
On generalizations of a problem of DiophantusYann Bugeaud and Katalin Gyarmati∗Abstra
t. Let k ≥ 2 be an integer and let A and B be two sets of integers.We give upper bounds for the number of perfe
t k-th powers of the form ab+1,with a in A and b in B. We further investigate several related questions.2000 Mathemati
s Subje
t Classi�
ation: 11D99, 11B99.1 Introdu
tionThe Greek mathemati
ian Diophantus of Alexandria noted that the rationalnumbers 1
16 , 33

16 , 17
4 , and 105

16 have the following property: the produ
t of anytwo of them in
reased by 1 is a square of a rational number. Later, Fermat foundthat the set of four positive integers {1, 3, 8, 120} shares the same property. A�nite set of m positive integers a1 < . . . < am su
h that aiaj + 1 is a perfe
tsquare whenever 1 ≤ i < j ≤ m is 
ommonly 
alled a Diophantine m-tuple.A famous 
onje
ture asserts that there does not exist a Diophantine 5-tuple.This question has been nearly solved in a remarkable paper by Dujella [3℄, whoproved that there does not exist a Diophantine 6-tuple and that the elementsof any Diophantine 5-tuple are less than 101026 . We dire
t the reader to [3℄ forfurther referen
es.This problem was extended to higher powers by Bugeaud and Dujella [2℄.They proved that if k ≥ 3 is a given integer and A is a set of positive integerssu
h that aa′ + 1 is a perfe
t k-th power for all distin
t a and a′ in A, then Ahas at most 7 elements. In the present paper, we investigate related questionsand, among other results, we provide, for an arbitrary set A of positive integers,estimates for the number nA of pairs (a, a′) with a, a′ in A su
h that aa′ + 1is a perfe
t k-th power. It is 
lear that, for all m, there exists a set A =
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h partially supported by Hungarian S
ienti�
 Resear
h Grants OTKA T043631and T043623. 1



{a1, a2, . . . , am} su
h that the m−1 integers a1a2+1, a2a3+1, . . . , am−1am+1are perfe
t k-th powers, thus, for whi
h nA is at least equal to the 
ardinality of
A minus one. In order to give an upper estimate for nA mu
h sharper than thesquare of the 
ardinality of A, we 
ombine results from [2℄ with graph theory(see Theorem 1).A
knowledgements. We warmly thank the referee for having dete
ted manyina

ura
ies in an earlier version, and for having made numerous remarks, whi
hhelped us to 
onsiderably improve the presentation of the paper.2 ResultsThroughout this paper, the 
ardinality of a set S is denoted by |S|. Givenan integer k ≥ 3 and two �nite sets A and B, our �rst result provides us withan upper bound for the number of perfe
t k-th powers of the form ab + 1, with
a in A and b in B.Theorem 1 Let k ≥ 3 be an integer. Let A and B be two sets of positiveintegers with |A| ≥ |B| and set

S = {(a, b) : a ∈ A, b ∈ B, ab + 1 is a k-th power}.We then have
|S| ≤ 2 · 61/3 |A| · |B|2/3

+ 4 |A| ≤ 7.64 |A| · |B|2/3 if k = 3,

|S| ≤ 2
√

3 |A| · |B|1/2
+ 2 |A| ≤ 5.47 |A| · |B|1/2 if k ≥ 4.It follows from Theorem 1 that, if A and B have same 
ardinality (in par-ti
ular, if A = B), then the number of pairs (a, b) with a in A and b in B su
hthat ab + 1 is a k-th power for a �xed k is less than 8 |A|5/3 if k = 3 and is lessthan 6 |A|3/2 if k ≥ 4. We further noti
e that there is no positive integer a su
hthat a2 + 1 is a perfe
t power, a result due to V. A. Lebesgue [9℄.We were unable to treat the 
ase k = 2 in Theorem 1. However, if the sets

A and B are equal, it is possible to slightly improve the trivial estimate.Theorem 2 Let A be a set of positive integers with |A| ≥ 6. Then the set
{(a, a′) : a, a′ ∈ A, a > a′, aa′ + 1 is a square}has at most 0.4 |A|2 elements. 2



The results from [2℄ also enable us to improve upon Theorems 1 and 2 ofGyarmati, Sárközy and Stewart [6℄. For any integer k ≥ 2, set
Vk = {xℓ : x ∈ Z

+ and 2 ≤ ℓ ≤ k}.Theorem 3 Let k ≥ 2 be an integer. Let A be a set of positive integers withthe property that aa′ + 1 is in Vk whenever a and a′ are distin
t integers from
A. We then have

|A| < 85000

(

k

log k

)2

. (1)Theorem 3 
onsiderably improves Theorem 2 of [6℄, where the authors gotthe upper bound
|A| < 160

(

k

log k

)2

log log
(

max
a∈A

a
)

, (2)instead of (1). We point out that the right-hand side of (2) depends on themaximum of the elements of A, unlike the right-hand side of (1).Next result follows from Theorem 3 by noti
ing that if xk is a positive integerin {2, . . . , N}, then k is at most equal to (log N)/(log 2).Corollary 1 Let A be a set of positive integers at most equal to N . If aa′ + 1is a perfe
t power for all distin
t integers a and a′ in A, then we have
|A| < 177000

(

log N

log log N

)2

. (3)Corollary 1 slightly re�nes Theorem 1 of [6℄, where the upper bound
|A| < 340

(log N)2

log log Nis proved, instead of (3).In Theorem 3, we make the strong assumption that aa′+1 is always a power.Our method also provides new results under the weaker assumption that aa′+1is a power for many pairs (a, a′) in A2. For any integer k ≥ 3, set
Wk = {xℓ : x ∈ Z

+ and 3 ≤ ℓ ≤ k},and, if k ≥ 4, de�ne
Xk = {xℓ : x ∈ Z

+ and 4 ≤ ℓ ≤ k}.3



Theorem 4 Let k ≥ 3 be an integer. Let A and B be two sets of positiveintegers. If ab + 1 is in Wk for at least 15(max{|A| , |B|})5/3 pairs (a, b) with ain A and b in B, then
max{|A| , |B|} <

(

k

log k

)6

.If k ≥ 4 and if there exists α > 3/2 su
h that ab + 1 is in Xk for at least
(max{|A| , |B|})α pairs (a, b) with a in A and b in B, then

max{|A| , |B|} < c(α)

(

k

log k

)2/(2α−3)

,for a suitable 
onstant c(α), depending only on α.Erd®s [4℄ and Moser [12℄ asked the additive analogue of the problem ofDiophantus: is it true that, for all m, there are integers a1 < a2 < · · · < amsu
h that ai + aj is a perfe
t square for all i 6= j? Rivat, Sárközy and Stewart[10℄ proved that, if A is 
ontained in {1, 2, . . . , N} and a+ a′ is a perfe
t squarefor all a, a′ ∈ A with a 6= a′, then |A| ≪ log N . We may as well investigate whathappens if the sums a + a′ are repla
ed by other polynomials in a and a′, andperfe
t squares by higher powers (see e.g. Gyarmati, Sárközy and Stewart [7℄).First we study the 
ase of a− a′. For a given integer k ≥ 3 and an arbitrary set
A of distin
t positive integers, the set

{(a, a′) : a, a′ ∈ A, a > a′, a − a′ is a k-th power}has at most 0.25 |A|2 elements, sin
e the related graph (the graph whose verti
esare the elements of A and two verti
es are joined if, and only if, their di�eren
eis a k-th power) does not 
ontain a triangle (apply Lemma 3 below). Indeed,we would otherwise have three elements a1, a2, a3 in A su
h that a1 − a2 = xk,
a2 − a3 = yk, a3 − a1 = zk for some integers x, y, z, and so xk + yk + zk = 0.By Fermat's Last Theorem [13℄ this is not possible.So far, we have studied problems for whi
h shifted produ
ts aa′ + 1 areperfe
t powers for many pairs (a, a′) in A2. Theorem 5 below deals with thepolynomial a2 + a′2.Theorem 5 There exists a positive integer N0 with the following property: forany integer N ≥ N0 and any set A 
ontained in {1, 2, . . . , N} su
h that a2 +a′2is a perfe
t square for all a, a′ ∈ A, a 6= a′, we have |A| ≤ 4(log N)1/2.4



The sequel of the paper is organized as follows. Se
tion 3 is devoted toauxiliary results taken from [2℄ and to 
lassi
al results from graph theory. Proofsof Theorems 1 to 4 are given in Se
tion 4, whereas Theorem 5 is established inSe
tion 5.3 Auxiliary resultsWe shall need the following lemmas, extra
ted from [2℄. Their proofs heavilyrest on Baker's theory of linear forms in logarithms.Lemma 1 Assume that the integers 0 < a < b < c < d1 < · · · < dm are su
hthat adi + 1, bdi + 1 and cdi + 1 are perfe
t 
ubes for any 1 ≤ i ≤ m. Then wehave m ≤ 6.Proof of Lemma 1. This is [2, Theorem 3℄.Lemma 2 Let k ≥ 4 be an integer. Assume that the integers 0 < a < b <

c1 < · · · < cm are su
h that aci + 1 and bci + 1 are perfe
t k-th powers for any
1 ≤ i ≤ m. Then there exists an e�e
tively 
omputable 
onstant C1(k) dependingonly on k, su
h that m ≤ C1(k). More pre
isely, we may take C1(4) = 3,
C1(k) = 2 for 5 ≤ k ≤ 176, C1(k) = 1 for 177 ≤ k.Proof of Lemma 2. This is [2, Theorems 1 and 2℄.We further need two results from graph theory. Throughout this paper, for agraph G, we denote by v(G) the number of its verti
es and by e(G) the numberof its edges.Lemma 3 Let G be a graph on n verti
es having at least

r − 2

2(r − 1)
n2edges for some positive integer r ≥ 3. Then G 
ontains a 
omplete subgraph on

r edges.Proof of Lemma 3. This is a 
onsequen
e of Turán's graph theorem, see forexample [1, p.294, Theorem 1.1℄ 
ombined with the upper bound
∑

0≤i<j<r−1

[

n + i

r − 1

] [

n + j

r − 1

]

≤ r − 2

2(r − 1)
n2,whi
h follows from the method of Lagrange multipliers.5



Lemma 4 Assume that G(V1, V2) is a bipartite graph with |V1| = n ≤ |V2| = m,and the verti
es are labelled by positive real numbers. Suppose that G(V1, V2)does not 
ontain a G0 subgraph Kr,t

G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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!!!!!!!!!!with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a's belong to V1 and the b'sbelong to V2 or vi
e versa). Then G has at most
e(G) ≤ 2(t − 1)1/rmn1−1/r + 2(r − 1)medges.Proof of Lemma 4. The proof is very similar to that of the K®váry�Sós�Turántheorem [8℄. For any vertex x, set

dx = |{y ∈ v(G) : y < x, (x, y) is an edge in G}| ,

e1 =
∑

x∈V1
dx and e2 =

∑

x∈V2
dx. Then we have e(G) = e1 + e2. First we getan upper bound for e1.Denote by H the number of subgraphs G1 of G of the form

G1 =

b

a1 a2 · · · ar
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�

A
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A

@
@

@
@with b ∈ V1, ai ∈ V2 and b > ai for 1 ≤ i ≤ r. Sin
e the graph G does not
ontain G0 we have

H ≤ (t − 1)

(

m

r

)

, (4)by Diri
hlet's S
hubfa
hprinzip. We further have
H =

∑

x∈V1

(

dx

r

)and, by the Cau
hy-S
hwarz inequality, we get
H ≥ n

(

e1/n

r

) (5)Combining (4) and (5) yields
e1 ≤ (t − 1)1/rmn1−1/r + (r − 1)n,6



and, similarly, ex
hanging the r�les of V1 and V2 in the de�nition of G1 (b ∈
V2, ai ∈ V1 and b > ai for 1 ≤ i ≤ r), we obtain

e2 ≤ (t − 1)1/rnm1−1/r + (r − 1)m.It then follows that
e(G) = e1 + e2 ≤ 2 max{(t − 1)1/rmn1−1/r, (t − 1)1/rnm1−1/r} + 2(r − 1)m

≤ 2(t − 1)1/rmn1−1/r + 2(r − 1)m,whi
h 
ompletes the proof of the lemma.4 Proofs of Theorems 1 to 4Let k ≥ 2 be an integer. Let a1, . . . , an and b1, . . . , bm denote the elements of
A and B, respe
tively. We de�ne a graph G on the n + m verti
es v1, . . . , vn+min the following way. For any integers i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m, anedge joins the verti
es vi and vn+j if, and only if, aibj +1 is a perfe
t k-th power.No edge joins two verti
es vi and vj if either 1 ≤ i, j ≤ n or n+1 ≤ i, j ≤ n+m.For k = 3, Lemma 1 implies that G does not 
ontain a G0 subgraph de�nedby

G0 =

a b c

d1 d2 d3 d4 d5 d6 d7
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��������with a < b < c < di for 1 ≤ i ≤ 7.When k ≥ 4, Lemma 2 implies that the graph G does not 
ontain a subgraph
G0 de�ned by

G0 =

a b

c1 c2 c3 c4
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with a < b < ci for 1 ≤ i ≤ 4.Both the above remarks 
ombined with Lemma 4 give Theorem 1.We now turn to the proof of Theorem 2. Let a1, a2, . . . , an denote the el-ements of A. We de�ne a graph G on n verti
es v1, . . . , vn as in the proof of7



Theorem 1. For any integers i and j with 1 ≤ i < j ≤ n, an edge joins theverti
es vi and vj if, and only if, aiaj + 1 is a square. By Dujella's result [3℄re
alled in the Introdu
tion, the graph G does not 
ontain K6 as a subgraph.Lemma 3 then implies that G has at most 0.4n2 = 0.4 |A|2 edges. This provesTheorem 2.The proof of Theorem 3 is very similar to that of Theorem 2 from [6℄. How-ever, instead of introdu
ing the sets Am as in [6℄, we use Theorem 1 and we workdire
tly with the 
omplete graph G labelled by the elements of A. We 
olourthe edge joining the verti
es a and a′ by the smallest integer ℓ larger than onefor whi
h aa′+1 is a perfe
t ℓ-th power. Thus, ea
h edge is 
oloured by a primenumber. For i = 2, 3, . . . , k, let bi denote the number of edges of G whi
h are
oloured with the integer i. Set n = |A| and assume that n ≥ 85000(k/ logk)2.By Theorem 2, we have b2 ≤ 0.4n2, thus k ≥ 3 and
b3 + . . . + bk ≥ n(n − 1)

2
− 2n2

5
=

n2

10
− n

2
.Furthermore, we infer from Theorem 1 that b3 ≤ 7.64n5/3. Consequently, wehave k ≥ 5. By Corollary 2 of Rosser and S
hoenfeld [11℄, the number of primenumbers up to k is at most (5k)/(4 log k). Thus, there exists a prime number pwith 5 ≤ p ≤ k su
h that

bp ≥ 4 log k

5k

(

n2

10
− n

2
− 7.64n5/3

)

≥ 5.5n3/2,sin
e n > 85000(k/ logk)2. Let Gp be the subgraph of G whose verti
es are thoseof G and whose edges are the edges of G 
oloured by the prime p. Theorem 1implies that bp ≤ 5.47n3/2, whi
h is the desired 
ontradi
tion.We now turn to the proof of Theorem 4. Let k ≥ 3 be an integer. Let
a1, . . . , an and b1, . . . , bm denote the elements of A and B, respe
tively. Forsimpli
ity, we assume that m ≥ n. We de�ne a graph G on the n + m verti
es
v1, . . . , vn+m in the following way. No edge joins two verti
es vi and vj if either
1 ≤ i, j ≤ n or n+1 ≤ i, j ≤ n+m. For any integers i and j with 1 ≤ i ≤ n and
1 ≤ j ≤ m, an edge joins the verti
es vi and vn+j if, and only if, aibj + 1 is aperfe
t 
ube or a higher power. We 
olour it with the smallest integer ℓ at leastequal to 3 su
h that ab + 1 is a perfe
t ℓ-th power. Observe that ea
h edge is
oloured by 4 or by an odd prime number. For any integer i = 3, . . . , k, denoteby bi the number of edges of G whi
h are 
oloured by the integer i. Denoting8



by N the number of edges of G, we have
b3 + . . . + bk = N.By Theorem 1, we have b3 ≤ 7.64 m5/3. Sin
e, by assumption, N is greaterthan 15 m5/3, we get

b4 + . . . + bk = N − b3 ≥ 7.36 m5/3.Arguing now as in [6℄ and in the proof of Theorem 3, we infer that there existsan integer p with 4 ≤ p ≤ k su
h that
bp ≥

(

4 log k

5k

)

7.36 m5/3 > 5.88 m5/3 log k

k
.By Theorem 1, we have bp ≤ 5.47 m3/2, hen
e the desired result follows.The proof of the se
ond assertion of Theorem 4 follows the same lines, butin this 
ase we obtain

b4 + · · · + bk = N ≥ mα.Thus, there exists an integer p with 4 ≤ p ≤ k su
h that
bp ≥ 4 log k

5k
mα.By Theorem 1 we have bp ≤ 5.47m3/2, hen
e the desired result follows.5 Proof of Theorem 5We begin by stating an auxiliary lemma.Lemma 5 For any su�
iently large integer N and any set A = {a1, a2, . . . , an}
ontained in {1, 2, . . . , N}, there exists a prime p su
h that p ≡ ±3 (mod 8) and

p divides at most [n/3] numbers from the set A, and with
p ≤ 3

log 1.6
log N.Proof of Lemma 5. We argue by 
ontradi
tion. Suppose that all primenumbers p ≡ ±3 (mod 8) with p ≤ 3

log 1.6 log N divide at least [n/3] numbersfrom the set A. Ea
h of these primes satis�es
p[n/3] | a1a2 . . . an,9



hen
e, we get
(

∏

p≤ 3
log 1.6

log N

p≡±3 (mod 8)

p
)[n/3]

| a1a2 . . . an. (6)It follows from the prime number theorem in arithmeti
 progressions of smallmoduli that for all su�
iently large x we have 1.6x <
∏

p≤x, p≡±3 (mod 8)

p. Thus,by (6), we get
Nn ≤

(

1.6
3

log 1.6
log N

)[n/3]

<
(

∏

p≤ 3
log 1.6

log N

p≡±3 (mod 8)

p
)[n/3]

≤ a1a2 . . . an ≤ Nn,whi
h is a 
ontradi
tion.Let N and A be as in the statement of Lemma 5, and let p be a prime whi
hsatis�es the 
on
lusion of that lemma. Assume that a2 + a′2 is a square forany a, a′ in A with a 6= a′. Let us 
onsider the numbers from the set A whi
hare not divisible by p. These are b1, b2, . . . , bt, t ≥ ⌈2n/3⌉. If b2
i ≡ b2

j (mod p)for i 6= j, then b2
i + b2

j ≡ 2b2
i is a quadrati
 residue modulo p, therefore 2 isalso a quadrati
 residue modulo p. But this 
ontradi
ts the assumption p ≡ ±3

(mod 8). Thus b2
1, b

2
2, . . . , b

2
t are in
ongruent modulo p. We further need thefollowing lemma.Lemma 6 Let p be a prime number. Let B be a set of positive integers 
oprimewith p and whose residues modulo p are all distin
t. Assume that for all b, b′ ∈ Bwith b 6= b′ the number b + b′ is a perfe
t square modulo p. Then, we have

|B| ≤ p1/2 + 3.Proof of Lemma 6. See [5℄.We now have all the tools for the proof of Theorem 5. The sum of any twoelements of the set {b2
1, b

2
2, . . . , b

2
t} is a perfe
t square so we get by Lemma 5 andLemma 6 that

2n/3 ≤ t ≤ p1/2 + 3 ≤
(

3

log 1.6
log N

)1/2

+ 3.From this, we obtain
|A| = n ≤ 4(log N)1/2,for N su�
iently large. This 
ompletes the proof of Theorem 5.
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