
On generalizations of a problem of DiophantusYann Bugeaud and Katalin Gyarmati∗Abstrat. Let k ≥ 2 be an integer and let A and B be two sets of integers.We give upper bounds for the number of perfet k-th powers of the form ab+1,with a in A and b in B. We further investigate several related questions.2000 Mathematis Subjet Classi�ation: 11D99, 11B99.1 IntrodutionThe Greek mathematiian Diophantus of Alexandria noted that the rationalnumbers 1
16 , 33

16 , 17
4 , and 105

16 have the following property: the produt of anytwo of them inreased by 1 is a square of a rational number. Later, Fermat foundthat the set of four positive integers {1, 3, 8, 120} shares the same property. A�nite set of m positive integers a1 < . . . < am suh that aiaj + 1 is a perfetsquare whenever 1 ≤ i < j ≤ m is ommonly alled a Diophantine m-tuple.A famous onjeture asserts that there does not exist a Diophantine 5-tuple.This question has been nearly solved in a remarkable paper by Dujella [3℄, whoproved that there does not exist a Diophantine 6-tuple and that the elementsof any Diophantine 5-tuple are less than 101026 . We diret the reader to [3℄ forfurther referenes.This problem was extended to higher powers by Bugeaud and Dujella [2℄.They proved that if k ≥ 3 is a given integer and A is a set of positive integerssuh that aa′ + 1 is a perfet k-th power for all distint a and a′ in A, then Ahas at most 7 elements. In the present paper, we investigate related questionsand, among other results, we provide, for an arbitrary set A of positive integers,estimates for the number nA of pairs (a, a′) with a, a′ in A suh that aa′ + 1is a perfet k-th power. It is lear that, for all m, there exists a set A =
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{a1, a2, . . . , am} suh that the m−1 integers a1a2+1, a2a3+1, . . . , am−1am+1are perfet k-th powers, thus, for whih nA is at least equal to the ardinality of
A minus one. In order to give an upper estimate for nA muh sharper than thesquare of the ardinality of A, we ombine results from [2℄ with graph theory(see Theorem 1).Aknowledgements. We warmly thank the referee for having deteted manyinauraies in an earlier version, and for having made numerous remarks, whihhelped us to onsiderably improve the presentation of the paper.2 ResultsThroughout this paper, the ardinality of a set S is denoted by |S|. Givenan integer k ≥ 3 and two �nite sets A and B, our �rst result provides us withan upper bound for the number of perfet k-th powers of the form ab + 1, with
a in A and b in B.Theorem 1 Let k ≥ 3 be an integer. Let A and B be two sets of positiveintegers with |A| ≥ |B| and set

S = {(a, b) : a ∈ A, b ∈ B, ab + 1 is a k-th power}.We then have
|S| ≤ 2 · 61/3 |A| · |B|2/3

+ 4 |A| ≤ 7.64 |A| · |B|2/3 if k = 3,

|S| ≤ 2
√

3 |A| · |B|1/2
+ 2 |A| ≤ 5.47 |A| · |B|1/2 if k ≥ 4.It follows from Theorem 1 that, if A and B have same ardinality (in par-tiular, if A = B), then the number of pairs (a, b) with a in A and b in B suhthat ab + 1 is a k-th power for a �xed k is less than 8 |A|5/3 if k = 3 and is lessthan 6 |A|3/2 if k ≥ 4. We further notie that there is no positive integer a suhthat a2 + 1 is a perfet power, a result due to V. A. Lebesgue [9℄.We were unable to treat the ase k = 2 in Theorem 1. However, if the sets

A and B are equal, it is possible to slightly improve the trivial estimate.Theorem 2 Let A be a set of positive integers with |A| ≥ 6. Then the set
{(a, a′) : a, a′ ∈ A, a > a′, aa′ + 1 is a square}has at most 0.4 |A|2 elements. 2



The results from [2℄ also enable us to improve upon Theorems 1 and 2 ofGyarmati, Sárközy and Stewart [6℄. For any integer k ≥ 2, set
Vk = {xℓ : x ∈ Z

+ and 2 ≤ ℓ ≤ k}.Theorem 3 Let k ≥ 2 be an integer. Let A be a set of positive integers withthe property that aa′ + 1 is in Vk whenever a and a′ are distint integers from
A. We then have

|A| < 85000

(

k

log k

)2

. (1)Theorem 3 onsiderably improves Theorem 2 of [6℄, where the authors gotthe upper bound
|A| < 160

(

k

log k

)2

log log
(

max
a∈A

a
)

, (2)instead of (1). We point out that the right-hand side of (2) depends on themaximum of the elements of A, unlike the right-hand side of (1).Next result follows from Theorem 3 by notiing that if xk is a positive integerin {2, . . . , N}, then k is at most equal to (log N)/(log 2).Corollary 1 Let A be a set of positive integers at most equal to N . If aa′ + 1is a perfet power for all distint integers a and a′ in A, then we have
|A| < 177000

(

log N

log log N

)2

. (3)Corollary 1 slightly re�nes Theorem 1 of [6℄, where the upper bound
|A| < 340

(log N)2

log log Nis proved, instead of (3).In Theorem 3, we make the strong assumption that aa′+1 is always a power.Our method also provides new results under the weaker assumption that aa′+1is a power for many pairs (a, a′) in A2. For any integer k ≥ 3, set
Wk = {xℓ : x ∈ Z

+ and 3 ≤ ℓ ≤ k},and, if k ≥ 4, de�ne
Xk = {xℓ : x ∈ Z

+ and 4 ≤ ℓ ≤ k}.3



Theorem 4 Let k ≥ 3 be an integer. Let A and B be two sets of positiveintegers. If ab + 1 is in Wk for at least 15(max{|A| , |B|})5/3 pairs (a, b) with ain A and b in B, then
max{|A| , |B|} <

(

k

log k

)6

.If k ≥ 4 and if there exists α > 3/2 suh that ab + 1 is in Xk for at least
(max{|A| , |B|})α pairs (a, b) with a in A and b in B, then

max{|A| , |B|} < c(α)

(

k

log k

)2/(2α−3)

,for a suitable onstant c(α), depending only on α.Erd®s [4℄ and Moser [12℄ asked the additive analogue of the problem ofDiophantus: is it true that, for all m, there are integers a1 < a2 < · · · < amsuh that ai + aj is a perfet square for all i 6= j? Rivat, Sárközy and Stewart[10℄ proved that, if A is ontained in {1, 2, . . . , N} and a+ a′ is a perfet squarefor all a, a′ ∈ A with a 6= a′, then |A| ≪ log N . We may as well investigate whathappens if the sums a + a′ are replaed by other polynomials in a and a′, andperfet squares by higher powers (see e.g. Gyarmati, Sárközy and Stewart [7℄).First we study the ase of a− a′. For a given integer k ≥ 3 and an arbitrary set
A of distint positive integers, the set

{(a, a′) : a, a′ ∈ A, a > a′, a − a′ is a k-th power}has at most 0.25 |A|2 elements, sine the related graph (the graph whose vertiesare the elements of A and two verties are joined if, and only if, their di�ereneis a k-th power) does not ontain a triangle (apply Lemma 3 below). Indeed,we would otherwise have three elements a1, a2, a3 in A suh that a1 − a2 = xk,
a2 − a3 = yk, a3 − a1 = zk for some integers x, y, z, and so xk + yk + zk = 0.By Fermat's Last Theorem [13℄ this is not possible.So far, we have studied problems for whih shifted produts aa′ + 1 areperfet powers for many pairs (a, a′) in A2. Theorem 5 below deals with thepolynomial a2 + a′2.Theorem 5 There exists a positive integer N0 with the following property: forany integer N ≥ N0 and any set A ontained in {1, 2, . . . , N} suh that a2 +a′2is a perfet square for all a, a′ ∈ A, a 6= a′, we have |A| ≤ 4(log N)1/2.4



The sequel of the paper is organized as follows. Setion 3 is devoted toauxiliary results taken from [2℄ and to lassial results from graph theory. Proofsof Theorems 1 to 4 are given in Setion 4, whereas Theorem 5 is established inSetion 5.3 Auxiliary resultsWe shall need the following lemmas, extrated from [2℄. Their proofs heavilyrest on Baker's theory of linear forms in logarithms.Lemma 1 Assume that the integers 0 < a < b < c < d1 < · · · < dm are suhthat adi + 1, bdi + 1 and cdi + 1 are perfet ubes for any 1 ≤ i ≤ m. Then wehave m ≤ 6.Proof of Lemma 1. This is [2, Theorem 3℄.Lemma 2 Let k ≥ 4 be an integer. Assume that the integers 0 < a < b <

c1 < · · · < cm are suh that aci + 1 and bci + 1 are perfet k-th powers for any
1 ≤ i ≤ m. Then there exists an e�etively omputable onstant C1(k) dependingonly on k, suh that m ≤ C1(k). More preisely, we may take C1(4) = 3,
C1(k) = 2 for 5 ≤ k ≤ 176, C1(k) = 1 for 177 ≤ k.Proof of Lemma 2. This is [2, Theorems 1 and 2℄.We further need two results from graph theory. Throughout this paper, for agraph G, we denote by v(G) the number of its verties and by e(G) the numberof its edges.Lemma 3 Let G be a graph on n verties having at least

r − 2

2(r − 1)
n2edges for some positive integer r ≥ 3. Then G ontains a omplete subgraph on

r edges.Proof of Lemma 3. This is a onsequene of Turán's graph theorem, see forexample [1, p.294, Theorem 1.1℄ ombined with the upper bound
∑

0≤i<j<r−1

[

n + i

r − 1

] [

n + j

r − 1

]

≤ r − 2

2(r − 1)
n2,whih follows from the method of Lagrange multipliers.5



Lemma 4 Assume that G(V1, V2) is a bipartite graph with |V1| = n ≤ |V2| = m,and the verties are labelled by positive real numbers. Suppose that G(V1, V2)does not ontain a G0 subgraph Kr,t

G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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!!!!!!!!!!with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a's belong to V1 and the b'sbelong to V2 or vie versa). Then G has at most
e(G) ≤ 2(t − 1)1/rmn1−1/r + 2(r − 1)medges.Proof of Lemma 4. The proof is very similar to that of the K®váry�Sós�Turántheorem [8℄. For any vertex x, set

dx = |{y ∈ v(G) : y < x, (x, y) is an edge in G}| ,

e1 =
∑

x∈V1
dx and e2 =

∑

x∈V2
dx. Then we have e(G) = e1 + e2. First we getan upper bound for e1.Denote by H the number of subgraphs G1 of G of the form

G1 =

b

a1 a2 · · · ar
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@with b ∈ V1, ai ∈ V2 and b > ai for 1 ≤ i ≤ r. Sine the graph G does notontain G0 we have

H ≤ (t − 1)

(

m

r

)

, (4)by Dirihlet's Shubfahprinzip. We further have
H =

∑

x∈V1

(

dx

r

)and, by the Cauhy-Shwarz inequality, we get
H ≥ n

(

e1/n

r

) (5)Combining (4) and (5) yields
e1 ≤ (t − 1)1/rmn1−1/r + (r − 1)n,6



and, similarly, exhanging the r�les of V1 and V2 in the de�nition of G1 (b ∈
V2, ai ∈ V1 and b > ai for 1 ≤ i ≤ r), we obtain

e2 ≤ (t − 1)1/rnm1−1/r + (r − 1)m.It then follows that
e(G) = e1 + e2 ≤ 2 max{(t − 1)1/rmn1−1/r, (t − 1)1/rnm1−1/r} + 2(r − 1)m

≤ 2(t − 1)1/rmn1−1/r + 2(r − 1)m,whih ompletes the proof of the lemma.4 Proofs of Theorems 1 to 4Let k ≥ 2 be an integer. Let a1, . . . , an and b1, . . . , bm denote the elements of
A and B, respetively. We de�ne a graph G on the n + m verties v1, . . . , vn+min the following way. For any integers i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m, anedge joins the verties vi and vn+j if, and only if, aibj +1 is a perfet k-th power.No edge joins two verties vi and vj if either 1 ≤ i, j ≤ n or n+1 ≤ i, j ≤ n+m.For k = 3, Lemma 1 implies that G does not ontain a G0 subgraph de�nedby

G0 =

a b c

d1 d2 d3 d4 d5 d6 d7
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��������with a < b < c < di for 1 ≤ i ≤ 7.When k ≥ 4, Lemma 2 implies that the graph G does not ontain a subgraph
G0 de�ned by

G0 =

a b

c1 c2 c3 c4

�
�
�
�

#
#

#
#

#

C
C
C
C

�
�

�
�

�
�
�
�

S
S

S
S

C
C
C
C

c
c

c
c

c

with a < b < ci for 1 ≤ i ≤ 4.Both the above remarks ombined with Lemma 4 give Theorem 1.We now turn to the proof of Theorem 2. Let a1, a2, . . . , an denote the el-ements of A. We de�ne a graph G on n verties v1, . . . , vn as in the proof of7



Theorem 1. For any integers i and j with 1 ≤ i < j ≤ n, an edge joins theverties vi and vj if, and only if, aiaj + 1 is a square. By Dujella's result [3℄realled in the Introdution, the graph G does not ontain K6 as a subgraph.Lemma 3 then implies that G has at most 0.4n2 = 0.4 |A|2 edges. This provesTheorem 2.The proof of Theorem 3 is very similar to that of Theorem 2 from [6℄. How-ever, instead of introduing the sets Am as in [6℄, we use Theorem 1 and we workdiretly with the omplete graph G labelled by the elements of A. We olourthe edge joining the verties a and a′ by the smallest integer ℓ larger than onefor whih aa′+1 is a perfet ℓ-th power. Thus, eah edge is oloured by a primenumber. For i = 2, 3, . . . , k, let bi denote the number of edges of G whih areoloured with the integer i. Set n = |A| and assume that n ≥ 85000(k/ logk)2.By Theorem 2, we have b2 ≤ 0.4n2, thus k ≥ 3 and
b3 + . . . + bk ≥ n(n − 1)

2
− 2n2

5
=

n2

10
− n

2
.Furthermore, we infer from Theorem 1 that b3 ≤ 7.64n5/3. Consequently, wehave k ≥ 5. By Corollary 2 of Rosser and Shoenfeld [11℄, the number of primenumbers up to k is at most (5k)/(4 log k). Thus, there exists a prime number pwith 5 ≤ p ≤ k suh that

bp ≥ 4 log k

5k

(

n2

10
− n

2
− 7.64n5/3

)

≥ 5.5n3/2,sine n > 85000(k/ logk)2. Let Gp be the subgraph of G whose verties are thoseof G and whose edges are the edges of G oloured by the prime p. Theorem 1implies that bp ≤ 5.47n3/2, whih is the desired ontradition.We now turn to the proof of Theorem 4. Let k ≥ 3 be an integer. Let
a1, . . . , an and b1, . . . , bm denote the elements of A and B, respetively. Forsimpliity, we assume that m ≥ n. We de�ne a graph G on the n + m verties
v1, . . . , vn+m in the following way. No edge joins two verties vi and vj if either
1 ≤ i, j ≤ n or n+1 ≤ i, j ≤ n+m. For any integers i and j with 1 ≤ i ≤ n and
1 ≤ j ≤ m, an edge joins the verties vi and vn+j if, and only if, aibj + 1 is aperfet ube or a higher power. We olour it with the smallest integer ℓ at leastequal to 3 suh that ab + 1 is a perfet ℓ-th power. Observe that eah edge isoloured by 4 or by an odd prime number. For any integer i = 3, . . . , k, denoteby bi the number of edges of G whih are oloured by the integer i. Denoting8



by N the number of edges of G, we have
b3 + . . . + bk = N.By Theorem 1, we have b3 ≤ 7.64 m5/3. Sine, by assumption, N is greaterthan 15 m5/3, we get

b4 + . . . + bk = N − b3 ≥ 7.36 m5/3.Arguing now as in [6℄ and in the proof of Theorem 3, we infer that there existsan integer p with 4 ≤ p ≤ k suh that
bp ≥

(

4 log k

5k

)

7.36 m5/3 > 5.88 m5/3 log k

k
.By Theorem 1, we have bp ≤ 5.47 m3/2, hene the desired result follows.The proof of the seond assertion of Theorem 4 follows the same lines, butin this ase we obtain

b4 + · · · + bk = N ≥ mα.Thus, there exists an integer p with 4 ≤ p ≤ k suh that
bp ≥ 4 log k

5k
mα.By Theorem 1 we have bp ≤ 5.47m3/2, hene the desired result follows.5 Proof of Theorem 5We begin by stating an auxiliary lemma.Lemma 5 For any su�iently large integer N and any set A = {a1, a2, . . . , an}ontained in {1, 2, . . . , N}, there exists a prime p suh that p ≡ ±3 (mod 8) and

p divides at most [n/3] numbers from the set A, and with
p ≤ 3

log 1.6
log N.Proof of Lemma 5. We argue by ontradition. Suppose that all primenumbers p ≡ ±3 (mod 8) with p ≤ 3

log 1.6 log N divide at least [n/3] numbersfrom the set A. Eah of these primes satis�es
p[n/3] | a1a2 . . . an,9



hene, we get
(

∏

p≤ 3
log 1.6

log N

p≡±3 (mod 8)

p
)[n/3]

| a1a2 . . . an. (6)It follows from the prime number theorem in arithmeti progressions of smallmoduli that for all su�iently large x we have 1.6x <
∏

p≤x, p≡±3 (mod 8)

p. Thus,by (6), we get
Nn ≤

(

1.6
3

log 1.6
log N

)[n/3]

<
(

∏

p≤ 3
log 1.6

log N

p≡±3 (mod 8)

p
)[n/3]

≤ a1a2 . . . an ≤ Nn,whih is a ontradition.Let N and A be as in the statement of Lemma 5, and let p be a prime whihsatis�es the onlusion of that lemma. Assume that a2 + a′2 is a square forany a, a′ in A with a 6= a′. Let us onsider the numbers from the set A whihare not divisible by p. These are b1, b2, . . . , bt, t ≥ ⌈2n/3⌉. If b2
i ≡ b2

j (mod p)for i 6= j, then b2
i + b2

j ≡ 2b2
i is a quadrati residue modulo p, therefore 2 isalso a quadrati residue modulo p. But this ontradits the assumption p ≡ ±3

(mod 8). Thus b2
1, b

2
2, . . . , b

2
t are inongruent modulo p. We further need thefollowing lemma.Lemma 6 Let p be a prime number. Let B be a set of positive integers oprimewith p and whose residues modulo p are all distint. Assume that for all b, b′ ∈ Bwith b 6= b′ the number b + b′ is a perfet square modulo p. Then, we have

|B| ≤ p1/2 + 3.Proof of Lemma 6. See [5℄.We now have all the tools for the proof of Theorem 5. The sum of any twoelements of the set {b2
1, b

2
2, . . . , b

2
t} is a perfet square so we get by Lemma 5 andLemma 6 that

2n/3 ≤ t ≤ p1/2 + 3 ≤
(

3

log 1.6
log N

)1/2

+ 3.From this, we obtain
|A| = n ≤ 4(log N)1/2,for N su�iently large. This ompletes the proof of Theorem 5.
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