after cloglogp attempts

Next by the Pohlig-Hellman [24] we prove that ind*n can be computed

fast. Indeed, first we determine ind*n modulo prime power divisor ¢ of

63



m by O (ag(logp)?) bit operations. If we know ind*n modulo p{ for all
1 < o; < rwherem = p{*...p%, then using the Chinese Remainder theorem
we have determined the value ind*n modulo m, which gives ind*n because of
1 < ind*n < m. Thus to compute ind*n we use O((logm)* + (logp)3(a1p1 +
- -Fayp)) < O((logm)'+(log p)* (a1 +- - ~+a,) max pi) < O((log p)" max pi)
bit operations.

Let us see the proof of that ind*n can be computed modulo prime power
divisors ¢* of m by O(ag(logp)®) bit operations. We will prove this by
induction on a. When o = 0 the statement is trivial. Suppose that we

already know ind*n modulo ¢':
ind*n=s (mod ¢").

From this we compute ind*n modulo ¢*** by O(q(logp)?) bit operations if
¢"*' | m. In order to prove this statement we will use the following lemma,
which is a trivial consequence of the properties of the primitive roots and

Fermat’s theorem.

Lemma 6 ¢* | m. Then
ind'n =s (mod ¢%)
holds if and only if
n/g*® is a perfect ¢*-th power modulo p
which is equivalent with
(n/g*®)P~V/¢" =1 (mod p). (4.22)

By Lemma 6 we have that n/¢g*® is a perfect ¢’-th power. By Lemma 6,
using (4.22), we check that which of the numbers

s+2¢')z s+(g—1)¢'z

s+qi)$) n/g( PR n/g

ST

n/g**, n/g'
is a perfect ¢*"'-th power. This takes O (g(logp)?) bit operations. There is

surely one which is a perfect ¢**'-th power, because s, s+¢‘, ..., s+(¢g—1)¢
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run over the residue classes modulo ¢*t! which are congruent to s modulo
¢'. By Lemma 6, n/g""%'* is a perfect pit!-th power if and only if ind*n =

s+ jq¢'x (mod ¢**!). This completes the proof of the statement.

I would like to thank to Professor Andras Sarkozy for the valuable dis-
cussions and to the referee Christian Elsholtz for his careful reading and

constructive comments.
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Chapter 5

On the correlation of binary

sequences

Abstract

C. Mauduit conjectured that Cy(Ex)C5(EN) > N€ always holds with
some constant 1/2 < ¢ < 1. This will be proved for ¢ = 2/3, more ex-
actly if for a sequence Ey C {—1.+4 1}V we have Cy(Ey) < N?/® then
C3(Ey) > N'/2. Indeed, a more general theorem is proved, involving corre-
lation measures.

2000 AMS Mathematics subject classification number: 11K45.

Key words and phrases: Pseudorandom, correlation measure.

5.1 Introduction

In 1997 Mauduit and Sarkézy [21] initiated the systematic study of finite
binary sequences Ey = (€1, €s,...,ex) with ej, ey, ..., exy € {+1,—1}. They
proposed to use the following measures of pseudorandomness:

The well-distribution measure of Ey is defined as

t—1
W(EyN) = max j;o €atjb

a,0,
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where the maximum is taken over all a,b,t € Nwith1 <a < a+(t—1)b < N,

while for k£ € N, k > 2 the correlation measure of order k of Ey is defined as

Ck (EN Mrglax E :en+d16n+d2 - Cntdy
1;- 7

where the maximum is taken over all M € N and non-negative integers
di < dy < -+ < dgsuch that M + d; < N.

Since 1997 about 20 papers have been written on this subject. In the
majority of these papers special sequences are constructed and/or tested for
pseudorandomness, while in [6], [10], [3] and [22] the measures of pseudoran-
domness are studied. In particular in [6] Cassaigne, Mauduit and Sarkozy
compared correlations of different order. They asked the following related
question:

Problem 1. For N — oo, are there sequences Fy such that Cy(Ey) =
O(V'N) and Cs3(Ey) = O(1) simultaneously?

Recently, Mauduit [19] asked another closely related question

Problem 2. Is it true that for every Ey € {—1,+1}" we have

Co(En)Cs(En) > N

or at least
Cy(En)Cs5(EN) > N°¢ (5.1)

with some 3 < c<1?
In this paper I will settle both Problem 1 and Problem 2 in the weaker

form (5.1). The answers will follow from the main result of this paper:

Theorem 1 Ifk,/ €N, 2k+1>2¢, N € N and N > 67k* + 400, then for
all B, € { — 1,41}V we have

2%-+1 2% +1\° 1
(11\/k(2£+ 1) CQ@) + (17 2—; ) N%%Cgqu > %NQIC*Z-FI. (52)

If follows trivially that

Corollary 1 Ifk,f €N, logN >2k+1>2¢, N € N and N > 67k* + 400,
E,e{—1,+1}" and

1
C E < Nl—[/(?k—Fl)
) < 5 k(20 + 1)
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then we have

1 20 42
“(—= ) N2
Coern > 7 <17(2k + 1))

In particular, for £ = 1,2 and 8 we obtain:

(1) if

N2/3
Cy(En) < ——
2( N) 50 /—logNa
then
C3(En),Cs(En), -+ > VN;
(i) if
N3/5
Cu(E -
1(E) 64,/ Iog N’
then
Cs(Ex),Cr(Ey),--- > VN;
(i) if
N7
Cs(E _—
o(Ew) 75y/log N
then

Cr(En), Co(En), - > VN;

where the implicit constant may depend on the order of the correlation mea-

sure.

From the first statement of Corollary 1 (which is an immediate conse-

quence of Theorem 1), follows the parts (i), (ii) and (iii) by using the in-

equalities N1=¢/(@k+1) > N1-£/(26+1) apq ﬁ >

1
\/log N/2"

Clearly, (i) in the Corollary answers the question in Problem 1. Moreover,

since we have
Cr(En) >1

for all N > k, thus Problem 2 also follows from (i) with ¢ = 2/3.

By Theorem 1 for N > 467 we have

1
267C5 + NC3 > m]\ﬂ.
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For a “truly random sequence” Ey € {—1,+1}" the left hand side of (5.3)
is <« N3/2 4+ N? which shows that the second term is the best possible apart
from the constant factor. On the other hand I do not know whether the
exponent 3 in the first term is the best possible. In other words, I have not
been able to settle the following problem.

Problem 3. Does there exist a sequence Ey € {—1,+1}" with
Cy(Ex) = O(N?/3), C3(Ey) = o(N'/?)?

Alon, Kohayakawa, Mauduit, Moreira and V. R6dl proved the following

for the correlation measure of even order in [3]:

Theorem 2 If k and N are natural numbers with even k and 2 < k < N,
then

for any Exy € {—1,+1}".

5.2 Proof of Theorem 1

We may suppose that
Cors1(Ex) < VN (5.4)

otherwise the theorem is trivial. The crucial idea of the proof is the following

identity:

Lemma 1 Let
def
s¢ Y
1<d1 <-<dog_1 <N—(2k+1)

E : €n1€nitdr - - Cnitday_16no - - - Cnotdag 1 Cnogy1Cnopyitdr ¢ ¢ Cnogyitdag1o

1<n1 < <Nog41
<N—dy-1
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s, 3

1<d1 <+ <dop, <N—-2¢

E €ni€ni+dy - - - €n1+d2k €nsCnotdy - - - €n2+d2k€nzl€n2e+dl e enﬂ_'_dzk,

1<n1 < <nyy
<N—dyy

Then
S, — Sy, =0 (5.5)

We will give an upper bound for S; — S5 involving Cy and Cy,yq. But
before this we prove Lemma, 1.
Proof of Lemma 1. If a product e, ...e€n,, ., 14, , Occurs in Sy, then it
also occurs in Sy and vice-versa, because for all terms ey, ... €ny, ., 1dyy_, ID

S we have

€n1€ni+dy - - - Cnitdap_16ng - - - Cnotdap— 1 Cnogr1 Cnoprrtdi - - Cngpyrtda—r =

€n.€ny - - - en2k+1 €ni+diCnatdy - - - €n2k+1+d1 ‘e en1+d2l71€n2+d2271 Ce €n2k+1+d2571.

Here

Niv1 —n; = (N1 +di) — (ni +di) = (nis1 +do) — (g +d) = ...
= (Niy1 + dog—1) — (i + doe—1)

for all 1 < ¢ < 2k, which proves that this product also occurs in Sy. Changing
the role of S; and S5 we get the inverse statement. Thus indeed S; — S, = 0.
Considering > €ny -+ Cngpyitdy_; 1 S1 we see that this is

1<n1 < <Nap41
<N—dy—1

the sum of all possible products containing 2k + 1 terms from the set

€1€14dy -+ - Cltdyy_19 €2€24d; - --€2+4dyy_15-++y EN—dyy_1EN—doy_1+dy ---EN- A sim-
ilar situation holds in the case of S;. We will use the following lemma.

Lemma 2 For all j, M € N, j < M there is a polynomial pj p(x) € Q[z]
with the degree j such that if x1,xo, ...,z € {—1,+1} then

pj,M(l‘1+"'+l'M) = E Ti1 Lijy -+« Ty
1<i1<ig-<i; <M
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Denote the coefficients of pjar by ¢ijm:
— J ) J=1 ... )
P (%) = Cjjma” + Co1,jm@’ T + -+ Cojm-

Then c;jy =0 if i # j (mod 2), and (=1)V=9/2¢; ;3 >0 if i = j (mod 2).

If j 1s even we also have:

cogm = (—1)2 (M/2>-

3/2
Proof of Lemma 2. We will prove this lemma by induction on j. p; p(z) =
z trivially. Since 2 = 1, py ir(z) = 2% — ¥ because
1 M 1
= Z .T,'.Tj.
1<i<j<M
Thus
com =0, crim =1
CO,Q’M = —M/Q, CI,Q,M = 0, CQ’Q,M = 1/2 (56)
Suppose that the polynomials pi ar, P2, - - -, Dj—1,m exist. From this we
will prove that p; s also exists.
Using again z7 = 1 we get:
1
Z Tiy Ty - - - Tiy = j Z Ty Ty - Ty (T1+ -+ Ty)

1§’i1<i2<"'<ijSM 1Si1<i2<---<i]’_1§M

M—(j—-2
- # Z L1 Tiy - - ",I:ij_z'

1<i1<ip<--<ij2<M
Thus for 7 > 3 we have

1 M—(j—2)

pjm(T) = 7 wpj,m(T) — ; Pj—2,m(T).

From this we obtain that the following holds for the coefficients c; j u:

1 M-(5-2)

CijM = — Ci-1,j-1,M —
J J

Ci,j72,M- (57)
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By induction on j, Lemma 2 follows immediately from this recursion. I leave
the details to the reader.
By Lemma 2
S1—5 =0

is equivalent with

N—dzg 1
E D2k+1,N—dop_1 E €nenidy - - - Cntdoy_;
n=1

1<dy <-+-<dgg 1 <N —(2k+1)

N—doy
- E D24,N—do E €nnidy -+ Entdy, | = 0.
n=1

1<d1 < <dop, <N—-2¢

So:

N—dgp—1
E p2k+1,N—d2[,1 § En€nid; - - - en—|—dgz,1
n=1

1<di1<++<dgs_ 1 <N—(2k+1)

N —ds,
- E DP2e,N—do, E En€ntd; - - - Cntdy, | — C0,2¢,N—doy,
n=1

1<d1 < <dpp <N—2£

= E C0,2¢,N —dyy, -

1<d1 < <dop, <N—-2¢

Using the triangle inequality we get:

N—dyp—1
E p2k+1,N7d2[_1 E €n€ntd; - - - en+d243_1
n=1

1<d1 <---<d2471§N—(2k+1)

N—doy,
+ E P22,N —doy, E €n€nidy - - - Entdey, | — C0,20,N—doy

1<d1 <+ <dop <N—-2¢ n=1

E C0,2¢,N—doy, | -

1<d1 < <dop <N—-2¢

> (5.8)

We will give estimates for both side of (5.8). In order to estimate the right
hand side of (5.8), we need upper bounds for the coefficients of the polyno-

mials p; as.
Definition 1 Let
do1 =0, dig=1
doo=1/2, di2=0, doo=1/2.
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Ifi <0 orj<iletd;; =0.
Fori> 2 let

1
di,j = 3 (dz’—l,j—l + di,j_g) . (59)

Lemma 3 If j < M then
leigul] < digMUO2,

Proof of Lemma 3. We will prove the lemma by induction on j. For
j = 1,2 by (5.6) the assertion is trivial. If the lemma holds for j < k£ —1
then it also holds for j = k because of triangle-inequality and (5.7):

M = (k—2)

1 1
Cikm| < 2 \Cio1k—1,m| + i Cik—am| < % lcio1 k—1,m| + T i k—2,M

< %di—l,k—lM(k_i)/z + %di,k—zM(k_i_z)/Q = MEDg;

Thus Lemma 3 is proved.

Next we give an upper bound for the polynomial p; .

Lemma 4 Let w; ) doj+dij+---+dj;, j <M

(i)If|x|§y,v>0,y>,/ﬁ and M < N then

i (@) < (B(v + 1)) w; [yl .
(ii) If j is even |z| < VN and M < N then
() — o] < wyNU2/2g2
Proof of Lemma 4. (i) By Lemma 3
lig| < diyMU—I2 < d; ;NUD/2, (5.10)
Using this and |z| < y we obtain:

P (@) < djjy’ + dima NPy dio Ny ™2 + -+ do NI
' N1/2 N1/2\7
=y’ (dj,j Fdiam mt e Ty < " ) :
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By y > ﬁ we have
pim(z) <y’ (dj,j +d;1,;3(v + N2 4.4 do,; (3(v + 1))j/2)
< B(v+1)2(djy + djorg + -+ dog)y’ = (B(v + 1)) Py’

which proves (i).
(ii) Since j is even, by Lemma 2 we have ¢ = 0. Using again (5.10) we

get

|pj,M($) - CO,j,M| < dj,]wj + dj_l,le/ij_l 4+ e+ d2,jN(j_2)/2332
= 22 (dj,jxj—2 + dj,l,le/%j—s 4t dQ’jN(j—Q)/z)

Because of z < N2 we have
() = cogm] < w;NU=D7242,

This completes the proof of Lemma 4.
Using Lemma 4 we are able to estimate the right hand-side of (5.8).

Indeed, by the definition of the correlation measure and Theorem 2 (which

/| N
< E E —_ .
< Cy(En), Cu(EN) > 320+ 1)
Thus by Lemma 4 (i) we have

N—dyy_1
P2k+1,N—dyp_q E EnCntdy - - - Enddyy_y

n=1

was proved in [3]) we have
N—dzp_1

E €nCnidy - - - en+du_1
n=1

< (3(2041)) D200, O (Ey).

(5.11)
On the other hand by (5.4) we have
N—dy

Z EnCntdy - - - Entdyy | < 02k+1(EN) < \/N
n=1

Using Lemma 4 (ii) we get

N—day,
_ < N27102 (E )
pQZ,N*ko €n€ntd; - - - e'ﬂ,—}-dgk CO,?&N*dgk > Wy 2k+1 N)-
n=1

(5.12)
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We also have

3 . (N — (2k + 1)) o
i 2 —1 = (20 -1)!

1<d1 <+ <dgp_1<N—

N —20\ _N*
> 1= ( o ) < o (5.13)

1<d1 < <dop, <N -2/

By (5.8), (5.11), (5.12) and (5.13) we have

N2£—1 N2k+€—1

(3(2¢ + 1))(2k+1)/2w2k 1WC22§+1 W

> E €0,20,N—dyy, | -

1<d1 < <dop <N—-2¢

o1 (En)

(5.14)

The following lemma gives an upper bound for w;.

Lemma 5

P
e

Proof of Lemma 5. The lemma is true for j = 1,2. We will prove that
if it is true for j < k — 1 then it is also true for j = k. By the recursion (5.9)

we get
1

E(wk—l + wg—_2)

Thus by the inductive hypothesis we have

W =

1 1 1 1

WS g ([(k 2 - 2)/21!) = /2T

which completes the proof of Lemma, 5.

Using Lemma 5, from (5.14) we get:

N2Z71 kb1 NQk—}—ﬁ 1

R = 1) + (k). 7oy Cone1(En)

E C0,2¢,N—dy,

1<d1 < <doyp <N—2¢

(3(2¢ 4 1))@k+1/2

def

> L. (5.15)
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In order to prove Theorem 1 we need a lower bound for the right hand-side
of (5.15). By Lemma 2 we have

E C0,2¢,N—dyy,

1<d1 < <dpp <N—2¢

L=

_ 3 ((N —jzk)/2>

1<d < <dpp <N—2¢
N—2¢

> ) ] ((N —jzlc)/Q)

dop=2k \ 1<d;<-<dop_1<dap—1

E e )

dgk =2k

We will use the following lemma

(5)= %
() > 5 (5)

Proof of Lemma 6. By a > /> — 1 and 1 + z < e we get:

Lemma 6 If a > 202 then

and

_ ¢ L l
(;)2(a+2, ?) _ a > a :
. ¢! (1 + af(in) ! (1 + (ztf)il(zq))
at at
- ;> —
RS
On the other hand
a/2\ ,(a ala—2)...(a—2({—1))
= . Nl
(z)/<£) Yala—1).. (a—(—1) (5.17)
Bya>20?>0?+/¢—-2for1<i</{—1 we have
a— 21 a a /-1 /-1 1
o % 5o g _ - .
a—i a—i_  a-—(£-1) a— (-1~ £2-1 (1+3)
(5.18)

By (5.17) and (5.18) we have

(V)5
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which completes the proof of Lemma 6.
Let
def 1 — do — 1\ (N — da
HE —; : 1
e2¢ Z (2k—1)( 14 ) (5.19)
dop=N—202+1
By Lemma 6 from (5.16) we obtain
e Niﬂ dog — 1\ (N = doy) /2 LN_ZMZ dog — 1\ (N — day
- 2k —1 12 — e2t 2k —1 14
d2k22k d2k22k
N—¢
1 d2k -1 N — d2k
> — — . .
> > (o)) (520)
dszQk‘
Consider how many ways we can choose from the integers 1,2,..., N

exactly 2k + ¢ pieces. This is trivially (2151@)' On the other hand if we fixed

the value of the 2k-th largest integer from these 2k + ¢ pieces, let it be dy,

then the number of the possibilities is (‘22,;“:11) (N }dz’“). Therefore

N N5 o — 1\ (N — doy
(2k+£) _dch(qu)( 14 ) (5:21)
2k —

By Lemma 6 we have

N N2k+L
> — 5.22
(Qk + E) ~ e(2k + 0)! (5.22)
By (5.20), (5.21) and (5.22) we have
N2k+L
> ——F—-——H 2
—e22¢(2k + 1) (5.23)
Lemma 7
Ho LS ()N o) N
e2t 2k —1 1 e2t(2k + ¢)!

dop=N—20211

Proof of Lemma 7. By the Stirling-formula if dy, > N — 2¢? + 1 we have:

(4)s2) < <o

7



On the other hand

<d2k - 1) < N2 1 (2k+0)! 21 (2k + E)ZHN%A

2%k — 1 2k — 1)l (2k +0)! (2k — 1) = (2k +0)!

(5.25)
By ¢ < k and 67k < N:

2 V4 (2k + g)e—i—l 2k—1 1 26+3 2k—1
<% et orrar Y = 22k 1 0)! (‘@k) N

< 1 2k+2¢
- e?Z(Qk +0)!

H< —
— e2¢

which proves Lemma 7.
By Lemma 7, (5.23) and N > 67 we have

N2k+£ ( e ) NZIH—Z

> (1- > . 5.26
= €22((2k + )] NU3) = 23.2¢(2k + 0)! (526)

From (5.15) and (5.26) and 2¢ < 2% < (1/2)%*! we have

(2K +0)

2k + 0)! !
(3Va(at+ D) T o 4 2t S SN, L (En)

k(20— 1)
N2k—€+1

>
- 23

Here,

(2k+ 0! _ (2k+ % )
kl(2¢—1)! — k! - (g)k

(2k + 0)! < (2k + £)°
002Kk — 4

N

VAN
—~
w
™
&~
VAN
RS
1%
[u—
=)
| >
N~
~

Thus

2%+1 2% +1\° 1
(11\/k(2£+1) C%) + (17 2; ) N#-tC2, > %NQHH, (5.27)

which was to be proved.

I would like to thank Professors Julien Cassaigne and Andras Sarkozy for

the valuable discussions.
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Chapter 6

An inequality between the

measures of pseudorandomness

6.1 Introduction

In this paper I will improve on a generalization of an inequality of Mauduit
and Sarkozy [22]. They introduced the following measures of pseudorandom-
ness in [21]:

For a binary sequence
EN = {61, ceey eN} € {—1, —|—1}N,

write

U(En,t,a,b) Zeaﬂb
and, for D = (dy, ..., d;) with non-negative integers 0 < d; < -+ < dy,
V(En, M, D) Z€n+d1-  Cntdy-
Then the well-distribution measure of Ey is defined as

I’

W(Ey) = max|U(En,t,a,b)| = max

t
7 E €a+ijb
Jj=1
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where the maximum is taken over all a,b,t such that a € Z, b,t € N and
1<a+b<a+tb <N, while the correlation measure of order k of Ey is
defined as

M
Ci(En) = max \V(Ew, M, D)| = max Z;em_dl, e Cnid |
where the maximum is taken over all D = (di,...,d,) and M such that

M +d < N.

In [22] Mauduit and Sarkézy proved that for all sequences Ey €
{=1,+1}" we have W(Ey) < y/NCy(Ey). Later in [11] this inequality
was generalized by me to correlation measure of any even order: If 3/2 < N
and Ey € {—1,+1}" then W(Ey) < 3¢N'"Y/@D (Coy(Ey))?. In the
present paper I will improve on the factor 3¢ showing that this inequality

even holds with an absolute constant factor:
Theorem 1 Ife >0, N > 18¢/&?, then for all Exy € {—1,+1}" we have
W(EN) S (\/§+E)Nl_l/(%)ng(EN)l/(%).

Mauduit and Sarkozy [22] also proved that their inequality is sharp by
using probabilistic arguments. In [11] I presented an explicit construction
for which the generalized inequality is sharp apart from a v/¢ factor. This
construction was based on the notion of index (discrete logarithm): Denote
ind n the index of n modulo p, defined as the unique integer with

indn —

g =n (mod p),

and 1 <ind n < p—1, where g is a fixed primitive root modulo p. Let ind*n

be the modulo m residue of ind n:
ind*n =ind n (mod m) (6.1)
with 1 < ind*n < m.

Construction 1 Let m | p — 1 and ind*n be the function defined by (6.1).
Then let the sequence E, 1 = {ei,...,ep_1} be

) +1 if1<ind*f(n) < 7,
] -1 if 5 <ind*f(n) <m orp| f(n),

€n (6.2)
where f(z) € Fy[z] is a polynomial with the degree k.
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In Theorem 1 and 3 in [11] I gave estimates for the well-distribution
measure and correlation measures of this sequence FE, ; if some, not too

restrictive conditions hold on the polynomial f(z). Then

W (Ep-1) > P YO (Cop(EB,_y))' /0 (6.3)

1
AT

follows from these theorems, where the implied constant factor is absolute.

This inspired me to consider the simplest polynomial f(z) = z in Con-

struction 1, hoping that inequality (6.3) holds with a factor larger than ﬁ

Indeed we will study the following sequence:

Construction 2 Let m | p — 1 and ind*n be the function defined by (6.1).
Then let the sequence E,_1 = {e1,...,ep,_1} be

_{ +1 ifl1<indn < 6.4

€n = rm . d* <
—1 f 5 <ind'n < m.
For this sequence we have:

Theorem 2 If m is even then the sequence in Construction 2 satisfies
W(E, 1) < 36p"/*log plog(m + 1)

while for odd m we have

-1
W (Eym1) = *—= + O(p"/*logplog(m + 1)).

Indeed, this is Theorem 1 in [11] in the special case when k, the degree
of the polynomial is 1.
In case of the correlation measure we will give slightly better upper bound

than in Theorem 3 (in the special case k = 1) in [11]:
Theorem 3 If m is even then the sequence in Construction 2 satisfies:
Co(Ep_r) < 904*p'?logp (logm)"
while for odd m we have
p

ColBp1) = 5+ O(5p'? log p(log m)").
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It follows from Theorems 2 and 3:

Corollary 1 For every € > 0 there exist positive constants py(e) and co(e)

such that if p > po(e) and m is an odd divisor of p — 1 with

p1/0
m < ¢e) ——— (6.5)
¢ (log p)'*/*
(s0 2 > 5¢pt/2log p (logm)"), then
W(Ey) > (1= ) 1C0 (Co(By 1)) (6.

I remark that to make sure that condition (6.5) holds, first we fix an
odd integer m, and after this we look for a prime number p with m | p — 1
and (6.5). This is possible by Dirichlet’s theorem on primes in arithmetic
progressions.

So, indeed Theorem 1 is best possible apart from a constant factor. The
interesting feature of this proof is that it is explicit, we give a sequence for
which (6.6) holds. In the most cases there is only an existence proof for the

sharpness of an inequality between pseudorandom measures.

6.2 Proofs of Theorem 1 and 3

Proof of Theorem 1
It follows from the definition of W (Ey) that there exist a € Z, b,t € N
with 1 <a+b < a+tb < N such that

W(Ey) = ‘ Y el
a+b<i<a+tb
i=a+b (mod b)

(6.7)

For 0 < h < blet

D, & ( Z ei>2é — 2/ Z €iy - - - iy - (6.8)

a+b<i<a+tb a+b<i1 < <i9p<a+tb
i=h (mod b) h=i1=:+=iy (mod b)
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Using the multinomial theorem we get that Dj is a sum of products of

the form c-e;, ...e;, where ¢ > 0. Thus D), takes his maximum when all e;’s

are +1 (or all ¢;’s are -1). So:

Dhg( y 1)%—25! 3 1

a+b<i<a+tb a+b<i1 <-+-<igp <a-+tb
i=h (mod b) h=i1=:+=iy; (mod b)

<P (t=1)(t—=2)...(t—20) <% — (t — 20)* < 402>,

By this, (6.7) and (6.8) we have

1

(W(EN))ZZ < ( Z ei)ﬂ

0 a+b<i<a+td
i=h (mod b)

(Dh + 20! Z €iy .- em)

a+b<11 <+ <i9p<a-+tb
h=i1=---=iy (mod b)

o
|

>
Il

<

-1

>
Il
)

1

< (4£2t21£—1 + 20! Z €y - - .em)

i

h=0 a+b<i1 < <iop<a+tb
h=i1=---=iy (mod b)
L Anp2420—1 4 _
= 4bl°t + 27! g €iy - - - Cigy -
a+b<iy <-<ing <a+tth
i11=-=ig¢ (mod b)

From this replacing i5 by 2, +d, i3 by 721 +dy and so on, finally 79, by %1 +dss_1

we obtain

(W (Ex))* < 4662241 4 201
a+tb—doy_1

Z Z €irCirtdr - - - Cirtdyy 1+ (69)

1<di <+ <dgp_1 <(t—1)b i1=a+b
d1=-=dy_1=0 (mod b)

By the definition of the correlation measure we have

a+tb—dag_y

Z €i1€i1+dy - - - Cir+dap_1 S CQ@EN. (610)
i1=a+b

By th < a+tb < N we have 4b0?t>~1 = 4¢%(tb)t**2 < 42N*~! and so from
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(6.9) and (6.10) we obtain
21

20 < 2 A720—1 !
(W (Ex))? < 42N 2

Co(EN)

20
=21+ —" N0, ,(Ev).
( CQe(EN)) 2¢(E)

From this by the binomial theorem we get:

W (Ey) < (%)1/(25) <1 + ) N1-1/(20) (ng(EN))l/(%).

1
Cau(EN)
Kohayakawa, Mauduit, Moreira and V. Rédl [3] proved that Co(Ex) >
\ /B(T]\{H) holds for all Ey € {—1,+1}" by this and since (2£)'/() < /2 we
get:
3(20+1)

W(Ey) < V2 (1 + N

) Nl—l/(%) (C%(EN))I/(QZ) )

If N > 18(/? > 6(2¢ + 1)/£* then this completes the proof of the theorem.
Proof of Theorem 3

The proof of the theorem is very similar to the proof of Theorem 1 in
[10]. By the formula

1 s 1 if m|ind @ — ind b,
— > X(a)x() = . .
m_ = 0 ifm{ind a —ind b,
X:x™=
we obtain
2 — i
en, = 2 Z 1—125 Zx(n)x(g)—l.
1<i<m/2 1<i<m/2 x:x™=1
i=ind n (mod m)
Thus
2 B o (=Dm -1
a2 ¥ xone+ L) ey
1<i<m/2 x#xo:x™=1
To prove Theorem 3, consider any D = {di,ds,...,ds} with non-negative

integers dy < dy < --- < d, and positive integer M with M +d, < p — 1.

84



Then arguing as in [26, p. 382] with m in place of p — 1 from (6.11) we

obtain:

¢ M £ _1\m
Vi) = ST S Y S dlen + T

n=1j=1 | 1<i<m/2 x;#Xo,
X5 =1

A ox ()T oy

k=0 13.71<<.7k§Z X]‘I#X07 Xjk7£X0’

xj; =1 X =1
M
Zle(n—Fdﬁ)"'ij(n'i_djk)H ( Z in(gzt)>>'
n=1 t=1 \1<t<m/2
(6.12)

LetSO:M,Voz(%)éandforlgkgélet

Y Xaln+dg)...Xp(n+dy,) (6.13)

n=1

Sy = max
X17£X0s+ Xk #XO0
1<g1 << jp <l

1\ Lk P
P> (5) > - I X ™). 619
1<j1 < <G <l X‘h#XO; Xjk:,ﬁx(),t:l 1Sft§m/2
X =t X =1
Then by the triangle-inequality, the value of “2"* and (6.12) we obtain

that if m is even then

28
and
9t 2t
V(En, M, D)= =8V +0 | — > SV (6.16)
k=1

Next we give an upper bound for S;. In order to do this we will use the

following lemma:
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Lemma 1 Suppose that p is a prime, x is a non-principal character modulo
p of order z, f € F,[z] has s distinct roots in Fp, and it s not a constant
multiple of a z-th power of a polynomial over IF,. Lety be a real number with
0<y<p. Then for any x € R:

1/2

Y x(f(n)

z<n<z+y

< 9sp/“logp.

Poof of Lemma 1

This is a trivial consequence of Lemma 1 in [2]. Indeed, there this result
is deduced from Weil’s theorem, see [28].

Now let x be a modulo p character of order m; for simplicity we will
choose x as the character uniquely defined by x(g) = e (%).

Returning to the estimate of Sy, let ¥, = x% for u = 1,2, ..., ¢, whence

by X1 # Xos---,Xe # Xo, We may take

1 <6, <m.
Thus in (6.13) we have
M M
Y Xan+di) . X+ di)| = D X" (n+dyy) . X0+ dy,)
n=1 n=1
M
=D x((n+d)" ... (n+d;)™)|.
n=1

Since (n+dj,)% ... (n+d;, )% is not a perfect m-th power, this sum can be

estimated by Lemma 1, whence
Sk < 9kp'/?log p. (6.17)
By (6.14) we have
1\ & * [m/2]
= Y (5) 2. [2X()

1<g1+<jp <L
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Lemma 2

[m/2]
Z ZX Z ‘1_ <2m10g(m+1).
X#xo0, | J=1 x;éXO,
x™=1 =1

Proof of Lemma 2 This is Lemma 3 in [10] with m in place of d and m/2
in place of (p — 1)/2, and it can be proved in the same way.

Using Lemma 2 we obtain

s 3 (3) (omonm ) = B (1) cgom + 1

1<g1-+<jx <L
(6.18)

By (6.15), (6.16), (6.17) and (6.18) we obtain that if m is even then
V(Ex, M, D)| < 9¢4'p'/* logp (log(m + 1))",

and if m is odd then

M 9pt/21 Lo
V(En,M,D) = — +0 (pizogp >k (k) 4*m” (log(m + 1))’“)

m k=1
M 9¢p'/? logp
= +0 (T (4mlog(m +1))*
M
= — +0 (5% 10gp (log(m +1))")

which completes the proof of the theorem.
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